1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 #ifdef CONFIG_HYPERHOLD_FILE_LRU
67 #include <linux/memcg_policy.h>
68 #endif
69
70 #ifdef CONFIG_RECLAIM_ACCT
71 #include <linux/reclaim_acct.h>
72 #endif
73
74 #ifdef ARCH_HAS_PREFETCHW
75 #define prefetchw_prev_lru_page(_page, _base, _field) \
76 do { \
77 if ((_page)->lru.prev != _base) { \
78 struct page *prev; \
79 \
80 prev = lru_to_page(&(_page->lru)); \
81 prefetchw(&prev->_field); \
82 } \
83 } while (0)
84 #else
85 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
86 #endif
87
88 #ifdef CONFIG_HYPERHOLD_FILE_LRU
89 unsigned int enough_inactive_file = 1;
90 #endif
91
92 /*
93 * From 0 .. 200. Higher means more swappy.
94 */
95 int vm_swappiness = 60;
96
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)97 static void set_task_reclaim_state(struct task_struct *task,
98 struct reclaim_state *rs)
99 {
100 /* Check for an overwrite */
101 WARN_ON_ONCE(rs && task->reclaim_state);
102
103 /* Check for the nulling of an already-nulled member */
104 WARN_ON_ONCE(!rs && !task->reclaim_state);
105
106 task->reclaim_state = rs;
107 }
108
109 static LIST_HEAD(shrinker_list);
110 static DECLARE_RWSEM(shrinker_rwsem);
111
112 #ifdef CONFIG_MEMCG
113
114 static DEFINE_IDR(shrinker_idr);
115 static int shrinker_nr_max;
116
prealloc_memcg_shrinker(struct shrinker * shrinker)117 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
118 {
119 int id, ret = -ENOMEM;
120
121 down_write(&shrinker_rwsem);
122 /* This may call shrinker, so it must use down_read_trylock() */
123 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
124 if (id < 0)
125 goto unlock;
126
127 if (id >= shrinker_nr_max) {
128 if (memcg_expand_shrinker_maps(id)) {
129 idr_remove(&shrinker_idr, id);
130 goto unlock;
131 }
132
133 shrinker_nr_max = id + 1;
134 }
135 shrinker->id = id;
136 ret = 0;
137 unlock:
138 up_write(&shrinker_rwsem);
139 return ret;
140 }
141
unregister_memcg_shrinker(struct shrinker * shrinker)142 static void unregister_memcg_shrinker(struct shrinker *shrinker)
143 {
144 int id = shrinker->id;
145
146 BUG_ON(id < 0);
147
148 lockdep_assert_held(&shrinker_rwsem);
149
150 idr_remove(&shrinker_idr, id);
151 }
152
cgroup_reclaim(struct scan_control * sc)153 bool cgroup_reclaim(struct scan_control *sc)
154 {
155 return sc->target_mem_cgroup;
156 }
157
158 /**
159 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
writeback_throttling_sane(struct scan_control * sc)171 bool writeback_throttling_sane(struct scan_control *sc)
172 {
173 if (!cgroup_reclaim(sc))
174 return true;
175 #ifdef CONFIG_CGROUP_WRITEBACK
176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177 return true;
178 #endif
179 return false;
180 }
181 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)182 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
183 {
184 return 0;
185 }
186
unregister_memcg_shrinker(struct shrinker * shrinker)187 static void unregister_memcg_shrinker(struct shrinker *shrinker)
188 {
189 }
190
cgroup_reclaim(struct scan_control * sc)191 bool cgroup_reclaim(struct scan_control *sc)
192 {
193 return false;
194 }
195
writeback_throttling_sane(struct scan_control * sc)196 bool writeback_throttling_sane(struct scan_control *sc)
197 {
198 return true;
199 }
200 #endif
201
202 /*
203 * This misses isolated pages which are not accounted for to save counters.
204 * As the data only determines if reclaim or compaction continues, it is
205 * not expected that isolated pages will be a dominating factor.
206 */
zone_reclaimable_pages(struct zone * zone)207 unsigned long zone_reclaimable_pages(struct zone *zone)
208 {
209 unsigned long nr;
210
211 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
213 if (get_nr_swap_pages() > 0)
214 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
216
217 return nr;
218 }
219
220 /**
221 * lruvec_lru_size - Returns the number of pages on the given LRU list.
222 * @lruvec: lru vector
223 * @lru: lru to use
224 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
225 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)226 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
227 {
228 unsigned long size = 0;
229 int zid;
230
231 #ifdef CONFIG_HYPERHOLD_FILE_LRU
232 if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
233 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
234 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
235
236 if (!managed_zone(zone))
237 continue;
238
239 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
240 }
241
242 return size;
243 }
244 #endif
245 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
246 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
247
248 if (!managed_zone(zone))
249 continue;
250
251 if (!mem_cgroup_disabled())
252 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
253 else
254 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
255 }
256 return size;
257 }
258
259 /*
260 * Add a shrinker callback to be called from the vm.
261 */
prealloc_shrinker(struct shrinker * shrinker)262 int prealloc_shrinker(struct shrinker *shrinker)
263 {
264 unsigned int size = sizeof(*shrinker->nr_deferred);
265
266 if (shrinker->flags & SHRINKER_NUMA_AWARE)
267 size *= nr_node_ids;
268
269 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
270 if (!shrinker->nr_deferred)
271 return -ENOMEM;
272
273 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
274 if (prealloc_memcg_shrinker(shrinker))
275 goto free_deferred;
276 }
277
278 return 0;
279
280 free_deferred:
281 kfree(shrinker->nr_deferred);
282 shrinker->nr_deferred = NULL;
283 return -ENOMEM;
284 }
285
free_prealloced_shrinker(struct shrinker * shrinker)286 void free_prealloced_shrinker(struct shrinker *shrinker)
287 {
288 if (!shrinker->nr_deferred)
289 return;
290
291 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
292 down_write(&shrinker_rwsem);
293 unregister_memcg_shrinker(shrinker);
294 up_write(&shrinker_rwsem);
295 }
296
297 kfree(shrinker->nr_deferred);
298 shrinker->nr_deferred = NULL;
299 }
300
register_shrinker_prepared(struct shrinker * shrinker)301 void register_shrinker_prepared(struct shrinker *shrinker)
302 {
303 down_write(&shrinker_rwsem);
304 list_add_tail(&shrinker->list, &shrinker_list);
305 shrinker->flags |= SHRINKER_REGISTERED;
306 up_write(&shrinker_rwsem);
307 }
308
register_shrinker(struct shrinker * shrinker)309 int register_shrinker(struct shrinker *shrinker)
310 {
311 int err = prealloc_shrinker(shrinker);
312
313 if (err)
314 return err;
315 register_shrinker_prepared(shrinker);
316 return 0;
317 }
318 EXPORT_SYMBOL(register_shrinker);
319
320 /*
321 * Remove one
322 */
unregister_shrinker(struct shrinker * shrinker)323 void unregister_shrinker(struct shrinker *shrinker)
324 {
325 if (!(shrinker->flags & SHRINKER_REGISTERED))
326 return;
327
328 down_write(&shrinker_rwsem);
329 list_del(&shrinker->list);
330 shrinker->flags &= ~SHRINKER_REGISTERED;
331 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
332 unregister_memcg_shrinker(shrinker);
333 up_write(&shrinker_rwsem);
334
335 kfree(shrinker->nr_deferred);
336 shrinker->nr_deferred = NULL;
337 }
338 EXPORT_SYMBOL(unregister_shrinker);
339
340 #define SHRINK_BATCH 128
341
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)342 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
343 struct shrinker *shrinker, int priority)
344 {
345 unsigned long freed = 0;
346 unsigned long long delta;
347 long total_scan;
348 long freeable;
349 long nr;
350 long new_nr;
351 int nid = shrinkctl->nid;
352 long batch_size = shrinker->batch ? shrinker->batch
353 : SHRINK_BATCH;
354 long scanned = 0, next_deferred;
355
356 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
357 nid = 0;
358
359 freeable = shrinker->count_objects(shrinker, shrinkctl);
360 if (freeable == 0 || freeable == SHRINK_EMPTY)
361 return freeable;
362
363 /*
364 * copy the current shrinker scan count into a local variable
365 * and zero it so that other concurrent shrinker invocations
366 * don't also do this scanning work.
367 */
368 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
369
370 total_scan = nr;
371 if (shrinker->seeks) {
372 delta = freeable >> priority;
373 delta *= 4;
374 do_div(delta, shrinker->seeks);
375 } else {
376 /*
377 * These objects don't require any IO to create. Trim
378 * them aggressively under memory pressure to keep
379 * them from causing refetches in the IO caches.
380 */
381 delta = freeable / 2;
382 }
383
384 total_scan += delta;
385 if (total_scan < 0) {
386 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
387 shrinker->scan_objects, total_scan);
388 total_scan = freeable;
389 next_deferred = nr;
390 } else
391 next_deferred = total_scan;
392
393 /*
394 * We need to avoid excessive windup on filesystem shrinkers
395 * due to large numbers of GFP_NOFS allocations causing the
396 * shrinkers to return -1 all the time. This results in a large
397 * nr being built up so when a shrink that can do some work
398 * comes along it empties the entire cache due to nr >>>
399 * freeable. This is bad for sustaining a working set in
400 * memory.
401 *
402 * Hence only allow the shrinker to scan the entire cache when
403 * a large delta change is calculated directly.
404 */
405 if (delta < freeable / 4)
406 total_scan = min(total_scan, freeable / 2);
407
408 /*
409 * Avoid risking looping forever due to too large nr value:
410 * never try to free more than twice the estimate number of
411 * freeable entries.
412 */
413 if (total_scan > freeable * 2)
414 total_scan = freeable * 2;
415
416 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
417 freeable, delta, total_scan, priority);
418
419 /*
420 * Normally, we should not scan less than batch_size objects in one
421 * pass to avoid too frequent shrinker calls, but if the slab has less
422 * than batch_size objects in total and we are really tight on memory,
423 * we will try to reclaim all available objects, otherwise we can end
424 * up failing allocations although there are plenty of reclaimable
425 * objects spread over several slabs with usage less than the
426 * batch_size.
427 *
428 * We detect the "tight on memory" situations by looking at the total
429 * number of objects we want to scan (total_scan). If it is greater
430 * than the total number of objects on slab (freeable), we must be
431 * scanning at high prio and therefore should try to reclaim as much as
432 * possible.
433 */
434 while (total_scan >= batch_size ||
435 total_scan >= freeable) {
436 unsigned long ret;
437 unsigned long nr_to_scan = min(batch_size, total_scan);
438
439 shrinkctl->nr_to_scan = nr_to_scan;
440 shrinkctl->nr_scanned = nr_to_scan;
441 ret = shrinker->scan_objects(shrinker, shrinkctl);
442 if (ret == SHRINK_STOP)
443 break;
444 freed += ret;
445
446 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
447 total_scan -= shrinkctl->nr_scanned;
448 scanned += shrinkctl->nr_scanned;
449
450 cond_resched();
451 }
452
453 if (next_deferred >= scanned)
454 next_deferred -= scanned;
455 else
456 next_deferred = 0;
457 /*
458 * move the unused scan count back into the shrinker in a
459 * manner that handles concurrent updates. If we exhausted the
460 * scan, there is no need to do an update.
461 */
462 if (next_deferred > 0)
463 new_nr = atomic_long_add_return(next_deferred,
464 &shrinker->nr_deferred[nid]);
465 else
466 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
467
468 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
469 return freed;
470 }
471
472 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)473 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
474 struct mem_cgroup *memcg, int priority)
475 {
476 struct memcg_shrinker_map *map;
477 unsigned long ret, freed = 0;
478 int i;
479
480 if (!mem_cgroup_online(memcg))
481 return 0;
482
483 if (!down_read_trylock(&shrinker_rwsem))
484 return 0;
485
486 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
487 true);
488 if (unlikely(!map))
489 goto unlock;
490
491 for_each_set_bit(i, map->map, shrinker_nr_max) {
492 struct shrink_control sc = {
493 .gfp_mask = gfp_mask,
494 .nid = nid,
495 .memcg = memcg,
496 };
497 struct shrinker *shrinker;
498
499 shrinker = idr_find(&shrinker_idr, i);
500 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
501 if (!shrinker)
502 clear_bit(i, map->map);
503 continue;
504 }
505
506 /* Call non-slab shrinkers even though kmem is disabled */
507 if (!memcg_kmem_enabled() &&
508 !(shrinker->flags & SHRINKER_NONSLAB))
509 continue;
510
511 ret = do_shrink_slab(&sc, shrinker, priority);
512 if (ret == SHRINK_EMPTY) {
513 clear_bit(i, map->map);
514 /*
515 * After the shrinker reported that it had no objects to
516 * free, but before we cleared the corresponding bit in
517 * the memcg shrinker map, a new object might have been
518 * added. To make sure, we have the bit set in this
519 * case, we invoke the shrinker one more time and reset
520 * the bit if it reports that it is not empty anymore.
521 * The memory barrier here pairs with the barrier in
522 * memcg_set_shrinker_bit():
523 *
524 * list_lru_add() shrink_slab_memcg()
525 * list_add_tail() clear_bit()
526 * <MB> <MB>
527 * set_bit() do_shrink_slab()
528 */
529 smp_mb__after_atomic();
530 ret = do_shrink_slab(&sc, shrinker, priority);
531 if (ret == SHRINK_EMPTY)
532 ret = 0;
533 else
534 memcg_set_shrinker_bit(memcg, nid, i);
535 }
536 freed += ret;
537
538 if (rwsem_is_contended(&shrinker_rwsem)) {
539 freed = freed ? : 1;
540 break;
541 }
542 }
543 unlock:
544 up_read(&shrinker_rwsem);
545 return freed;
546 }
547 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)548 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
549 struct mem_cgroup *memcg, int priority)
550 {
551 return 0;
552 }
553 #endif /* CONFIG_MEMCG */
554
555 /**
556 * shrink_slab - shrink slab caches
557 * @gfp_mask: allocation context
558 * @nid: node whose slab caches to target
559 * @memcg: memory cgroup whose slab caches to target
560 * @priority: the reclaim priority
561 *
562 * Call the shrink functions to age shrinkable caches.
563 *
564 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
565 * unaware shrinkers will receive a node id of 0 instead.
566 *
567 * @memcg specifies the memory cgroup to target. Unaware shrinkers
568 * are called only if it is the root cgroup.
569 *
570 * @priority is sc->priority, we take the number of objects and >> by priority
571 * in order to get the scan target.
572 *
573 * Returns the number of reclaimed slab objects.
574 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)575 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
576 struct mem_cgroup *memcg,
577 int priority)
578 {
579 unsigned long ret, freed = 0;
580 struct shrinker *shrinker;
581
582 /*
583 * The root memcg might be allocated even though memcg is disabled
584 * via "cgroup_disable=memory" boot parameter. This could make
585 * mem_cgroup_is_root() return false, then just run memcg slab
586 * shrink, but skip global shrink. This may result in premature
587 * oom.
588 */
589 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
590 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
591
592 if (!down_read_trylock(&shrinker_rwsem))
593 goto out;
594
595 list_for_each_entry(shrinker, &shrinker_list, list) {
596 struct shrink_control sc = {
597 .gfp_mask = gfp_mask,
598 .nid = nid,
599 .memcg = memcg,
600 };
601
602 #ifdef CONFIG_RECLAIM_ACCT
603 reclaimacct_substage_start(RA_SHRINKSLAB);
604 #endif
605 ret = do_shrink_slab(&sc, shrinker, priority);
606 if (ret == SHRINK_EMPTY)
607 ret = 0;
608 freed += ret;
609 #ifdef CONFIG_RECLAIM_ACCT
610 reclaimacct_substage_end(RA_SHRINKSLAB, ret, shrinker);
611 #endif
612 /*
613 * Bail out if someone want to register a new shrinker to
614 * prevent the registration from being stalled for long periods
615 * by parallel ongoing shrinking.
616 */
617 if (rwsem_is_contended(&shrinker_rwsem)) {
618 freed = freed ? : 1;
619 break;
620 }
621 }
622
623 up_read(&shrinker_rwsem);
624 out:
625 cond_resched();
626 return freed;
627 }
628
drop_slab_node(int nid)629 void drop_slab_node(int nid)
630 {
631 unsigned long freed;
632 int shift = 0;
633
634 do {
635 struct mem_cgroup *memcg = NULL;
636
637 if (fatal_signal_pending(current))
638 return;
639
640 freed = 0;
641 memcg = mem_cgroup_iter(NULL, NULL, NULL);
642 do {
643 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
644 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
645 } while ((freed >> shift++) > 1);
646 }
647
drop_slab(void)648 void drop_slab(void)
649 {
650 int nid;
651
652 for_each_online_node(nid)
653 drop_slab_node(nid);
654 }
655
is_page_cache_freeable(struct page * page)656 static inline int is_page_cache_freeable(struct page *page)
657 {
658 /*
659 * A freeable page cache page is referenced only by the caller
660 * that isolated the page, the page cache and optional buffer
661 * heads at page->private.
