• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
check_load_and_stores(const struct sock_filter * filter,int flen)907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
chk_code_allowed(u16 code_to_probe)960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
bpf_release_orig_filter(struct bpf_prog * fp)1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
__bpf_prog_release(struct bpf_prog * prog)1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
__sk_filter_release(struct sk_filter * fp)1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
sk_filter_release_rcu(struct rcu_head * rcu)1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
sk_filter_release(struct sk_filter * fp)1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 
1216 	/* same check as in sock_kmalloc() */
1217 	if (filter_size <= sysctl_optmem_max &&
1218 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219 		atomic_add(filter_size, &sk->sk_omem_alloc);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 	if (!refcount_inc_not_zero(&fp->refcnt))
1228 		return false;
1229 
1230 	if (!__sk_filter_charge(sk, fp)) {
1231 		sk_filter_release(fp);
1232 		return false;
1233 	}
1234 	return true;
1235 }
1236 
bpf_migrate_filter(struct bpf_prog * fp)1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239 	struct sock_filter *old_prog;
1240 	struct bpf_prog *old_fp;
1241 	int err, new_len, old_len = fp->len;
1242 	bool seen_ld_abs = false;
1243 
1244 	/* We are free to overwrite insns et al right here as it
1245 	 * won't be used at this point in time anymore internally
1246 	 * after the migration to the internal BPF instruction
1247 	 * representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the
1339 	 * internal BPF translation for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
bpf_prog_destroy(struct bpf_prog * fp)1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
__get_bpf(u32 ufd,struct sock * sk)1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
sk_attach_bpf(u32 ufd,struct sock * sk)1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
sk_reuseport_prog_free(struct bpf_prog * prog)1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
bpf_try_make_head_writable(struct sk_buff * skb)1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
bpf_push_mac_rcsum(struct sk_buff * skb)1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
bpf_pull_mac_rcsum(struct sk_buff * skb)1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	int err = __bpf_try_make_writable(skb, write_len);
1867 
1868 	bpf_compute_data_end_sk_skb(skb);
1869 	return err;
1870 }
1871 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874 	/* Idea is the following: should the needed direct read/write
1875 	 * test fail during runtime, we can pull in more data and redo
1876 	 * again, since implicitly, we invalidate previous checks here.
1877 	 *
1878 	 * Or, since we know how much we need to make read/writeable,
1879 	 * this can be done once at the program beginning for direct
1880 	 * access case. By this we overcome limitations of only current
1881 	 * headroom being accessible.
1882 	 */
1883 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885 
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887 	.func		= sk_skb_pull_data,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_INTEGER,
1890 	.arg1_type	= ARG_PTR_TO_CTX,
1891 	.arg2_type	= ARG_ANYTHING,
1892 };
1893 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895 	   u64, from, u64, to, u64, flags)
1896 {
1897 	__sum16 *ptr;
1898 
1899 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900 		return -EINVAL;
1901 	if (unlikely(offset > 0xffff || offset & 1))
1902 		return -EFAULT;
1903 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904 		return -EFAULT;
1905 
1906 	ptr = (__sum16 *)(skb->data + offset);
1907 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1908 	case 0:
1909 		if (unlikely(from != 0))
1910 			return -EINVAL;
1911 
1912 		csum_replace_by_diff(ptr, to);
1913 		break;
1914 	case 2:
1915 		csum_replace2(ptr, from, to);
1916 		break;
1917 	case 4:
1918 		csum_replace4(ptr, from, to);
1919 		break;
1920 	default:
1921 		return -EINVAL;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928 	.func		= bpf_l3_csum_replace,
1929 	.gpl_only	= false,
1930 	.ret_type	= RET_INTEGER,
1931 	.arg1_type	= ARG_PTR_TO_CTX,
1932 	.arg2_type	= ARG_ANYTHING,
1933 	.arg3_type	= ARG_ANYTHING,
1934 	.arg4_type	= ARG_ANYTHING,
1935 	.arg5_type	= ARG_ANYTHING,
1936 };
1937 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939 	   u64, from, u64, to, u64, flags)
1940 {
1941 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944 	__sum16 *ptr;
1945 
1946 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948 		return -EINVAL;
1949 	if (unlikely(offset > 0xffff || offset & 1))
1950 		return -EFAULT;
1951 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952 		return -EFAULT;
1953 
1954 	ptr = (__sum16 *)(skb->data + offset);
1955 	if (is_mmzero && !do_mforce && !*ptr)
1956 		return 0;
1957 
1958 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1959 	case 0:
1960 		if (unlikely(from != 0))
1961 			return -EINVAL;
1962 
1963 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964 		break;
1965 	case 2:
1966 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	case 4:
1969 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970 		break;
1971 	default:
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (is_mmzero && !*ptr)
1976 		*ptr = CSUM_MANGLED_0;
1977 	return 0;
1978 }
1979 
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981 	.func		= bpf_l4_csum_replace,
1982 	.gpl_only	= false,
1983 	.ret_type	= RET_INTEGER,
1984 	.arg1_type	= ARG_PTR_TO_CTX,
1985 	.arg2_type	= ARG_ANYTHING,
1986 	.arg3_type	= ARG_ANYTHING,
1987 	.arg4_type	= ARG_ANYTHING,
1988 	.arg5_type	= ARG_ANYTHING,
1989 };
1990 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992 	   __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995 	u32 diff_size = from_size + to_size;
1996 	int i, j = 0;
1997 
1998 	/* This is quite flexible, some examples:
1999 	 *
2000 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003 	 *
2004 	 * Even for diffing, from_size and to_size don't need to be equal.
2005 	 */
2006 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007 		     diff_size > sizeof(sp->diff)))
2008 		return -EINVAL;
2009 
2010 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = ~from[i];
2012 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013 		sp->diff[j] = to[i];
2014 
2015 	return csum_partial(sp->diff, diff_size, seed);
2016 }
2017 
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019 	.func		= bpf_csum_diff,
2020 	.gpl_only	= false,
2021 	.pkt_access	= true,
2022 	.ret_type	= RET_INTEGER,
2023 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2026 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2027 	.arg5_type	= ARG_ANYTHING,
2028 };
2029 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032 	/* The interface is to be used in combination with bpf_csum_diff()
2033 	 * for direct packet writes. csum rotation for alignment as well
2034 	 * as emulating csum_sub() can be done from the eBPF program.
2035 	 */
2036 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2037 		return (skb->csum = csum_add(skb->csum, csum));
2038 
2039 	return -ENOTSUPP;
2040 }
2041 
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043 	.func		= bpf_csum_update,
2044 	.gpl_only	= false,
2045 	.ret_type	= RET_INTEGER,
2046 	.arg1_type	= ARG_PTR_TO_CTX,
2047 	.arg2_type	= ARG_ANYTHING,
2048 };
2049 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2053 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054 	 * is passed as flags, for example.
2055 	 */
2056 	switch (level) {
2057 	case BPF_CSUM_LEVEL_INC:
2058 		__skb_incr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_DEC:
2061 		__skb_decr_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_RESET:
2064 		__skb_reset_checksum_unnecessary(skb);
2065 		break;
2066 	case BPF_CSUM_LEVEL_QUERY:
2067 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068 		       skb->csum_level : -EACCES;
2069 	default:
2070 		return -EINVAL;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077 	.func		= bpf_csum_level,
2078 	.gpl_only	= false,
2079 	.ret_type	= RET_INTEGER,
2080 	.arg1_type	= ARG_PTR_TO_CTX,
2081 	.arg2_type	= ARG_ANYTHING,
2082 };
2083 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086 	return dev_forward_skb(dev, skb);
2087 }
2088 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090 				      struct sk_buff *skb)
2091 {
2092 	int ret = ____dev_forward_skb(dev, skb);
2093 
2094 	if (likely(!ret)) {
2095 		skb->dev = dev;
2096 		ret = netif_rx(skb);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 	int ret;
2105 
2106 	if (dev_xmit_recursion()) {
2107 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108 		kfree_skb(skb);
2109 		return -ENETDOWN;
2110 	}
2111 
2112 	skb->dev = dev;
2113 	skb->tstamp = 0;
2114 
2115 	dev_xmit_recursion_inc();
2116 	ret = dev_queue_xmit(skb);
2117 	dev_xmit_recursion_dec();
2118 
2119 	return ret;
2120 }
2121 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123 				 u32 flags)
2124 {
2125 	unsigned int mlen = skb_network_offset(skb);
2126 
2127 	if (mlen) {
2128 		__skb_pull(skb, mlen);
2129 
2130 		/* At ingress, the mac header has already been pulled once.
2131 		 * At egress, skb_pospull_rcsum has to be done in case that
2132 		 * the skb is originated from ingress (i.e. a forwarded skb)
2133 		 * to ensure that rcsum starts at net header.
2134 		 */
2135 		if (!skb_at_tc_ingress(skb))
2136 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137 	}
2138 	skb_pop_mac_header(skb);
2139 	skb_reset_mac_len(skb);
2140 	return flags & BPF_F_INGRESS ?
2141 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145 				 u32 flags)
2146 {
2147 	/* Verify that a link layer header is carried */
2148 	if (unlikely(skb->mac_header >= skb->network_header)) {
2149 		kfree_skb(skb);
2150 		return -ERANGE;
2151 	}
2152 
2153 	bpf_push_mac_rcsum(skb);
2154 	return flags & BPF_F_INGRESS ?
2155 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159 			  u32 flags)
2160 {
2161 	if (dev_is_mac_header_xmit(dev))
2162 		return __bpf_redirect_common(skb, dev, flags);
2163 	else
2164 		return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166 
2167 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169 			    struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171 	u32 hh_len = LL_RESERVED_SPACE(dev);
2172 	const struct in6_addr *nexthop;
2173 	struct dst_entry *dst = NULL;
2174 	struct neighbour *neigh;
2175 
2176 	if (dev_xmit_recursion()) {
2177 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178 		goto out_drop;
2179 	}
2180 
2181 	skb->dev = dev;
2182 	skb->tstamp = 0;
2183 
2184 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185 		struct sk_buff *skb2;
2186 
2187 		skb2 = skb_realloc_headroom(skb, hh_len);
2188 		if (unlikely(!skb2)) {
2189 			kfree_skb(skb);
2190 			return -ENOMEM;
2191 		}
2192 		if (skb->sk)
2193 			skb_set_owner_w(skb2, skb->sk);
2194 		consume_skb(skb);
2195 		skb = skb2;
2196 	}
2197 
2198 	rcu_read_lock_bh();
2199 	if (!nh) {
2200 		dst = skb_dst(skb);
2201 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 				      &ipv6_hdr(skb)->daddr);
2203 	} else {
2204 		nexthop = &nh->ipv6_nh;
2205 	}
2206 	neigh = ip_neigh_gw6(dev, nexthop);
2207 	if (likely(!IS_ERR(neigh))) {
2208 		int ret;
2209 
2210 		sock_confirm_neigh(skb, neigh);
2211 		dev_xmit_recursion_inc();
2212 		ret = neigh_output(neigh, skb, false);
2213 		dev_xmit_recursion_dec();
2214 		rcu_read_unlock_bh();
2215 		return ret;
2216 	}
2217 	rcu_read_unlock_bh();
2218 	if (dst)
2219 		IP6_INC_STATS(dev_net(dst->dev),
2220 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221 out_drop:
2222 	kfree_skb(skb);
2223 	return -ENETDOWN;
2224 }
2225 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2226 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227 				   struct bpf_nh_params *nh)
2228 {
2229 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230 	struct net *net = dev_net(dev);
2231 	int err, ret = NET_XMIT_DROP;
2232 
2233 	if (!nh) {
2234 		struct dst_entry *dst;
2235 		struct flowi6 fl6 = {
2236 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2237 			.flowi6_mark  = skb->mark,
2238 			.flowlabel    = ip6_flowinfo(ip6h),
2239 			.flowi6_oif   = dev->ifindex,
2240 			.flowi6_proto = ip6h->nexthdr,
2241 			.daddr	      = ip6h->daddr,
2242 			.saddr	      = ip6h->saddr,
2243 		};
2244 
2245 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246 		if (IS_ERR(dst))
2247 			goto out_drop;
2248 
2249 		skb_dst_set(skb, dst);
2250 	} else if (nh->nh_family != AF_INET6) {
2251 		goto out_drop;
2252 	}
2253 
2254 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2255 	if (unlikely(net_xmit_eval(err)))
2256 		dev->stats.tx_errors++;
2257 	else
2258 		ret = NET_XMIT_SUCCESS;
2259 	goto out_xmit;
2260 out_drop:
2261 	dev->stats.tx_errors++;
2262 	kfree_skb(skb);
2263 out_xmit:
2264 	return ret;
2265 }
2266 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2267 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268 				   struct bpf_nh_params *nh)
2269 {
2270 	kfree_skb(skb);
2271 	return NET_XMIT_DROP;
2272 }
2273 #endif /* CONFIG_IPV6 */
2274 
2275 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2276 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277 			    struct net_device *dev, struct bpf_nh_params *nh)
2278 {
2279 	u32 hh_len = LL_RESERVED_SPACE(dev);
2280 	struct neighbour *neigh;
2281 	bool is_v6gw = false;
2282 
2283 	if (dev_xmit_recursion()) {
2284 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285 		goto out_drop;
2286 	}
2287 
2288 	skb->dev = dev;
2289 	skb->tstamp = 0;
2290 
2291 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292 		struct sk_buff *skb2;
2293 
2294 		skb2 = skb_realloc_headroom(skb, hh_len);
2295 		if (unlikely(!skb2)) {
2296 			kfree_skb(skb);
2297 			return -ENOMEM;
2298 		}
2299 		if (skb->sk)
2300 			skb_set_owner_w(skb2, skb->sk);
2301 		consume_skb(skb);
2302 		skb = skb2;
2303 	}
2304 
2305 	rcu_read_lock_bh();
2306 	if (!nh) {
2307 		struct dst_entry *dst = skb_dst(skb);
2308 		struct rtable *rt = container_of(dst, struct rtable, dst);
2309 
2310 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311 	} else if (nh->nh_family == AF_INET6) {
2312 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313 		is_v6gw = true;
2314 	} else if (nh->nh_family == AF_INET) {
2315 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316 	} else {
2317 		rcu_read_unlock_bh();
2318 		goto out_drop;
2319 	}
2320 
2321 	if (likely(!IS_ERR(neigh))) {
2322 		int ret;
2323 
2324 		sock_confirm_neigh(skb, neigh);
2325 		dev_xmit_recursion_inc();
2326 		ret = neigh_output(neigh, skb, is_v6gw);
2327 		dev_xmit_recursion_dec();
2328 		rcu_read_unlock_bh();
2329 		return ret;
2330 	}
2331 	rcu_read_unlock_bh();
2332 out_drop:
2333 	kfree_skb(skb);
2334 	return -ENETDOWN;
2335 }
2336 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2337 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338 				   struct bpf_nh_params *nh)
2339 {
2340 	const struct iphdr *ip4h = ip_hdr(skb);
2341 	struct net *net = dev_net(dev);
2342 	int err, ret = NET_XMIT_DROP;
2343 
2344 	if (!nh) {
2345 		struct flowi4 fl4 = {
2346 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2347 			.flowi4_mark  = skb->mark,
2348 			.flowi4_tos   = RT_TOS(ip4h->tos),
2349 			.flowi4_oif   = dev->ifindex,
2350 			.flowi4_proto = ip4h->protocol,
2351 			.daddr	      = ip4h->daddr,
2352 			.saddr	      = ip4h->saddr,
2353 		};
2354 		struct rtable *rt;
2355 
2356 		rt = ip_route_output_flow(net, &fl4, NULL);
2357 		if (IS_ERR(rt))
2358 			goto out_drop;
2359 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360 			ip_rt_put(rt);
2361 			goto out_drop;
2362 		}
2363 
2364 		skb_dst_set(skb, &rt->dst);
2365 	}
2366 
2367 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2368 	if (unlikely(net_xmit_eval(err)))
2369 		dev->stats.tx_errors++;
2370 	else
2371 		ret = NET_XMIT_SUCCESS;
2372 	goto out_xmit;
2373 out_drop:
2374 	dev->stats.tx_errors++;
2375 	kfree_skb(skb);
2376 out_xmit:
2377 	return ret;
2378 }
2379 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2380 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381 				   struct bpf_nh_params *nh)
2382 {
2383 	kfree_skb(skb);
2384 	return NET_XMIT_DROP;
2385 }
2386 #endif /* CONFIG_INET */
2387 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2388 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389 				struct bpf_nh_params *nh)
2390 {
2391 	struct ethhdr *ethh = eth_hdr(skb);
2392 
2393 	if (unlikely(skb->mac_header >= skb->network_header))
2394 		goto out;
2395 	bpf_push_mac_rcsum(skb);
2396 	if (is_multicast_ether_addr(ethh->h_dest))
2397 		goto out;
2398 
2399 	skb_pull(skb, sizeof(*ethh));
2400 	skb_unset_mac_header(skb);
2401 	skb_reset_network_header(skb);
2402 
2403 	if (skb->protocol == htons(ETH_P_IP))
2404 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2405 	else if (skb->protocol == htons(ETH_P_IPV6))
2406 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2407 out:
2408 	kfree_skb(skb);
2409 	return -ENOTSUPP;
2410 }
2411 
2412 /* Internal, non-exposed redirect flags. */
2413 enum {
2414 	BPF_F_NEIGH	= (1ULL << 1),
2415 	BPF_F_PEER	= (1ULL << 2),
2416 	BPF_F_NEXTHOP	= (1ULL << 3),
2417 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418 };
2419 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2420 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421 {
2422 	struct net_device *dev;
2423 	struct sk_buff *clone;
2424 	int ret;
2425 
2426 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427 		return -EINVAL;
2428 
2429 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430 	if (unlikely(!dev))
2431 		return -EINVAL;
2432 
2433 	clone = skb_clone(skb, GFP_ATOMIC);
2434 	if (unlikely(!clone))
2435 		return -ENOMEM;
2436 
2437 	/* For direct write, we need to keep the invariant that the skbs
2438 	 * we're dealing with need to be uncloned. Should uncloning fail
2439 	 * here, we need to free the just generated clone to unclone once
2440 	 * again.
2441 	 */
2442 	ret = bpf_try_make_head_writable(skb);
2443 	if (unlikely(ret)) {
2444 		kfree_skb(clone);
2445 		return -ENOMEM;
2446 	}
2447 
2448 	return __bpf_redirect(clone, dev, flags);
2449 }
2450 
2451 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452 	.func           = bpf_clone_redirect,
2453 	.gpl_only       = false,
2454 	.ret_type       = RET_INTEGER,
2455 	.arg1_type      = ARG_PTR_TO_CTX,
2456 	.arg2_type      = ARG_ANYTHING,
2457 	.arg3_type      = ARG_ANYTHING,
2458 };
2459 
2460 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462 
skb_do_redirect(struct sk_buff * skb)2463 int skb_do_redirect(struct sk_buff *skb)
2464 {
2465 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466 	struct net *net = dev_net(skb->dev);
2467 	struct net_device *dev;
2468 	u32 flags = ri->flags;
2469 
2470 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471 	ri->tgt_index = 0;
2472 	ri->flags = 0;
2473 	if (unlikely(!dev))
2474 		goto out_drop;
2475 	if (flags & BPF_F_PEER) {
2476 		const struct net_device_ops *ops = dev->netdev_ops;
2477 
2478 		if (unlikely(!ops->ndo_get_peer_dev ||
2479 			     !skb_at_tc_ingress(skb)))
2480 			goto out_drop;
2481 		dev = ops->ndo_get_peer_dev(dev);
2482 		if (unlikely(!dev ||
2483 			     !is_skb_forwardable(dev, skb) ||
2484 			     net_eq(net, dev_net(dev))))
2485 			goto out_drop;
2486 		skb->dev = dev;
2487 		return -EAGAIN;
2488 	}
2489 	return flags & BPF_F_NEIGH ?