662 */
663 int page_cache_pins = thp_nr_pages(page);
664 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
665 }
666
may_write_to_inode(struct inode * inode)667 static int may_write_to_inode(struct inode *inode)
668 {
669 if (current->flags & PF_SWAPWRITE)
670 return 1;
671 if (!inode_write_congested(inode))
672 return 1;
673 if (inode_to_bdi(inode) == current->backing_dev_info)
674 return 1;
675 return 0;
676 }
677
678 /*
679 * We detected a synchronous write error writing a page out. Probably
680 * -ENOSPC. We need to propagate that into the address_space for a subsequent
681 * fsync(), msync() or close().
682 *
683 * The tricky part is that after writepage we cannot touch the mapping: nothing
684 * prevents it from being freed up. But we have a ref on the page and once
685 * that page is locked, the mapping is pinned.
686 *
687 * We're allowed to run sleeping lock_page() here because we know the caller has
688 * __GFP_FS.
689 */
handle_write_error(struct address_space * mapping,struct page * page,int error)690 static void handle_write_error(struct address_space *mapping,
691 struct page *page, int error)
692 {
693 lock_page(page);
694 if (page_mapping(page) == mapping)
695 mapping_set_error(mapping, error);
696 unlock_page(page);
697 }
698
699 /* possible outcome of pageout() */
700 typedef enum {
701 /* failed to write page out, page is locked */
702 PAGE_KEEP,
703 /* move page to the active list, page is locked */
704 PAGE_ACTIVATE,
705 /* page has been sent to the disk successfully, page is unlocked */
706 PAGE_SUCCESS,
707 /* page is clean and locked */
708 PAGE_CLEAN,
709 } pageout_t;
710
711 /*
712 * pageout is called by shrink_page_list() for each dirty page.
713 * Calls ->writepage().
714 */
pageout(struct page * page,struct address_space * mapping)715 static pageout_t pageout(struct page *page, struct address_space *mapping)
716 {
717 /*
718 * If the page is dirty, only perform writeback if that write
719 * will be non-blocking. To prevent this allocation from being
720 * stalled by pagecache activity. But note that there may be
721 * stalls if we need to run get_block(). We could test
722 * PagePrivate for that.
723 *
724 * If this process is currently in __generic_file_write_iter() against
725 * this page's queue, we can perform writeback even if that
726 * will block.
727 *
728 * If the page is swapcache, write it back even if that would
729 * block, for some throttling. This happens by accident, because
730 * swap_backing_dev_info is bust: it doesn't reflect the
731 * congestion state of the swapdevs. Easy to fix, if needed.
732 */
733 if (!is_page_cache_freeable(page))
734 return PAGE_KEEP;
735 if (!mapping) {
736 /*
737 * Some data journaling orphaned pages can have
738 * page->mapping == NULL while being dirty with clean buffers.
739 */
740 if (page_has_private(page)) {
741 if (try_to_free_buffers(page)) {
742 ClearPageDirty(page);
743 pr_info("%s: orphaned page\n", __func__);
744 return PAGE_CLEAN;
745 }
746 }
747 return PAGE_KEEP;
748 }
749 if (mapping->a_ops->writepage == NULL)
750 return PAGE_ACTIVATE;
751 if (!may_write_to_inode(mapping->host))
752 return PAGE_KEEP;
753
754 if (clear_page_dirty_for_io(page)) {
755 int res;
756 struct writeback_control wbc = {
757 .sync_mode = WB_SYNC_NONE,
758 .nr_to_write = SWAP_CLUSTER_MAX,
759 .range_start = 0,
760 .range_end = LLONG_MAX,
761 .for_reclaim = 1,
762 };
763
764 SetPageReclaim(page);
765 res = mapping->a_ops->writepage(page, &wbc);
766 if (res < 0)
767 handle_write_error(mapping, page, res);
768 if (res == AOP_WRITEPAGE_ACTIVATE) {
769 ClearPageReclaim(page);
770 return PAGE_ACTIVATE;
771 }
772
773 if (!PageWriteback(page)) {
774 /* synchronous write or broken a_ops? */
775 ClearPageReclaim(page);
776 }
777 trace_mm_vmscan_writepage(page);
778 inc_node_page_state(page, NR_VMSCAN_WRITE);
779 return PAGE_SUCCESS;
780 }
781
782 return PAGE_CLEAN;
783 }
784
785 /*
786 * Same as remove_mapping, but if the page is removed from the mapping, it
787 * gets returned with a refcount of 0.
788 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)789 static int __remove_mapping(struct address_space *mapping, struct page *page,
790 bool reclaimed, struct mem_cgroup *target_memcg)
791 {
792 unsigned long flags;
793 int refcount;
794 void *shadow = NULL;
795
796 BUG_ON(!PageLocked(page));
797 BUG_ON(mapping != page_mapping(page));
798
799 xa_lock_irqsave(&mapping->i_pages, flags);
800 /*
801 * The non racy check for a busy page.
802 *
803 * Must be careful with the order of the tests. When someone has
804 * a ref to the page, it may be possible that they dirty it then
805 * drop the reference. So if PageDirty is tested before page_count
806 * here, then the following race may occur:
807 *
808 * get_user_pages(&page);
809 * [user mapping goes away]
810 * write_to(page);
811 * !PageDirty(page) [good]
812 * SetPageDirty(page);
813 * put_page(page);
814 * !page_count(page) [good, discard it]
815 *
816 * [oops, our write_to data is lost]
817 *
818 * Reversing the order of the tests ensures such a situation cannot
819 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
820 * load is not satisfied before that of page->_refcount.
821 *
822 * Note that if SetPageDirty is always performed via set_page_dirty,
823 * and thus under the i_pages lock, then this ordering is not required.
824 */
825 refcount = 1 + compound_nr(page);
826 if (!page_ref_freeze(page, refcount))
827 goto cannot_free;
828 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
829 if (unlikely(PageDirty(page))) {
830 page_ref_unfreeze(page, refcount);
831 goto cannot_free;
832 }
833
834 if (PageSwapCache(page)) {
835 swp_entry_t swap = { .val = page_private(page) };
836 mem_cgroup_swapout(page, swap);
837 if (reclaimed && !mapping_exiting(mapping))
838 shadow = workingset_eviction(page, target_memcg);
839 __delete_from_swap_cache(page, swap, shadow);
840 xa_unlock_irqrestore(&mapping->i_pages, flags);
841 put_swap_page(page, swap);
842 } else {
843 void (*freepage)(struct page *);
844
845 freepage = mapping->a_ops->freepage;
846 /*
847 * Remember a shadow entry for reclaimed file cache in
848 * order to detect refaults, thus thrashing, later on.
849 *
850 * But don't store shadows in an address space that is
851 * already exiting. This is not just an optimization,
852 * inode reclaim needs to empty out the radix tree or
853 * the nodes are lost. Don't plant shadows behind its
854 * back.
855 *
856 * We also don't store shadows for DAX mappings because the
857 * only page cache pages found in these are zero pages
858 * covering holes, and because we don't want to mix DAX
859 * exceptional entries and shadow exceptional entries in the
860 * same address_space.
861 */
862 if (reclaimed && page_is_file_lru(page) &&
863 !mapping_exiting(mapping) && !dax_mapping(mapping))
864 shadow = workingset_eviction(page, target_memcg);
865 __delete_from_page_cache(page, shadow);
866 xa_unlock_irqrestore(&mapping->i_pages, flags);
867
868 if (freepage != NULL)
869 freepage(page);
870 }
871
872 return 1;
873
874 cannot_free:
875 xa_unlock_irqrestore(&mapping->i_pages, flags);
876 return 0;
877 }
878
879 /*
880 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
881 * someone else has a ref on the page, abort and return 0. If it was
882 * successfully detached, return 1. Assumes the caller has a single ref on
883 * this page.
884 */
remove_mapping(struct address_space * mapping,struct page * page)885 int remove_mapping(struct address_space *mapping, struct page *page)
886 {
887 if (__remove_mapping(mapping, page, false, NULL)) {
888 /*
889 * Unfreezing the refcount with 1 rather than 2 effectively
890 * drops the pagecache ref for us without requiring another
891 * atomic operation.
892 */
893 page_ref_unfreeze(page, 1);
894 return 1;
895 }
896 return 0;
897 }
898
899 /**
900 * putback_lru_page - put previously isolated page onto appropriate LRU list
901 * @page: page to be put back to appropriate lru list
902 *
903 * Add previously isolated @page to appropriate LRU list.
904 * Page may still be unevictable for other reasons.
905 *
906 * lru_lock must not be held, interrupts must be enabled.
907 */
putback_lru_page(struct page * page)908 void putback_lru_page(struct page *page)
909 {
910 lru_cache_add(page);
911 put_page(page); /* drop ref from isolate */
912 }
913
914 enum page_references {
915 PAGEREF_RECLAIM,
916 PAGEREF_RECLAIM_CLEAN,
917 PAGEREF_RECLAIM_PURGEABLE,
918 PAGEREF_KEEP,
919 PAGEREF_ACTIVATE,
920 };
921
page_check_references(struct page * page,struct scan_control * sc)922 static enum page_references page_check_references(struct page *page,
923 struct scan_control *sc)
924 {
925 int referenced_ptes, referenced_page;
926 unsigned long vm_flags;
927
928 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
929 &vm_flags);
930 referenced_page = TestClearPageReferenced(page);
931
932 /*
933 * Mlock lost the isolation race with us. Let try_to_unmap()
934 * move the page to the unevictable list.
935 */
936 if (vm_flags & VM_LOCKED)
937 return PAGEREF_RECLAIM;
938
939 #ifdef CONFIG_MEM_PURGEABLE
940 if (vm_flags & VM_PURGEABLE)
941 return PAGEREF_RECLAIM_PURGEABLE;
942 #endif
943 if (referenced_ptes) {
944 /*
945 * All mapped pages start out with page table
946 * references from the instantiating fault, so we need
947 * to look twice if a mapped file page is used more
948 * than once.
949 *
950 * Mark it and spare it for another trip around the
951 * inactive list. Another page table reference will
952 * lead to its activation.
953 *
954 * Note: the mark is set for activated pages as well
955 * so that recently deactivated but used pages are
956 * quickly recovered.
957 */
958 SetPageReferenced(page);
959
960 if (referenced_page || referenced_ptes > 1)
961 return PAGEREF_ACTIVATE;
962
963 /*
964 * Activate file-backed executable pages after first usage.
965 */
966 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
967 return PAGEREF_ACTIVATE;
968
969 return PAGEREF_KEEP;
970 }
971
972 /* Reclaim if clean, defer dirty pages to writeback */
973 if (referenced_page && !PageSwapBacked(page))
974 return PAGEREF_RECLAIM_CLEAN;
975
976 return PAGEREF_RECLAIM;
977 }
978
979 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)980 static void page_check_dirty_writeback(struct page *page,
981 bool *dirty, bool *writeback)
982 {
983 struct address_space *mapping;
984
985 /*
986 * Anonymous pages are not handled by flushers and must be written
987 * from reclaim context. Do not stall reclaim based on them
988 */
989 if (!page_is_file_lru(page) ||
990 (PageAnon(page) && !PageSwapBacked(page))) {
991 *dirty = false;
992 *writeback = false;
993 return;
994 }
995
996 /* By default assume that the page flags are accurate */
997 *dirty = PageDirty(page);
998 *writeback = PageWriteback(page);
999
1000 /* Verify dirty/writeback state if the filesystem supports it */
1001 if (!page_has_private(page))
1002 return;
1003
1004 mapping = page_mapping(page);
1005 if (mapping && mapping->a_ops->is_dirty_writeback)
1006 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1007 }
1008
1009 /*
1010 * shrink_page_list() returns the number of reclaimed pages
1011 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1012 unsigned int shrink_page_list(struct list_head *page_list,
1013 struct pglist_data *pgdat,
1014 struct scan_control *sc,
1015 struct reclaim_stat *stat,
1016 bool ignore_references)
1017 {
1018 LIST_HEAD(ret_pages);
1019 LIST_HEAD(free_pages);
1020 unsigned int nr_reclaimed = 0;
1021 unsigned int pgactivate = 0;
1022
1023 memset(stat, 0, sizeof(*stat));
1024 cond_resched();
1025
1026 while (!list_empty(page_list)) {
1027 struct address_space *mapping;
1028 struct page *page;
1029 enum page_references references = PAGEREF_RECLAIM;
1030 bool dirty, writeback, may_enter_fs;
1031 unsigned int nr_pages;
1032
1033 cond_resched();
1034
1035 page = lru_to_page(page_list);
1036 list_del(&page->lru);
1037
1038 if (!trylock_page(page))
1039 goto keep;
1040
1041 VM_BUG_ON_PAGE(PageActive(page), page);
1042
1043 nr_pages = compound_nr(page);
1044
1045 /* Account the number of base pages even though THP */
1046 sc->nr_scanned += nr_pages;
1047
1048 if (unlikely(!page_evictable(page)))
1049 goto activate_locked;
1050
1051 if (!sc->may_unmap && page_mapped(page))
1052 goto keep_locked;
1053
1054 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1055 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1056
1057 /*
1058 * The number of dirty pages determines if a node is marked
1059 * reclaim_congested which affects wait_iff_congested. kswapd
1060 * will stall and start writing pages if the tail of the LRU
1061 * is all dirty unqueued pages.
1062 */
1063 page_check_dirty_writeback(page, &dirty, &writeback);
1064 if (dirty || writeback)
1065 stat->nr_dirty++;
1066
1067 if (dirty && !writeback)
1068 stat->nr_unqueued_dirty++;
1069
1070 /*
1071 * Treat this page as congested if the underlying BDI is or if
1072 * pages are cycling through the LRU so quickly that the
1073 * pages marked for immediate reclaim are making it to the
1074 * end of the LRU a second time.
1075 */
1076 mapping = page_mapping(page);
1077 if (((dirty || writeback) && mapping &&
1078 inode_write_congested(mapping->host)) ||
1079 (writeback && PageReclaim(page)))
1080 stat->nr_congested++;
1081
1082 /*
1083 * If a page at the tail of the LRU is under writeback, there
1084 * are three cases to consider.
1085 *
1086 * 1) If reclaim is encountering an excessive number of pages
1087 * under writeback and this page is both under writeback and
1088 * PageReclaim then it indicates that pages are being queued
1089 * for IO but are being recycled through the LRU before the
1090 * IO can complete. Waiting on the page itself risks an
1091 * indefinite stall if it is impossible to writeback the
1092 * page due to IO error or disconnected storage so instead
1093 * note that the LRU is being scanned too quickly and the
1094 * caller can stall after page list has been processed.
1095 *
1096 * 2) Global or new memcg reclaim encounters a page that is
1097 * not marked for immediate reclaim, or the caller does not
1098 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1099 * not to fs). In this case mark the page for immediate
1100 * reclaim and continue scanning.
1101 *
1102 * Require may_enter_fs because we would wait on fs, which
1103 * may not have submitted IO yet. And the loop driver might
1104 * enter reclaim, and deadlock if it waits on a page for
1105 * which it is needed to do the write (loop masks off
1106 * __GFP_IO|__GFP_FS for this reason); but more thought
1107 * would probably show more reasons.
1108 *
1109 * 3) Legacy memcg encounters a page that is already marked
1110 * PageReclaim. memcg does not have any dirty pages
1111 * throttling so we could easily OOM just because too many
1112 * pages are in writeback and there is nothing else to
1113 * reclaim. Wait for the writeback to complete.
1114 *
1115 * In cases 1) and 2) we activate the pages to get them out of
1116 * the way while we continue scanning for clean pages on the
1117 * inactive list and refilling from the active list. The
1118 * observation here is that waiting for disk writes is more
1119 * expensive than potentially causing reloads down the line.
1120 * Since they're marked for immediate reclaim, they won't put
1121 * memory pressure on the cache working set any longer than it
1122 * takes to write them to disk.
1123 */
1124 if (PageWriteback(page)) {
1125 /* Case 1 above */
1126 if (current_is_kswapd() &&
1127 PageReclaim(page) &&
1128 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1129 stat->nr_immediate++;
1130 goto activate_locked;
1131
1132 /* Case 2 above */
1133 } else if (writeback_throttling_sane(sc) ||
1134 !PageReclaim(page) || !may_enter_fs) {
1135 /*
1136 * This is slightly racy - end_page_writeback()
1137 * might have just cleared PageReclaim, then
1138 * setting PageReclaim here end up interpreted
1139 * as PageReadahead - but that does not matter
1140 * enough to care. What we do want is for this
1141 * page to have PageReclaim set next time memcg
1142 * reclaim reaches the tests above, so it will
1143 * then wait_on_page_writeback() to avoid OOM;
1144 * and it's also appropriate in global reclaim.
1145 */
1146 SetPageReclaim(page);
1147 stat->nr_writeback++;
1148 goto activate_locked;
1149
1150 /* Case 3 above */
1151 } else {
1152 unlock_page(page);
1153 wait_on_page_writeback(page);
1154 /* then go back and try same page again */
1155 list_add_tail(&page->lru, page_list);
1156 continue;
1157 }
1158 }
1159
1160 if (!ignore_references)
1161 references = page_check_references(page, sc);
1162
1163 switch (references) {
1164 case PAGEREF_ACTIVATE:
1165 goto activate_locked;
1166 case PAGEREF_KEEP:
1167 stat->nr_ref_keep += nr_pages;
1168 goto keep_locked;
1169 case PAGEREF_RECLAIM:
1170 case PAGEREF_RECLAIM_CLEAN:
1171 case PAGEREF_RECLAIM_PURGEABLE:
1172 ; /* try to reclaim the page below */
1173 }
1174
1175 /*
1176 * Anonymous process memory has backing store?
1177 * Try to allocate it some swap space here.
1178 * Lazyfree page could be freed directly
1179 */
1180 if (PageAnon(page) && PageSwapBacked(page)) {
1181 if (!PageSwapCache(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1182 if (!(sc->gfp_mask & __GFP_IO))
1183 goto keep_locked;
1184 if (page_maybe_dma_pinned(page))
1185 goto keep_locked;
1186 if (PageTransHuge(page)) {
1187 /* cannot split THP, skip it */
1188 if (!can_split_huge_page(page, NULL))
1189 goto activate_locked;
1190 /*
1191 * Split pages without a PMD map right
1192 * away. Chances are some or all of the
1193 * tail pages can be freed without IO.
1194 */
1195 if (!compound_mapcount(page) &&
1196 split_huge_page_to_list(page,
1197 page_list))
1198 goto activate_locked;
1199 }
1200 if (!add_to_swap(page)) {
1201 if (!PageTransHuge(page))
1202 goto activate_locked_split;
1203 /* Fallback to swap normal pages */
1204 if (split_huge_page_to_list(page,
1205 page_list))
1206 goto activate_locked;
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 count_vm_event(THP_SWPOUT_FALLBACK);
1209 #endif
1210 if (!add_to_swap(page))
1211 goto activate_locked_split;
1212 }
1213
1214 may_enter_fs = true;
1215
1216 /* Adding to swap updated mapping */
1217 mapping = page_mapping(page);
1218 }
1219 } else if (unlikely(PageTransHuge(page))) {
1220 /* Split file THP */
1221 if (split_huge_page_to_list(page, page_list))
1222 goto keep_locked;
1223 }
1224
1225 /*
1226 * THP may get split above, need minus tail pages and update
1227 * nr_pages to avoid accounting tail pages twice.
1228 *
1229 * The tail pages that are added into swap cache successfully
1230 * reach here.
1231 */
1232 if ((nr_pages > 1) && !PageTransHuge(page)) {
1233 sc->nr_scanned -= (nr_pages - 1);
1234 nr_pages = 1;
1235 }
1236
1237 /*
1238 * The page is mapped into the page tables of one or more
1239 * processes. Try to unmap it here.
1240 */
1241 if (page_mapped(page)) {
1242 enum ttu_flags flags = TTU_BATCH_FLUSH;
1243 bool was_swapbacked = PageSwapBacked(page);
1244
1245 if (unlikely(PageTransHuge(page)))
1246 flags |= TTU_SPLIT_HUGE_PMD;
1247
1248 if (!try_to_unmap(page, flags)) {
1249 stat->nr_unmap_fail += nr_pages;
1250 if (!was_swapbacked && PageSwapBacked(page))
1251 stat->nr_lazyfree_fail += nr_pages;
1252 goto activate_locked;
1253 }
1254 }
1255
1256 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1257 /*
1258 * Only kswapd can writeback filesystem pages
1259 * to avoid risk of stack overflow. But avoid
1260 * injecting inefficient single-page IO into
1261 * flusher writeback as much as possible: only
1262 * write pages when we've encountered many
1263 * dirty pages, and when we've already scanned
1264 * the rest of the LRU for clean pages and see
1265 * the same dirty pages again (PageReclaim).
1266 */
1267 if (page_is_file_lru(page) &&
1268 (!current_is_kswapd() || !PageReclaim(page) ||
1269 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1270 /*
1271 * Immediately reclaim when written back.
1272 * Similar in principal to deactivate_page()
1273 * except we already have the page isolated
1274 * and know it's dirty
1275 */
1276 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1277 SetPageReclaim(page);
1278
1279 goto activate_locked;
1280 }
1281
1282 if (references == PAGEREF_RECLAIM_CLEAN)
1283 goto keep_locked;
1284 if (!may_enter_fs)
1285 goto keep_locked;
1286 if (!sc->may_writepage)
1287 goto keep_locked;
1288
1289 /*
1290 * Page is dirty. Flush the TLB if a writable entry
1291 * potentially exists to avoid CPU writes after IO
1292 * starts and then write it out here.
1293 */
1294 try_to_unmap_flush_dirty();
1295 switch (pageout(page, mapping)) {
1296 case PAGE_KEEP:
1297 goto keep_locked;
1298 case PAGE_ACTIVATE:
1299 goto activate_locked;
1300 case PAGE_SUCCESS:
1301 stat->nr_pageout += thp_nr_pages(page);
1302
1303 if (PageWriteback(page))
1304 goto keep;
1305 if (PageDirty(page))
1306 goto keep;
1307
1308 /*
1309 * A synchronous write - probably a ramdisk. Go
1310 * ahead and try to reclaim the page.
1311 */
1312 if (!trylock_page(page))
1313 goto keep;
1314 if (PageDirty(page) || PageWriteback(page))
1315 goto keep_locked;
1316 mapping = page_mapping(page);
1317 case PAGE_CLEAN:
1318 ; /* try to free the page below */
1319 }
1320 }
1321
1322 /*
1323 * If the page has buffers, try to free the buffer mappings
1324 * associated with this page. If we succeed we try to free
1325 * the page as well.
1326 *
1327 * We do this even if the page is PageDirty().
1328 * try_to_release_page() does not perform I/O, but it is
1329 * possible for a page to have PageDirty set, but it is actually
1330 * clean (all its buffers are clean). This happens if the
1331 * buffers were written out directly, with submit_bh(). ext3
1332 * will do this, as well as the blockdev mapping.
1333 * try_to_release_page() will discover that cleanness and will
1334 * drop the buffers and mark the page clean - it can be freed.
1335 *
1336 * Rarely, pages can have buffers and no ->mapping. These are
1337 * the pages which were not successfully invalidated in
1338 * truncate_complete_page(). We try to drop those buffers here
1339 * and if that worked, and the page is no longer mapped into
1340 * process address space (page_count == 1) it can be freed.
1341 * Otherwise, leave the page on the LRU so it is swappable.
1342 */
1343 if (page_has_private(page)) {
1344 if (!try_to_release_page(page, sc->gfp_mask))
1345 goto activate_locked;
1346 if (!mapping && page_count(page) == 1) {
1347 unlock_page(page);
1348 if (put_page_testzero(page))
1349 goto free_it;
1350 else {
1351 /*
1352 * rare race with speculative reference.
1353 * the speculative reference will free
1354 * this page shortly, so we may
1355 * increment nr_reclaimed here (and
1356 * leave it off the LRU).
1357 */
1358 nr_reclaimed++;
1359 continue;
1360 }
1361 }
1362 }
1363
1364 if (PageAnon(page) &&
1365 (!PageSwapBacked(page) ||
1366 references == PAGEREF_RECLAIM_PURGEABLE)) {
1367 /* follow __remove_mapping for reference */
1368 if (!page_ref_freeze(page, 1))
1369 goto keep_locked;
1370 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1371 page_ref_unfreeze(page, 1);
1372 goto keep_locked;
1373 }
1374
1375 count_vm_event(PGLAZYFREED);
1376 count_memcg_page_event(page, PGLAZYFREED);
1377 } else if (!mapping || !__remove_mapping(mapping, page, true,
1378 sc->target_mem_cgroup))
1379 goto keep_locked;
1380
1381 unlock_page(page);
1382 free_it:
1383 /*
1384 * THP may get swapped out in a whole, need account
1385 * all base pages.
1386 */
1387 nr_reclaimed += nr_pages;
1388
1389 /*
1390 * Is there need to periodically free_page_list? It would
1391 * appear not as the counts should be low
1392 */
1393 if (unlikely(PageTransHuge(page)))
1394 destroy_compound_page(page);
1395 else
1396 list_add(&page->lru, &free_pages);
1397 continue;
1398
1399 activate_locked_split:
1400 /*
1401 * The tail pages that are failed to add into swap cache
1402 * reach here. Fixup nr_scanned and nr_pages.
1403 */
1404 if (nr_pages > 1) {
1405 sc->nr_scanned -= (nr_pages - 1);
1406 nr_pages = 1;
1407 }
1408 activate_locked:
1409 /* Not a candidate for swapping, so reclaim swap space. */
1410 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1411 PageMlocked(page)))
1412 try_to_free_swap(page);
1413 VM_BUG_ON_PAGE(PageActive(page), page);
1414 if (!PageMlocked(page)) {
1415 int type = page_is_file_lru(page);
1416 SetPageActive(page);
1417 stat->nr_activate[type] += nr_pages;
1418 count_memcg_page_event(page, PGACTIVATE);
1419 }
1420 keep_locked:
1421 unlock_page(page);
1422 keep:
1423 list_add(&page->lru, &ret_pages);
1424 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1425 }
1426
1427 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1428
1429 mem_cgroup_uncharge_list(&free_pages);
1430 try_to_unmap_flush();
1431 free_unref_page_list(&free_pages);
1432
1433 list_splice(&ret_pages, page_list);
1434 count_vm_events(PGACTIVATE, pgactivate);
1435
1436 return nr_reclaimed;
1437 }
1438
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1439 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1440 struct list_head *page_list)
1441 {
1442 struct scan_control sc = {
1443 .gfp_mask = GFP_KERNEL,
1444 .priority = DEF_PRIORITY,
1445 .may_unmap = 1,
1446 };
1447 struct reclaim_stat stat;
1448 unsigned int nr_reclaimed;
1449 struct page *page, *next;
1450 LIST_HEAD(clean_pages);
1451
1452 list_for_each_entry_safe(page, next, page_list, lru) {
1453 if (page_is_file_lru(page) && !PageDirty(page) &&
1454 !__PageMovable(page) && !PageUnevictable(page)) {
1455 ClearPageActive(page);
1456 list_move(&page->lru, &clean_pages);
1457 }
1458 }
1459
1460 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1461 &stat, true);
1462 list_splice(&clean_pages, page_list);
1463 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1464 -(long)nr_reclaimed);
1465 /*
1466 * Since lazyfree pages are isolated from file LRU from the beginning,
1467 * they will rotate back to anonymous LRU in the end if it failed to
1468 * discard so isolated count will be mismatched.
1469 * Compensate the isolated count for both LRU lists.
1470 */
1471 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1472 stat.nr_lazyfree_fail);
1473 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1474 -(long)stat.nr_lazyfree_fail);
1475 return nr_reclaimed;
1476 }
1477
1478 /*
1479 * Attempt to remove the specified page from its LRU. Only take this page
1480 * if it is of the appropriate PageActive status. Pages which are being
1481 * freed elsewhere are also ignored.
1482 *
1483 * page: page to consider
1484 * mode: one of the LRU isolation modes defined above
1485 *
1486 * returns 0 on success, -ve errno on failure.
1487 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1488 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1489 {
1490 int ret = -EINVAL;
1491
1492 /* Only take pages on the LRU. */
1493 if (!PageLRU(page))
1494 return ret;
1495
1496 /* Compaction should not handle unevictable pages but CMA can do so */
1497 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1498 return ret;
1499
1500 ret = -EBUSY;
1501
1502 /*
1503 * To minimise LRU disruption, the caller can indicate that it only
1504 * wants to isolate pages it will be able to operate on without
1505 * blocking - clean pages for the most part.
1506 *
1507 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1508 * that it is possible to migrate without blocking
1509 */
1510 if (mode & ISOLATE_ASYNC_MIGRATE) {
1511 /* All the caller can do on PageWriteback is block */
1512 if (PageWriteback(page))
1513 return ret;
1514
1515 if (PageDirty(page)) {
1516 struct address_space *mapping;
1517 bool migrate_dirty;
1518
1519 /*
1520 * Only pages without mappings or that have a
1521 * ->migratepage callback are possible to migrate
1522 * without blocking. However, we can be racing with
1523 * truncation so it's necessary to lock the page
1524 * to stabilise the mapping as truncation holds
1525 * the page lock until after the page is removed
1526 * from the page cache.
1527 */
1528 if (!trylock_page(page))
1529 return ret;
1530
1531 mapping = page_mapping(page);
1532 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1533 unlock_page(page);
1534 if (!migrate_dirty)
1535 return ret;
1536 }
1537 }
1538
1539 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1540 return ret;
1541
1542 if (likely(get_page_unless_zero(page))) {
1543 /*
1544 * Be careful not to clear PageLRU until after we're
1545 * sure the page is not being freed elsewhere -- the
1546 * page release code relies on it.
1547 */
1548 ClearPageLRU(page);
1549 ret = 0;
1550 }
1551
1552 return ret;
1553 }
1554
1555
1556 /*
1557 * Update LRU sizes after isolating pages. The LRU size updates must
1558 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1559 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1560 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1561 enum lru_list lru, unsigned long *nr_zone_taken)
1562 {
1563 int zid;
1564
1565 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1566 if (!nr_zone_taken[zid])
1567 continue;
1568
1569 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1570 }
1571
1572 }
1573
1574 /**
1575 * pgdat->lru_lock is heavily contended. Some of the functions that
1576 * shrink the lists perform better by taking out a batch of pages
1577 * and working on them outside the LRU lock.
1578 *
1579 * For pagecache intensive workloads, this function is the hottest
1580 * spot in the kernel (apart from copy_*_user functions).
1581 *
1582 * Appropriate locks must be held before calling this function.
1583 *
1584 * @nr_to_scan: The number of eligible pages to look through on the list.
1585 * @lruvec: The LRU vector to pull pages from.
1586 * @dst: The temp list to put pages on to.
1587 * @nr_scanned: The number of pages that were scanned.
1588 * @sc: The scan_control struct for this reclaim session
1589 * @lru: LRU list id for isolating
1590 *
1591 * returns how many pages were moved onto *@dst.
1592 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1593 unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1594 struct lruvec *lruvec, struct list_head *dst,
1595 unsigned long *nr_scanned, struct scan_control *sc,
1596 enum lru_list lru)
1597 {
1598 struct list_head *src = &lruvec->lists[lru];
1599 unsigned long nr_taken = 0;
1600 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1601 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1602 unsigned long skipped = 0;
1603 unsigned long scan, total_scan, nr_pages;
1604 LIST_HEAD(pages_skipped);
1605 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1606
1607 total_scan = 0;
1608 scan = 0;
1609 while (scan < nr_to_scan && !list_empty(src)) {
1610 struct page *page;
1611
1612 page = lru_to_page(src);
1613 prefetchw_prev_lru_page(page, src, flags);
1614
1615 VM_BUG_ON_PAGE(!PageLRU(page), page);
1616
1617 nr_pages = compound_nr(page);
1618 total_scan += nr_pages;
1619
1620 if (page_zonenum(page) > sc->reclaim_idx) {
1621 list_move(&page->lru, &pages_skipped);
1622 nr_skipped[page_zonenum(page)] += nr_pages;
1623 continue;
1624 }
1625
1626 /*
1627 * Do not count skipped pages because that makes the function
1628 * return with no isolated pages if the LRU mostly contains
1629 * ineligible pages. This causes the VM to not reclaim any
1630 * pages, triggering a premature OOM.
1631 *
1632 * Account all tail pages of THP. This would not cause
1633 * premature OOM since __isolate_lru_page() returns -EBUSY
1634 * only when the page is being freed somewhere else.
1635 */
1636 scan += nr_pages;
1637 switch (__isolate_lru_page(page, mode)) {
1638 case 0:
1639 nr_taken += nr_pages;
1640 nr_zone_taken[page_zonenum(page)] += nr_pages;
1641 list_move(&page->lru, dst);
1642 break;
1643
1644 case -EBUSY:
1645 /* else it is being freed elsewhere */
1646 list_move(&page->lru, src);
1647 continue;
1648
1649 default:
1650 BUG();
1651 }
1652 }
1653
1654 /*
1655 * Splice any skipped pages to the start of the LRU list. Note that
1656 * this disrupts the LRU order when reclaiming for lower zones but
1657 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1658 * scanning would soon rescan the same pages to skip and put the
1659 * system at risk of premature OOM.
1660 */
1661 if (!list_empty(&pages_skipped)) {
1662 int zid;
1663
1664 list_splice(&pages_skipped, src);
1665 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1666 if (!nr_skipped[zid])
1667 continue;
1668
1669 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1670 skipped += nr_skipped[zid];
1671 }
1672 }
1673 *nr_scanned = total_scan;
1674 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1675 total_scan, skipped, nr_taken, mode, lru);
1676 update_lru_sizes(lruvec, lru, nr_zone_taken);
1677 return nr_taken;
1678 }
1679
1680 /**
1681 * isolate_lru_page - tries to isolate a page from its LRU list
1682 * @page: page to isolate from its LRU list
1683 *
1684 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1685 * vmstat statistic corresponding to whatever LRU list the page was on.
1686 *
1687 * Returns 0 if the page was removed from an LRU list.
1688 * Returns -EBUSY if the page was not on an LRU list.