2490 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491 				    &ri->nh : NULL) :
2492 	       __bpf_redirect(skb, dev, flags);
2493 out_drop:
2494 	kfree_skb(skb);
2495 	return -EINVAL;
2496 }
2497 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2498 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499 {
2500 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501 
2502 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503 		return TC_ACT_SHOT;
2504 
2505 	ri->flags = flags;
2506 	ri->tgt_index = ifindex;
2507 
2508 	return TC_ACT_REDIRECT;
2509 }
2510 
2511 static const struct bpf_func_proto bpf_redirect_proto = {
2512 	.func           = bpf_redirect,
2513 	.gpl_only       = false,
2514 	.ret_type       = RET_INTEGER,
2515 	.arg1_type      = ARG_ANYTHING,
2516 	.arg2_type      = ARG_ANYTHING,
2517 };
2518 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2519 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520 {
2521 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522 
2523 	if (unlikely(flags))
2524 		return TC_ACT_SHOT;
2525 
2526 	ri->flags = BPF_F_PEER;
2527 	ri->tgt_index = ifindex;
2528 
2529 	return TC_ACT_REDIRECT;
2530 }
2531 
2532 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533 	.func           = bpf_redirect_peer,
2534 	.gpl_only       = false,
2535 	.ret_type       = RET_INTEGER,
2536 	.arg1_type      = ARG_ANYTHING,
2537 	.arg2_type      = ARG_ANYTHING,
2538 };
2539 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2540 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541 	   int, plen, u64, flags)
2542 {
2543 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544 
2545 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2546 		return TC_ACT_SHOT;
2547 
2548 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549 	ri->tgt_index = ifindex;
2550 
2551 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552 	if (plen)
2553 		memcpy(&ri->nh, params, sizeof(ri->nh));
2554 
2555 	return TC_ACT_REDIRECT;
2556 }
2557 
2558 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559 	.func		= bpf_redirect_neigh,
2560 	.gpl_only	= false,
2561 	.ret_type	= RET_INTEGER,
2562 	.arg1_type	= ARG_ANYTHING,
2563 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2564 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2565 	.arg4_type	= ARG_ANYTHING,
2566 };
2567 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2568 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569 {
2570 	msg->apply_bytes = bytes;
2571 	return 0;
2572 }
2573 
2574 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575 	.func           = bpf_msg_apply_bytes,
2576 	.gpl_only       = false,
2577 	.ret_type       = RET_INTEGER,
2578 	.arg1_type	= ARG_PTR_TO_CTX,
2579 	.arg2_type      = ARG_ANYTHING,
2580 };
2581 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2582 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583 {
2584 	msg->cork_bytes = bytes;
2585 	return 0;
2586 }
2587 
2588 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589 	.func           = bpf_msg_cork_bytes,
2590 	.gpl_only       = false,
2591 	.ret_type       = RET_INTEGER,
2592 	.arg1_type	= ARG_PTR_TO_CTX,
2593 	.arg2_type      = ARG_ANYTHING,
2594 };
2595 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2596 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597 	   u32, end, u64, flags)
2598 {
2599 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601 	struct scatterlist *sge;
2602 	u8 *raw, *to, *from;
2603 	struct page *page;
2604 
2605 	if (unlikely(flags || end <= start))
2606 		return -EINVAL;
2607 
2608 	/* First find the starting scatterlist element */
2609 	i = msg->sg.start;
2610 	do {
2611 		offset += len;
2612 		len = sk_msg_elem(msg, i)->length;
2613 		if (start < offset + len)
2614 			break;
2615 		sk_msg_iter_var_next(i);
2616 	} while (i != msg->sg.end);
2617 
2618 	if (unlikely(start >= offset + len))
2619 		return -EINVAL;
2620 
2621 	first_sge = i;
2622 	/* The start may point into the sg element so we need to also
2623 	 * account for the headroom.
2624 	 */
2625 	bytes_sg_total = start - offset + bytes;
2626 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627 		goto out;
2628 
2629 	/* At this point we need to linearize multiple scatterlist
2630 	 * elements or a single shared page. Either way we need to
2631 	 * copy into a linear buffer exclusively owned by BPF. Then
2632 	 * place the buffer in the scatterlist and fixup the original
2633 	 * entries by removing the entries now in the linear buffer
2634 	 * and shifting the remaining entries. For now we do not try
2635 	 * to copy partial entries to avoid complexity of running out
2636 	 * of sg_entry slots. The downside is reading a single byte
2637 	 * will copy the entire sg entry.
2638 	 */
2639 	do {
2640 		copy += sk_msg_elem(msg, i)->length;
2641 		sk_msg_iter_var_next(i);
2642 		if (bytes_sg_total <= copy)
2643 			break;
2644 	} while (i != msg->sg.end);
2645 	last_sge = i;
2646 
2647 	if (unlikely(bytes_sg_total > copy))
2648 		return -EINVAL;
2649 
2650 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651 			   get_order(copy));
2652 	if (unlikely(!page))
2653 		return -ENOMEM;
2654 
2655 	raw = page_address(page);
2656 	i = first_sge;
2657 	do {
2658 		sge = sk_msg_elem(msg, i);
2659 		from = sg_virt(sge);
2660 		len = sge->length;
2661 		to = raw + poffset;
2662 
2663 		memcpy(to, from, len);
2664 		poffset += len;
2665 		sge->length = 0;
2666 		put_page(sg_page(sge));
2667 
2668 		sk_msg_iter_var_next(i);
2669 	} while (i != last_sge);
2670 
2671 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672 
2673 	/* To repair sg ring we need to shift entries. If we only
2674 	 * had a single entry though we can just replace it and
2675 	 * be done. Otherwise walk the ring and shift the entries.
2676 	 */
2677 	WARN_ON_ONCE(last_sge == first_sge);
2678 	shift = last_sge > first_sge ?
2679 		last_sge - first_sge - 1 :
2680 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681 	if (!shift)
2682 		goto out;
2683 
2684 	i = first_sge;
2685 	sk_msg_iter_var_next(i);
2686 	do {
2687 		u32 move_from;
2688 
2689 		if (i + shift >= NR_MSG_FRAG_IDS)
2690 			move_from = i + shift - NR_MSG_FRAG_IDS;
2691 		else
2692 			move_from = i + shift;
2693 		if (move_from == msg->sg.end)
2694 			break;
2695 
2696 		msg->sg.data[i] = msg->sg.data[move_from];
2697 		msg->sg.data[move_from].length = 0;
2698 		msg->sg.data[move_from].page_link = 0;
2699 		msg->sg.data[move_from].offset = 0;
2700 		sk_msg_iter_var_next(i);
2701 	} while (1);
2702 
2703 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705 		      msg->sg.end - shift;
2706 out:
2707 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708 	msg->data_end = msg->data + bytes;
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713 	.func		= bpf_msg_pull_data,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 	.arg3_type	= ARG_ANYTHING,
2719 	.arg4_type	= ARG_ANYTHING,
2720 };
2721 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2722 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723 	   u32, len, u64, flags)
2724 {
2725 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727 	u8 *raw, *to, *from;
2728 	struct page *page;
2729 
2730 	if (unlikely(flags))
2731 		return -EINVAL;
2732 
2733 	/* First find the starting scatterlist element */
2734 	i = msg->sg.start;
2735 	do {
2736 		offset += l;
2737 		l = sk_msg_elem(msg, i)->length;
2738 
2739 		if (start < offset + l)
2740 			break;
2741 		sk_msg_iter_var_next(i);
2742 	} while (i != msg->sg.end);
2743 
2744 	if (start >= offset + l)
2745 		return -EINVAL;
2746 
2747 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748 
2749 	/* If no space available will fallback to copy, we need at
2750 	 * least one scatterlist elem available to push data into
2751 	 * when start aligns to the beginning of an element or two
2752 	 * when it falls inside an element. We handle the start equals
2753 	 * offset case because its the common case for inserting a
2754 	 * header.
2755 	 */
2756 	if (!space || (space == 1 && start != offset))
2757 		copy = msg->sg.data[i].length;
2758 
2759 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760 			   get_order(copy + len));
2761 	if (unlikely(!page))
2762 		return -ENOMEM;
2763 
2764 	if (copy) {
2765 		int front, back;
2766 
2767 		raw = page_address(page);
2768 
2769 		psge = sk_msg_elem(msg, i);
2770 		front = start - offset;
2771 		back = psge->length - front;
2772 		from = sg_virt(psge);
2773 
2774 		if (front)
2775 			memcpy(raw, from, front);
2776 
2777 		if (back) {
2778 			from += front;
2779 			to = raw + front + len;
2780 
2781 			memcpy(to, from, back);
2782 		}
2783 
2784 		put_page(sg_page(psge));
2785 	} else if (start - offset) {
2786 		psge = sk_msg_elem(msg, i);
2787 		rsge = sk_msg_elem_cpy(msg, i);
2788 
2789 		psge->length = start - offset;
2790 		rsge.length -= psge->length;
2791 		rsge.offset += start;
2792 
2793 		sk_msg_iter_var_next(i);
2794 		sg_unmark_end(psge);
2795 		sg_unmark_end(&rsge);
2796 		sk_msg_iter_next(msg, end);
2797 	}
2798 
2799 	/* Slot(s) to place newly allocated data */
2800 	new = i;
2801 
2802 	/* Shift one or two slots as needed */
2803 	if (!copy) {
2804 		sge = sk_msg_elem_cpy(msg, i);
2805 
2806 		sk_msg_iter_var_next(i);
2807 		sg_unmark_end(&sge);
2808 		sk_msg_iter_next(msg, end);
2809 
2810 		nsge = sk_msg_elem_cpy(msg, i);
2811 		if (rsge.length) {
2812 			sk_msg_iter_var_next(i);
2813 			nnsge = sk_msg_elem_cpy(msg, i);
2814 		}
2815 
2816 		while (i != msg->sg.end) {
2817 			msg->sg.data[i] = sge;
2818 			sge = nsge;
2819 			sk_msg_iter_var_next(i);
2820 			if (rsge.length) {
2821 				nsge = nnsge;
2822 				nnsge = sk_msg_elem_cpy(msg, i);
2823 			} else {
2824 				nsge = sk_msg_elem_cpy(msg, i);
2825 			}
2826 		}
2827 	}
2828 
2829 	/* Place newly allocated data buffer */
2830 	sk_mem_charge(msg->sk, len);
2831 	msg->sg.size += len;
2832 	__clear_bit(new, &msg->sg.copy);
2833 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834 	if (rsge.length) {
2835 		get_page(sg_page(&rsge));
2836 		sk_msg_iter_var_next(new);
2837 		msg->sg.data[new] = rsge;
2838 	}
2839 
2840 	sk_msg_compute_data_pointers(msg);
2841 	return 0;
2842 }
2843 
2844 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845 	.func		= bpf_msg_push_data,
2846 	.gpl_only	= false,
2847 	.ret_type	= RET_INTEGER,
2848 	.arg1_type	= ARG_PTR_TO_CTX,
2849 	.arg2_type	= ARG_ANYTHING,
2850 	.arg3_type	= ARG_ANYTHING,
2851 	.arg4_type	= ARG_ANYTHING,
2852 };
2853 
sk_msg_shift_left(struct sk_msg * msg,int i)2854 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855 {
2856 	int prev;
2857 
2858 	do {
2859 		prev = i;
2860 		sk_msg_iter_var_next(i);
2861 		msg->sg.data[prev] = msg->sg.data[i];
2862 	} while (i != msg->sg.end);
2863 
2864 	sk_msg_iter_prev(msg, end);
2865 }
2866 
sk_msg_shift_right(struct sk_msg * msg,int i)2867 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868 {
2869 	struct scatterlist tmp, sge;
2870 
2871 	sk_msg_iter_next(msg, end);
2872 	sge = sk_msg_elem_cpy(msg, i);
2873 	sk_msg_iter_var_next(i);
2874 	tmp = sk_msg_elem_cpy(msg, i);
2875 
2876 	while (i != msg->sg.end) {
2877 		msg->sg.data[i] = sge;
2878 		sk_msg_iter_var_next(i);
2879 		sge = tmp;
2880 		tmp = sk_msg_elem_cpy(msg, i);
2881 	}
2882 }
2883 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2884 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885 	   u32, len, u64, flags)
2886 {
2887 	u32 i = 0, l = 0, space, offset = 0;
2888 	u64 last = start + len;
2889 	int pop;
2890 
2891 	if (unlikely(flags))
2892 		return -EINVAL;
2893 
2894 	/* First find the starting scatterlist element */
2895 	i = msg->sg.start;
2896 	do {
2897 		offset += l;
2898 		l = sk_msg_elem(msg, i)->length;
2899 
2900 		if (start < offset + l)
2901 			break;
2902 		sk_msg_iter_var_next(i);
2903 	} while (i != msg->sg.end);
2904 
2905 	/* Bounds checks: start and pop must be inside message */
2906 	if (start >= offset + l || last >= msg->sg.size)
2907 		return -EINVAL;
2908 
2909 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910 
2911 	pop = len;
2912 	/* --------------| offset
2913 	 * -| start      |-------- len -------|
2914 	 *
2915 	 *  |----- a ----|-------- pop -------|----- b ----|
2916 	 *  |______________________________________________| length
2917 	 *
2918 	 *
2919 	 * a:   region at front of scatter element to save
2920 	 * b:   region at back of scatter element to save when length > A + pop
2921 	 * pop: region to pop from element, same as input 'pop' here will be
2922 	 *      decremented below per iteration.
2923 	 *
2924 	 * Two top-level cases to handle when start != offset, first B is non
2925 	 * zero and second B is zero corresponding to when a pop includes more
2926 	 * than one element.
2927 	 *
2928 	 * Then if B is non-zero AND there is no space allocate space and
2929 	 * compact A, B regions into page. If there is space shift ring to
2930 	 * the rigth free'ing the next element in ring to place B, leaving
2931 	 * A untouched except to reduce length.
2932 	 */
2933 	if (start != offset) {
2934 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935 		int a = start;
2936 		int b = sge->length - pop - a;
2937 
2938 		sk_msg_iter_var_next(i);
2939 
2940 		if (pop < sge->length - a) {
2941 			if (space) {
2942 				sge->length = a;
2943 				sk_msg_shift_right(msg, i);
2944 				nsge = sk_msg_elem(msg, i);
2945 				get_page(sg_page(sge));
2946 				sg_set_page(nsge,
2947 					    sg_page(sge),
2948 					    b, sge->offset + pop + a);
2949 			} else {
2950 				struct page *page, *orig;
2951 				u8 *to, *from;
2952 
2953 				page = alloc_pages(__GFP_NOWARN |
2954 						   __GFP_COMP   | GFP_ATOMIC,
2955 						   get_order(a + b));
2956 				if (unlikely(!page))
2957 					return -ENOMEM;
2958 
2959 				sge->length = a;
2960 				orig = sg_page(sge);
2961 				from = sg_virt(sge);
2962 				to = page_address(page);
2963 				memcpy(to, from, a);
2964 				memcpy(to + a, from + a + pop, b);
2965 				sg_set_page(sge, page, a + b, 0);
2966 				put_page(orig);
2967 			}
2968 			pop = 0;
2969 		} else if (pop >= sge->length - a) {
2970 			pop -= (sge->length - a);
2971 			sge->length = a;
2972 		}
2973 	}
2974 
2975 	/* From above the current layout _must_ be as follows,
2976 	 *
2977 	 * -| offset
2978 	 * -| start
2979 	 *
2980 	 *  |---- pop ---|---------------- b ------------|
2981 	 *  |____________________________________________| length
2982 	 *
2983 	 * Offset and start of the current msg elem are equal because in the
2984 	 * previous case we handled offset != start and either consumed the
2985 	 * entire element and advanced to the next element OR pop == 0.
2986 	 *
2987 	 * Two cases to handle here are first pop is less than the length
2988 	 * leaving some remainder b above. Simply adjust the element's layout
2989 	 * in this case. Or pop >= length of the element so that b = 0. In this
2990 	 * case advance to next element decrementing pop.
2991 	 */
2992 	while (pop) {
2993 		struct scatterlist *sge = sk_msg_elem(msg, i);
2994 
2995 		if (pop < sge->length) {
2996 			sge->length -= pop;
2997 			sge->offset += pop;
2998 			pop = 0;
2999 		} else {
3000 			pop -= sge->length;
3001 			sk_msg_shift_left(msg, i);
3002 		}
3003 		sk_msg_iter_var_next(i);
3004 	}
3005 
3006 	sk_mem_uncharge(msg->sk, len - pop);
3007 	msg->sg.size -= (len - pop);
3008 	sk_msg_compute_data_pointers(msg);
3009 	return 0;
3010 }
3011 
3012 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013 	.func		= bpf_msg_pop_data,
3014 	.gpl_only	= false,
3015 	.ret_type	= RET_INTEGER,
3016 	.arg1_type	= ARG_PTR_TO_CTX,
3017 	.arg2_type	= ARG_ANYTHING,
3018 	.arg3_type	= ARG_ANYTHING,
3019 	.arg4_type	= ARG_ANYTHING,
3020 };
3021 
3022 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3023 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024 {
3025 	return __task_get_classid(current);
3026 }
3027 
3028 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029 	.func		= bpf_get_cgroup_classid_curr,
3030 	.gpl_only	= false,
3031 	.ret_type	= RET_INTEGER,
3032 };
3033 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3034 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035 {
3036 	struct sock *sk = skb_to_full_sk(skb);
3037 
3038 	if (!sk || !sk_fullsock(sk))
3039 		return 0;
3040 
3041 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3042 }
3043 
3044 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045 	.func		= bpf_skb_cgroup_classid,
3046 	.gpl_only	= false,
3047 	.ret_type	= RET_INTEGER,
3048 	.arg1_type	= ARG_PTR_TO_CTX,
3049 };
3050 #endif
3051 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3052 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053 {
3054 	return task_get_classid(skb);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058 	.func           = bpf_get_cgroup_classid,
3059 	.gpl_only       = false,
3060 	.ret_type       = RET_INTEGER,
3061 	.arg1_type      = ARG_PTR_TO_CTX,
3062 };
3063 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3064 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065 {
3066 	return dst_tclassid(skb);
3067 }
3068 
3069 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070 	.func           = bpf_get_route_realm,
3071 	.gpl_only       = false,
3072 	.ret_type       = RET_INTEGER,
3073 	.arg1_type      = ARG_PTR_TO_CTX,
3074 };
3075 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3076 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077 {
3078 	/* If skb_clear_hash() was called due to mangling, we can
3079 	 * trigger SW recalculation here. Later access to hash
3080 	 * can then use the inline skb->hash via context directly
3081 	 * instead of calling this helper again.