1689 *
1690 * The returned page will have PageLRU() cleared. If it was found on
1691 * the active list, it will have PageActive set. If it was found on
1692 * the unevictable list, it will have the PageUnevictable bit set. That flag
1693 * may need to be cleared by the caller before letting the page go.
1694 *
1695 * The vmstat statistic corresponding to the list on which the page was
1696 * found will be decremented.
1697 *
1698 * Restrictions:
1699 *
1700 * (1) Must be called with an elevated refcount on the page. This is a
1701 * fundamental difference from isolate_lru_pages (which is called
1702 * without a stable reference).
1703 * (2) the lru_lock must not be held.
1704 * (3) interrupts must be enabled.
1705 */
isolate_lru_page(struct page * page)1706 int isolate_lru_page(struct page *page)
1707 {
1708 int ret = -EBUSY;
1709
1710 VM_BUG_ON_PAGE(!page_count(page), page);
1711 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1712
1713 if (PageLRU(page)) {
1714 pg_data_t *pgdat = page_pgdat(page);
1715 struct lruvec *lruvec;
1716
1717 spin_lock_irq(&pgdat->lru_lock);
1718 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1719 if (PageLRU(page)) {
1720 int lru = page_lru(page);
1721 get_page(page);
1722 ClearPageLRU(page);
1723 del_page_from_lru_list(page, lruvec, lru);
1724 ret = 0;
1725 }
1726 spin_unlock_irq(&pgdat->lru_lock);
1727 }
1728 return ret;
1729 }
1730
1731 /*
1732 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1733 * then get rescheduled. When there are massive number of tasks doing page
1734 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1735 * the LRU list will go small and be scanned faster than necessary, leading to
1736 * unnecessary swapping, thrashing and OOM.
1737 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1738 static int too_many_isolated(struct pglist_data *pgdat, int file,
1739 struct scan_control *sc)
1740 {
1741 unsigned long inactive, isolated;
1742
1743 if (current_is_kswapd())
1744 return 0;
1745
1746 if (!writeback_throttling_sane(sc))
1747 return 0;
1748
1749 if (file) {
1750 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1751 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1752 } else {
1753 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1754 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1755 }
1756
1757 /*
1758 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1759 * won't get blocked by normal direct-reclaimers, forming a circular
1760 * deadlock.
1761 */
1762 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1763 inactive >>= 3;
1764
1765 return isolated > inactive;
1766 }
1767
1768 /*
1769 * This moves pages from @list to corresponding LRU list.
1770 *
1771 * We move them the other way if the page is referenced by one or more
1772 * processes, from rmap.
1773 *
1774 * If the pages are mostly unmapped, the processing is fast and it is
1775 * appropriate to hold zone_lru_lock across the whole operation. But if
1776 * the pages are mapped, the processing is slow (page_referenced()) so we
1777 * should drop zone_lru_lock around each page. It's impossible to balance
1778 * this, so instead we remove the pages from the LRU while processing them.
1779 * It is safe to rely on PG_active against the non-LRU pages in here because
1780 * nobody will play with that bit on a non-LRU page.
1781 *
1782 * The downside is that we have to touch page->_refcount against each page.
1783 * But we had to alter page->flags anyway.
1784 *
1785 * Returns the number of pages moved to the given lruvec.
1786 */
1787
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1788 unsigned move_pages_to_lru(struct lruvec *lruvec, struct list_head *list)
1789 {
1790 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1791 int nr_pages, nr_moved = 0;
1792 LIST_HEAD(pages_to_free);
1793 struct page *page;
1794 enum lru_list lru;
1795 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1796 bool prot;
1797 bool file;
1798 #endif
1799
1800 while (!list_empty(list)) {
1801 page = lru_to_page(list);
1802 VM_BUG_ON_PAGE(PageLRU(page), page);
1803 if (unlikely(!page_evictable(page))) {
1804 list_del(&page->lru);
1805 spin_unlock_irq(&pgdat->lru_lock);
1806 putback_lru_page(page);
1807 spin_lock_irq(&pgdat->lru_lock);
1808 continue;
1809 }
1810 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1811
1812 SetPageLRU(page);
1813 lru = page_lru(page);
1814
1815 nr_pages = thp_nr_pages(page);
1816 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1817 list_move(&page->lru, &lruvec->lists[lru]);
1818
1819 if (put_page_testzero(page)) {
1820 __ClearPageLRU(page);
1821 __ClearPageActive(page);
1822 del_page_from_lru_list(page, lruvec, lru);
1823
1824 if (unlikely(PageCompound(page))) {
1825 spin_unlock_irq(&pgdat->lru_lock);
1826 destroy_compound_page(page);
1827 spin_lock_irq(&pgdat->lru_lock);
1828 } else
1829 list_add(&page->lru, &pages_to_free);
1830 } else {
1831 nr_moved += nr_pages;
1832 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1833 if (PageActive(page)) {
1834 prot = is_prot_page(page);
1835 file = page_is_file_lru(page);
1836 if (!prot && file) {
1837 lruvec = node_lruvec(pgdat);
1838 workingset_age_nonresident(lruvec,
1839 nr_pages);
1840 } else {
1841 workingset_age_nonresident(lruvec,
1842 nr_pages);
1843 }
1844 }
1845 #else
1846 if (PageActive(page))
1847 workingset_age_nonresident(lruvec, nr_pages);
1848 #endif
1849 }
1850 }
1851
1852 /*
1853 * To save our caller's stack, now use input list for pages to free.
1854 */
1855 list_splice(&pages_to_free, list);
1856
1857 return nr_moved;
1858 }
1859
1860 /*
1861 * If a kernel thread (such as nfsd for loop-back mounts) services
1862 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1863 * In that case we should only throttle if the backing device it is
1864 * writing to is congested. In other cases it is safe to throttle.
1865 */
current_may_throttle(void)1866 int current_may_throttle(void)
1867 {
1868 return !(current->flags & PF_LOCAL_THROTTLE) ||
1869 current->backing_dev_info == NULL ||
1870 bdi_write_congested(current->backing_dev_info);
1871 }
1872
1873 /*
1874 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1875 * of reclaimed pages
1876 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1877 unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1878 struct scan_control *sc, enum lru_list lru)
1879 {
1880 LIST_HEAD(page_list);
1881 unsigned long nr_scanned;
1882 unsigned int nr_reclaimed = 0;
1883 unsigned long nr_taken;
1884 struct reclaim_stat stat;
1885 bool file = is_file_lru(lru);
1886 enum vm_event_item item;
1887 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1888 bool stalled = false;
1889
1890 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1891 if (stalled)
1892 return 0;
1893
1894 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1895 sc->isolate_count++;
1896 #endif
1897 /* wait a bit for the reclaimer. */
1898 msleep(100);
1899 stalled = true;
1900
1901 /* We are about to die and free our memory. Return now. */
1902 if (fatal_signal_pending(current))
1903 return SWAP_CLUSTER_MAX;
1904 }
1905
1906 lru_add_drain();
1907
1908 spin_lock_irq(&pgdat->lru_lock);
1909
1910 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1911 &nr_scanned, sc, lru);
1912
1913 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1914 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1915 if (!cgroup_reclaim(sc))
1916 __count_vm_events(item, nr_scanned);
1917 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1918 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1919
1920 spin_unlock_irq(&pgdat->lru_lock);
1921
1922 if (nr_taken == 0)
1923 return 0;
1924
1925 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1926
1927 spin_lock_irq(&pgdat->lru_lock);
1928
1929 move_pages_to_lru(lruvec, &page_list);
1930
1931 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1932 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1933 if (file)
1934 lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout);
1935 else
1936 lru_note_cost(lruvec, file, stat.nr_pageout);
1937 #else
1938 lru_note_cost(lruvec, file, stat.nr_pageout);
1939
1940 #endif
1941
1942 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1943 if (!cgroup_reclaim(sc))
1944 __count_vm_events(item, nr_reclaimed);
1945 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1946 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1947
1948 spin_unlock_irq(&pgdat->lru_lock);
1949
1950 mem_cgroup_uncharge_list(&page_list);
1951 free_unref_page_list(&page_list);
1952
1953 /*
1954 * If dirty pages are scanned that are not queued for IO, it
1955 * implies that flushers are not doing their job. This can
1956 * happen when memory pressure pushes dirty pages to the end of
1957 * the LRU before the dirty limits are breached and the dirty
1958 * data has expired. It can also happen when the proportion of
1959 * dirty pages grows not through writes but through memory
1960 * pressure reclaiming all the clean cache. And in some cases,
1961 * the flushers simply cannot keep up with the allocation
1962 * rate. Nudge the flusher threads in case they are asleep.
1963 */
1964 if (stat.nr_unqueued_dirty == nr_taken)
1965 wakeup_flusher_threads(WB_REASON_VMSCAN);
1966
1967 sc->nr.dirty += stat.nr_dirty;
1968 sc->nr.congested += stat.nr_congested;
1969 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1970 sc->nr.writeback += stat.nr_writeback;
1971 sc->nr.immediate += stat.nr_immediate;
1972 sc->nr.taken += nr_taken;
1973 if (file)
1974 sc->nr.file_taken += nr_taken;
1975
1976 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1977 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1978 return nr_reclaimed;
1979 }
1980
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1981 void shrink_active_list(unsigned long nr_to_scan,
1982 struct lruvec *lruvec,
1983 struct scan_control *sc,
1984 enum lru_list lru)
1985 {
1986 unsigned long nr_taken;
1987 unsigned long nr_scanned;
1988 unsigned long vm_flags;
1989 LIST_HEAD(l_hold); /* The pages which were snipped off */
1990 LIST_HEAD(l_active);
1991 LIST_HEAD(l_inactive);
1992 struct page *page;
1993 unsigned nr_deactivate, nr_activate;
1994 unsigned nr_rotated = 0;
1995 int file = is_file_lru(lru);
1996 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1997
1998 lru_add_drain();
1999
2000 spin_lock_irq(&pgdat->lru_lock);
2001
2002 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2003 &nr_scanned, sc, lru);
2004
2005 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2006
2007 if (!cgroup_reclaim(sc))
2008 __count_vm_events(PGREFILL, nr_scanned);
2009 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2010
2011 spin_unlock_irq(&pgdat->lru_lock);
2012
2013 while (!list_empty(&l_hold)) {
2014 cond_resched();
2015 page = lru_to_page(&l_hold);
2016 list_del(&page->lru);
2017
2018 if (unlikely(!page_evictable(page))) {
2019 putback_lru_page(page);
2020 continue;
2021 }
2022
2023 if (unlikely(buffer_heads_over_limit)) {
2024 if (page_has_private(page) && trylock_page(page)) {
2025 if (page_has_private(page))
2026 try_to_release_page(page, 0);
2027 unlock_page(page);
2028 }
2029 }
2030
2031 if (page_referenced(page, 0, sc->target_mem_cgroup,
2032 &vm_flags)) {
2033 /*
2034 * Identify referenced, file-backed active pages and
2035 * give them one more trip around the active list. So
2036 * that executable code get better chances to stay in
2037 * memory under moderate memory pressure. Anon pages
2038 * are not likely to be evicted by use-once streaming
2039 * IO, plus JVM can create lots of anon VM_EXEC pages,
2040 * so we ignore them here.
2041 */
2042 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2043 nr_rotated += thp_nr_pages(page);
2044 list_add(&page->lru, &l_active);
2045 continue;
2046 }
2047 }
2048
2049 ClearPageActive(page); /* we are de-activating */
2050 SetPageWorkingset(page);
2051 list_add(&page->lru, &l_inactive);
2052 }
2053
2054 /*
2055 * Move pages back to the lru list.
2056 */
2057 spin_lock_irq(&pgdat->lru_lock);
2058
2059 nr_activate = move_pages_to_lru(lruvec, &l_active);
2060 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2061 /* Keep all free pages in l_active list */
2062 list_splice(&l_inactive, &l_active);
2063
2064 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2065 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2066
2067 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2068 spin_unlock_irq(&pgdat->lru_lock);
2069
2070 mem_cgroup_uncharge_list(&l_active);
2071 free_unref_page_list(&l_active);
2072 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2073 nr_deactivate, nr_rotated, sc->priority, file);
2074 }
2075
reclaim_pages(struct list_head * page_list)2076 unsigned long reclaim_pages(struct list_head *page_list)
2077 {
2078 int nid = NUMA_NO_NODE;
2079 unsigned int nr_reclaimed = 0;
2080 LIST_HEAD(node_page_list);
2081 struct reclaim_stat dummy_stat;
2082 struct page *page;
2083 struct scan_control sc = {
2084 .gfp_mask = GFP_KERNEL,
2085 .priority = DEF_PRIORITY,
2086 .may_writepage = 1,
2087 .may_unmap = 1,
2088 .may_swap = 1,
2089 };
2090
2091 while (!list_empty(page_list)) {
2092 page = lru_to_page(page_list);
2093 if (nid == NUMA_NO_NODE) {
2094 nid = page_to_nid(page);
2095 INIT_LIST_HEAD(&node_page_list);
2096 }
2097
2098 if (nid == page_to_nid(page)) {
2099 ClearPageActive(page);
2100 list_move(&page->lru, &node_page_list);
2101 continue;
2102 }
2103
2104 nr_reclaimed += shrink_page_list(&node_page_list,
2105 NODE_DATA(nid),
2106 &sc, &dummy_stat, false);
2107 while (!list_empty(&node_page_list)) {
2108 page = lru_to_page(&node_page_list);
2109 list_del(&page->lru);
2110 putback_lru_page(page);
2111 }
2112
2113 nid = NUMA_NO_NODE;
2114 }
2115
2116 if (!list_empty(&node_page_list)) {
2117 nr_reclaimed += shrink_page_list(&node_page_list,
2118 NODE_DATA(nid),
2119 &sc, &dummy_stat, false);
2120 while (!list_empty(&node_page_list)) {
2121 page = lru_to_page(&node_page_list);
2122 list_del(&page->lru);
2123 putback_lru_page(page);
2124 }
2125 }
2126
2127 return nr_reclaimed;
2128 }
2129
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2130 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2131 struct lruvec *lruvec, struct scan_control *sc)
2132 {
2133 #ifdef CONFIG_RECLAIM_ACCT
2134 unsigned long nr_reclaimed;
2135 unsigned int stub;
2136
2137 stub = is_file_lru(lru) ? RA_SHRINKFILE : RA_SHRINKANON;
2138 reclaimacct_substage_start(stub);
2139 #endif
2140 if (is_active_lru(lru)) {
2141 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2142 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2143 else
2144 sc->skipped_deactivate = 1;
2145 #ifdef CONFIG_RECLAIM_ACCT
2146 reclaimacct_substage_end(stub, 0, NULL);
2147 #endif
2148 return 0;
2149 }
2150
2151 #ifdef CONFIG_RECLAIM_ACCT
2152 nr_reclaimed = shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2153 reclaimacct_substage_end(stub, nr_reclaimed, NULL);
2154 return nr_reclaimed;
2155 #else
2156 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2157 #endif
2158 }
2159
2160 /*
2161 * The inactive anon list should be small enough that the VM never has
2162 * to do too much work.
2163 *
2164 * The inactive file list should be small enough to leave most memory
2165 * to the established workingset on the scan-resistant active list,
2166 * but large enough to avoid thrashing the aggregate readahead window.
2167 *
2168 * Both inactive lists should also be large enough that each inactive
2169 * page has a chance to be referenced again before it is reclaimed.
2170 *
2171 * If that fails and refaulting is observed, the inactive list grows.
2172 *
2173 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2174 * on this LRU, maintained by the pageout code. An inactive_ratio
2175 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2176 *
2177 * total target max
2178 * memory ratio inactive
2179 * -------------------------------------
2180 * 10MB 1 5MB
2181 * 100MB 1 50MB
2182 * 1GB 3 250MB
2183 * 10GB 10 0.9GB
2184 * 100GB 31 3GB
2185 * 1TB 101 10GB
2186 * 10TB 320 32GB
2187 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2188 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2189 {
2190 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2191 unsigned long inactive, active;
2192 unsigned long inactive_ratio;
2193 unsigned long gb;
2194
2195 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2196 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2197
2198 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2199 if (gb)
2200 inactive_ratio = int_sqrt(10 * gb);
2201 else
2202 inactive_ratio = 1;
2203
2204 return inactive * inactive_ratio < active;
2205 }
2206
2207 /*
2208 * Determine how aggressively the anon and file LRU lists should be
2209 * scanned. The relative value of each set of LRU lists is determined
2210 * by looking at the fraction of the pages scanned we did rotate back
2211 * onto the active list instead of evict.
2212 *
2213 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2214 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2215 */
2216 #ifndef CONFIG_HYPERHOLD_FILE_LRU
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2217 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2218 unsigned long *nr)
2219 {
2220 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2221 unsigned long anon_cost, file_cost, total_cost;
2222 int swappiness = mem_cgroup_swappiness(memcg);
2223 u64 fraction[ANON_AND_FILE];
2224 u64 denominator = 0; /* gcc */
2225 enum scan_balance scan_balance;
2226 unsigned long ap, fp;
2227 enum lru_list lru;
2228
2229 /* If we have no swap space, do not bother scanning anon pages. */
2230 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2231 scan_balance = SCAN_FILE;
2232 goto out;
2233 }
2234
2235 /*
2236 * Global reclaim will swap to prevent OOM even with no
2237 * swappiness, but memcg users want to use this knob to
2238 * disable swapping for individual groups completely when
2239 * using the memory controller's swap limit feature would be
2240 * too expensive.
2241 */
2242 if (cgroup_reclaim(sc) && !swappiness) {
2243 scan_balance = SCAN_FILE;
2244 goto out;
2245 }
2246
2247 /*
2248 * Do not apply any pressure balancing cleverness when the
2249 * system is close to OOM, scan both anon and file equally
2250 * (unless the swappiness setting disagrees with swapping).
2251 */
2252 if (!sc->priority && swappiness) {
2253 scan_balance = SCAN_EQUAL;
2254 goto out;
2255 }
2256
2257 /*
2258 * If the system is almost out of file pages, force-scan anon.
2259 */
2260 if (sc->file_is_tiny) {
2261 scan_balance = SCAN_ANON;
2262 goto out;
2263 }
2264
2265 /*
2266 * If there is enough inactive page cache, we do not reclaim
2267 * anything from the anonymous working right now.
2268 */
2269 if (sc->cache_trim_mode) {
2270 scan_balance = SCAN_FILE;
2271 goto out;
2272 }
2273
2274 scan_balance = SCAN_FRACT;
2275 /*
2276 * Calculate the pressure balance between anon and file pages.
2277 *
2278 * The amount of pressure we put on each LRU is inversely
2279 * proportional to the cost of reclaiming each list, as
2280 * determined by the share of pages that are refaulting, times
2281 * the relative IO cost of bringing back a swapped out
2282 * anonymous page vs reloading a filesystem page (swappiness).
2283 *
2284 * Although we limit that influence to ensure no list gets
2285 * left behind completely: at least a third of the pressure is
2286 * applied, before swappiness.
2287 *
2288 * With swappiness at 100, anon and file have equal IO cost.
2289 */
2290 total_cost = sc->anon_cost + sc->file_cost;
2291 anon_cost = total_cost + sc->anon_cost;
2292 file_cost = total_cost + sc->file_cost;
2293 total_cost = anon_cost + file_cost;
2294
2295 ap = swappiness * (total_cost + 1);
2296 ap /= anon_cost + 1;
2297
2298 fp = (200 - swappiness) * (total_cost + 1);
2299 fp /= file_cost + 1;
2300
2301 fraction[0] = ap;
2302 fraction[1] = fp;
2303 denominator = ap + fp;
2304 out:
2305 for_each_evictable_lru(lru) {
2306 int file = is_file_lru(lru);
2307 unsigned long lruvec_size;
2308 unsigned long low, min;
2309 unsigned long scan;
2310
2311 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2312 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2313 &min, &low);
2314
2315 if (min || low) {
2316 /*
2317 * Scale a cgroup's reclaim pressure by proportioning
2318 * its current usage to its memory.low or memory.min
2319 * setting.
2320 *
2321 * This is important, as otherwise scanning aggression
2322 * becomes extremely binary -- from nothing as we
2323 * approach the memory protection threshold, to totally
2324 * nominal as we exceed it. This results in requiring
2325 * setting extremely liberal protection thresholds. It
2326 * also means we simply get no protection at all if we
2327 * set it too low, which is not ideal.
2328 *
2329 * If there is any protection in place, we reduce scan
2330 * pressure by how much of the total memory used is
2331 * within protection thresholds.
2332 *
2333 * There is one special case: in the first reclaim pass,
2334 * we skip over all groups that are within their low
2335 * protection. If that fails to reclaim enough pages to
2336 * satisfy the reclaim goal, we come back and override
2337 * the best-effort low protection. However, we still
2338 * ideally want to honor how well-behaved groups are in
2339 * that case instead of simply punishing them all
2340 * equally. As such, we reclaim them based on how much
2341 * memory they are using, reducing the scan pressure
2342 * again by how much of the total memory used is under
2343 * hard protection.
2344 */
2345 unsigned long cgroup_size = mem_cgroup_size(memcg);
2346 unsigned long protection;
2347
2348 /* memory.low scaling, make sure we retry before OOM */
2349 if (!sc->memcg_low_reclaim && low > min) {
2350 protection = low;
2351 sc->memcg_low_skipped = 1;
2352 } else {
2353 protection = min;
2354 }
2355
2356 /* Avoid TOCTOU with earlier protection check */
2357 cgroup_size = max(cgroup_size, protection);
2358
2359 scan = lruvec_size - lruvec_size * protection /
2360 (cgroup_size + 1);
2361
2362 /*
2363 * Minimally target SWAP_CLUSTER_MAX pages to keep
2364 * reclaim moving forwards, avoiding decrementing
2365 * sc->priority further than desirable.
2366 */
2367 scan = max(scan, SWAP_CLUSTER_MAX);
2368 } else {
2369 scan = lruvec_size;
2370 }
2371
2372 scan >>= sc->priority;
2373
2374 /*
2375 * If the cgroup's already been deleted, make sure to
2376 * scrape out the remaining cache.
2377 */
2378 if (!scan && !mem_cgroup_online(memcg))
2379 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2380
2381 switch (scan_balance) {
2382 case SCAN_EQUAL:
2383 /* Scan lists relative to size */
2384 break;
2385 case SCAN_FRACT:
2386 /*
2387 * Scan types proportional to swappiness and
2388 * their relative recent reclaim efficiency.
2389 * Make sure we don't miss the last page on
2390 * the offlined memory cgroups because of a
2391 * round-off error.
2392 */
2393 scan = mem_cgroup_online(memcg) ?
2394 div64_u64(scan * fraction[file], denominator) :
2395 DIV64_U64_ROUND_UP(scan * fraction[file],
2396 denominator);
2397 break;
2398 case SCAN_FILE:
2399 case SCAN_ANON:
2400 /* Scan one type exclusively */
2401 if ((scan_balance == SCAN_FILE) != file)
2402 scan = 0;
2403 break;
2404 default:
2405 /* Look ma, no brain */
2406 BUG();
2407 }
2408
2409 nr[lru] = scan;
2410 }
2411 }
2412
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2413 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2414 {
2415 unsigned long nr[NR_LRU_LISTS];
2416 unsigned long targets[NR_LRU_LISTS];
2417 unsigned long nr_to_scan;
2418 enum lru_list lru;
2419 unsigned long nr_reclaimed = 0;
2420 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2421 struct blk_plug plug;
2422 bool scan_adjusted;
2423
2424 get_scan_count(lruvec, sc, nr);
2425
2426 /* Record the original scan target for proportional adjustments later */
2427 memcpy(targets, nr, sizeof(nr));
2428
2429 /*
2430 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2431 * event that can occur when there is little memory pressure e.g.
2432 * multiple streaming readers/writers. Hence, we do not abort scanning
2433 * when the requested number of pages are reclaimed when scanning at
2434 * DEF_PRIORITY on the assumption that the fact we are direct
2435 * reclaiming implies that kswapd is not keeping up and it is best to
2436 * do a batch of work at once. For memcg reclaim one check is made to
2437 * abort proportional reclaim if either the file or anon lru has already
2438 * dropped to zero at the first pass.
2439 */
2440 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2441 sc->priority == DEF_PRIORITY);
2442
2443 blk_start_plug(&plug);
2444 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2445 nr[LRU_INACTIVE_FILE]) {
2446 unsigned long nr_anon, nr_file, percentage;
2447 unsigned long nr_scanned;
2448
2449 for_each_evictable_lru(lru) {
2450 if (nr[lru]) {
2451 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2452 nr[lru] -= nr_to_scan;
2453
2454 nr_reclaimed += shrink_list(lru, nr_to_scan,
2455 lruvec, sc);
2456 }
2457 }
2458
2459 cond_resched();
2460
2461 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2462 continue;
2463
2464 /*
2465 * For kswapd and memcg, reclaim at least the number of pages
2466 * requested. Ensure that the anon and file LRUs are scanned
2467 * proportionally what was requested by get_scan_count(). We
2468 * stop reclaiming one LRU and reduce the amount scanning
2469 * proportional to the original scan target.
2470 */
2471 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2472 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2473
2474 /*
2475 * It's just vindictive to attack the larger once the smaller
2476 * has gone to zero. And given the way we stop scanning the
2477 * smaller below, this makes sure that we only make one nudge
2478 * towards proportionality once we've got nr_to_reclaim.
2479 */
2480 if (!nr_file || !nr_anon)
2481 break;
2482
2483 if (nr_file > nr_anon) {
2484 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2485 targets[LRU_ACTIVE_ANON] + 1;
2486 lru = LRU_BASE;
2487 percentage = nr_anon * 100 / scan_target;
2488 } else {
2489 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2490 targets[LRU_ACTIVE_FILE] + 1;
2491 lru = LRU_FILE;
2492 percentage = nr_file * 100 / scan_target;
2493 }
2494
2495 /* Stop scanning the smaller of the LRU */
2496 nr[lru] = 0;
2497 nr[lru + LRU_ACTIVE] = 0;
2498
2499 /*
2500 * Recalculate the other LRU scan count based on its original
2501 * scan target and the percentage scanning already complete
2502 */
2503 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2504 nr_scanned = targets[lru] - nr[lru];
2505 nr[lru] = targets[lru] * (100 - percentage) / 100;
2506 nr[lru] -= min(nr[lru], nr_scanned);
2507
2508 lru += LRU_ACTIVE;
2509 nr_scanned = targets[lru] - nr[lru];
2510 nr[lru] = targets[lru] * (100 - percentage) / 100;
2511 nr[lru] -= min(nr[lru], nr_scanned);
2512
2513 scan_adjusted = true;
2514 }
2515 blk_finish_plug(&plug);
2516 sc->nr_reclaimed += nr_reclaimed;
2517
2518 /*
2519 * Even if we did not try to evict anon pages at all, we want to
2520 * rebalance the anon lru active/inactive ratio.
2521 */
2522 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2523 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2524 sc, LRU_ACTIVE_ANON);
2525 }
2526 #endif
2527
2528 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2529 static bool in_reclaim_compaction(struct scan_control *sc)
2530 {
2531 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2532 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2533 sc->priority < DEF_PRIORITY - 2))
2534 return true;
2535
2536 return false;
2537 }
2538
2539 /*
2540 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2541 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2542 * true if more pages should be reclaimed such that when the page allocator
2543 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2544 * It will give up earlier than that if there is difficulty reclaiming pages.
2545 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2546 inline bool should_continue_reclaim(struct pglist_data *pgdat,
2547 unsigned long nr_reclaimed,
2548 struct scan_control *sc)
2549 {
2550 unsigned long pages_for_compaction;
2551 unsigned long inactive_lru_pages;
2552 int z;
2553
2554 /* If not in reclaim/compaction mode, stop */
2555 if (!in_reclaim_compaction(sc))
2556 return false;
2557
2558 /*
2559 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2560 * number of pages that were scanned. This will return to the caller
2561 * with the risk reclaim/compaction and the resulting allocation attempt
2562 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2563 * allocations through requiring that the full LRU list has been scanned
2564 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2565 * scan, but that approximation was wrong, and there were corner cases
2566 * where always a non-zero amount of pages were scanned.
2567 */
2568 if (!nr_reclaimed)
2569 return false;
2570
2571 /* If compaction would go ahead or the allocation would succeed, stop */
2572 for (z = 0; z <= sc->reclaim_idx; z++) {
2573 struct zone *zone = &pgdat->node_zones[z];
2574 if (!managed_zone(zone))
2575 continue;
2576
2577 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2578 case COMPACT_SUCCESS:
2579 case COMPACT_CONTINUE:
2580 return false;
2581 default:
2582 /* check next zone */
2583 ;
2584 }
2585 }
2586
2587 /*
2588 * If we have not reclaimed enough pages for compaction and the
2589 * inactive lists are large enough, continue reclaiming
2590 */
2591 pages_for_compaction = compact_gap(sc->order);
2592 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2593 if (get_nr_swap_pages() > 0)
2594 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2595
2596 return inactive_lru_pages > pages_for_compaction;
2597 }
2598
2599 #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2600 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2601 {
2602 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2603 struct mem_cgroup *memcg;
2604
2605 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2606 do {
2607 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2608 unsigned long reclaimed;
2609 unsigned long scanned;
2610
2611 /*
2612 * This loop can become CPU-bound when target memcgs
2613 * aren't eligible for reclaim - either because they
2614 * don't have any reclaimable pages, or because their
2615 * memory is explicitly protected. Avoid soft lockups.
2616 */
2617 cond_resched();
2618
2619 mem_cgroup_calculate_protection(target_memcg, memcg);
2620
2621 if (mem_cgroup_below_min(memcg)) {
2622 /*
2623 * Hard protection.
2624 * If there is no reclaimable memory, OOM.
2625 */
2626 continue;
2627 } else if (mem_cgroup_below_low(memcg)) {
2628 /*
2629 * Soft protection.
2630 * Respect the protection only as long as
2631 * there is an unprotected supply
2632 * of reclaimable memory from other cgroups.
2633 */
2634 if (!sc->memcg_low_reclaim) {
2635 sc->memcg_low_skipped = 1;
2636 continue;
2637 }
2638 memcg_memory_event(memcg, MEMCG_LOW);
2639 }
2640
2641 reclaimed = sc->nr_reclaimed;
2642 scanned = sc->nr_scanned;
2643
2644 shrink_lruvec(lruvec, sc);
2645
2646 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2647 sc->priority);
2648
2649 /* Record the group's reclaim efficiency */
2650 vmpressure(sc->gfp_mask, memcg, false,
2651 sc->nr_scanned - scanned,
2652 sc->nr_reclaimed - reclaimed);
2653
2654 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2655 }
2656
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2657 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2658 {
2659 struct reclaim_state *reclaim_state = current->reclaim_state;
2660 unsigned long nr_reclaimed, nr_scanned;
2661 struct lruvec *target_lruvec;
2662 bool reclaimable = false;
2663 unsigned long file;
2664
2665 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2666
2667 again:
2668 memset(&sc->nr, 0, sizeof(sc->nr));
2669
2670 nr_reclaimed = sc->nr_reclaimed;
2671 nr_scanned = sc->nr_scanned;
2672
2673 /*
2674 * Determine the scan balance between anon and file LRUs.
2675 */
2676 spin_lock_irq(&pgdat->lru_lock);
2677 sc->anon_cost = target_lruvec->anon_cost;
2678 sc->file_cost = target_lruvec->file_cost;
2679 spin_unlock_irq(&pgdat->lru_lock);
2680
2681 /*
2682 * Target desirable inactive:active list ratios for the anon
2683 * and file LRU lists.
2684 */
2685 if (!sc->force_deactivate) {
2686 unsigned long refaults;
2687
2688 refaults = lruvec_page_state(target_lruvec,
2689 WORKINGSET_ACTIVATE_ANON);
2690 if (refaults != target_lruvec->refaults[0] ||
2691 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2692 sc->may_deactivate |= DEACTIVATE_ANON;
2693 else
2694 sc->may_deactivate &= ~DEACTIVATE_ANON;
2695
2696 /*
2697 * When refaults are being observed, it means a new
2698 * workingset is being established. Deactivate to get
2699 * rid of any stale active pages quickly.
2700 */
2701 refaults = lruvec_page_state(target_lruvec,
2702 WORKINGSET_ACTIVATE_FILE);
2703 if (refaults != target_lruvec->refaults[1] ||
2704 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2705 sc->may_deactivate |= DEACTIVATE_FILE;
2706 else
2707 sc->may_deactivate &= ~DEACTIVATE_FILE;
2708 } else
2709 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2710
2711 /*
2712 * If we have plenty of inactive file pages that aren't
2713 * thrashing, try to reclaim those first before touching
2714 * anonymous pages.
2715 */
2716 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2717 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2718 sc->cache_trim_mode = 1;
2719 else
2720 sc->cache_trim_mode = 0;
2721
2722 /*
2723 * Prevent the reclaimer from falling into the cache trap: as
2724 * cache pages start out inactive, every cache fault will tip
2725 * the scan balance towards the file LRU. And as the file LRU
2726 * shrinks, so does the window for rotation from references.
2727 * This means we have a runaway feedback loop where a tiny
2728 * thrashing file LRU becomes infinitely more attractive than
2729 * anon pages. Try to detect this based on file LRU size.
2730 */
2731 if (!cgroup_reclaim(sc)) {
2732 unsigned long total_high_wmark = 0;
2733 unsigned long free, anon;
2734 int z;
2735
2736 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2737 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2738 node_page_state(pgdat, NR_INACTIVE_FILE);
2739
2740 for (z = 0; z < MAX_NR_ZONES; z++) {
2741 struct zone *zone = &pgdat->node_zones[z];
2742 if (!managed_zone(zone))
2743 continue;
2744
2745 total_high_wmark += high_wmark_pages(zone);
2746 }
2747
2748 /*
2749 * Consider anon: if that's low too, this isn't a
2750 * runaway file reclaim problem, but rather just
2751 * extreme pressure. Reclaim as per usual then.