3082 	 */
3083 	return skb_get_hash(skb);
3084 }
3085 
3086 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087 	.func		= bpf_get_hash_recalc,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3093 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094 {
3095 	/* After all direct packet write, this can be used once for
3096 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3097 	 */
3098 	skb_clear_hash(skb);
3099 	return 0;
3100 }
3101 
3102 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103 	.func		= bpf_set_hash_invalid,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 	.arg1_type	= ARG_PTR_TO_CTX,
3107 };
3108 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3109 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110 {
3111 	/* Set user specified hash as L4(+), so that it gets returned
3112 	 * on skb_get_hash() call unless BPF prog later on triggers a
3113 	 * skb_clear_hash().
3114 	 */
3115 	__skb_set_sw_hash(skb, hash, true);
3116 	return 0;
3117 }
3118 
3119 static const struct bpf_func_proto bpf_set_hash_proto = {
3120 	.func		= bpf_set_hash,
3121 	.gpl_only	= false,
3122 	.ret_type	= RET_INTEGER,
3123 	.arg1_type	= ARG_PTR_TO_CTX,
3124 	.arg2_type	= ARG_ANYTHING,
3125 };
3126 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3127 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128 	   u16, vlan_tci)
3129 {
3130 	int ret;
3131 
3132 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133 		     vlan_proto != htons(ETH_P_8021AD)))
3134 		vlan_proto = htons(ETH_P_8021Q);
3135 
3136 	bpf_push_mac_rcsum(skb);
3137 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138 	bpf_pull_mac_rcsum(skb);
3139 
3140 	bpf_compute_data_pointers(skb);
3141 	return ret;
3142 }
3143 
3144 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145 	.func           = bpf_skb_vlan_push,
3146 	.gpl_only       = false,
3147 	.ret_type       = RET_INTEGER,
3148 	.arg1_type      = ARG_PTR_TO_CTX,
3149 	.arg2_type      = ARG_ANYTHING,
3150 	.arg3_type      = ARG_ANYTHING,
3151 };
3152 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3153 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154 {
3155 	int ret;
3156 
3157 	bpf_push_mac_rcsum(skb);
3158 	ret = skb_vlan_pop(skb);
3159 	bpf_pull_mac_rcsum(skb);
3160 
3161 	bpf_compute_data_pointers(skb);
3162 	return ret;
3163 }
3164 
3165 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166 	.func           = bpf_skb_vlan_pop,
3167 	.gpl_only       = false,
3168 	.ret_type       = RET_INTEGER,
3169 	.arg1_type      = ARG_PTR_TO_CTX,
3170 };
3171 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3172 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 	/* Caller already did skb_cow() with len as headroom,
3175 	 * so no need to do it here.
3176 	 */
3177 	skb_push(skb, len);
3178 	memmove(skb->data, skb->data + len, off);
3179 	memset(skb->data + off, 0, len);
3180 
3181 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3182 	 * needed here as it does not change the skb->csum
3183 	 * result for checksum complete when summing over
3184 	 * zeroed blocks.
3185 	 */
3186 	return 0;
3187 }
3188 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3189 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 	/* skb_ensure_writable() is not needed here, as we're
3192 	 * already working on an uncloned skb.
3193 	 */
3194 	if (unlikely(!pskb_may_pull(skb, off + len)))
3195 		return -ENOMEM;
3196 
3197 	skb_postpull_rcsum(skb, skb->data + off, len);
3198 	memmove(skb->data + len, skb->data, off);
3199 	__skb_pull(skb, len);
3200 
3201 	return 0;
3202 }
3203 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3204 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206 	bool trans_same = skb->transport_header == skb->network_header;
3207 	int ret;
3208 
3209 	/* There's no need for __skb_push()/__skb_pull() pair to
3210 	 * get to the start of the mac header as we're guaranteed
3211 	 * to always start from here under eBPF.
3212 	 */
3213 	ret = bpf_skb_generic_push(skb, off, len);
3214 	if (likely(!ret)) {
3215 		skb->mac_header -= len;
3216 		skb->network_header -= len;
3217 		if (trans_same)
3218 			skb->transport_header = skb->network_header;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3224 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225 {
3226 	bool trans_same = skb->transport_header == skb->network_header;
3227 	int ret;
3228 
3229 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3230 	ret = bpf_skb_generic_pop(skb, off, len);
3231 	if (likely(!ret)) {
3232 		skb->mac_header += len;
3233 		skb->network_header += len;
3234 		if (trans_same)
3235 			skb->transport_header = skb->network_header;
3236 	}
3237 
3238 	return ret;
3239 }
3240 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3241 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242 {
3243 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244 	u32 off = skb_mac_header_len(skb);
3245 	int ret;
3246 
3247 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248 		return -ENOTSUPP;
3249 
3250 	ret = skb_cow(skb, len_diff);
3251 	if (unlikely(ret < 0))
3252 		return ret;
3253 
3254 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255 	if (unlikely(ret < 0))
3256 		return ret;
3257 
3258 	if (skb_is_gso(skb)) {
3259 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3260 
3261 		/* SKB_GSO_TCPV4 needs to be changed into
3262 		 * SKB_GSO_TCPV6.
3263 		 */
3264 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3267 		}
3268 
3269 		/* Header must be checked, and gso_segs recomputed. */
3270 		shinfo->gso_type |= SKB_GSO_DODGY;
3271 		shinfo->gso_segs = 0;
3272 	}
3273 
3274 	skb->protocol = htons(ETH_P_IPV6);
3275 	skb_clear_hash(skb);
3276 
3277 	return 0;
3278 }
3279 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3280 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3281 {
3282 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3283 	u32 off = skb_mac_header_len(skb);
3284 	int ret;
3285 
3286 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3287 		return -ENOTSUPP;
3288 
3289 	ret = skb_unclone(skb, GFP_ATOMIC);
3290 	if (unlikely(ret < 0))
3291 		return ret;
3292 
3293 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3294 	if (unlikely(ret < 0))
3295 		return ret;
3296 
3297 	if (skb_is_gso(skb)) {
3298 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3299 
3300 		/* SKB_GSO_TCPV6 needs to be changed into
3301 		 * SKB_GSO_TCPV4.
3302 		 */
3303 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3304 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3305 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3306 		}
3307 
3308 		/* Header must be checked, and gso_segs recomputed. */
3309 		shinfo->gso_type |= SKB_GSO_DODGY;
3310 		shinfo->gso_segs = 0;
3311 	}
3312 
3313 	skb->protocol = htons(ETH_P_IP);
3314 	skb_clear_hash(skb);
3315 
3316 	return 0;
3317 }
3318 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3319 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3320 {
3321 	__be16 from_proto = skb->protocol;
3322 
3323 	if (from_proto == htons(ETH_P_IP) &&
3324 	      to_proto == htons(ETH_P_IPV6))
3325 		return bpf_skb_proto_4_to_6(skb);
3326 
3327 	if (from_proto == htons(ETH_P_IPV6) &&
3328 	      to_proto == htons(ETH_P_IP))
3329 		return bpf_skb_proto_6_to_4(skb);
3330 
3331 	return -ENOTSUPP;
3332 }
3333 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3334 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3335 	   u64, flags)
3336 {
3337 	int ret;
3338 
3339 	if (unlikely(flags))
3340 		return -EINVAL;
3341 
3342 	/* General idea is that this helper does the basic groundwork
3343 	 * needed for changing the protocol, and eBPF program fills the
3344 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3345 	 * and other helpers, rather than passing a raw buffer here.
3346 	 *
3347 	 * The rationale is to keep this minimal and without a need to
3348 	 * deal with raw packet data. F.e. even if we would pass buffers
3349 	 * here, the program still needs to call the bpf_lX_csum_replace()
3350 	 * helpers anyway. Plus, this way we keep also separation of
3351 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3352 	 * care of stores.
3353 	 *
3354 	 * Currently, additional options and extension header space are
3355 	 * not supported, but flags register is reserved so we can adapt
3356 	 * that. For offloads, we mark packet as dodgy, so that headers
3357 	 * need to be verified first.
3358 	 */
3359 	ret = bpf_skb_proto_xlat(skb, proto);
3360 	bpf_compute_data_pointers(skb);
3361 	return ret;
3362 }
3363 
3364 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3365 	.func		= bpf_skb_change_proto,
3366 	.gpl_only	= false,
3367 	.ret_type	= RET_INTEGER,
3368 	.arg1_type	= ARG_PTR_TO_CTX,
3369 	.arg2_type	= ARG_ANYTHING,
3370 	.arg3_type	= ARG_ANYTHING,
3371 };
3372 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3373 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3374 {
3375 	/* We only allow a restricted subset to be changed for now. */
3376 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3377 		     !skb_pkt_type_ok(pkt_type)))
3378 		return -EINVAL;
3379 
3380 	skb->pkt_type = pkt_type;
3381 	return 0;
3382 }
3383 
3384 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3385 	.func		= bpf_skb_change_type,
3386 	.gpl_only	= false,
3387 	.ret_type	= RET_INTEGER,
3388 	.arg1_type	= ARG_PTR_TO_CTX,
3389 	.arg2_type	= ARG_ANYTHING,
3390 };
3391 
bpf_skb_net_base_len(const struct sk_buff * skb)3392 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3393 {
3394 	switch (skb->protocol) {
3395 	case htons(ETH_P_IP):
3396 		return sizeof(struct iphdr);
3397 	case htons(ETH_P_IPV6):
3398 		return sizeof(struct ipv6hdr);
3399 	default:
3400 		return ~0U;
3401 	}
3402 }
3403 
3404 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3405 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3406 
3407 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3410 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3411 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3412 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3413 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3414 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3415 			    u64 flags)
3416 {
3417 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3418 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3419 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3420 	unsigned int gso_type = SKB_GSO_DODGY;
3421 	int ret;
3422 
3423 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3424 		/* udp gso_size delineates datagrams, only allow if fixed */
3425 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3426 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3427 			return -ENOTSUPP;
3428 	}
3429 
3430 	ret = skb_cow_head(skb, len_diff);
3431 	if (unlikely(ret < 0))
3432 		return ret;
3433 
3434 	if (encap) {
3435 		if (skb->protocol != htons(ETH_P_IP) &&
3436 		    skb->protocol != htons(ETH_P_IPV6))
3437 			return -ENOTSUPP;
3438 
3439 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3440 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3441 			return -EINVAL;
3442 
3443 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3444 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3445 			return -EINVAL;
3446 
3447 		if (skb->encapsulation)
3448 			return -EALREADY;
3449 
3450 		mac_len = skb->network_header - skb->mac_header;
3451 		inner_net = skb->network_header;
3452 		if (inner_mac_len > len_diff)
3453 			return -EINVAL;
3454 		inner_trans = skb->transport_header;
3455 	}
3456 
3457 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3458 	if (unlikely(ret < 0))
3459 		return ret;
3460 
3461 	if (encap) {
3462 		skb->inner_mac_header = inner_net - inner_mac_len;
3463 		skb->inner_network_header = inner_net;
3464 		skb->inner_transport_header = inner_trans;
3465 		skb_set_inner_protocol(skb, skb->protocol);
3466 
3467 		skb->encapsulation = 1;
3468 		skb_set_network_header(skb, mac_len);
3469 
3470 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3471 			gso_type |= SKB_GSO_UDP_TUNNEL;
3472 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3473 			gso_type |= SKB_GSO_GRE;
3474 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3475 			gso_type |= SKB_GSO_IPXIP6;
3476 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3477 			gso_type |= SKB_GSO_IPXIP4;
3478 
3479 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3480 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3481 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3482 					sizeof(struct ipv6hdr) :
3483 					sizeof(struct iphdr);
3484 
3485 			skb_set_transport_header(skb, mac_len + nh_len);
3486 		}
3487 
3488 		/* Match skb->protocol to new outer l3 protocol */
3489 		if (skb->protocol == htons(ETH_P_IP) &&
3490 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3491 			skb->protocol = htons(ETH_P_IPV6);
3492 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3493 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3494 			skb->protocol = htons(ETH_P_IP);
3495 	}
3496 
3497 	if (skb_is_gso(skb)) {
3498 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3499 
3500 		/* Due to header grow, MSS needs to be downgraded. */
3501 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3502 			skb_decrease_gso_size(shinfo, len_diff);
3503 
3504 		/* Header must be checked, and gso_segs recomputed. */
3505 		shinfo->gso_type |= gso_type;
3506 		shinfo->gso_segs = 0;
3507 	}
3508 
3509 	return 0;
3510 }
3511 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3512 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3513 			      u64 flags)
3514 {
3515 	int ret;
3516 
3517 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3518 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3519 		return -EINVAL;
3520 
3521 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3522 		/* udp gso_size delineates datagrams, only allow if fixed */
3523 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3524 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3525 			return -ENOTSUPP;
3526 	}
3527 
3528 	ret = skb_unclone(skb, GFP_ATOMIC);
3529 	if (unlikely(ret < 0))
3530 		return ret;
3531 
3532 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3533 	if (unlikely(ret < 0))
3534 		return ret;
3535 
3536 	if (skb_is_gso(skb)) {
3537 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3538 
3539 		/* Due to header shrink, MSS can be upgraded. */
3540 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3541 			skb_increase_gso_size(shinfo, len_diff);
3542 
3543 		/* Header must be checked, and gso_segs recomputed. */
3544 		shinfo->gso_type |= SKB_GSO_DODGY;
3545 		shinfo->gso_segs = 0;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3552 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3553 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3554 	   u32, mode, u64, flags)
3555 {
3556 	u32 len_diff_abs = abs(len_diff);
3557 	bool shrink = len_diff < 0;
3558 	int ret = 0;
3559 
3560 	if (unlikely(flags || mode))
3561 		return -EINVAL;
3562 	if (unlikely(len_diff_abs > 0xfffU))
3563 		return -EFAULT;
3564 
3565 	if (!shrink) {
3566 		ret = skb_cow(skb, len_diff);
3567 		if (unlikely(ret < 0))
3568 			return ret;
3569 		__skb_push(skb, len_diff_abs);
3570 		memset(skb->data, 0, len_diff_abs);
3571 	} else {
3572 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3573 			return -ENOMEM;
3574 		__skb_pull(skb, len_diff_abs);
3575 	}
3576 	bpf_compute_data_end_sk_skb(skb);
3577 	if (tls_sw_has_ctx_rx(skb->sk)) {
3578 		struct strp_msg *rxm = strp_msg(skb);
3579 
3580 		rxm->full_len += len_diff;
3581 	}
3582 	return ret;
3583 }
3584 
3585 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3586 	.func		= sk_skb_adjust_room,
3587 	.gpl_only	= false,
3588 	.ret_type	= RET_INTEGER,
3589 	.arg1_type	= ARG_PTR_TO_CTX,
3590 	.arg2_type	= ARG_ANYTHING,
3591 	.arg3_type	= ARG_ANYTHING,
3592 	.arg4_type	= ARG_ANYTHING,
3593 };
3594 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3595 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3596 	   u32, mode, u64, flags)
3597 {
3598 	u32 len_cur, len_diff_abs = abs(len_diff);
3599 	u32 len_min = bpf_skb_net_base_len(skb);
3600 	u32 len_max = BPF_SKB_MAX_LEN;
3601 	__be16 proto = skb->protocol;
3602 	bool shrink = len_diff < 0;
3603 	u32 off;
3604 	int ret;
3605 
3606 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3607 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3608 		return -EINVAL;
3609 	if (unlikely(len_diff_abs > 0xfffU))
3610 		return -EFAULT;
3611 	if (unlikely(proto != htons(ETH_P_IP) &&
3612 		     proto != htons(ETH_P_IPV6)))
3613 		return -ENOTSUPP;
3614 
3615 	off = skb_mac_header_len(skb);
3616 	switch (mode) {
3617 	case BPF_ADJ_ROOM_NET:
3618 		off += bpf_skb_net_base_len(skb);
3619 		break;
3620 	case BPF_ADJ_ROOM_MAC:
3621 		break;
3622 	default:
3623 		return -ENOTSUPP;
3624 	}
3625 
3626 	len_cur = skb->len - skb_network_offset(skb);
3627 	if ((shrink && (len_diff_abs >= len_cur ||
3628 			len_cur - len_diff_abs < len_min)) ||
3629 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3630 			 !skb_is_gso(skb))))
3631 		return -ENOTSUPP;
3632 
3633 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3634 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3635 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3636 		__skb_reset_checksum_unnecessary(skb);
3637 
3638 	bpf_compute_data_pointers(skb);
3639 	return ret;
3640 }
3641 
3642 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3643 	.func		= bpf_skb_adjust_room,
3644 	.gpl_only	= false,
3645 	.ret_type	= RET_INTEGER,
3646 	.arg1_type	= ARG_PTR_TO_CTX,
3647 	.arg2_type	= ARG_ANYTHING,
3648 	.arg3_type	= ARG_ANYTHING,
3649 	.arg4_type	= ARG_ANYTHING,
3650 };
3651 
__bpf_skb_min_len(const struct sk_buff * skb)3652 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3653 {
3654 	u32 min_len = skb_network_offset(skb);
3655 
3656 	if (skb_transport_header_was_set(skb))
3657 		min_len = skb_transport_offset(skb);
3658 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3659 		min_len = skb_checksum_start_offset(skb) +
3660 			  skb->csum_offset + sizeof(__sum16);
3661 	return min_len;
3662 }
3663 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3664 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3665 {
3666 	unsigned int old_len = skb->len;
3667 	int ret;
3668 
3669 	ret = __skb_grow_rcsum(skb, new_len);
3670 	if (!ret)
3671 		memset(skb->data + old_len, 0, new_len - old_len);
3672 	return ret;
3673 }
3674 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3675 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3676 {
3677 	return __skb_trim_rcsum(skb, new_len);
3678 }
3679 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3680 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3681 					u64 flags)
3682 {
3683 	u32 max_len = BPF_SKB_MAX_LEN;
3684 	u32 min_len = __bpf_skb_min_len(skb);
3685 	int ret;
3686 
3687 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3688 		return -EINVAL;
3689 	if (skb->encapsulation)
3690 		return -ENOTSUPP;
3691 
3692 	/* The basic idea of this helper is that it's performing the
3693 	 * needed work to either grow or trim an skb, and eBPF program
3694 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3695 	 * bpf_lX_csum_replace() and others rather than passing a raw
3696 	 * buffer here. This one is a slow path helper and intended
3697 	 * for replies with control messages.
3698 	 *
3699 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3700 	 * minimal and without protocol specifics so that we are able
3701 	 * to separate concerns as in bpf_skb_store_bytes() should only
3702 	 * be the one responsible for writing buffers.
3703 	 *
3704 	 * It's really expected to be a slow path operation here for
3705 	 * control message replies, so we're implicitly linearizing,
3706 	 * uncloning and drop offloads from the skb by this.