2752 */
2753 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2754
2755 sc->file_is_tiny =
2756 file + free <= total_high_wmark &&
2757 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2758 anon >> sc->priority;
2759 }
2760
2761 shrink_node_memcgs(pgdat, sc);
2762
2763 if (reclaim_state) {
2764 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2765 reclaim_state->reclaimed_slab = 0;
2766 }
2767
2768 /* Record the subtree's reclaim efficiency */
2769 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2770 sc->nr_scanned - nr_scanned,
2771 sc->nr_reclaimed - nr_reclaimed);
2772
2773 if (sc->nr_reclaimed - nr_reclaimed)
2774 reclaimable = true;
2775
2776 if (current_is_kswapd()) {
2777 /*
2778 * If reclaim is isolating dirty pages under writeback,
2779 * it implies that the long-lived page allocation rate
2780 * is exceeding the page laundering rate. Either the
2781 * global limits are not being effective at throttling
2782 * processes due to the page distribution throughout
2783 * zones or there is heavy usage of a slow backing
2784 * device. The only option is to throttle from reclaim
2785 * context which is not ideal as there is no guarantee
2786 * the dirtying process is throttled in the same way
2787 * balance_dirty_pages() manages.
2788 *
2789 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2790 * count the number of pages under pages flagged for
2791 * immediate reclaim and stall if any are encountered
2792 * in the nr_immediate check below.
2793 */
2794 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2795 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2796
2797 /* Allow kswapd to start writing pages during reclaim.*/
2798 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2799 set_bit(PGDAT_DIRTY, &pgdat->flags);
2800
2801 /*
2802 * If kswapd scans pages marked for immediate
2803 * reclaim and under writeback (nr_immediate), it
2804 * implies that pages are cycling through the LRU
2805 * faster than they are written so also forcibly stall.
2806 */
2807 if (sc->nr.immediate)
2808 congestion_wait(BLK_RW_ASYNC, HZ/10);
2809 }
2810
2811 /*
2812 * Tag a node/memcg as congested if all the dirty pages
2813 * scanned were backed by a congested BDI and
2814 * wait_iff_congested will stall.
2815 *
2816 * Legacy memcg will stall in page writeback so avoid forcibly
2817 * stalling in wait_iff_congested().
2818 */
2819 if ((current_is_kswapd() ||
2820 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2821 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2822 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2823
2824 /*
2825 * Stall direct reclaim for IO completions if underlying BDIs
2826 * and node is congested. Allow kswapd to continue until it
2827 * starts encountering unqueued dirty pages or cycling through
2828 * the LRU too quickly.
2829 */
2830 if (!current_is_kswapd() && current_may_throttle() &&
2831 !sc->hibernation_mode &&
2832 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2833 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2834
2835 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2836 sc))
2837 goto again;
2838
2839 /*
2840 * Kswapd gives up on balancing particular nodes after too
2841 * many failures to reclaim anything from them and goes to
2842 * sleep. On reclaim progress, reset the failure counter. A
2843 * successful direct reclaim run will revive a dormant kswapd.
2844 */
2845 if (reclaimable)
2846 pgdat->kswapd_failures = 0;
2847 }
2848 #endif
2849
2850 /*
2851 * Returns true if compaction should go ahead for a costly-order request, or
2852 * the allocation would already succeed without compaction. Return false if we
2853 * should reclaim first.
2854 */
compaction_ready(struct zone * zone,struct scan_control * sc)2855 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2856 {
2857 unsigned long watermark;
2858 enum compact_result suitable;
2859
2860 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2861 if (suitable == COMPACT_SUCCESS)
2862 /* Allocation should succeed already. Don't reclaim. */
2863 return true;
2864 if (suitable == COMPACT_SKIPPED)
2865 /* Compaction cannot yet proceed. Do reclaim. */
2866 return false;
2867
2868 /*
2869 * Compaction is already possible, but it takes time to run and there
2870 * are potentially other callers using the pages just freed. So proceed
2871 * with reclaim to make a buffer of free pages available to give
2872 * compaction a reasonable chance of completing and allocating the page.
2873 * Note that we won't actually reclaim the whole buffer in one attempt
2874 * as the target watermark in should_continue_reclaim() is lower. But if
2875 * we are already above the high+gap watermark, don't reclaim at all.
2876 */
2877 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2878
2879 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2880 }
2881
2882 /*
2883 * This is the direct reclaim path, for page-allocating processes. We only
2884 * try to reclaim pages from zones which will satisfy the caller's allocation
2885 * request.
2886 *
2887 * If a zone is deemed to be full of pinned pages then just give it a light
2888 * scan then give up on it.
2889 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2890 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2891 {
2892 struct zoneref *z;
2893 struct zone *zone;
2894 unsigned long nr_soft_reclaimed;
2895 unsigned long nr_soft_scanned;
2896 gfp_t orig_mask;
2897 pg_data_t *last_pgdat = NULL;
2898
2899 /*
2900 * If the number of buffer_heads in the machine exceeds the maximum
2901 * allowed level, force direct reclaim to scan the highmem zone as
2902 * highmem pages could be pinning lowmem pages storing buffer_heads
2903 */
2904 orig_mask = sc->gfp_mask;
2905 if (buffer_heads_over_limit) {
2906 sc->gfp_mask |= __GFP_HIGHMEM;
2907 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2908 }
2909
2910 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2911 sc->reclaim_idx, sc->nodemask) {
2912 /*
2913 * Take care memory controller reclaiming has small influence
2914 * to global LRU.
2915 */
2916 if (!cgroup_reclaim(sc)) {
2917 if (!cpuset_zone_allowed(zone,
2918 GFP_KERNEL | __GFP_HARDWALL))
2919 continue;
2920
2921 /*
2922 * If we already have plenty of memory free for
2923 * compaction in this zone, don't free any more.
2924 * Even though compaction is invoked for any
2925 * non-zero order, only frequent costly order
2926 * reclamation is disruptive enough to become a
2927 * noticeable problem, like transparent huge
2928 * page allocations.
2929 */
2930 if (IS_ENABLED(CONFIG_COMPACTION) &&
2931 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2932 compaction_ready(zone, sc)) {
2933 sc->compaction_ready = true;
2934 continue;
2935 }
2936
2937 /*
2938 * Shrink each node in the zonelist once. If the
2939 * zonelist is ordered by zone (not the default) then a
2940 * node may be shrunk multiple times but in that case
2941 * the user prefers lower zones being preserved.
2942 */
2943 if (zone->zone_pgdat == last_pgdat)
2944 continue;
2945
2946 /*
2947 * This steals pages from memory cgroups over softlimit
2948 * and returns the number of reclaimed pages and
2949 * scanned pages. This works for global memory pressure
2950 * and balancing, not for a memcg's limit.
2951 */
2952 nr_soft_scanned = 0;
2953 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2954 sc->order, sc->gfp_mask,
2955 &nr_soft_scanned);
2956 sc->nr_reclaimed += nr_soft_reclaimed;
2957 sc->nr_scanned += nr_soft_scanned;
2958 /* need some check for avoid more shrink_zone() */
2959 }
2960
2961 /* See comment about same check for global reclaim above */
2962 if (zone->zone_pgdat == last_pgdat)
2963 continue;
2964 last_pgdat = zone->zone_pgdat;
2965 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2966 shrink_node_hyperhold(zone->zone_pgdat, sc);
2967 #else
2968 shrink_node(zone->zone_pgdat, sc);
2969 #endif
2970 }
2971
2972 /*
2973 * Restore to original mask to avoid the impact on the caller if we
2974 * promoted it to __GFP_HIGHMEM.
2975 */
2976 sc->gfp_mask = orig_mask;
2977 }
2978
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2979 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2980 {
2981 struct lruvec *target_lruvec;
2982 unsigned long refaults;
2983
2984 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2985 struct lruvec *lruvec;
2986
2987 lruvec = node_lruvec(pgdat);
2988 lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
2989 lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
2990 #endif
2991
2992 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2993 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2994 target_lruvec->refaults[0] = refaults;
2995 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2996 target_lruvec->refaults[1] = refaults;
2997 }
2998
2999 /*
3000 * This is the main entry point to direct page reclaim.
3001 *
3002 * If a full scan of the inactive list fails to free enough memory then we
3003 * are "out of memory" and something needs to be killed.
3004 *
3005 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3006 * high - the zone may be full of dirty or under-writeback pages, which this
3007 * caller can't do much about. We kick the writeback threads and take explicit
3008 * naps in the hope that some of these pages can be written. But if the
3009 * allocating task holds filesystem locks which prevent writeout this might not
3010 * work, and the allocation attempt will fail.
3011 *
3012 * returns: 0, if no pages reclaimed
3013 * else, the number of pages reclaimed
3014 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3015 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3016 struct scan_control *sc)
3017 {
3018 int initial_priority = sc->priority;
3019 pg_data_t *last_pgdat;
3020 struct zoneref *z;
3021 struct zone *zone;
3022 retry:
3023 delayacct_freepages_start();
3024
3025 if (!cgroup_reclaim(sc))
3026 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3027
3028 do {
3029 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3030 sc->priority);
3031 sc->nr_scanned = 0;
3032 shrink_zones(zonelist, sc);
3033
3034 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3035 break;
3036
3037 if (sc->compaction_ready)
3038 break;
3039
3040 /*
3041 * If we're getting trouble reclaiming, start doing
3042 * writepage even in laptop mode.
3043 */
3044 if (sc->priority < DEF_PRIORITY - 2)
3045 sc->may_writepage = 1;
3046 } while (--sc->priority >= 0);
3047
3048 last_pgdat = NULL;
3049 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3050 sc->nodemask) {
3051 if (zone->zone_pgdat == last_pgdat)
3052 continue;
3053 last_pgdat = zone->zone_pgdat;
3054
3055 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3056
3057 if (cgroup_reclaim(sc)) {
3058 struct lruvec *lruvec;
3059
3060 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3061 zone->zone_pgdat);
3062 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3063 }
3064 }
3065
3066 delayacct_freepages_end();
3067
3068 if (sc->nr_reclaimed)
3069 return sc->nr_reclaimed;
3070
3071 /* Aborted reclaim to try compaction? don't OOM, then */
3072 if (sc->compaction_ready)
3073 return 1;
3074
3075 /*
3076 * We make inactive:active ratio decisions based on the node's
3077 * composition of memory, but a restrictive reclaim_idx or a
3078 * memory.low cgroup setting can exempt large amounts of
3079 * memory from reclaim. Neither of which are very common, so
3080 * instead of doing costly eligibility calculations of the
3081 * entire cgroup subtree up front, we assume the estimates are
3082 * good, and retry with forcible deactivation if that fails.
3083 */
3084 if (sc->skipped_deactivate) {
3085 sc->priority = initial_priority;
3086 sc->force_deactivate = 1;
3087 sc->skipped_deactivate = 0;
3088 goto retry;
3089 }
3090
3091 /* Untapped cgroup reserves? Don't OOM, retry. */
3092 if (sc->memcg_low_skipped) {
3093 sc->priority = initial_priority;
3094 sc->force_deactivate = 0;
3095 sc->memcg_low_reclaim = 1;
3096 sc->memcg_low_skipped = 0;
3097 goto retry;
3098 }
3099
3100 return 0;
3101 }
3102
allow_direct_reclaim(pg_data_t * pgdat)3103 static bool allow_direct_reclaim(pg_data_t *pgdat)
3104 {
3105 struct zone *zone;
3106 unsigned long pfmemalloc_reserve = 0;
3107 unsigned long free_pages = 0;
3108 int i;
3109 bool wmark_ok;
3110
3111 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3112 return true;
3113
3114 for (i = 0; i <= ZONE_NORMAL; i++) {
3115 zone = &pgdat->node_zones[i];
3116 if (!managed_zone(zone))
3117 continue;
3118
3119 if (!zone_reclaimable_pages(zone))
3120 continue;
3121
3122 pfmemalloc_reserve += min_wmark_pages(zone);
3123 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3124 }
3125
3126 /* If there are no reserves (unexpected config) then do not throttle */
3127 if (!pfmemalloc_reserve)
3128 return true;
3129
3130 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3131
3132 /* kswapd must be awake if processes are being throttled */
3133 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3134 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3135 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3136
3137 wake_up_interruptible(&pgdat->kswapd_wait);
3138 }
3139
3140 return wmark_ok;
3141 }
3142
3143 /*
3144 * Throttle direct reclaimers if backing storage is backed by the network
3145 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3146 * depleted. kswapd will continue to make progress and wake the processes
3147 * when the low watermark is reached.
3148 *
3149 * Returns true if a fatal signal was delivered during throttling. If this
3150 * happens, the page allocator should not consider triggering the OOM killer.
3151 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3152 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3153 nodemask_t *nodemask)
3154 {
3155 struct zoneref *z;
3156 struct zone *zone;
3157 pg_data_t *pgdat = NULL;
3158
3159 /*
3160 * Kernel threads should not be throttled as they may be indirectly
3161 * responsible for cleaning pages necessary for reclaim to make forward
3162 * progress. kjournald for example may enter direct reclaim while
3163 * committing a transaction where throttling it could forcing other
3164 * processes to block on log_wait_commit().
3165 */
3166 if (current->flags & PF_KTHREAD)
3167 goto out;
3168
3169 /*
3170 * If a fatal signal is pending, this process should not throttle.
3171 * It should return quickly so it can exit and free its memory
3172 */
3173 if (fatal_signal_pending(current))
3174 goto out;
3175
3176 /*
3177 * Check if the pfmemalloc reserves are ok by finding the first node
3178 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3179 * GFP_KERNEL will be required for allocating network buffers when
3180 * swapping over the network so ZONE_HIGHMEM is unusable.
3181 *
3182 * Throttling is based on the first usable node and throttled processes
3183 * wait on a queue until kswapd makes progress and wakes them. There
3184 * is an affinity then between processes waking up and where reclaim
3185 * progress has been made assuming the process wakes on the same node.
3186 * More importantly, processes running on remote nodes will not compete
3187 * for remote pfmemalloc reserves and processes on different nodes
3188 * should make reasonable progress.
3189 */
3190 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3191 gfp_zone(gfp_mask), nodemask) {
3192 if (zone_idx(zone) > ZONE_NORMAL)
3193 continue;
3194
3195 /* Throttle based on the first usable node */
3196 pgdat = zone->zone_pgdat;
3197 if (allow_direct_reclaim(pgdat))
3198 goto out;
3199 break;
3200 }
3201
3202 /* If no zone was usable by the allocation flags then do not throttle */
3203 if (!pgdat)
3204 goto out;
3205
3206 /* Account for the throttling */
3207 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3208
3209 /*
3210 * If the caller cannot enter the filesystem, it's possible that it
3211 * is due to the caller holding an FS lock or performing a journal
3212 * transaction in the case of a filesystem like ext[3|4]. In this case,
3213 * it is not safe to block on pfmemalloc_wait as kswapd could be
3214 * blocked waiting on the same lock. Instead, throttle for up to a
3215 * second before continuing.
3216 */
3217 if (!(gfp_mask & __GFP_FS)) {
3218 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3219 allow_direct_reclaim(pgdat), HZ);
3220
3221 goto check_pending;
3222 }
3223
3224 /* Throttle until kswapd wakes the process */
3225 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3226 allow_direct_reclaim(pgdat));
3227
3228 check_pending:
3229 if (fatal_signal_pending(current))
3230 return true;
3231
3232 out:
3233 return false;
3234 }
3235
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3236 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3237 gfp_t gfp_mask, nodemask_t *nodemask)
3238 {
3239 unsigned long nr_reclaimed;
3240 struct scan_control sc = {
3241 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3242 .gfp_mask = current_gfp_context(gfp_mask),
3243 .reclaim_idx = gfp_zone(gfp_mask),
3244 .order = order,
3245 .nodemask = nodemask,
3246 .priority = DEF_PRIORITY,
3247 .may_writepage = !laptop_mode,
3248 .may_unmap = 1,
3249 .may_swap = 1,
3250 };
3251
3252 /*
3253 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3254 * Confirm they are large enough for max values.
3255 */
3256 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3257 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3258 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3259
3260 /*
3261 * Do not enter reclaim if fatal signal was delivered while throttled.
3262 * 1 is returned so that the page allocator does not OOM kill at this
3263 * point.
3264 */
3265 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3266 return 1;
3267
3268 set_task_reclaim_state(current, &sc.reclaim_state);
3269 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3270
3271 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3272
3273 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3274 set_task_reclaim_state(current, NULL);
3275
3276 return nr_reclaimed;
3277 }
3278
3279 #ifdef CONFIG_MEMCG
3280
3281 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3282 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3283 gfp_t gfp_mask, bool noswap,
3284 pg_data_t *pgdat,
3285 unsigned long *nr_scanned)
3286 {
3287 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3288 struct scan_control sc = {
3289 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3290 .target_mem_cgroup = memcg,
3291 .may_writepage = !laptop_mode,
3292 .may_unmap = 1,
3293 .reclaim_idx = MAX_NR_ZONES - 1,
3294 .may_swap = !noswap,
3295 };
3296 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3297 unsigned long nr[NR_LRU_LISTS];
3298 #endif
3299
3300 WARN_ON_ONCE(!current->reclaim_state);
3301
3302 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3303 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3304
3305 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3306 sc.gfp_mask);
3307
3308 /*
3309 * NOTE: Although we can get the priority field, using it
3310 * here is not a good idea, since it limits the pages we can scan.
3311 * if we don't reclaim here, the shrink_node from balance_pgdat
3312 * will pick up pages from other mem cgroup's as well. We hack
3313 * the priority and make it zero.
3314 */
3315 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3316 nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
3317 LRU_ACTIVE_ANON, MAX_NR_ZONES);
3318 nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
3319 LRU_INACTIVE_ANON, MAX_NR_ZONES);
3320 nr[LRU_ACTIVE_FILE] = 0;
3321 nr[LRU_INACTIVE_FILE] = 0;
3322 shrink_anon_memcg(pgdat, memcg, &sc, nr);
3323 #else
3324 shrink_lruvec(lruvec, &sc);
3325 #endif
3326
3327 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3328
3329 *nr_scanned = sc.nr_scanned;
3330
3331 return sc.nr_reclaimed;
3332 }
3333
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3334 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3335 unsigned long nr_pages,
3336 gfp_t gfp_mask,
3337 bool may_swap)
3338 {
3339 unsigned long nr_reclaimed;
3340 unsigned int noreclaim_flag;
3341 struct scan_control sc = {
3342 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3343 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3344 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3345 .reclaim_idx = MAX_NR_ZONES - 1,
3346 .target_mem_cgroup = memcg,
3347 .priority = DEF_PRIORITY,
3348 .may_writepage = !laptop_mode,
3349 .may_unmap = 1,
3350 .may_swap = may_swap,
3351 };
3352 /*
3353 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3354 * equal pressure on all the nodes. This is based on the assumption that
3355 * the reclaim does not bail out early.
3356 */
3357 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358
3359 set_task_reclaim_state(current, &sc.reclaim_state);
3360 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3361 noreclaim_flag = memalloc_noreclaim_save();
3362
3363 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3364
3365 memalloc_noreclaim_restore(noreclaim_flag);
3366 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3367 set_task_reclaim_state(current, NULL);
3368
3369 return nr_reclaimed;
3370 }
3371 #endif
3372
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3373 static void age_active_anon(struct pglist_data *pgdat,
3374 struct scan_control *sc)
3375 {
3376 struct mem_cgroup *memcg;
3377 struct lruvec *lruvec;
3378
3379 if (!total_swap_pages)
3380 return;
3381
3382 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3383 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3384 return;
3385
3386 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3387 do {
3388 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3389 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3390 sc, LRU_ACTIVE_ANON);
3391 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3392 } while (memcg);
3393 }
3394
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3395 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3396 {
3397 int i;
3398 struct zone *zone;
3399
3400 /*
3401 * Check for watermark boosts top-down as the higher zones
3402 * are more likely to be boosted. Both watermarks and boosts
3403 * should not be checked at the same time as reclaim would
3404 * start prematurely when there is no boosting and a lower
3405 * zone is balanced.
3406 */
3407 for (i = highest_zoneidx; i >= 0; i--) {
3408 zone = pgdat->node_zones + i;
3409 if (!managed_zone(zone))
3410 continue;
3411
3412 if (zone->watermark_boost)
3413 return true;
3414 }
3415
3416 return false;
3417 }
3418
3419 /*
3420 * Returns true if there is an eligible zone balanced for the request order
3421 * and highest_zoneidx
3422 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3423 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3424 {
3425 int i;
3426 unsigned long mark = -1;
3427 struct zone *zone;
3428
3429 /*
3430 * Check watermarks bottom-up as lower zones are more likely to
3431 * meet watermarks.
3432 */
3433 for (i = 0; i <= highest_zoneidx; i++) {
3434 zone = pgdat->node_zones + i;
3435
3436 if (!managed_zone(zone))
3437 continue;
3438
3439 mark = high_wmark_pages(zone);
3440 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3441 return true;
3442 }
3443
3444 /*
3445 * If a node has no populated zone within highest_zoneidx, it does not
3446 * need balancing by definition. This can happen if a zone-restricted
3447 * allocation tries to wake a remote kswapd.
3448 */
3449 if (mark == -1)
3450 return true;
3451
3452 return false;
3453 }
3454
3455 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3456 static void clear_pgdat_congested(pg_data_t *pgdat)
3457 {
3458 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3459
3460 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3461 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3462 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3463 }
3464
3465 /*
3466 * Prepare kswapd for sleeping. This verifies that there are no processes
3467 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3468 *
3469 * Returns true if kswapd is ready to sleep
3470 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3471 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3472 int highest_zoneidx)
3473 {
3474 /*
3475 * The throttled processes are normally woken up in balance_pgdat() as
3476 * soon as allow_direct_reclaim() is true. But there is a potential
3477 * race between when kswapd checks the watermarks and a process gets
3478 * throttled. There is also a potential race if processes get
3479 * throttled, kswapd wakes, a large process exits thereby balancing the
3480 * zones, which causes kswapd to exit balance_pgdat() before reaching
3481 * the wake up checks. If kswapd is going to sleep, no process should
3482 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3483 * the wake up is premature, processes will wake kswapd and get
3484 * throttled again. The difference from wake ups in balance_pgdat() is
3485 * that here we are under prepare_to_wait().
3486 */
3487 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3488 wake_up_all(&pgdat->pfmemalloc_wait);
3489
3490 /* Hopeless node, leave it to direct reclaim */
3491 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3492 return true;
3493
3494 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3495 clear_pgdat_congested(pgdat);
3496 return true;
3497 }
3498
3499 return false;
3500 }
3501
3502 /*
3503 * kswapd shrinks a node of pages that are at or below the highest usable
3504 * zone that is currently unbalanced.
3505 *
3506 * Returns true if kswapd scanned at least the requested number of pages to
3507 * reclaim or if the lack of progress was due to pages under writeback.
3508 * This is used to determine if the scanning priority needs to be raised.
3509 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3510 static bool kswapd_shrink_node(pg_data_t *pgdat,
3511 struct scan_control *sc)
3512 {
3513 struct zone *zone;
3514 int z;
3515
3516 /* Reclaim a number of pages proportional to the number of zones */
3517 sc->nr_to_reclaim = 0;
3518 for (z = 0; z <= sc->reclaim_idx; z++) {
3519 zone = pgdat->node_zones + z;
3520 if (!managed_zone(zone))
3521 continue;
3522
3523 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3524 }
3525
3526 /*
3527 * Historically care was taken to put equal pressure on all zones but
3528 * now pressure is applied based on node LRU order.
3529 */
3530 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3531 shrink_node_hyperhold(pgdat, sc);
3532 #else
3533 shrink_node(pgdat, sc);
3534 #endif
3535
3536 /*
3537 * Fragmentation may mean that the system cannot be rebalanced for
3538 * high-order allocations. If twice the allocation size has been
3539 * reclaimed then recheck watermarks only at order-0 to prevent
3540 * excessive reclaim. Assume that a process requested a high-order
3541 * can direct reclaim/compact.
3542 */
3543 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3544 sc->order = 0;
3545
3546 return sc->nr_scanned >= sc->nr_to_reclaim;
3547 }
3548
3549 /*
3550 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3551 * that are eligible for use by the caller until at least one zone is
3552 * balanced.
3553 *
3554 * Returns the order kswapd finished reclaiming at.
3555 *
3556 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3557 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3558 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3559 * or lower is eligible for reclaim until at least one usable zone is
3560 * balanced.
3561 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3562 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3563 {
3564 int i;
3565 unsigned long nr_soft_reclaimed;
3566 unsigned long nr_soft_scanned;
3567 unsigned long pflags;
3568 unsigned long nr_boost_reclaim;
3569 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3570 bool boosted;
3571 struct zone *zone;
3572 struct scan_control sc = {
3573 .gfp_mask = GFP_KERNEL,
3574 .order = order,
3575 .may_unmap = 1,
3576 };
3577
3578 set_task_reclaim_state(current, &sc.reclaim_state);
3579 psi_memstall_enter(&pflags);
3580 __fs_reclaim_acquire();
3581
3582 count_vm_event(PAGEOUTRUN);
3583
3584 /*
3585 * Account for the reclaim boost. Note that the zone boost is left in
3586 * place so that parallel allocations that are near the watermark will
3587 * stall or direct reclaim until kswapd is finished.
3588 */
3589 nr_boost_reclaim = 0;
3590 for (i = 0; i <= highest_zoneidx; i++) {
3591 zone = pgdat->node_zones + i;
3592 if (!managed_zone(zone))
3593 continue;
3594
3595 nr_boost_reclaim += zone->watermark_boost;
3596 zone_boosts[i] = zone->watermark_boost;
3597 }
3598 boosted = nr_boost_reclaim;
3599
3600 restart:
3601 sc.priority = DEF_PRIORITY;
3602 do {
3603 unsigned long nr_reclaimed = sc.nr_reclaimed;
3604 bool raise_priority = true;
3605 bool balanced;
3606 bool ret;
3607
3608 sc.reclaim_idx = highest_zoneidx;
3609
3610 /*
3611 * If the number of buffer_heads exceeds the maximum allowed
3612 * then consider reclaiming from all zones. This has a dual
3613 * purpose -- on 64-bit systems it is expected that
3614 * buffer_heads are stripped during active rotation. On 32-bit
3615 * systems, highmem pages can pin lowmem memory and shrinking
3616 * buffers can relieve lowmem pressure. Reclaim may still not
3617 * go ahead if all eligible zones for the original allocation
3618 * request are balanced to avoid excessive reclaim from kswapd.
3619 */
3620 if (buffer_heads_over_limit) {
3621 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3622 zone = pgdat->node_zones + i;
3623 if (!managed_zone(zone))
3624 continue;
3625
3626 sc.reclaim_idx = i;
3627 break;
3628 }
3629 }
3630
3631 /*
3632 * If the pgdat is imbalanced then ignore boosting and preserve
3633 * the watermarks for a later time and restart. Note that the
3634 * zone watermarks will be still reset at the end of balancing
3635 * on the grounds that the normal reclaim should be enough to
3636 * re-evaluate if boosting is required when kswapd next wakes.
3637 */
3638 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3639 if (!balanced && nr_boost_reclaim) {
3640 nr_boost_reclaim = 0;
3641 goto restart;
3642 }
3643
3644 /*
3645 * If boosting is not active then only reclaim if there are no
3646 * eligible zones. Note that sc.reclaim_idx is not used as
3647 * buffer_heads_over_limit may have adjusted it.
3648 */
3649 if (!nr_boost_reclaim && balanced)
3650 goto out;
3651
3652 /* Limit the priority of boosting to avoid reclaim writeback */
3653 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3654 raise_priority = false;
3655
3656 /*
3657 * Do not writeback or swap pages for boosted reclaim. The
3658 * intent is to relieve pressure not issue sub-optimal IO
3659 * from reclaim context. If no pages are reclaimed, the
3660 * reclaim will be aborted.
3661 */
3662 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3663 sc.may_swap = !nr_boost_reclaim;
3664
3665 /*
3666 * Do some background aging of the anon list, to give
3667 * pages a chance to be referenced before reclaiming. All
3668 * pages are rotated regardless of classzone as this is
3669 * about consistent aging.
3670 */
3671 age_active_anon(pgdat, &sc);
3672
3673 /*
3674 * If we're getting trouble reclaiming, start doing writepage
3675 * even in laptop mode.
3676 */
3677 if (sc.priority < DEF_PRIORITY - 2)
3678 sc.may_writepage = 1;
3679
3680 /* Call soft limit reclaim before calling shrink_node. */
3681 sc.nr_scanned = 0;
3682 nr_soft_scanned = 0;
3683 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3684 sc.gfp_mask, &nr_soft_scanned);
3685 sc.nr_reclaimed += nr_soft_reclaimed;
3686
3687 /*
3688 * There should be no need to raise the scanning priority if
3689 * enough pages are already being scanned that that high
3690 * watermark would be met at 100% efficiency.
3691 */
3692 if (kswapd_shrink_node(pgdat, &sc))
3693 raise_priority = false;
3694
3695 /*
3696 * If the low watermark is met there is no need for processes
3697 * to be throttled on pfmemalloc_wait as they should not be
3698 * able to safely make forward progress. Wake them
3699 */
3700 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3701 allow_direct_reclaim(pgdat))
3702 wake_up_all(&pgdat->pfmemalloc_wait);
3703
3704 /* Check if kswapd should be suspending */
3705 __fs_reclaim_release();
3706 ret = try_to_freeze();
3707 __fs_reclaim_acquire();
3708 if (ret || kthread_should_stop())
3709 break;
3710
3711 /*
3712 * Raise priority if scanning rate is too low or there was no
3713 * progress in reclaiming pages
3714 */
3715 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3716 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3717
3718 /*
3719 * If reclaim made no progress for a boost, stop reclaim as
3720 * IO cannot be queued and it could be an infinite loop in
3721 * extreme circumstances.
3722 */
3723 if (nr_boost_reclaim && !nr_reclaimed)
3724 break;
3725
3726 if (raise_priority || !nr_reclaimed)
3727 sc.priority--;
3728 } while (sc.priority >= 1);
3729
3730 if (!sc.nr_reclaimed)
3731 pgdat->kswapd_failures++;
3732
3733 out:
3734 /* If reclaim was boosted, account for the reclaim done in this pass */
3735 if (boosted) {
3736 unsigned long flags;
3737
3738 for (i = 0; i <= highest_zoneidx; i++) {
3739 if (!zone_boosts[i])
3740 continue;
3741
3742 /* Increments are under the zone lock */
3743 zone = pgdat->node_zones + i;
3744 spin_lock_irqsave(&zone->lock, flags);
3745 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3746 spin_unlock_irqrestore(&zone->lock, flags);
3747 }
3748
3749 /*
3750 * As there is now likely space, wakeup kcompact to defragment
3751 * pageblocks.
3752 */
3753 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3754 }
3755
3756 snapshot_refaults(NULL, pgdat);
3757 __fs_reclaim_release();
3758 psi_memstall_leave(&pflags);
3759 set_task_reclaim_state(current, NULL);
3760
3761 /*
3762 * Return the order kswapd stopped reclaiming at as
3763 * prepare_kswapd_sleep() takes it into account. If another caller
3764 * entered the allocator slow path while kswapd was awake, order will
3765 * remain at the higher level.
3766 */
3767 return sc.order;
3768 }
3769
3770 /*
3771 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3772 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3773 * not a valid index then either kswapd runs for first time or kswapd couldn't
3774 * sleep after previous reclaim attempt (node is still unbalanced). In that
3775 * case return the zone index of the previous kswapd reclaim cycle.
3776 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3777 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3778 enum zone_type prev_highest_zoneidx)
3779 {
3780 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3781
3782 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3783 }
3784
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3785 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3786 unsigned int highest_zoneidx)
3787 {
3788 long remaining = 0;
3789 DEFINE_WAIT(wait);
3790
3791 if (freezing(current) || kthread_should_stop())
3792 return;
3793
3794 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3795
3796 /*
3797 * Try to sleep for a short interval. Note that kcompactd will only be
3798 * woken if it is possible to sleep for a short interval. This is
3799 * deliberate on the assumption that if reclaim cannot keep an
3800 * eligible zone balanced that it's also unlikely that compaction will
3801 * succeed.
3802 */
3803 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3804 /*
3805 * Compaction records what page blocks it recently failed to
3806 * isolate pages from and skips them in the future scanning.
3807 * When kswapd is going to sleep, it is reasonable to assume
3808 * that pages and compaction may succeed so reset the cache.
3809 */
3810 reset_isolation_suitable(pgdat);
3811
3812 /*
3813 * We have freed the memory, now we should compact it to make
3814 * allocation of the requested order possible.
3815 */
3816 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3817
3818 remaining = schedule_timeout(HZ/10);
3819
3820 /*
3821 * If woken prematurely then reset kswapd_highest_zoneidx and
3822 * order. The values will either be from a wakeup request or
3823 * the previous request that slept prematurely.
3824 */
3825 if (remaining) {
3826 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3827 kswapd_highest_zoneidx(pgdat,
3828 highest_zoneidx));
3829
3830 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3831 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3832 }
3833
3834 finish_wait(&pgdat->kswapd_wait, &wait);
3835 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3836 }
3837
3838 /*
3839 * After a short sleep, check if it was a premature sleep. If not, then
3840 * go fully to sleep until explicitly woken up.
3841 */
3842 if (!remaining &&
3843 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3844 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3845
3846 /*
3847 * vmstat counters are not perfectly accurate and the estimated
3848 * value for counters such as NR_FREE_PAGES can deviate from the
3849 * true value by nr_online_cpus * threshold. To avoid the zone
3850 * watermarks being breached while under pressure, we reduce the
3851 * per-cpu vmstat threshold while kswapd is awake and restore
3852 * them before going back to sleep.
3853 */
3854 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3855
3856 if (!kthread_should_stop())
3857 schedule();
3858
3859 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3860 } else {
3861 if (remaining)
3862 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3863 else
3864 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3865 }
3866 finish_wait(&pgdat->kswapd_wait, &wait);
3867 }
3868
3869 /*
3870 * The background pageout daemon, started as a kernel thread
3871 * from the init process.