3707 	 */
3708 	ret = __bpf_try_make_writable(skb, skb->len);
3709 	if (!ret) {
3710 		if (new_len > skb->len)
3711 			ret = bpf_skb_grow_rcsum(skb, new_len);
3712 		else if (new_len < skb->len)
3713 			ret = bpf_skb_trim_rcsum(skb, new_len);
3714 		if (!ret && skb_is_gso(skb))
3715 			skb_gso_reset(skb);
3716 	}
3717 	return ret;
3718 }
3719 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3720 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3721 	   u64, flags)
3722 {
3723 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3724 
3725 	bpf_compute_data_pointers(skb);
3726 	return ret;
3727 }
3728 
3729 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3730 	.func		= bpf_skb_change_tail,
3731 	.gpl_only	= false,
3732 	.ret_type	= RET_INTEGER,
3733 	.arg1_type	= ARG_PTR_TO_CTX,
3734 	.arg2_type	= ARG_ANYTHING,
3735 	.arg3_type	= ARG_ANYTHING,
3736 };
3737 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3738 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3739 	   u64, flags)
3740 {
3741 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3742 
3743 	bpf_compute_data_end_sk_skb(skb);
3744 	return ret;
3745 }
3746 
3747 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3748 	.func		= sk_skb_change_tail,
3749 	.gpl_only	= false,
3750 	.ret_type	= RET_INTEGER,
3751 	.arg1_type	= ARG_PTR_TO_CTX,
3752 	.arg2_type	= ARG_ANYTHING,
3753 	.arg3_type	= ARG_ANYTHING,
3754 };
3755 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3756 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3757 					u64 flags)
3758 {
3759 	u32 max_len = BPF_SKB_MAX_LEN;
3760 	u32 new_len = skb->len + head_room;
3761 	int ret;
3762 
3763 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3764 		     new_len < skb->len))
3765 		return -EINVAL;
3766 
3767 	ret = skb_cow(skb, head_room);
3768 	if (likely(!ret)) {
3769 		/* Idea for this helper is that we currently only
3770 		 * allow to expand on mac header. This means that
3771 		 * skb->protocol network header, etc, stay as is.
3772 		 * Compared to bpf_skb_change_tail(), we're more
3773 		 * flexible due to not needing to linearize or
3774 		 * reset GSO. Intention for this helper is to be
3775 		 * used by an L3 skb that needs to push mac header
3776 		 * for redirection into L2 device.
3777 		 */
3778 		__skb_push(skb, head_room);
3779 		memset(skb->data, 0, head_room);
3780 		skb_reset_mac_header(skb);
3781 		skb_reset_mac_len(skb);
3782 	}
3783 
3784 	return ret;
3785 }
3786 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3787 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3788 	   u64, flags)
3789 {
3790 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3791 
3792 	bpf_compute_data_pointers(skb);
3793 	return ret;
3794 }
3795 
3796 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3797 	.func		= bpf_skb_change_head,
3798 	.gpl_only	= false,
3799 	.ret_type	= RET_INTEGER,
3800 	.arg1_type	= ARG_PTR_TO_CTX,
3801 	.arg2_type	= ARG_ANYTHING,
3802 	.arg3_type	= ARG_ANYTHING,
3803 };
3804 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3805 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3806 	   u64, flags)
3807 {
3808 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3809 
3810 	bpf_compute_data_end_sk_skb(skb);
3811 	return ret;
3812 }
3813 
3814 static const struct bpf_func_proto sk_skb_change_head_proto = {
3815 	.func		= sk_skb_change_head,
3816 	.gpl_only	= false,
3817 	.ret_type	= RET_INTEGER,
3818 	.arg1_type	= ARG_PTR_TO_CTX,
3819 	.arg2_type	= ARG_ANYTHING,
3820 	.arg3_type	= ARG_ANYTHING,
3821 };
xdp_get_metalen(const struct xdp_buff * xdp)3822 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3823 {
3824 	return xdp_data_meta_unsupported(xdp) ? 0 :
3825 	       xdp->data - xdp->data_meta;
3826 }
3827 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3828 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3829 {
3830 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3831 	unsigned long metalen = xdp_get_metalen(xdp);
3832 	void *data_start = xdp_frame_end + metalen;
3833 	void *data = xdp->data + offset;
3834 
3835 	if (unlikely(data < data_start ||
3836 		     data > xdp->data_end - ETH_HLEN))
3837 		return -EINVAL;
3838 
3839 	if (metalen)
3840 		memmove(xdp->data_meta + offset,
3841 			xdp->data_meta, metalen);
3842 	xdp->data_meta += offset;
3843 	xdp->data = data;
3844 
3845 	return 0;
3846 }
3847 
3848 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3849 	.func		= bpf_xdp_adjust_head,
3850 	.gpl_only	= false,
3851 	.ret_type	= RET_INTEGER,
3852 	.arg1_type	= ARG_PTR_TO_CTX,
3853 	.arg2_type	= ARG_ANYTHING,
3854 };
3855 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3856 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3857 {
3858 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3859 	void *data_end = xdp->data_end + offset;
3860 
3861 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3862 	if (unlikely(data_end > data_hard_end))
3863 		return -EINVAL;
3864 
3865 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3866 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3867 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3868 		return -EINVAL;
3869 	}
3870 
3871 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3872 		return -EINVAL;
3873 
3874 	/* Clear memory area on grow, can contain uninit kernel memory */
3875 	if (offset > 0)
3876 		memset(xdp->data_end, 0, offset);
3877 
3878 	xdp->data_end = data_end;
3879 
3880 	return 0;
3881 }
3882 
3883 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3884 	.func		= bpf_xdp_adjust_tail,
3885 	.gpl_only	= false,
3886 	.ret_type	= RET_INTEGER,
3887 	.arg1_type	= ARG_PTR_TO_CTX,
3888 	.arg2_type	= ARG_ANYTHING,
3889 };
3890 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3891 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3892 {
3893 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3894 	void *meta = xdp->data_meta + offset;
3895 	unsigned long metalen = xdp->data - meta;
3896 
3897 	if (xdp_data_meta_unsupported(xdp))
3898 		return -ENOTSUPP;
3899 	if (unlikely(meta < xdp_frame_end ||
3900 		     meta > xdp->data))
3901 		return -EINVAL;
3902 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3903 		     (metalen > 32)))
3904 		return -EACCES;
3905 
3906 	xdp->data_meta = meta;
3907 
3908 	return 0;
3909 }
3910 
3911 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3912 	.func		= bpf_xdp_adjust_meta,
3913 	.gpl_only	= false,
3914 	.ret_type	= RET_INTEGER,
3915 	.arg1_type	= ARG_PTR_TO_CTX,
3916 	.arg2_type	= ARG_ANYTHING,
3917 };
3918 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp)3919 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3920 			    struct bpf_map *map, struct xdp_buff *xdp)
3921 {
3922 	switch (map->map_type) {
3923 	case BPF_MAP_TYPE_DEVMAP:
3924 	case BPF_MAP_TYPE_DEVMAP_HASH:
3925 		return dev_map_enqueue(fwd, xdp, dev_rx);
3926 	case BPF_MAP_TYPE_CPUMAP:
3927 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3928 	case BPF_MAP_TYPE_XSKMAP:
3929 		return __xsk_map_redirect(fwd, xdp);
3930 	default:
3931 		return -EBADRQC;
3932 	}
3933 	return 0;
3934 }
3935 
xdp_do_flush(void)3936 void xdp_do_flush(void)
3937 {
3938 	__dev_flush();
3939 	__cpu_map_flush();
3940 	__xsk_map_flush();
3941 }
3942 EXPORT_SYMBOL_GPL(xdp_do_flush);
3943 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3944 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3945 {
3946 	switch (map->map_type) {
3947 	case BPF_MAP_TYPE_DEVMAP:
3948 		return __dev_map_lookup_elem(map, index);
3949 	case BPF_MAP_TYPE_DEVMAP_HASH:
3950 		return __dev_map_hash_lookup_elem(map, index);
3951 	case BPF_MAP_TYPE_CPUMAP:
3952 		return __cpu_map_lookup_elem(map, index);
3953 	case BPF_MAP_TYPE_XSKMAP:
3954 		return __xsk_map_lookup_elem(map, index);
3955 	default:
3956 		return NULL;
3957 	}
3958 }
3959 
bpf_clear_redirect_map(struct bpf_map * map)3960 void bpf_clear_redirect_map(struct bpf_map *map)
3961 {
3962 	struct bpf_redirect_info *ri;
3963 	int cpu;
3964 
3965 	for_each_possible_cpu(cpu) {
3966 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3967 		/* Avoid polluting remote cacheline due to writes if
3968 		 * not needed. Once we pass this test, we need the
3969 		 * cmpxchg() to make sure it hasn't been changed in
3970 		 * the meantime by remote CPU.
3971 		 */
3972 		if (unlikely(READ_ONCE(ri->map) == map))
3973 			cmpxchg(&ri->map, map, NULL);
3974 	}
3975 }
3976 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3977 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3978 		    struct bpf_prog *xdp_prog)
3979 {
3980 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3981 	struct bpf_map *map = READ_ONCE(ri->map);
3982 	u32 index = ri->tgt_index;
3983 	void *fwd = ri->tgt_value;
3984 	int err;
3985 
3986 	ri->tgt_index = 0;
3987 	ri->tgt_value = NULL;
3988 	WRITE_ONCE(ri->map, NULL);
3989 
3990 	if (unlikely(!map)) {
3991 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3992 		if (unlikely(!fwd)) {
3993 			err = -EINVAL;
3994 			goto err;
3995 		}
3996 
3997 		err = dev_xdp_enqueue(fwd, xdp, dev);
3998 	} else {
3999 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4000 	}
4001 
4002 	if (unlikely(err))
4003 		goto err;
4004 
4005 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4006 	return 0;
4007 err:
4008 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4009 	return err;
4010 }
4011 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4012 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)4013 static int xdp_do_generic_redirect_map(struct net_device *dev,
4014 				       struct sk_buff *skb,
4015 				       struct xdp_buff *xdp,
4016 				       struct bpf_prog *xdp_prog,
4017 				       struct bpf_map *map)
4018 {
4019 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4020 	u32 index = ri->tgt_index;
4021 	void *fwd = ri->tgt_value;
4022 	int err = 0;
4023 
4024 	ri->tgt_index = 0;
4025 	ri->tgt_value = NULL;
4026 	WRITE_ONCE(ri->map, NULL);
4027 
4028 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4029 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4030 		struct bpf_dtab_netdev *dst = fwd;
4031 
4032 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4033 		if (unlikely(err))
4034 			goto err;
4035 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4036 		struct xdp_sock *xs = fwd;
4037 
4038 		err = xsk_generic_rcv(xs, xdp);
4039 		if (err)
4040 			goto err;
4041 		consume_skb(skb);
4042 	} else {
4043 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4044 		err = -EBADRQC;
4045 		goto err;
4046 	}
4047 
4048 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4049 	return 0;
4050 err:
4051 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4052 	return err;
4053 }
4054 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4055 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4056 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4057 {
4058 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4059 	struct bpf_map *map = READ_ONCE(ri->map);
4060 	u32 index = ri->tgt_index;
4061 	struct net_device *fwd;
4062 	int err = 0;
4063 
4064 	if (map)
4065 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4066 						   map);
4067 	ri->tgt_index = 0;
4068 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4069 	if (unlikely(!fwd)) {
4070 		err = -EINVAL;
4071 		goto err;
4072 	}
4073 
4074 	err = xdp_ok_fwd_dev(fwd, skb->len);
4075 	if (unlikely(err))
4076 		goto err;
4077 
4078 	skb->dev = fwd;
4079 	_trace_xdp_redirect(dev, xdp_prog, index);
4080 	generic_xdp_tx(skb, xdp_prog);
4081 	return 0;
4082 err:
4083 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4084 	return err;
4085 }
4086 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4087 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4088 {
4089 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4090 
4091 	if (unlikely(flags))
4092 		return XDP_ABORTED;
4093 
4094 	ri->flags = flags;
4095 	ri->tgt_index = ifindex;
4096 	ri->tgt_value = NULL;
4097 	WRITE_ONCE(ri->map, NULL);
4098 
4099 	return XDP_REDIRECT;
4100 }
4101 
4102 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4103 	.func           = bpf_xdp_redirect,
4104 	.gpl_only       = false,
4105 	.ret_type       = RET_INTEGER,
4106 	.arg1_type      = ARG_ANYTHING,
4107 	.arg2_type      = ARG_ANYTHING,
4108 };
4109 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4110 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4111 	   u64, flags)
4112 {
4113 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4114 
4115 	/* Lower bits of the flags are used as return code on lookup failure */
4116 	if (unlikely(flags > XDP_TX))
4117 		return XDP_ABORTED;
4118 
4119 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4120 	if (unlikely(!ri->tgt_value)) {
4121 		/* If the lookup fails we want to clear out the state in the
4122 		 * redirect_info struct completely, so that if an eBPF program
4123 		 * performs multiple lookups, the last one always takes
4124 		 * precedence.
4125 		 */
4126 		WRITE_ONCE(ri->map, NULL);
4127 		return flags;
4128 	}
4129 
4130 	ri->flags = flags;
4131 	ri->tgt_index = ifindex;
4132 	WRITE_ONCE(ri->map, map);
4133 
4134 	return XDP_REDIRECT;
4135 }
4136 
4137 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4138 	.func           = bpf_xdp_redirect_map,
4139 	.gpl_only       = false,
4140 	.ret_type       = RET_INTEGER,
4141 	.arg1_type      = ARG_CONST_MAP_PTR,
4142 	.arg2_type      = ARG_ANYTHING,
4143 	.arg3_type      = ARG_ANYTHING,
4144 };
4145 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4146 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4147 				  unsigned long off, unsigned long len)
4148 {
4149 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4150 
4151 	if (unlikely(!ptr))
4152 		return len;
4153 	if (ptr != dst_buff)
4154 		memcpy(dst_buff, ptr, len);
4155 
4156 	return 0;
4157 }
4158 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4159 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4160 	   u64, flags, void *, meta, u64, meta_size)
4161 {
4162 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4163 
4164 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4165 		return -EINVAL;
4166 	if (unlikely(!skb || skb_size > skb->len))
4167 		return -EFAULT;
4168 
4169 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4170 				bpf_skb_copy);
4171 }
4172 
4173 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4174 	.func		= bpf_skb_event_output,
4175 	.gpl_only	= true,
4176 	.ret_type	= RET_INTEGER,
4177 	.arg1_type	= ARG_PTR_TO_CTX,
4178 	.arg2_type	= ARG_CONST_MAP_PTR,
4179 	.arg3_type	= ARG_ANYTHING,
4180 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4181 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4182 };
4183 
4184 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4185 
4186 const struct bpf_func_proto bpf_skb_output_proto = {
4187 	.func		= bpf_skb_event_output,
4188 	.gpl_only	= true,
4189 	.ret_type	= RET_INTEGER,
4190 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4191 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4192 	.arg2_type	= ARG_CONST_MAP_PTR,
4193 	.arg3_type	= ARG_ANYTHING,
4194 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4195 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4196 };
4197 
bpf_tunnel_key_af(u64 flags)4198 static unsigned short bpf_tunnel_key_af(u64 flags)
4199 {
4200 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4201 }
4202 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4203 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4204 	   u32, size, u64, flags)
4205 {
4206 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4207 	u8 compat[sizeof(struct bpf_tunnel_key)];
4208 	void *to_orig = to;
4209 	int err;
4210 
4211 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4212 		err = -EINVAL;
4213 		goto err_clear;
4214 	}
4215 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4216 		err = -EPROTO;
4217 		goto err_clear;
4218 	}
4219 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4220 		err = -EINVAL;
4221 		switch (size) {
4222 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4223 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4224 			goto set_compat;
4225 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4226 			/* Fixup deprecated structure layouts here, so we have
4227 			 * a common path later on.
4228 			 */
4229 			if (ip_tunnel_info_af(info) != AF_INET)
4230 				goto err_clear;
4231 set_compat:
4232 			to = (struct bpf_tunnel_key *)compat;
4233 			break;
4234 		default:
4235 			goto err_clear;
4236 		}
4237 	}
4238 
4239 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4240 	to->tunnel_tos = info->key.tos;
4241 	to->tunnel_ttl = info->key.ttl;
4242 	to->tunnel_ext = 0;
4243 
4244 	if (flags & BPF_F_TUNINFO_IPV6) {
4245 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4246 		       sizeof(to->remote_ipv6));
4247 		to->tunnel_label = be32_to_cpu(info->key.label);
4248 	} else {
4249 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4250 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4251 		to->tunnel_label = 0;
4252 	}
4253 
4254 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4255 		memcpy(to_orig, to, size);
4256 
4257 	return 0;
4258 err_clear:
4259 	memset(to_orig, 0, size);
4260 	return err;
4261 }
4262 
4263 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4264 	.func		= bpf_skb_get_tunnel_key,
4265 	.gpl_only	= false,
4266 	.ret_type	= RET_INTEGER,
4267 	.arg1_type	= ARG_PTR_TO_CTX,
4268 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4269 	.arg3_type	= ARG_CONST_SIZE,
4270 	.arg4_type	= ARG_ANYTHING,
4271 };
4272 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4273 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4274 {
4275 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4276 	int err;
4277 
4278 	if (unlikely(!info ||
4279 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4280 		err = -ENOENT;
4281 		goto err_clear;
4282 	}
4283 	if (unlikely(size < info->options_len)) {
4284 		err = -ENOMEM;
4285 		goto err_clear;
4286 	}
4287 
4288 	ip_tunnel_info_opts_get(to, info);
4289 	if (size > info->options_len)
4290 		memset(to + info->options_len, 0, size - info->options_len);
4291 
4292 	return info->options_len;
4293 err_clear:
4294 	memset(to, 0, size);
4295 	return err;
4296 }
4297 
4298 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4299 	.func		= bpf_skb_get_tunnel_opt,
4300 	.gpl_only	= false,
4301 	.ret_type	= RET_INTEGER,
4302 	.arg1_type	= ARG_PTR_TO_CTX,
4303 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4304 	.arg3_type	= ARG_CONST_SIZE,
4305 };
4306 
4307 static struct metadata_dst __percpu *md_dst;
4308 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4309 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4310 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4311 {
4312 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4313 	u8 compat[sizeof(struct bpf_tunnel_key)];
4314 	struct ip_tunnel_info *info;
4315 
4316 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4317 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4318 		return -EINVAL;
4319 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4320 		switch (size) {
4321 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4322 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4323 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4324 			/* Fixup deprecated structure layouts here, so we have
4325 			 * a common path later on.
4326 			 */
4327 			memcpy(compat, from, size);
4328 			memset(compat + size, 0, sizeof(compat) - size);
4329 			from = (const struct bpf_tunnel_key *) compat;
4330 			break;
4331 		default:
4332 			return -EINVAL;
4333 		}
4334 	}
4335 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4336 		     from->tunnel_ext))
4337 		return -EINVAL;
4338 
4339 	skb_dst_drop(skb);
4340 	dst_hold((struct dst_entry *) md);
4341 	skb_dst_set(skb, (struct dst_entry *) md);
4342 
4343 	info = &md->u.tun_info;
4344 	memset(info, 0, sizeof(*info));
4345 	info->mode = IP_TUNNEL_INFO_TX;
4346 
4347 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4348 	if (flags & BPF_F_DONT_FRAGMENT)
4349 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4350 	if (flags & BPF_F_ZERO_CSUM_TX)
4351 		info->key.tun_flags &= ~TUNNEL_CSUM;
4352 	if (flags & BPF_F_SEQ_NUMBER)
4353 		info->key.tun_flags |= TUNNEL_SEQ;
4354 
4355 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4356 	info->key.tos = from->tunnel_tos;
4357 	info->key.ttl = from->tunnel_ttl;
4358 
4359 	if (flags & BPF_F_TUNINFO_IPV6) {
4360 		info->mode |= IP_TUNNEL_INFO_IPV6;
4361 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4362 		       sizeof(from->remote_ipv6));
4363 		info->key.label = cpu_to_be32(from->tunnel_label) &
4364 				  IPV6_FLOWLABEL_MASK;
4365 	} else {
4366 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4373 	.func		= bpf_skb_set_tunnel_key,
4374 	.gpl_only	= false,
4375 	.ret_type	= RET_INTEGER,
4376 	.arg1_type	= ARG_PTR_TO_CTX,
4377 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4378 	.arg3_type	= ARG_CONST_SIZE,
4379 	.arg4_type	= ARG_ANYTHING,
4380 };
4381 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4382 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4383 	   const u8 *, from, u32, size)
4384 {
4385 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4386 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4387 
4388 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4389 		return -EINVAL;
4390 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4391 		return -ENOMEM;
4392 
4393 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4394 
4395 	return 0;
4396 }
4397 
4398 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4399 	.func		= bpf_skb_set_tunnel_opt,
4400 	.gpl_only	= false,
4401 	.ret_type	= RET_INTEGER,
4402 	.arg1_type	= ARG_PTR_TO_CTX,
4403 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4404 	.arg3_type	= ARG_CONST_SIZE,
4405 };
4406 
4407 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4408 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4409 {
4410 	if (!md_dst) {
4411 		struct metadata_dst __percpu *tmp;
4412 
4413 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4414 						METADATA_IP_TUNNEL,
4415 						GFP_KERNEL);
4416 		if (!tmp)
4417 			return NULL;
4418 		if (cmpxchg(&md_dst, NULL, tmp))
4419 			metadata_dst_free_percpu(tmp);
4420 	}
4421 
4422 	switch (which) {
4423 	case BPF_FUNC_skb_set_tunnel_key:
4424 		return &bpf_skb_set_tunnel_key_proto;
4425 	case BPF_FUNC_skb_set_tunnel_opt:
4426 		return &bpf_skb_set_tunnel_opt_proto;
4427 	default:
4428 		return NULL;
4429 	}
4430 }
4431 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4432 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4433 	   u32, idx)
4434 {
4435 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4436 	struct cgroup *cgrp;
4437 	struct sock *sk;
4438 
4439 	sk = skb_to_full_sk(skb);
4440 	if (!sk || !sk_fullsock(sk))
4441 		return -ENOENT;
4442 	if (unlikely(idx >= array->map.max_entries))
4443 		return -E2BIG;
4444 
4445 	cgrp = READ_ONCE(array->ptrs[idx]);
4446 	if (unlikely(!cgrp))
4447 		return -EAGAIN;
4448 
4449 	return sk_under_cgroup_hierarchy(sk, cgrp);
4450 }
4451 
4452 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4453 	.func		= bpf_skb_under_cgroup,
4454 	.gpl_only	= false,
4455 	.ret_type	= RET_INTEGER,
4456 	.arg1_type	= ARG_PTR_TO_CTX,
4457 	.arg2_type	= ARG_CONST_MAP_PTR,
4458 	.arg3_type	= ARG_ANYTHING,
4459 };
4460 
4461 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4462 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4463 {
4464 	struct cgroup *cgrp;
4465 
4466 	sk = sk_to_full_sk(sk);
4467 	if (!sk || !sk_fullsock(sk))
4468 		return 0;
4469 
4470 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4471 	return cgroup_id(cgrp);
4472 }
4473 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4474 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4475 {
4476 	return __bpf_sk_cgroup_id(skb->sk);
4477 }
4478 
4479 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4480 	.func           = bpf_skb_cgroup_id,
4481 	.gpl_only       = false,
4482 	.ret_type       = RET_INTEGER,
4483 	.arg1_type      = ARG_PTR_TO_CTX,
4484 };
4485 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4486 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4487 					      int ancestor_level)
4488 {
4489 	struct cgroup *ancestor;
4490 	struct cgroup *cgrp;
4491 
4492 	sk = sk_to_full_sk(sk);
4493 	if (!sk || !sk_fullsock(sk))
4494 		return 0;
4495 
4496 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4497 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4498 	if (!ancestor)
4499 		return 0;
4500 
4501 	return cgroup_id(ancestor);
4502 }
4503 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4504 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4505 	   ancestor_level)
4506 {
4507 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4508 }
4509 
4510 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4511 	.func           = bpf_skb_ancestor_cgroup_id,
4512 	.gpl_only       = false,
4513 	.ret_type       = RET_INTEGER,
4514 	.arg1_type      = ARG_PTR_TO_CTX,
4515 	.arg2_type      = ARG_ANYTHING,
4516 };
4517 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4518 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4519 {
4520 	return __bpf_sk_cgroup_id(sk);
4521 }
4522 
4523 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4524 	.func           = bpf_sk_cgroup_id,
4525 	.gpl_only       = false,
4526 	.ret_type       = RET_INTEGER,
4527 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4528 };
4529 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4530 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4531 {
4532 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4533 }
4534 
4535 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4536 	.func           = bpf_sk_ancestor_cgroup_id,
4537 	.gpl_only       = false,
4538 	.ret_type       = RET_INTEGER,
4539 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4540 	.arg2_type      = ARG_ANYTHING,
4541 };
4542 #endif
4543 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4544 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4545 				  unsigned long off, unsigned long len)
4546 {
4547 	memcpy(dst_buff, src_buff + off, len);
4548 	return 0;
4549 }
4550 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4551 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4552 	   u64, flags, void *, meta, u64, meta_size)
4553 {
4554 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4555 
4556 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4557 		return -EINVAL;
4558 	if (unlikely(!xdp ||
4559 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4560 		return -EFAULT;
4561 
4562 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4563 				xdp_size, bpf_xdp_copy);
4564 }
4565 
4566 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4567 	.func		= bpf_xdp_event_output,
4568 	.gpl_only	= true,
4569 	.ret_type	= RET_INTEGER,
4570 	.arg1_type	= ARG_PTR_TO_CTX,
4571 	.arg2_type	= ARG_CONST_MAP_PTR,
4572 	.arg3_type	= ARG_ANYTHING,
4573 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4574 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4575 };
4576 
4577 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4578 
4579 const struct bpf_func_proto bpf_xdp_output_proto = {
4580 	.func		= bpf_xdp_event_output,
4581 	.gpl_only	= true,
4582 	.ret_type	= RET_INTEGER,
4583 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4584 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4585 	.arg2_type	= ARG_CONST_MAP_PTR,
4586 	.arg3_type	= ARG_ANYTHING,
4587 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4588 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4589 };
4590 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4591 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4592 {
4593 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4594 }
4595 
4596 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4597 	.func           = bpf_get_socket_cookie,
4598 	.gpl_only       = false,
4599 	.ret_type       = RET_INTEGER,
4600 	.arg1_type      = ARG_PTR_TO_CTX,
4601 };
4602 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4603 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4604 {
4605 	return __sock_gen_cookie(ctx->sk);
4606 }
4607 
4608 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4609 	.func		= bpf_get_socket_cookie_sock_addr,
4610 	.gpl_only	= false,
4611 	.ret_type	= RET_INTEGER,
4612 	.arg1_type	= ARG_PTR_TO_CTX,
4613 };
4614 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4615 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4616 {
4617 	return __sock_gen_cookie(ctx);
4618 }
4619 
4620 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4621 	.func		= bpf_get_socket_cookie_sock,
4622 	.gpl_only	= false,
4623 	.ret_type	= RET_INTEGER,
4624 	.arg1_type	= ARG_PTR_TO_CTX,
4625 };
4626 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4627 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4628 {
4629 	return __sock_gen_cookie(ctx->sk);
4630 }
4631 
4632 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4633 	.func		= bpf_get_socket_cookie_sock_ops,
4634 	.gpl_only	= false,
4635 	.ret_type	= RET_INTEGER,
4636 	.arg1_type	= ARG_PTR_TO_CTX,
4637 };
4638 
__bpf_get_netns_cookie(struct sock * sk)4639 static u64 __bpf_get_netns_cookie(struct sock *sk)
4640 {
4641 #ifdef CONFIG_NET_NS
4642 	return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4643 #else
4644 	return 0;
4645 #endif
4646 }
4647 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4648 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4649 {
4650 	return __bpf_get_netns_cookie(ctx);
4651 }
4652 
4653 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4654 	.func		= bpf_get_netns_cookie_sock,
4655 	.gpl_only	= false,
4656 	.ret_type	= RET_INTEGER,
4657 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4658 };
4659 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4660 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4661 {
4662 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4663 }
4664 
4665 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4666 	.func		= bpf_get_netns_cookie_sock_addr,
4667 	.gpl_only	= false,
4668 	.ret_type	= RET_INTEGER,
4669 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4670 };
4671 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4672 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4673 {
4674 	struct sock *sk = sk_to_full_sk(skb->sk);
4675 	kuid_t kuid;
4676 
4677 	if (!sk || !sk_fullsock(sk))
4678 		return overflowuid;
4679 	kuid = sock_net_uid(sock_net(sk), sk);
4680 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4681 }
4682 
4683 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4684 	.func           = bpf_get_socket_uid,
4685 	.gpl_only       = false,
4686 	.ret_type       = RET_INTEGER,
4687 	.arg1_type      = ARG_PTR_TO_CTX,
4688 };
4689 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4690 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4691 			   char *optval, int optlen)
4692 {
4693 	char devname[IFNAMSIZ];
4694 	int val, valbool;
4695 	struct net *net;
4696 	int ifindex;
4697 	int ret = 0;
4698 
4699 	if (!sk_fullsock(sk))
4700 		return -EINVAL;
4701 
4702 	sock_owned_by_me(sk);
4703 
4704 	if (level == SOL_SOCKET) {
4705 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4706 			return -EINVAL;
4707 		val = *((int *)optval);
4708 		valbool = val ? 1 : 0;
4709 
4710 		/* Only some socketops are supported */
4711 		switch (optname) {
4712 		case SO_RCVBUF:
4713 			val = min_t(u32, val, sysctl_rmem_max);
4714 			val = min_t(int, val, INT_MAX / 2);
4715 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4716 			WRITE_ONCE(sk->sk_rcvbuf,
4717 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4718 			break;
4719 		case SO_SNDBUF:
4720 			val = min_t(u32, val, sysctl_wmem_max);
4721 			val = min_t(int, val, INT_MAX / 2);
4722 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4723 			WRITE_ONCE(sk->sk_sndbuf,
4724 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4725 			break;
4726 		case SO_MAX_PACING_RATE: /* 32bit version */
4727 			if (val != ~0U)
4728 				cmpxchg(&sk->sk_pacing_status,
4729 					SK_PACING_NONE,
4730 					SK_PACING_NEEDED);
4731 			sk->sk_max_pacing_rate = (val == ~0U) ?
4732 						 ~0UL : (unsigned int)val;
4733 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4734 						 sk->sk_max_pacing_rate);
4735 			break;
4736 		case SO_PRIORITY:
4737 			sk->sk_priority = val;
4738 			break;
4739 		case SO_RCVLOWAT:
4740 			if (val < 0)
4741 				val = INT_MAX;
4742 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4743 			break;
4744 		case SO_MARK:
4745 			if (sk->sk_mark != val) {
4746 				sk->sk_mark = val;
4747 				sk_dst_reset(sk);
4748 			}
4749 			break;
4750 		case SO_BINDTODEVICE:
4751 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4752 			strncpy(devname, optval, optlen);
4753 			devname[optlen] = 0;
4754 
4755 			ifindex = 0;
4756 			if (devname[0] != '\0') {
4757 				struct net_device *dev;
4758 
4759 				ret = -ENODEV;
4760 
4761 				net = sock_net(sk);
4762 				dev = dev_get_by_name(net, devname);
4763 				if (!dev)
4764 					break;
4765 				ifindex = dev->ifindex;
4766 				dev_put(dev);
4767 			}
4768 			ret = sock_bindtoindex(sk, ifindex, false);
4769 			break;
4770 		case SO_KEEPALIVE:
4771 			if (sk->sk_prot->keepalive)
4772 				sk->sk_prot->keepalive(sk, valbool);
4773 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4774 			break;
4775 		default:
4776 			ret = -EINVAL;
4777 		}
4778 #ifdef CONFIG_INET
4779 	} else if (level == SOL_IP) {
4780 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4781 			return -EINVAL;
4782 
4783 		val = *((int *)optval);
4784 		/* Only some options are supported */
4785 		switch (optname) {
4786 		case IP_TOS:
4787 			if (val < -1 || val > 0xff) {
4788 				ret = -EINVAL;
4789 			} else {
4790 				struct inet_sock *inet = inet_sk(sk);
4791 
4792 				if (val == -1)
4793 					val = 0;
4794 				inet->tos = val;
4795 			}
4796 			break;
4797 		default:
4798 			ret = -EINVAL;
4799 		}
4800 #if IS_ENABLED(CONFIG_IPV6)
4801 	} else if (level == SOL_IPV6) {
4802 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4803 			return -EINVAL;
4804 
4805 		val = *((int *)optval);
4806 		/* Only some options are supported */
4807 		switch (optname) {
4808 		case IPV6_TCLASS:
4809 			if (val < -1 || val > 0xff) {
4810 				ret = -EINVAL;
4811 			} else {
4812 				struct ipv6_pinfo *np = inet6_sk(sk);
4813 
4814 				if (val == -1)
4815 					val = 0;
4816 				np->tclass = val;
4817 			}
4818 			break;
4819 		default:
4820 			ret = -EINVAL;
4821 		}
4822 #endif
4823 	} else if (level == SOL_TCP &&
4824 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4825 		if (optname == TCP_CONGESTION) {
4826 			char name[TCP_CA_NAME_MAX];
4827 
4828 			strncpy(name, optval, min_t(long, optlen,
4829 						    TCP_CA_NAME_MAX-1));
4830 			name[TCP_CA_NAME_MAX-1] = 0;
4831 			ret = tcp_set_congestion_control(sk, name, false, true);
4832 		} else {
4833 			struct inet_connection_sock *icsk = inet_csk(sk);
4834 			struct tcp_sock *tp = tcp_sk(sk);
4835 			unsigned long timeout;
4836 
4837 			if (optlen != sizeof(int))
4838 				return -EINVAL;
4839 
4840 			val = *((int *)optval);
4841 			/* Only some options are supported */
4842 			switch (optname) {
4843 			case TCP_BPF_IW:
4844 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4845 					ret = -EINVAL;
4846 				else
4847 					tp->snd_cwnd = val;
4848 				break;
4849 			case TCP_BPF_SNDCWND_CLAMP:
4850 				if (val <= 0) {
4851 					ret = -EINVAL;
4852 				} else {
4853 					tp->snd_cwnd_clamp = val;
4854 					tp->snd_ssthresh = val;
4855 				}
4856 				break;
4857 			case TCP_BPF_DELACK_MAX:
4858 				timeout = usecs_to_jiffies(val);
4859 				if (timeout > TCP_DELACK_MAX ||
4860 				    timeout < TCP_TIMEOUT_MIN)
4861 					return -EINVAL;
4862 				inet_csk(sk)->icsk_delack_max = timeout;
4863 				break;
4864 			case TCP_BPF_RTO_MIN:
4865 				timeout = usecs_to_jiffies(val);
4866 				if (timeout > TCP_RTO_MIN ||
4867 				    timeout < TCP_TIMEOUT_MIN)
4868 					return -EINVAL;
4869 				inet_csk(sk)->icsk_rto_min = timeout;
4870 				break;
4871 			case TCP_SAVE_SYN:
4872 				if (val < 0 || val > 1)
4873 					ret = -EINVAL;
4874 				else
4875 					tp->save_syn = val;
4876 				break;
4877 			case TCP_KEEPIDLE:
4878 				ret = tcp_sock_set_keepidle_locked(sk, val);
4879 				break;
4880 			case TCP_KEEPINTVL:
4881 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4882 					ret = -EINVAL;
4883 				else
4884 					tp->keepalive_intvl = val * HZ;
4885 				break;
4886 			case TCP_KEEPCNT:
4887 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4888 					ret = -EINVAL;
4889 				else
4890 					tp->keepalive_probes = val;
4891 				break;
4892 			case TCP_SYNCNT:
4893 				if (val < 1 || val > MAX_TCP_SYNCNT)
4894 					ret = -EINVAL;
4895 				else
4896 					icsk->icsk_syn_retries = val;
4897 				break;
4898 			case TCP_USER_TIMEOUT:
4899 				if (val < 0)
4900 					ret = -EINVAL;
4901 				else
4902 					icsk->icsk_user_timeout = val;
4903 				break;
4904 			case TCP_NOTSENT_LOWAT:
4905 				tp->notsent_lowat = val;
4906 				sk->sk_write_space(sk);
4907 				break;
4908 			default:
4909 				ret = -EINVAL;
4910 			}
4911 		}
4912 #endif
4913 	} else {
4914 		ret = -EINVAL;
4915 	}
4916 	return ret;
4917 }
4918 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4919 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4920 			   char *optval, int optlen)
4921 {
4922 	if (!sk_fullsock(sk))
4923 		goto err_clear;
4924 
4925 	sock_owned_by_me(sk);
4926 
4927 #ifdef CONFIG_INET
4928 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4929 		struct inet_connection_sock *icsk;
4930 		struct tcp_sock *tp;
4931 
4932 		switch (optname) {
4933 		case TCP_CONGESTION:
4934 			icsk = inet_csk(sk);
4935 
4936 			if (!icsk->icsk_ca_ops || optlen <= 1)
4937 				goto err_clear;
4938 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4939 			optval[optlen - 1] = 0;
4940 			break;
4941 		case TCP_SAVED_SYN:
4942 			tp = tcp_sk(sk);
4943 
4944 			if (optlen <= 0 || !tp->saved_syn ||
4945 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4946 				goto err_clear;
4947 			memcpy(optval, tp->saved_syn->data, optlen);
4948 			break;
4949 		default:
4950 			goto err_clear;
4951 		}
4952 	} else if (level == SOL_IP) {
4953 		struct inet_sock *inet = inet_sk(sk);
4954 
4955 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4956 			goto err_clear;
4957 
4958 		/* Only some options are supported */
4959 		switch (optname) {
4960 		case IP_TOS:
4961 			*((int *)optval) = (int)inet->tos;
4962 			break;
4963 		default:
4964 			goto err_clear;
4965 		}
4966 #if IS_ENABLED(CONFIG_IPV6)
4967 	} else if (level == SOL_IPV6) {
4968 		struct ipv6_pinfo *np = inet6_sk(sk);
4969 
4970 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4971 			goto err_clear;
4972 
4973 		/* Only some options are supported */
4974 		switch (optname) {
4975 		case IPV6_TCLASS:
4976 			*((int *)optval) = (int)np->tclass;
4977 			break;
4978 		default:
4979 			goto err_clear;
4980 		}
4981 #endif
4982 	} else {
4983 		goto err_clear;
4984 	}
4985 	return 0;
4986 #endif
4987 err_clear:
4988 	memset(optval, 0, optlen);
4989 	return -EINVAL;
4990 }
4991 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)4992 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4993 	   int, level, int, optname, char *, optval, int, optlen)
4994 {
4995 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
4996 }
4997 
4998 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4999 	.func		= bpf_sock_addr_setsockopt,
5000 	.gpl_only	= false,
5001 	.ret_type	= RET_INTEGER,
5002 	.arg1_type	= ARG_PTR_TO_CTX,
5003 	.arg2_type	= ARG_ANYTHING,
5004 	.arg3_type	= ARG_ANYTHING,
5005 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5006 	.arg5_type	= ARG_CONST_SIZE,
5007 };
5008 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5009 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5010 	   int, level, int, optname, char *, optval, int, optlen)
5011 {
5012 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5016 	.func		= bpf_sock_addr_getsockopt,
5017 	.gpl_only	= false,
5018 	.ret_type	= RET_INTEGER,
5019 	.arg1_type	= ARG_PTR_TO_CTX,
5020 	.arg2_type	= ARG_ANYTHING,
5021 	.arg3_type	= ARG_ANYTHING,
5022 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5023 	.arg5_type	= ARG_CONST_SIZE,
5024 };
5025 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5026 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5027 	   int, level, int, optname, char *, optval, int, optlen)
5028 {
5029 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5030 }
5031 
5032 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5033 	.func		= bpf_sock_ops_setsockopt,
5034 	.gpl_only	= false,
5035 	.ret_type	= RET_INTEGER,
5036 	.arg1_type	= ARG_PTR_TO_CTX,
5037 	.arg2_type	= ARG_ANYTHING,
5038 	.arg3_type	= ARG_ANYTHING,
5039 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5040 	.arg5_type	= ARG_CONST_SIZE,
5041 };
5042 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5043 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5044 				int optname, const u8 **start)
5045 {
5046 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5047 	const u8 *hdr_start;
5048 	int ret;
5049 
5050 	if (syn_skb) {
5051 		/* sk is a request_sock here */
5052 
5053 		if (optname == TCP_BPF_SYN) {
5054 			hdr_start = syn_skb->data;
5055 			ret = tcp_hdrlen(syn_skb);
5056 		} else if (optname == TCP_BPF_SYN_IP) {
5057 			hdr_start = skb_network_header(syn_skb);
5058 			ret = skb_network_header_len(syn_skb) +
5059 				tcp_hdrlen(syn_skb);
5060 		} else {
5061 			/* optname == TCP_BPF_SYN_MAC */
5062 			hdr_start = skb_mac_header(syn_skb);
5063 			ret = skb_mac_header_len(syn_skb) +
5064 				skb_network_header_len(syn_skb) +
5065 				tcp_hdrlen(syn_skb);
5066 		}
5067 	} else {
5068 		struct sock *sk = bpf_sock->sk;
5069 		struct saved_syn *saved_syn;
5070 
5071 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5072 			/* synack retransmit. bpf_sock->syn_skb will
5073 			 * not be available.  It has to resort to
5074 			 * saved_syn (if it is saved).