3872 *
3873 * This basically trickles out pages so that we have _some_
3874 * free memory available even if there is no other activity
3875 * that frees anything up. This is needed for things like routing
3876 * etc, where we otherwise might have all activity going on in
3877 * asynchronous contexts that cannot page things out.
3878 *
3879 * If there are applications that are active memory-allocators
3880 * (most normal use), this basically shouldn't matter.
3881 */
kswapd(void * p)3882 static int kswapd(void *p)
3883 {
3884 unsigned int alloc_order, reclaim_order;
3885 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3886 pg_data_t *pgdat = (pg_data_t*)p;
3887 struct task_struct *tsk = current;
3888 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3889 #ifdef CONFIG_RECLAIM_ACCT
3890 struct reclaim_acct ra = {0};
3891 #endif
3892
3893 if (!cpumask_empty(cpumask))
3894 set_cpus_allowed_ptr(tsk, cpumask);
3895
3896 /*
3897 * Tell the memory management that we're a "memory allocator",
3898 * and that if we need more memory we should get access to it
3899 * regardless (see "__alloc_pages()"). "kswapd" should
3900 * never get caught in the normal page freeing logic.
3901 *
3902 * (Kswapd normally doesn't need memory anyway, but sometimes
3903 * you need a small amount of memory in order to be able to
3904 * page out something else, and this flag essentially protects
3905 * us from recursively trying to free more memory as we're
3906 * trying to free the first piece of memory in the first place).
3907 */
3908 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3909 set_freezable();
3910
3911 WRITE_ONCE(pgdat->kswapd_order, 0);
3912 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3913 for ( ; ; ) {
3914 bool ret;
3915
3916 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3917 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3918 highest_zoneidx);
3919
3920 kswapd_try_sleep:
3921 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3922 highest_zoneidx);
3923
3924 /* Read the new order and highest_zoneidx */
3925 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3926 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3927 highest_zoneidx);
3928 WRITE_ONCE(pgdat->kswapd_order, 0);
3929 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3930
3931 ret = try_to_freeze();
3932 if (kthread_should_stop())
3933 break;
3934
3935 /*
3936 * We can speed up thawing tasks if we don't call balance_pgdat
3937 * after returning from the refrigerator
3938 */
3939 if (ret)
3940 continue;
3941
3942 /*
3943 * Reclaim begins at the requested order but if a high-order
3944 * reclaim fails then kswapd falls back to reclaiming for
3945 * order-0. If that happens, kswapd will consider sleeping
3946 * for the order it finished reclaiming at (reclaim_order)
3947 * but kcompactd is woken to compact for the original
3948 * request (alloc_order).
3949 */
3950 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3951 alloc_order);
3952 #ifdef CONFIG_RECLAIM_ACCT
3953 reclaimacct_start(KSWAPD_RECLAIM, &ra);
3954 #endif
3955 reclaim_order = balance_pgdat(pgdat, alloc_order,
3956 highest_zoneidx);
3957 #ifdef CONFIG_RECLAIM_ACCT
3958 reclaimacct_end(KSWAPD_RECLAIM);
3959 #endif
3960 if (reclaim_order < alloc_order)
3961 goto kswapd_try_sleep;
3962 }
3963
3964 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3965
3966 return 0;
3967 }
3968
3969 /*
3970 * A zone is low on free memory or too fragmented for high-order memory. If
3971 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3972 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3973 * has failed or is not needed, still wake up kcompactd if only compaction is
3974 * needed.
3975 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3976 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3977 enum zone_type highest_zoneidx)
3978 {
3979 pg_data_t *pgdat;
3980 enum zone_type curr_idx;
3981
3982 if (!managed_zone(zone))
3983 return;
3984
3985 if (!cpuset_zone_allowed(zone, gfp_flags))
3986 return;
3987
3988 pgdat = zone->zone_pgdat;
3989 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3990
3991 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3992 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3993
3994 if (READ_ONCE(pgdat->kswapd_order) < order)
3995 WRITE_ONCE(pgdat->kswapd_order, order);
3996
3997 if (!waitqueue_active(&pgdat->kswapd_wait))
3998 return;
3999
4000 /* Hopeless node, leave it to direct reclaim if possible */
4001 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4002 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4003 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4004 /*
4005 * There may be plenty of free memory available, but it's too
4006 * fragmented for high-order allocations. Wake up kcompactd
4007 * and rely on compaction_suitable() to determine if it's
4008 * needed. If it fails, it will defer subsequent attempts to
4009 * ratelimit its work.
4010 */
4011 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4012 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4013 return;
4014 }
4015
4016 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4017 gfp_flags);
4018 wake_up_interruptible(&pgdat->kswapd_wait);
4019 }
4020
4021 #ifdef CONFIG_HIBERNATION
4022 /*
4023 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4024 * freed pages.
4025 *
4026 * Rather than trying to age LRUs the aim is to preserve the overall
4027 * LRU order by reclaiming preferentially
4028 * inactive > active > active referenced > active mapped
4029 */
shrink_all_memory(unsigned long nr_to_reclaim)4030 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4031 {
4032 struct scan_control sc = {
4033 .nr_to_reclaim = nr_to_reclaim,
4034 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4035 .reclaim_idx = MAX_NR_ZONES - 1,
4036 .priority = DEF_PRIORITY,
4037 .may_writepage = 1,
4038 .may_unmap = 1,
4039 .may_swap = 1,
4040 .hibernation_mode = 1,
4041 };
4042 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4043 unsigned long nr_reclaimed;
4044 unsigned int noreclaim_flag;
4045
4046 fs_reclaim_acquire(sc.gfp_mask);
4047 noreclaim_flag = memalloc_noreclaim_save();
4048 set_task_reclaim_state(current, &sc.reclaim_state);
4049
4050 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4051
4052 set_task_reclaim_state(current, NULL);
4053 memalloc_noreclaim_restore(noreclaim_flag);
4054 fs_reclaim_release(sc.gfp_mask);
4055
4056 return nr_reclaimed;
4057 }
4058 #endif /* CONFIG_HIBERNATION */
4059
4060 /*
4061 * This kswapd start function will be called by init and node-hot-add.
4062 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4063 */
kswapd_run(int nid)4064 int kswapd_run(int nid)
4065 {
4066 pg_data_t *pgdat = NODE_DATA(nid);
4067 int ret = 0;
4068
4069 if (pgdat->kswapd)
4070 return 0;
4071
4072 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4073 if (IS_ERR(pgdat->kswapd)) {
4074 /* failure at boot is fatal */
4075 BUG_ON(system_state < SYSTEM_RUNNING);
4076 pr_err("Failed to start kswapd on node %d\n", nid);
4077 ret = PTR_ERR(pgdat->kswapd);
4078 pgdat->kswapd = NULL;
4079 }
4080 return ret;
4081 }
4082
4083 /*
4084 * Called by memory hotplug when all memory in a node is offlined. Caller must
4085 * hold mem_hotplug_begin/end().
4086 */
kswapd_stop(int nid)4087 void kswapd_stop(int nid)
4088 {
4089 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4090
4091 if (kswapd) {
4092 kthread_stop(kswapd);
4093 NODE_DATA(nid)->kswapd = NULL;
4094 }
4095 }
4096
4097 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4098 static void __init purgeable_debugfs_init(void);
4099 #endif
4100
kswapd_init(void)4101 static int __init kswapd_init(void)
4102 {
4103 int nid;
4104
4105 swap_setup();
4106 for_each_node_state(nid, N_MEMORY)
4107 kswapd_run(nid);
4108 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4109 purgeable_debugfs_init();
4110 #endif
4111 return 0;
4112 }
4113
4114 module_init(kswapd_init)
4115
4116 #ifdef CONFIG_NUMA
4117 /*
4118 * Node reclaim mode
4119 *
4120 * If non-zero call node_reclaim when the number of free pages falls below
4121 * the watermarks.
4122 */
4123 int node_reclaim_mode __read_mostly;
4124
4125 /*
4126 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4127 * ABI. New bits are OK, but existing bits can never change.
4128 */
4129 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4130 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4131 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4132
4133 /*
4134 * Priority for NODE_RECLAIM. This determines the fraction of pages
4135 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4136 * a zone.
4137 */
4138 #define NODE_RECLAIM_PRIORITY 4
4139
4140 /*
4141 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4142 * occur.
4143 */
4144 int sysctl_min_unmapped_ratio = 1;
4145
4146 /*
4147 * If the number of slab pages in a zone grows beyond this percentage then
4148 * slab reclaim needs to occur.
4149 */
4150 int sysctl_min_slab_ratio = 5;
4151
node_unmapped_file_pages(struct pglist_data * pgdat)4152 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4153 {
4154 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4155 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4156 node_page_state(pgdat, NR_ACTIVE_FILE);
4157
4158 /*
4159 * It's possible for there to be more file mapped pages than
4160 * accounted for by the pages on the file LRU lists because
4161 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4162 */
4163 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4164 }
4165
4166 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4167 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4168 {
4169 unsigned long nr_pagecache_reclaimable;
4170 unsigned long delta = 0;
4171
4172 /*
4173 * If RECLAIM_UNMAP is set, then all file pages are considered
4174 * potentially reclaimable. Otherwise, we have to worry about
4175 * pages like swapcache and node_unmapped_file_pages() provides
4176 * a better estimate
4177 */
4178 if (node_reclaim_mode & RECLAIM_UNMAP)
4179 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4180 else
4181 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4182
4183 /* If we can't clean pages, remove dirty pages from consideration */
4184 if (!(node_reclaim_mode & RECLAIM_WRITE))
4185 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4186
4187 /* Watch for any possible underflows due to delta */
4188 if (unlikely(delta > nr_pagecache_reclaimable))
4189 delta = nr_pagecache_reclaimable;
4190
4191 return nr_pagecache_reclaimable - delta;
4192 }
4193
4194 /*
4195 * Try to free up some pages from this node through reclaim.
4196 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4197 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4198 {
4199 /* Minimum pages needed in order to stay on node */
4200 const unsigned long nr_pages = 1 << order;
4201 struct task_struct *p = current;
4202 unsigned int noreclaim_flag;
4203 struct scan_control sc = {
4204 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4205 .gfp_mask = current_gfp_context(gfp_mask),
4206 .order = order,
4207 .priority = NODE_RECLAIM_PRIORITY,
4208 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4209 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4210 .may_swap = 1,
4211 .reclaim_idx = gfp_zone(gfp_mask),
4212 };
4213 unsigned long pflags;
4214
4215 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4216 sc.gfp_mask);
4217
4218 cond_resched();
4219 psi_memstall_enter(&pflags);
4220 fs_reclaim_acquire(sc.gfp_mask);
4221 /*
4222 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4223 * and we also need to be able to write out pages for RECLAIM_WRITE
4224 * and RECLAIM_UNMAP.
4225 */
4226 noreclaim_flag = memalloc_noreclaim_save();
4227 p->flags |= PF_SWAPWRITE;
4228 set_task_reclaim_state(p, &sc.reclaim_state);
4229
4230 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4231 /*
4232 * Free memory by calling shrink node with increasing
4233 * priorities until we have enough memory freed.
4234 */
4235 do {
4236 #ifdef CONFIG_HYPERHOLD_FILE_LRU
4237 shrink_node_hyperhold(pgdat, &sc);
4238 #else
4239 shrink_node(pgdat, &sc);
4240 #endif
4241 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4242 }
4243
4244 set_task_reclaim_state(p, NULL);
4245 current->flags &= ~PF_SWAPWRITE;
4246 memalloc_noreclaim_restore(noreclaim_flag);
4247 fs_reclaim_release(sc.gfp_mask);
4248 psi_memstall_leave(&pflags);
4249
4250 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4251
4252 return sc.nr_reclaimed >= nr_pages;
4253 }
4254
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4255 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4256 {
4257 int ret;
4258
4259 /*
4260 * Node reclaim reclaims unmapped file backed pages and
4261 * slab pages if we are over the defined limits.
4262 *
4263 * A small portion of unmapped file backed pages is needed for
4264 * file I/O otherwise pages read by file I/O will be immediately
4265 * thrown out if the node is overallocated. So we do not reclaim
4266 * if less than a specified percentage of the node is used by
4267 * unmapped file backed pages.
4268 */
4269 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4270 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4271 pgdat->min_slab_pages)
4272 return NODE_RECLAIM_FULL;
4273
4274 /*
4275 * Do not scan if the allocation should not be delayed.
4276 */
4277 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4278 return NODE_RECLAIM_NOSCAN;
4279
4280 /*
4281 * Only run node reclaim on the local node or on nodes that do not
4282 * have associated processors. This will favor the local processor
4283 * over remote processors and spread off node memory allocations
4284 * as wide as possible.
4285 */
4286 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4287 return NODE_RECLAIM_NOSCAN;
4288
4289 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4290 return NODE_RECLAIM_NOSCAN;
4291
4292 ret = __node_reclaim(pgdat, gfp_mask, order);
4293 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4294
4295 if (!ret)
4296 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4297
4298 return ret;
4299 }
4300 #endif
4301
4302 /**
4303 * check_move_unevictable_pages - check pages for evictability and move to
4304 * appropriate zone lru list
4305 * @pvec: pagevec with lru pages to check
4306 *
4307 * Checks pages for evictability, if an evictable page is in the unevictable
4308 * lru list, moves it to the appropriate evictable lru list. This function
4309 * should be only used for lru pages.
4310 */
check_move_unevictable_pages(struct pagevec * pvec)4311 void check_move_unevictable_pages(struct pagevec *pvec)
4312 {
4313 struct lruvec *lruvec;
4314 struct pglist_data *pgdat = NULL;
4315 int pgscanned = 0;
4316 int pgrescued = 0;
4317 int i;
4318
4319 for (i = 0; i < pvec->nr; i++) {
4320 struct page *page = pvec->pages[i];
4321 struct pglist_data *pagepgdat = page_pgdat(page);
4322 int nr_pages;
4323
4324 if (PageTransTail(page))
4325 continue;
4326
4327 nr_pages = thp_nr_pages(page);
4328 pgscanned += nr_pages;
4329
4330 if (pagepgdat != pgdat) {
4331 if (pgdat)
4332 spin_unlock_irq(&pgdat->lru_lock);
4333 pgdat = pagepgdat;
4334 spin_lock_irq(&pgdat->lru_lock);
4335 }
4336 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4337
4338 if (!PageLRU(page) || !PageUnevictable(page))
4339 continue;
4340
4341 if (page_evictable(page)) {
4342 enum lru_list lru = page_lru_base_type(page);
4343
4344 VM_BUG_ON_PAGE(PageActive(page), page);
4345 ClearPageUnevictable(page);
4346 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4347 add_page_to_lru_list(page, lruvec, lru);
4348 pgrescued += nr_pages;
4349 }
4350 }
4351
4352 if (pgdat) {
4353 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4354 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4355 spin_unlock_irq(&pgdat->lru_lock);
4356 }
4357 }
4358 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4359
4360 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
purgeable_node(pg_data_t * pgdata,struct scan_control * sc)4361 static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc)
4362 {
4363 struct mem_cgroup *memcg = NULL;
4364 unsigned long nr = 0;
4365 #ifdef CONFIG_MEMCG
4366 while (memcg = mem_cgroup_iter(NULL, memcg, NULL))
4367 #endif
4368 {
4369 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata);
4370
4371 shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc);
4372 nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc);
4373 }
4374
4375 pr_info("reclaim %lu purgeable pages.\n", nr);
4376
4377 return nr;
4378 }
4379
purgeable(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4380 static int purgeable(struct ctl_table *table, int write, void *buffer,
4381 size_t *lenp, loff_t *ppos)
4382 {
4383 struct scan_control sc = {
4384 .gfp_mask = GFP_KERNEL,
4385 .order = 0,
4386 .priority = DEF_PRIORITY,
4387 .may_deactivate = DEACTIVATE_ANON,
4388 .may_writepage = 1,
4389 .may_unmap = 1,
4390 .may_swap = 1,
4391 .reclaim_idx = MAX_NR_ZONES - 1,
4392 };
4393 int nid = 0;
4394
4395 for_each_node_state(nid, N_MEMORY)
4396 purgeable_node(NODE_DATA(nid), &sc);
4397 return 0;
4398 }
4399
4400 static struct ctl_table ker_tab[] = {
4401 {
4402 .procname = "purgeable",
4403 .mode = 0200,
4404 .proc_handler = purgeable,
4405 },
4406 {},
4407 };
4408
4409 static struct ctl_table sys_tab[] = {
4410 {
4411 .procname = "kernel",
4412 .mode = 0555,
4413 .child = ker_tab,
4414 },
4415 {},
4416 };
4417
4418 static struct ctl_table_header *purgeable_header;
4419
purgeable_debugfs_init(void)4420 static void __init purgeable_debugfs_init(void)
4421 {
4422 purgeable_header = register_sysctl_table(sys_tab);
4423 if (!purgeable_header)
4424 pr_err("register purgeable sysctl table failed.\n");
4425 }
4426
purgeable_debugfs_exit(void)4427 static void __exit purgeable_debugfs_exit(void)
4428 {
4429 unregister_sysctl_table(purgeable_header);
4430 }
4431 #endif /* CONFIG_MEM_PURGEABLE_DEBUG */
4432