5075 			 */
5076 			saved_syn = inet_reqsk(sk)->saved_syn;
5077 		else
5078 			saved_syn = tcp_sk(sk)->saved_syn;
5079 
5080 		if (!saved_syn)
5081 			return -ENOENT;
5082 
5083 		if (optname == TCP_BPF_SYN) {
5084 			hdr_start = saved_syn->data +
5085 				saved_syn->mac_hdrlen +
5086 				saved_syn->network_hdrlen;
5087 			ret = saved_syn->tcp_hdrlen;
5088 		} else if (optname == TCP_BPF_SYN_IP) {
5089 			hdr_start = saved_syn->data +
5090 				saved_syn->mac_hdrlen;
5091 			ret = saved_syn->network_hdrlen +
5092 				saved_syn->tcp_hdrlen;
5093 		} else {
5094 			/* optname == TCP_BPF_SYN_MAC */
5095 
5096 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5097 			if (!saved_syn->mac_hdrlen)
5098 				return -ENOENT;
5099 
5100 			hdr_start = saved_syn->data;
5101 			ret = saved_syn->mac_hdrlen +
5102 				saved_syn->network_hdrlen +
5103 				saved_syn->tcp_hdrlen;
5104 		}
5105 	}
5106 
5107 	*start = hdr_start;
5108 	return ret;
5109 }
5110 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5111 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5112 	   int, level, int, optname, char *, optval, int, optlen)
5113 {
5114 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5115 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5116 		int ret, copy_len = 0;
5117 		const u8 *start;
5118 
5119 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5120 		if (ret > 0) {
5121 			copy_len = ret;
5122 			if (optlen < copy_len) {
5123 				copy_len = optlen;
5124 				ret = -ENOSPC;
5125 			}
5126 
5127 			memcpy(optval, start, copy_len);
5128 		}
5129 
5130 		/* Zero out unused buffer at the end */
5131 		memset(optval + copy_len, 0, optlen - copy_len);
5132 
5133 		return ret;
5134 	}
5135 
5136 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5137 }
5138 
5139 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5140 	.func		= bpf_sock_ops_getsockopt,
5141 	.gpl_only	= false,
5142 	.ret_type	= RET_INTEGER,
5143 	.arg1_type	= ARG_PTR_TO_CTX,
5144 	.arg2_type	= ARG_ANYTHING,
5145 	.arg3_type	= ARG_ANYTHING,
5146 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5147 	.arg5_type	= ARG_CONST_SIZE,
5148 };
5149 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5150 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5151 	   int, argval)
5152 {
5153 	struct sock *sk = bpf_sock->sk;
5154 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5155 
5156 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5157 		return -EINVAL;
5158 
5159 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5160 
5161 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5162 }
5163 
5164 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5165 	.func		= bpf_sock_ops_cb_flags_set,
5166 	.gpl_only	= false,
5167 	.ret_type	= RET_INTEGER,
5168 	.arg1_type	= ARG_PTR_TO_CTX,
5169 	.arg2_type	= ARG_ANYTHING,
5170 };
5171 
5172 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5173 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5174 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5175 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5176 	   int, addr_len)
5177 {
5178 #ifdef CONFIG_INET
5179 	struct sock *sk = ctx->sk;
5180 	u32 flags = BIND_FROM_BPF;
5181 	int err;
5182 
5183 	err = -EINVAL;
5184 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5185 		return err;
5186 	if (addr->sa_family == AF_INET) {
5187 		if (addr_len < sizeof(struct sockaddr_in))
5188 			return err;
5189 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5190 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5191 		return __inet_bind(sk, addr, addr_len, flags);
5192 #if IS_ENABLED(CONFIG_IPV6)
5193 	} else if (addr->sa_family == AF_INET6) {
5194 		if (addr_len < SIN6_LEN_RFC2133)
5195 			return err;
5196 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5197 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5198 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5199 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5200 		 */
5201 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5202 #endif /* CONFIG_IPV6 */
5203 	}
5204 #endif /* CONFIG_INET */
5205 
5206 	return -EAFNOSUPPORT;
5207 }
5208 
5209 static const struct bpf_func_proto bpf_bind_proto = {
5210 	.func		= bpf_bind,
5211 	.gpl_only	= false,
5212 	.ret_type	= RET_INTEGER,
5213 	.arg1_type	= ARG_PTR_TO_CTX,
5214 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5215 	.arg3_type	= ARG_CONST_SIZE,
5216 };
5217 
5218 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5219 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5220 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5221 {
5222 	const struct sec_path *sp = skb_sec_path(skb);
5223 	const struct xfrm_state *x;
5224 
5225 	if (!sp || unlikely(index >= sp->len || flags))
5226 		goto err_clear;
5227 
5228 	x = sp->xvec[index];
5229 
5230 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5231 		goto err_clear;
5232 
5233 	to->reqid = x->props.reqid;
5234 	to->spi = x->id.spi;
5235 	to->family = x->props.family;
5236 	to->ext = 0;
5237 
5238 	if (to->family == AF_INET6) {
5239 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5240 		       sizeof(to->remote_ipv6));
5241 	} else {
5242 		to->remote_ipv4 = x->props.saddr.a4;
5243 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5244 	}
5245 
5246 	return 0;
5247 err_clear:
5248 	memset(to, 0, size);
5249 	return -EINVAL;
5250 }
5251 
5252 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5253 	.func		= bpf_skb_get_xfrm_state,
5254 	.gpl_only	= false,
5255 	.ret_type	= RET_INTEGER,
5256 	.arg1_type	= ARG_PTR_TO_CTX,
5257 	.arg2_type	= ARG_ANYTHING,
5258 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5259 	.arg4_type	= ARG_CONST_SIZE,
5260 	.arg5_type	= ARG_ANYTHING,
5261 };
5262 #endif
5263 
5264 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)5265 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5266 				  const struct neighbour *neigh,
5267 				  const struct net_device *dev)
5268 {
5269 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5270 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5271 	params->h_vlan_TCI = 0;
5272 	params->h_vlan_proto = 0;
5273 
5274 	return 0;
5275 }
5276 #endif
5277 
5278 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5279 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5280 			       u32 flags, bool check_mtu)
5281 {
5282 	struct fib_nh_common *nhc;
5283 	struct in_device *in_dev;
5284 	struct neighbour *neigh;
5285 	struct net_device *dev;
5286 	struct fib_result res;
5287 	struct flowi4 fl4;
5288 	int err;
5289 	u32 mtu;
5290 
5291 	dev = dev_get_by_index_rcu(net, params->ifindex);
5292 	if (unlikely(!dev))
5293 		return -ENODEV;
5294 
5295 	/* verify forwarding is enabled on this interface */
5296 	in_dev = __in_dev_get_rcu(dev);
5297 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5298 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5299 
5300 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5301 		fl4.flowi4_iif = 1;
5302 		fl4.flowi4_oif = params->ifindex;
5303 	} else {
5304 		fl4.flowi4_iif = params->ifindex;
5305 		fl4.flowi4_oif = 0;
5306 	}
5307 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5308 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5309 	fl4.flowi4_flags = 0;
5310 
5311 	fl4.flowi4_proto = params->l4_protocol;
5312 	fl4.daddr = params->ipv4_dst;
5313 	fl4.saddr = params->ipv4_src;
5314 	fl4.fl4_sport = params->sport;
5315 	fl4.fl4_dport = params->dport;
5316 	fl4.flowi4_multipath_hash = 0;
5317 
5318 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5319 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5320 		struct fib_table *tb;
5321 
5322 		tb = fib_get_table(net, tbid);
5323 		if (unlikely(!tb))
5324 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5325 
5326 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5327 	} else {
5328 		fl4.flowi4_mark = 0;
5329 		fl4.flowi4_secid = 0;
5330 		fl4.flowi4_tun_key.tun_id = 0;
5331 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5332 
5333 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5334 	}
5335 
5336 	if (err) {
5337 		/* map fib lookup errors to RTN_ type */
5338 		if (err == -EINVAL)
5339 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5340 		if (err == -EHOSTUNREACH)
5341 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5342 		if (err == -EACCES)
5343 			return BPF_FIB_LKUP_RET_PROHIBIT;
5344 
5345 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5346 	}
5347 
5348 	if (res.type != RTN_UNICAST)
5349 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5350 
5351 	if (fib_info_num_path(res.fi) > 1)
5352 		fib_select_path(net, &res, &fl4, NULL);
5353 
5354 	if (check_mtu) {
5355 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5356 		if (params->tot_len > mtu)
5357 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5358 	}
5359 
5360 	nhc = res.nhc;
5361 
5362 	/* do not handle lwt encaps right now */
5363 	if (nhc->nhc_lwtstate)
5364 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5365 
5366 	dev = nhc->nhc_dev;
5367 
5368 	params->rt_metric = res.fi->fib_priority;
5369 	params->ifindex = dev->ifindex;
5370 
5371 	/* xdp and cls_bpf programs are run in RCU-bh so
5372 	 * rcu_read_lock_bh is not needed here
5373 	 */
5374 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5375 		if (nhc->nhc_gw_family)
5376 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5377 
5378 		neigh = __ipv4_neigh_lookup_noref(dev,
5379 						 (__force u32)params->ipv4_dst);
5380 	} else {
5381 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5382 
5383 		params->family = AF_INET6;
5384 		*dst = nhc->nhc_gw.ipv6;
5385 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5386 	}
5387 
5388 	if (!neigh)
5389 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5390 
5391 	return bpf_fib_set_fwd_params(params, neigh, dev);
5392 }
5393 #endif
5394 
5395 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5396 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5397 			       u32 flags, bool check_mtu)
5398 {
5399 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5400 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5401 	struct fib6_result res = {};
5402 	struct neighbour *neigh;
5403 	struct net_device *dev;
5404 	struct inet6_dev *idev;
5405 	struct flowi6 fl6;
5406 	int strict = 0;
5407 	int oif, err;
5408 	u32 mtu;
5409 
5410 	/* link local addresses are never forwarded */
5411 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5412 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5413 
5414 	dev = dev_get_by_index_rcu(net, params->ifindex);
5415 	if (unlikely(!dev))
5416 		return -ENODEV;
5417 
5418 	idev = __in6_dev_get_safely(dev);
5419 	if (unlikely(!idev || !idev->cnf.forwarding))
5420 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5421 
5422 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5423 		fl6.flowi6_iif = 1;
5424 		oif = fl6.flowi6_oif = params->ifindex;
5425 	} else {
5426 		oif = fl6.flowi6_iif = params->ifindex;
5427 		fl6.flowi6_oif = 0;
5428 		strict = RT6_LOOKUP_F_HAS_SADDR;
5429 	}
5430 	fl6.flowlabel = params->flowinfo;
5431 	fl6.flowi6_scope = 0;
5432 	fl6.flowi6_flags = 0;
5433 	fl6.mp_hash = 0;
5434 
5435 	fl6.flowi6_proto = params->l4_protocol;
5436 	fl6.daddr = *dst;
5437 	fl6.saddr = *src;
5438 	fl6.fl6_sport = params->sport;
5439 	fl6.fl6_dport = params->dport;
5440 
5441 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5442 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5443 		struct fib6_table *tb;
5444 
5445 		tb = ipv6_stub->fib6_get_table(net, tbid);
5446 		if (unlikely(!tb))
5447 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5448 
5449 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5450 						   strict);
5451 	} else {
5452 		fl6.flowi6_mark = 0;
5453 		fl6.flowi6_secid = 0;
5454 		fl6.flowi6_tun_key.tun_id = 0;
5455 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5456 
5457 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5458 	}
5459 
5460 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5461 		     res.f6i == net->ipv6.fib6_null_entry))
5462 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5463 
5464 	switch (res.fib6_type) {
5465 	/* only unicast is forwarded */
5466 	case RTN_UNICAST:
5467 		break;
5468 	case RTN_BLACKHOLE:
5469 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5470 	case RTN_UNREACHABLE:
5471 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5472 	case RTN_PROHIBIT:
5473 		return BPF_FIB_LKUP_RET_PROHIBIT;
5474 	default:
5475 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5476 	}
5477 
5478 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5479 				    fl6.flowi6_oif != 0, NULL, strict);
5480 
5481 	if (check_mtu) {
5482 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5483 		if (params->tot_len > mtu)
5484 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5485 	}
5486 
5487 	if (res.nh->fib_nh_lws)
5488 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5489 
5490 	if (res.nh->fib_nh_gw_family)
5491 		*dst = res.nh->fib_nh_gw6;
5492 
5493 	dev = res.nh->fib_nh_dev;
5494 	params->rt_metric = res.f6i->fib6_metric;
5495 	params->ifindex = dev->ifindex;
5496 
5497 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5498 	 * not needed here.
5499 	 */
5500 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5501 	if (!neigh)
5502 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5503 
5504 	return bpf_fib_set_fwd_params(params, neigh, dev);
5505 }
5506 #endif
5507 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5508 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5509 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5510 {
5511 	if (plen < sizeof(*params))
5512 		return -EINVAL;
5513 
5514 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5515 		return -EINVAL;
5516 
5517 	switch (params->family) {
5518 #if IS_ENABLED(CONFIG_INET)
5519 	case AF_INET:
5520 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5521 					   flags, true);
5522 #endif
5523 #if IS_ENABLED(CONFIG_IPV6)
5524 	case AF_INET6:
5525 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5526 					   flags, true);
5527 #endif
5528 	}
5529 	return -EAFNOSUPPORT;
5530 }
5531 
5532 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5533 	.func		= bpf_xdp_fib_lookup,
5534 	.gpl_only	= true,
5535 	.ret_type	= RET_INTEGER,
5536 	.arg1_type      = ARG_PTR_TO_CTX,
5537 	.arg2_type      = ARG_PTR_TO_MEM,
5538 	.arg3_type      = ARG_CONST_SIZE,
5539 	.arg4_type	= ARG_ANYTHING,
5540 };
5541 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5542 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5543 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5544 {
5545 	struct net *net = dev_net(skb->dev);
5546 	int rc = -EAFNOSUPPORT;
5547 	bool check_mtu = false;
5548 
5549 	if (plen < sizeof(*params))
5550 		return -EINVAL;
5551 
5552 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5553 		return -EINVAL;
5554 
5555 	if (params->tot_len)
5556 		check_mtu = true;
5557 
5558 	switch (params->family) {
5559 #if IS_ENABLED(CONFIG_INET)
5560 	case AF_INET:
5561 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5562 		break;
5563 #endif
5564 #if IS_ENABLED(CONFIG_IPV6)
5565 	case AF_INET6:
5566 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5567 		break;
5568 #endif
5569 	}
5570 
5571 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5572 		struct net_device *dev;
5573 
5574 		/* When tot_len isn't provided by user, check skb
5575 		 * against MTU of FIB lookup resulting net_device
5576 		 */
5577 		dev = dev_get_by_index_rcu(net, params->ifindex);
5578 		if (!is_skb_forwardable(dev, skb))
5579 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5580 	}
5581 
5582 	return rc;
5583 }
5584 
5585 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5586 	.func		= bpf_skb_fib_lookup,
5587 	.gpl_only	= true,
5588 	.ret_type	= RET_INTEGER,
5589 	.arg1_type      = ARG_PTR_TO_CTX,
5590 	.arg2_type      = ARG_PTR_TO_MEM,
5591 	.arg3_type      = ARG_CONST_SIZE,
5592 	.arg4_type	= ARG_ANYTHING,
5593 };
5594 
5595 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5596 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5597 {
5598 	int err;
5599 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5600 
5601 	if (!seg6_validate_srh(srh, len, false))
5602 		return -EINVAL;
5603 
5604 	switch (type) {
5605 	case BPF_LWT_ENCAP_SEG6_INLINE:
5606 		if (skb->protocol != htons(ETH_P_IPV6))
5607 			return -EBADMSG;
5608 
5609 		err = seg6_do_srh_inline(skb, srh);
5610 		break;
5611 	case BPF_LWT_ENCAP_SEG6:
5612 		skb_reset_inner_headers(skb);
5613 		skb->encapsulation = 1;
5614 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5615 		break;
5616 	default:
5617 		return -EINVAL;
5618 	}
5619 
5620 	bpf_compute_data_pointers(skb);
5621 	if (err)
5622 		return err;
5623 
5624 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5625 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5626 
5627 	return seg6_lookup_nexthop(skb, NULL, 0);
5628 }
5629 #endif /* CONFIG_IPV6_SEG6_BPF */
5630 
5631 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5632 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5633 			     bool ingress)
5634 {
5635 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5636 }
5637 #endif
5638 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5639 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5640 	   u32, len)
5641 {
5642 	switch (type) {
5643 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5644 	case BPF_LWT_ENCAP_SEG6:
5645 	case BPF_LWT_ENCAP_SEG6_INLINE:
5646 		return bpf_push_seg6_encap(skb, type, hdr, len);
5647 #endif
5648 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5649 	case BPF_LWT_ENCAP_IP:
5650 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5651 #endif
5652 	default:
5653 		return -EINVAL;
5654 	}
5655 }
5656 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5657 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5658 	   void *, hdr, u32, len)
5659 {
5660 	switch (type) {
5661 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5662 	case BPF_LWT_ENCAP_IP:
5663 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5664 #endif
5665 	default:
5666 		return -EINVAL;
5667 	}
5668 }
5669 
5670 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5671 	.func		= bpf_lwt_in_push_encap,
5672 	.gpl_only	= false,
5673 	.ret_type	= RET_INTEGER,
5674 	.arg1_type	= ARG_PTR_TO_CTX,
5675 	.arg2_type	= ARG_ANYTHING,
5676 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5677 	.arg4_type	= ARG_CONST_SIZE
5678 };
5679 
5680 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5681 	.func		= bpf_lwt_xmit_push_encap,
5682 	.gpl_only	= false,
5683 	.ret_type	= RET_INTEGER,
5684 	.arg1_type	= ARG_PTR_TO_CTX,
5685 	.arg2_type	= ARG_ANYTHING,
5686 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5687 	.arg4_type	= ARG_CONST_SIZE
5688 };
5689 
5690 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5691 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5692 	   const void *, from, u32, len)
5693 {
5694 	struct seg6_bpf_srh_state *srh_state =
5695 		this_cpu_ptr(&seg6_bpf_srh_states);
5696 	struct ipv6_sr_hdr *srh = srh_state->srh;
5697 	void *srh_tlvs, *srh_end, *ptr;
5698 	int srhoff = 0;
5699 
5700 	if (srh == NULL)
5701 		return -EINVAL;
5702 
5703 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5704 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5705 
5706 	ptr = skb->data + offset;
5707 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5708 		srh_state->valid = false;
5709 	else if (ptr < (void *)&srh->flags ||
5710 		 ptr + len > (void *)&srh->segments)
5711 		return -EFAULT;
5712 
5713 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5714 		return -EFAULT;
5715 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5716 		return -EINVAL;
5717 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5718 
5719 	memcpy(skb->data + offset, from, len);
5720 	return 0;
5721 }
5722 
5723 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5724 	.func		= bpf_lwt_seg6_store_bytes,
5725 	.gpl_only	= false,
5726 	.ret_type	= RET_INTEGER,
5727 	.arg1_type	= ARG_PTR_TO_CTX,
5728 	.arg2_type	= ARG_ANYTHING,
5729 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5730 	.arg4_type	= ARG_CONST_SIZE
5731 };
5732 
bpf_update_srh_state(struct sk_buff * skb)5733 static void bpf_update_srh_state(struct sk_buff *skb)
5734 {
5735 	struct seg6_bpf_srh_state *srh_state =
5736 		this_cpu_ptr(&seg6_bpf_srh_states);
5737 	int srhoff = 0;
5738 
5739 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5740 		srh_state->srh = NULL;
5741 	} else {
5742 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5743 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5744 		srh_state->valid = true;
5745 	}
5746 }
5747 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5748 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5749 	   u32, action, void *, param, u32, param_len)
5750 {
5751 	struct seg6_bpf_srh_state *srh_state =
5752 		this_cpu_ptr(&seg6_bpf_srh_states);
5753 	int hdroff = 0;
5754 	int err;
5755 
5756 	switch (action) {
5757 	case SEG6_LOCAL_ACTION_END_X:
5758 		if (!seg6_bpf_has_valid_srh(skb))
5759 			return -EBADMSG;
5760 		if (param_len != sizeof(struct in6_addr))
5761 			return -EINVAL;
5762 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5763 	case SEG6_LOCAL_ACTION_END_T:
5764 		if (!seg6_bpf_has_valid_srh(skb))
5765 			return -EBADMSG;
5766 		if (param_len != sizeof(int))
5767 			return -EINVAL;
5768 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5769 	case SEG6_LOCAL_ACTION_END_DT6:
5770 		if (!seg6_bpf_has_valid_srh(skb))
5771 			return -EBADMSG;
5772 		if (param_len != sizeof(int))
5773 			return -EINVAL;
5774 
5775 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5776 			return -EBADMSG;
5777 		if (!pskb_pull(skb, hdroff))
5778 			return -EBADMSG;
5779 
5780 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5781 		skb_reset_network_header(skb);
5782 		skb_reset_transport_header(skb);
5783 		skb->encapsulation = 0;
5784 
5785 		bpf_compute_data_pointers(skb);
5786 		bpf_update_srh_state(skb);
5787 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5788 	case SEG6_LOCAL_ACTION_END_B6:
5789 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5790 			return -EBADMSG;
5791 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5792 					  param, param_len);
5793 		if (!err)
5794 			bpf_update_srh_state(skb);
5795 
5796 		return err;
5797 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5798 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5799 			return -EBADMSG;
5800 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5801 					  param, param_len);
5802 		if (!err)
5803 			bpf_update_srh_state(skb);
5804 
5805 		return err;
5806 	default:
5807 		return -EINVAL;
5808 	}
5809 }
5810 
5811 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5812 	.func		= bpf_lwt_seg6_action,
5813 	.gpl_only	= false,
5814 	.ret_type	= RET_INTEGER,
5815 	.arg1_type	= ARG_PTR_TO_CTX,
5816 	.arg2_type	= ARG_ANYTHING,
5817 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5818 	.arg4_type	= ARG_CONST_SIZE
5819 };
5820 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5821 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5822 	   s32, len)
5823 {
5824 	struct seg6_bpf_srh_state *srh_state =
5825 		this_cpu_ptr(&seg6_bpf_srh_states);
5826 	struct ipv6_sr_hdr *srh = srh_state->srh;
5827 	void *srh_end, *srh_tlvs, *ptr;
5828 	struct ipv6hdr *hdr;
5829 	int srhoff = 0;
5830 	int ret;
5831 
5832 	if (unlikely(srh == NULL))
5833 		return -EINVAL;
5834 
5835 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5836 			((srh->first_segment + 1) << 4));
5837 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5838 			srh_state->hdrlen);
5839 	ptr = skb->data + offset;
5840 
5841 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5842 		return -EFAULT;
5843 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5844 		return -EFAULT;
5845 
5846 	if (len > 0) {
5847 		ret = skb_cow_head(skb, len);
5848 		if (unlikely(ret < 0))
5849 			return ret;
5850 
5851 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5852 	} else {
5853 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5854 	}
5855 
5856 	bpf_compute_data_pointers(skb);
5857 	if (unlikely(ret < 0))
5858 		return ret;
5859 
5860 	hdr = (struct ipv6hdr *)skb->data;
5861 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5862 
5863 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5864 		return -EINVAL;
5865 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5866 	srh_state->hdrlen += len;
5867 	srh_state->valid = false;
5868 	return 0;
5869 }
5870 
5871 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5872 	.func		= bpf_lwt_seg6_adjust_srh,
5873 	.gpl_only	= false,
5874 	.ret_type	= RET_INTEGER,
5875 	.arg1_type	= ARG_PTR_TO_CTX,
5876 	.arg2_type	= ARG_ANYTHING,
5877 	.arg3_type	= ARG_ANYTHING,
5878 };
5879 #endif /* CONFIG_IPV6_SEG6_BPF */
5880 
5881 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5882 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5883 			      int dif, int sdif, u8 family, u8 proto)
5884 {
5885 	bool refcounted = false;
5886 	struct sock *sk = NULL;
5887 
5888 	if (family == AF_INET) {
5889 		__be32 src4 = tuple->ipv4.saddr;
5890 		__be32 dst4 = tuple->ipv4.daddr;
5891 
5892 		if (proto == IPPROTO_TCP)
5893 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5894 					   src4, tuple->ipv4.sport,
5895 					   dst4, tuple->ipv4.dport,
5896 					   dif, sdif, &refcounted);
5897 		else
5898 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5899 					       dst4, tuple->ipv4.dport,
5900 					       dif, sdif, &udp_table, NULL);
5901 #if IS_ENABLED(CONFIG_IPV6)
5902 	} else {
5903 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5904 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5905 
5906 		if (proto == IPPROTO_TCP)
5907 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5908 					    src6, tuple->ipv6.sport,
5909 					    dst6, ntohs(tuple->ipv6.dport),
5910 					    dif, sdif, &refcounted);
5911 		else if (likely(ipv6_bpf_stub))
5912 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5913 							    src6, tuple->ipv6.sport,
5914 							    dst6, tuple->ipv6.dport,
5915 							    dif, sdif,
5916 							    &udp_table, NULL);
5917 #endif
5918 	}
5919 
5920 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5921 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5922 		sk = NULL;
5923 	}
5924 	return sk;
5925 }
5926 
5927 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5928  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5929  * Returns the socket as an 'unsigned long' to simplify the casting in the
5930  * callers to satisfy BPF_CALL declarations.
5931  */
5932 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5933 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5934 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5935 		 u64 flags)
5936 {
5937 	struct sock *sk = NULL;
5938 	u8 family = AF_UNSPEC;
5939 	struct net *net;
5940 	int sdif;
5941 
5942 	if (len == sizeof(tuple->ipv4))
5943 		family = AF_INET;
5944 	else if (len == sizeof(tuple->ipv6))
5945 		family = AF_INET6;
5946 	else
5947 		return NULL;
5948 
5949 	if (unlikely(family == AF_UNSPEC || flags ||
5950 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5951 		goto out;
5952 
5953 	if (family == AF_INET)
5954 		sdif = inet_sdif(skb);
5955 	else
5956 		sdif = inet6_sdif(skb);
5957 
5958 	if ((s32)netns_id < 0) {
5959 		net = caller_net;
5960 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5961 	} else {
5962 		net = get_net_ns_by_id(caller_net, netns_id);
5963 		if (unlikely(!net))
5964 			goto out;
5965 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5966 		put_net(net);
5967 	}
5968 
5969 out:
5970 	return sk;
5971 }
5972 
5973 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5974 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5975 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5976 		u64 flags)
5977 {
5978 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5979 					   ifindex, proto, netns_id, flags);
5980 
5981 	if (sk) {
5982 		sk = sk_to_full_sk(sk);
5983 		if (!sk_fullsock(sk)) {
5984 			sock_gen_put(sk);
5985 			return NULL;
5986 		}
5987 	}
5988 
5989 	return sk;
5990 }
5991 
5992 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5993 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5994 	       u8 proto, u64 netns_id, u64 flags)
5995 {
5996 	struct net *caller_net;
5997 	int ifindex;
5998 
5999 	if (skb->dev) {
6000 		caller_net = dev_net(skb->dev);
6001 		ifindex = skb->dev->ifindex;
6002 	} else {
6003 		caller_net = sock_net(skb->sk);
6004 		ifindex = 0;
6005 	}
6006 
6007 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6008 				netns_id, flags);
6009 }
6010 
6011 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6012 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6013 	      u8 proto, u64 netns_id, u64 flags)
6014 {
6015 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6016 					 flags);
6017 
6018 	if (sk) {
6019 		sk = sk_to_full_sk(sk);
6020 		if (!sk_fullsock(sk)) {
6021 			sock_gen_put(sk);
6022 			return NULL;
6023 		}
6024 	}
6025 
6026 	return sk;
6027 }
6028 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6029 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6030 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6031 {
6032 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6033 					     netns_id, flags);
6034 }
6035 
6036 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6037 	.func		= bpf_skc_lookup_tcp,
6038 	.gpl_only	= false,
6039 	.pkt_access	= true,
6040 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6041 	.arg1_type	= ARG_PTR_TO_CTX,
6042 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6043 	.arg3_type	= ARG_CONST_SIZE,
6044 	.arg4_type	= ARG_ANYTHING,
6045 	.arg5_type	= ARG_ANYTHING,
6046 };
6047 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6048 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6049 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6050 {
6051 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6052 					    netns_id, flags);
6053 }
6054 
6055 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6056 	.func		= bpf_sk_lookup_tcp,
6057 	.gpl_only	= false,
6058 	.pkt_access	= true,
6059 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6060 	.arg1_type	= ARG_PTR_TO_CTX,
6061 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6062 	.arg3_type	= ARG_CONST_SIZE,
6063 	.arg4_type	= ARG_ANYTHING,
6064 	.arg5_type	= ARG_ANYTHING,
6065 };
6066 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6067 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6068 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6069 {
6070 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6071 					    netns_id, flags);
6072 }
6073 
6074 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6075 	.func		= bpf_sk_lookup_udp,
6076 	.gpl_only	= false,
6077 	.pkt_access	= true,
6078 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6079 	.arg1_type	= ARG_PTR_TO_CTX,
6080 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6081 	.arg3_type	= ARG_CONST_SIZE,
6082 	.arg4_type	= ARG_ANYTHING,
6083 	.arg5_type	= ARG_ANYTHING,
6084 };
6085 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6086 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6087 {
6088 	if (sk && sk_is_refcounted(sk))
6089 		sock_gen_put(sk);
6090 	return 0;
6091 }
6092 
6093 static const struct bpf_func_proto bpf_sk_release_proto = {
6094 	.func		= bpf_sk_release,
6095 	.gpl_only	= false,
6096 	.ret_type	= RET_INTEGER,
6097 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6098 };
6099 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6100 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6101 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6102 {
6103 	struct net *caller_net = dev_net(ctx->rxq->dev);
6104 	int ifindex = ctx->rxq->dev->ifindex;
6105 
6106 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6107 					      ifindex, IPPROTO_UDP, netns_id,
6108 					      flags);
6109 }
6110 
6111 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6112 	.func           = bpf_xdp_sk_lookup_udp,
6113 	.gpl_only       = false,
6114 	.pkt_access     = true,
6115 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6116 	.arg1_type      = ARG_PTR_TO_CTX,
6117 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6118 	.arg3_type      = ARG_CONST_SIZE,
6119 	.arg4_type      = ARG_ANYTHING,
6120 	.arg5_type      = ARG_ANYTHING,
6121 };
6122 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6123 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6124 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6125 {
6126 	struct net *caller_net = dev_net(ctx->rxq->dev);
6127 	int ifindex = ctx->rxq->dev->ifindex;
6128 
6129 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6130 					       ifindex, IPPROTO_TCP, netns_id,
6131 					       flags);
6132 }
6133 
6134 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6135 	.func           = bpf_xdp_skc_lookup_tcp,
6136 	.gpl_only       = false,
6137 	.pkt_access     = true,
6138 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6139 	.arg1_type      = ARG_PTR_TO_CTX,
6140 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6141 	.arg3_type      = ARG_CONST_SIZE,
6142 	.arg4_type      = ARG_ANYTHING,
6143 	.arg5_type      = ARG_ANYTHING,
6144 };
6145 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6146 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6147 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6148 {
6149 	struct net *caller_net = dev_net(ctx->rxq->dev);
6150 	int ifindex = ctx->rxq->dev->ifindex;
6151 
6152 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6153 					      ifindex, IPPROTO_TCP, netns_id,
6154 					      flags);
6155 }
6156 
6157 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6158 	.func           = bpf_xdp_sk_lookup_tcp,
6159 	.gpl_only       = false,
6160 	.pkt_access     = true,
6161 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6162 	.arg1_type      = ARG_PTR_TO_CTX,
6163 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6164 	.arg3_type      = ARG_CONST_SIZE,
6165 	.arg4_type      = ARG_ANYTHING,
6166 	.arg5_type      = ARG_ANYTHING,
6167 };
6168 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6169 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6170 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6171 {
6172 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6173 					       sock_net(ctx->sk), 0,
6174 					       IPPROTO_TCP, netns_id, flags);
6175 }
6176 
6177 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6178 	.func		= bpf_sock_addr_skc_lookup_tcp,
6179 	.gpl_only	= false,
6180 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6181 	.arg1_type	= ARG_PTR_TO_CTX,
6182 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6183 	.arg3_type	= ARG_CONST_SIZE,
6184 	.arg4_type	= ARG_ANYTHING,
6185 	.arg5_type	= ARG_ANYTHING,
6186 };
6187 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6188 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6189 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6190 {
6191 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6192 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6193 					      netns_id, flags);
6194 }
6195 
6196 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6197 	.func		= bpf_sock_addr_sk_lookup_tcp,
6198 	.gpl_only	= false,
6199 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6200 	.arg1_type	= ARG_PTR_TO_CTX,
6201 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6202 	.arg3_type	= ARG_CONST_SIZE,
6203 	.arg4_type	= ARG_ANYTHING,
6204 	.arg5_type	= ARG_ANYTHING,
6205 };
6206 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6207 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6208 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6209 {
6210 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6211 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6212 					      netns_id, flags);
6213 }
6214 
6215 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6216 	.func		= bpf_sock_addr_sk_lookup_udp,
6217 	.gpl_only	= false,
6218 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6219 	.arg1_type	= ARG_PTR_TO_CTX,
6220 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6221 	.arg3_type	= ARG_CONST_SIZE,
6222 	.arg4_type	= ARG_ANYTHING,
6223 	.arg5_type	= ARG_ANYTHING,
6224 };
6225 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6226 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6227 				  struct bpf_insn_access_aux *info)
6228 {
6229 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6230 					  icsk_retransmits))
6231 		return false;
6232 
6233 	if (off % size != 0)
6234 		return false;
6235 
6236 	switch (off) {
6237 	case offsetof(struct bpf_tcp_sock, bytes_received):
6238 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6239 		return size == sizeof(__u64);
6240 	default:
6241 		return size == sizeof(__u32);
6242 	}
6243 }
6244 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6245 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6246 				    const struct bpf_insn *si,
6247 				    struct bpf_insn *insn_buf,
6248 				    struct bpf_prog *prog, u32 *target_size)
6249 {
6250 	struct bpf_insn *insn = insn_buf;
6251 
6252 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6253 	do {								\
6254 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6255 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6256 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6257 				      si->dst_reg, si->src_reg,		\
6258 				      offsetof(struct tcp_sock, FIELD)); \
6259 	} while (0)
6260 
6261 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6262 	do {								\
6263 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6264 					  FIELD) >			\
6265 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6266 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6267 					struct inet_connection_sock,	\
6268 					FIELD),				\
6269 				      si->dst_reg, si->src_reg,		\
6270 				      offsetof(				\
6271 					struct inet_connection_sock,	\
6272 					FIELD));			\
6273 	} while (0)
6274 
6275 	if (insn > insn_buf)
6276 		return insn - insn_buf;
6277 
6278 	switch (si->off) {
6279 	case offsetof(struct bpf_tcp_sock, rtt_min):
6280 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6281 			     sizeof(struct minmax));
6282 		BUILD_BUG_ON(sizeof(struct minmax) <
6283 			     sizeof(struct minmax_sample));
6284 
6285 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6286 				      offsetof(struct tcp_sock, rtt_min) +
6287 				      offsetof(struct minmax_sample, v));
6288 		break;
6289 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6290 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6291 		break;
6292 	case offsetof(struct bpf_tcp_sock, srtt_us):
6293 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6294 		break;
6295 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6296 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6297 		break;
6298 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6299 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6300 		break;
6301 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6302 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6303 		break;
6304 	case offsetof(struct bpf_tcp_sock, snd_una):
6305 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6306 		break;
6307 	case offsetof(struct bpf_tcp_sock, mss_cache):
6308 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6309 		break;
6310 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6311 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6312 		break;
6313 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6314 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6315 		break;
6316 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6317 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6318 		break;
6319 	case offsetof(struct bpf_tcp_sock, packets_out):
6320 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6321 		break;
6322 	case offsetof(struct bpf_tcp_sock, retrans_out):
6323 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6324 		break;
6325 	case offsetof(struct bpf_tcp_sock, total_retrans):
6326 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6327 		break;
6328 	case offsetof(struct bpf_tcp_sock, segs_in):
6329 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6330 		break;
6331 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6332 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6333 		break;
6334 	case offsetof(struct bpf_tcp_sock, segs_out):
6335 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6336 		break;
6337 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6338 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6339 		break;
6340 	case offsetof(struct bpf_tcp_sock, lost_out):
6341 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6342 		break;
6343 	case offsetof(struct bpf_tcp_sock, sacked_out):
6344 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6345 		break;
6346 	case offsetof(struct bpf_tcp_sock, bytes_received):
6347 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6348 		break;
6349 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6350 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6351 		break;
6352 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6353 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6354 		break;
6355 	case offsetof(struct bpf_tcp_sock, delivered):
6356 		BPF_TCP_SOCK_GET_COMMON(delivered);
6357 		break;
6358 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6359 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6360 		break;
6361 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6362 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6363 		break;
6364 	}
6365 
6366 	return insn - insn_buf;
6367 }
6368 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6369 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6370 {
6371 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6372 		return (unsigned long)sk;
6373 
6374 	return (unsigned long)NULL;
6375 }
6376 
6377 const struct bpf_func_proto bpf_tcp_sock_proto = {
6378 	.func		= bpf_tcp_sock,
6379 	.gpl_only	= false,
6380 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6381 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6382 };
6383 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6384 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6385 {
6386 	sk = sk_to_full_sk(sk);
6387 
6388 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6389 		return (unsigned long)sk;
6390 
6391 	return (unsigned long)NULL;
6392 }
6393 
6394 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6395 	.func		= bpf_get_listener_sock,
6396 	.gpl_only	= false,
6397 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6398 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6399 };
6400 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6401 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6402 {
6403 	unsigned int iphdr_len;
6404 
6405 	switch (skb_protocol(skb, true)) {
6406 	case cpu_to_be16(ETH_P_IP):
6407 		iphdr_len = sizeof(struct iphdr);
6408 		break;
6409 	case cpu_to_be16(ETH_P_IPV6):
6410 		iphdr_len = sizeof(struct ipv6hdr);
6411 		break;
6412 	default:
6413 		return 0;
6414 	}
6415 
6416 	if (skb_headlen(skb) < iphdr_len)
6417 		return 0;
6418 
6419 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6420 		return 0;
6421 
6422 	return INET_ECN_set_ce(skb);
6423 }
6424 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6425 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6426 				  struct bpf_insn_access_aux *info)
6427 {
6428 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6429 		return false;
6430 
6431 	if (off % size != 0)
6432 		return false;
6433 
6434 	switch (off) {
6435 	default:
6436 		return size == sizeof(__u32);
6437 	}
6438 }
6439 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6440 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6441 				    const struct bpf_insn *si,
6442 				    struct bpf_insn *insn_buf,
6443 				    struct bpf_prog *prog, u32 *target_size)
6444 {
6445 	struct bpf_insn *insn = insn_buf;
6446 
6447 #define BPF_XDP_SOCK_GET(FIELD)						\
6448 	do {								\
6449 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6450 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6452 				      si->dst_reg, si->src_reg,		\
6453 				      offsetof(struct xdp_sock, FIELD)); \
6454 	} while (0)
6455 
6456 	switch (si->off) {
6457 	case offsetof(struct bpf_xdp_sock, queue_id):
6458 		BPF_XDP_SOCK_GET(queue_id);
6459 		break;
6460 	}
6461 
6462 	return insn - insn_buf;
6463 }
6464 
6465 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6466 	.func           = bpf_skb_ecn_set_ce,
6467 	.gpl_only       = false,
6468 	.ret_type       = RET_INTEGER,
6469 	.arg1_type      = ARG_PTR_TO_CTX,
6470 };
6471 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6472 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6473 	   struct tcphdr *, th, u32, th_len)
6474 {
6475 #ifdef CONFIG_SYN_COOKIES
6476 	u32 cookie;
6477 	int ret;
6478 
6479 	if (unlikely(!sk || th_len < sizeof(*th)))
6480 		return -EINVAL;
6481 
6482 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6483 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6484 		return -EINVAL;
6485 
6486 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6487 		return -EINVAL;
6488 
6489 	if (!th->ack || th->rst || th->syn)
6490 		return -ENOENT;
6491 
6492 	if (tcp_synq_no_recent_overflow(sk))
6493 		return -ENOENT;
6494 
6495 	cookie = ntohl(th->ack_seq) - 1;
6496 
6497 	switch (sk->sk_family) {
6498 	case AF_INET:
6499 		if (unlikely(iph_len < sizeof(struct iphdr)))
6500 			return -EINVAL;
6501 
6502 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6503 		break;
6504 
6505 #if IS_BUILTIN(CONFIG_IPV6)
6506 	case AF_INET6:
6507 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6508 			return -EINVAL;
6509 
6510 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6511 		break;
6512 #endif /* CONFIG_IPV6 */
6513 
6514 	default:
6515 		return -EPROTONOSUPPORT;
6516 	}
6517 
6518 	if (ret > 0)
6519 		return 0;
6520 
6521 	return -ENOENT;
6522 #else
6523 	return -ENOTSUPP;
6524 #endif
6525 }
6526 
6527 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6528 	.func		= bpf_tcp_check_syncookie,
6529 	.gpl_only	= true,
6530 	.pkt_access	= true,
6531 	.ret_type	= RET_INTEGER,
6532 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6533 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6534 	.arg3_type	= ARG_CONST_SIZE,
6535 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6536 	.arg5_type	= ARG_CONST_SIZE,
6537 };
6538 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6539 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6540 	   struct tcphdr *, th, u32, th_len)
6541 {
6542 #ifdef CONFIG_SYN_COOKIES
6543 	u32 cookie;
6544 	u16 mss;
6545 
6546 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6547 		return -EINVAL;
6548 
6549 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6550 		return -EINVAL;
6551 
6552 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6553 		return -ENOENT;
6554 
6555 	if (!th->syn || th->ack || th->fin || th->rst)
6556 		return -EINVAL;
6557 
6558 	if (unlikely(iph_len < sizeof(struct iphdr)))
6559 		return -EINVAL;
6560 
6561 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6562 	 * same offset so we can cast to the shorter header (struct iphdr).
6563 	 */
6564 	switch (((struct iphdr *)iph)->version) {
6565 	case 4:
6566 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6567 			return -EINVAL;
6568 
6569 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6570 		break;
6571 
6572 #if IS_BUILTIN(CONFIG_IPV6)
6573 	case 6:
6574 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6575 			return -EINVAL;
6576 
6577 		if (sk->sk_family != AF_INET6)
6578 			return -EINVAL;
6579 
6580 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6581 		break;
6582 #endif /* CONFIG_IPV6 */
6583 
6584 	default:
6585 		return -EPROTONOSUPPORT;
6586 	}
6587 	if (mss == 0)
6588 		return -ENOENT;
6589 
6590 	return cookie | ((u64)mss << 32);
6591 #else
6592 	return -EOPNOTSUPP;
6593 #endif /* CONFIG_SYN_COOKIES */
6594 }
6595 
6596 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6597 	.func		= bpf_tcp_gen_syncookie,
6598 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6599 	.pkt_access	= true,
6600 	.ret_type	= RET_INTEGER,
6601 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6602 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6603 	.arg3_type	= ARG_CONST_SIZE,
6604 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6605 	.arg5_type	= ARG_CONST_SIZE,
6606 };
6607 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6608 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6609 {
6610 	if (!sk || flags != 0)
6611 		return -EINVAL;
6612 	if (!skb_at_tc_ingress(skb))
6613 		return -EOPNOTSUPP;
6614 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6615 		return -ENETUNREACH;
6616 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6617 		return -ESOCKTNOSUPPORT;
6618 	if (sk_is_refcounted(sk) &&
6619 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6620 		return -ENOENT;
6621 
6622 	skb_orphan(skb);
6623 	skb->sk = sk;
6624 	skb->destructor = sock_pfree;
6625 
6626 	return 0;
6627 }
6628 
6629 static const struct bpf_func_proto bpf_sk_assign_proto = {
6630 	.func		= bpf_sk_assign,
6631 	.gpl_only	= false,
6632 	.ret_type	= RET_INTEGER,
6633 	.arg1_type      = ARG_PTR_TO_CTX,
6634 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6635 	.arg3_type	= ARG_ANYTHING,
6636 };
6637 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)6638 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6639 				    u8 search_kind, const u8 *magic,
6640 				    u8 magic_len, bool *eol)
6641 {
6642 	u8 kind, kind_len;
6643 
6644 	*eol = false;
6645 
6646 	while (op < opend) {
6647 		kind = op[0];
6648 
6649 		if (kind == TCPOPT_EOL) {
6650 			*eol = true;
6651 			return ERR_PTR(-ENOMSG);
6652 		} else if (kind == TCPOPT_NOP) {
6653 			op++;
6654 			continue;
6655 		}
6656 
6657 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6658 			/* Something is wrong in the received header.
6659 			 * Follow the TCP stack's tcp_parse_options()
6660 			 * and just bail here.
6661 			 */
6662 			return ERR_PTR(-EFAULT);
6663 
6664 		kind_len = op[1];
6665 		if (search_kind == kind) {
6666 			if (!magic_len)
6667 				return op;
6668 
6669 			if (magic_len > kind_len - 2)
6670 				return ERR_PTR(-ENOMSG);
6671 
6672 			if (!memcmp(&op[2], magic, magic_len))
6673 				return op;
6674 		}
6675 
6676 		op += kind_len;
6677 	}
6678 
6679 	return ERR_PTR(-ENOMSG);
6680 }
6681 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)6682 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6683 	   void *, search_res, u32, len, u64, flags)
6684 {
6685 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6686 	const u8 *op, *opend, *magic, *search = search_res;
6687 	u8 search_kind, search_len, copy_len, magic_len;
6688 	int ret;
6689 
6690 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6691 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6692 	 * and this helper disallow loading them also.
6693 	 */
6694 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6695 		return -EINVAL;
6696 
6697 	search_kind = search[0];
6698 	search_len = search[1];
6699 
6700 	if (search_len > len || search_kind == TCPOPT_NOP ||
6701 	    search_kind == TCPOPT_EOL)
6702 		return -EINVAL;
6703 
6704 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6705 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6706 		if (search_len != 4 && search_len != 6)
6707 			return -EINVAL;
6708 		magic = &search[2];
6709 		magic_len = search_len - 2;
6710 	} else {
6711 		if (search_len)
6712 			return -EINVAL;
6713 		magic = NULL;
6714 		magic_len = 0;
6715 	}
6716 
6717 	if (load_syn) {
6718 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6719 		if (ret < 0)
6720 			return ret;
6721 
6722 		opend = op + ret;
6723 		op += sizeof(struct tcphdr);
6724 	} else {
6725 		if (!bpf_sock->skb ||
6726 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6727 			/* This bpf_sock->op cannot call this helper */
6728 			return -EPERM;
6729 
6730 		opend = bpf_sock->skb_data_end;
6731 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6732 	}
6733 
6734 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6735 				&eol);
6736 	if (IS_ERR(op))
6737 		return PTR_ERR(op);
6738 
6739 	copy_len = op[1];
6740 	ret = copy_len;
6741 	if (copy_len > len) {
6742 		ret = -ENOSPC;
6743 		copy_len = len;
6744 	}
6745 
6746 	memcpy(search_res, op, copy_len);
6747 	return ret;
6748 }
6749 
6750 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6751 	.func		= bpf_sock_ops_load_hdr_opt,
6752 	.gpl_only	= false,
6753 	.ret_type	= RET_INTEGER,
6754 	.arg1_type	= ARG_PTR_TO_CTX,
6755 	.arg2_type	= ARG_PTR_TO_MEM,
6756 	.arg3_type	= ARG_CONST_SIZE,
6757 	.arg4_type	= ARG_ANYTHING,
6758 };
6759 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)6760 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6761 	   const void *, from, u32, len, u64, flags)
6762 {
6763 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6764 	const u8 *op, *new_op, *magic = NULL;
6765 	struct sk_buff *skb;
6766 	bool eol;
6767 
6768 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6769 		return -EPERM;
6770 
6771 	if (len < 2 || flags)
6772 		return -EINVAL;
6773 
6774 	new_op = from;
6775 	new_kind = new_op[0];
6776 	new_kind_len = new_op[1];
6777 
6778 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6779 	    new_kind == TCPOPT_EOL)
6780 		return -EINVAL;
6781 
6782 	if (new_kind_len > bpf_sock->remaining_opt_len)
6783 		return -ENOSPC;
6784 
6785 	/* 253 is another experimental kind */
6786 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6787 		if (new_kind_len < 4)
6788 			return -EINVAL;
6789 		/* Match for the 2 byte magic also.
6790 		 * RFC 6994: the magic could be 2 or 4 bytes.
6791 		 * Hence, matching by 2 byte only is on the
6792 		 * conservative side but it is the right
6793 		 * thing to do for the 'search-for-duplication'
6794 		 * purpose.
6795 		 */
6796 		magic = &new_op[2];
6797 		magic_len = 2;
6798 	}
6799 
6800 	/* Check for duplication */
6801 	skb = bpf_sock->skb;
6802 	op = skb->data + sizeof(struct tcphdr);
6803 	opend = bpf_sock->skb_data_end;
6804 
6805 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6806 				&eol);
6807 	if (!IS_ERR(op))
6808 		return -EEXIST;
6809 
6810 	if (PTR_ERR(op) != -ENOMSG)
6811 		return PTR_ERR(op);
6812 
6813 	if (eol)
6814 		/* The option has been ended.  Treat it as no more
6815 		 * header option can be written.
6816 		 */
6817 		return -ENOSPC;
6818 
6819 	/* No duplication found.  Store the header option. */
6820 	memcpy(opend, from, new_kind_len);
6821 
6822 	bpf_sock->remaining_opt_len -= new_kind_len;
6823 	bpf_sock->skb_data_end += new_kind_len;
6824 
6825 	return 0;
6826 }
6827 
6828 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6829 	.func		= bpf_sock_ops_store_hdr_opt,
6830 	.gpl_only	= false,
6831 	.ret_type	= RET_INTEGER,
6832 	.arg1_type	= ARG_PTR_TO_CTX,
6833 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6834 	.arg3_type	= ARG_CONST_SIZE,
6835 	.arg4_type	= ARG_ANYTHING,
6836 };
6837 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)6838 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6839 	   u32, len, u64, flags)
6840 {
6841 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6842 		return -EPERM;
6843 
6844 	if (flags || len < 2)
6845 		return -EINVAL;
6846 
6847 	if (len > bpf_sock->remaining_opt_len)
6848 		return -ENOSPC;
6849 
6850 	bpf_sock->remaining_opt_len -= len;
6851 
6852 	return 0;
6853 }
6854 
6855 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6856 	.func		= bpf_sock_ops_reserve_hdr_opt,
6857 	.gpl_only	= false,
6858 	.ret_type	= RET_INTEGER,
6859 	.arg1_type	= ARG_PTR_TO_CTX,
6860 	.arg2_type	= ARG_ANYTHING,
6861 	.arg3_type	= ARG_ANYTHING,
6862 };
6863 
6864 #endif /* CONFIG_INET */
6865 
bpf_helper_changes_pkt_data(void * func)6866 bool bpf_helper_changes_pkt_data(void *func)
6867 {
6868 	if (func == bpf_skb_vlan_push ||
6869 	    func == bpf_skb_vlan_pop ||
6870 	    func == bpf_skb_store_bytes ||
6871 	    func == bpf_skb_change_proto ||
6872 	    func == bpf_skb_change_head ||
6873 	    func == sk_skb_change_head ||
6874 	    func == bpf_skb_change_tail ||
6875 	    func == sk_skb_change_tail ||
6876 	    func == bpf_skb_adjust_room ||
6877 	    func == sk_skb_adjust_room ||
6878 	    func == bpf_skb_pull_data ||
6879 	    func == sk_skb_pull_data ||
6880 	    func == bpf_clone_redirect ||
6881 	    func == bpf_l3_csum_replace ||
6882 	    func == bpf_l4_csum_replace ||
6883 	    func == bpf_xdp_adjust_head ||
6884 	    func == bpf_xdp_adjust_meta ||
6885 	    func == bpf_msg_pull_data ||
6886 	    func == bpf_msg_push_data ||
6887 	    func == bpf_msg_pop_data ||
6888 	    func == bpf_xdp_adjust_tail ||
6889 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6890 	    func == bpf_lwt_seg6_store_bytes ||
6891 	    func == bpf_lwt_seg6_adjust_srh ||
6892 	    func == bpf_lwt_seg6_action ||
6893 #endif
6894 #ifdef CONFIG_INET
6895 	    func == bpf_sock_ops_store_hdr_opt ||
6896 #endif
6897 	    func == bpf_lwt_in_push_encap ||
6898 	    func == bpf_lwt_xmit_push_encap)
6899 		return true;
6900 
6901 	return false;
6902 }
6903 
6904 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6905 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6906 
6907 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6908 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6909 {
6910 	switch (func_id) {
6911 	/* inet and inet6 sockets are created in a process
6912 	 * context so there is always a valid uid/gid
6913 	 */
6914 	case BPF_FUNC_get_current_uid_gid:
6915 		return &bpf_get_current_uid_gid_proto;
6916 	case BPF_FUNC_get_local_storage:
6917 		return &bpf_get_local_storage_proto;
6918 	case BPF_FUNC_get_socket_cookie:
6919 		return &bpf_get_socket_cookie_sock_proto;
6920 	case BPF_FUNC_get_netns_cookie:
6921 		return &bpf_get_netns_cookie_sock_proto;
6922 	case BPF_FUNC_perf_event_output:
6923 		return &bpf_event_output_data_proto;
6924 	case BPF_FUNC_get_current_pid_tgid:
6925 		return &bpf_get_current_pid_tgid_proto;
6926 	case BPF_FUNC_get_current_comm:
6927 		return &bpf_get_current_comm_proto;
6928 #ifdef CONFIG_CGROUPS
6929 	case BPF_FUNC_get_current_cgroup_id:
6930 		return &bpf_get_current_cgroup_id_proto;
6931 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6932 		return &bpf_get_current_ancestor_cgroup_id_proto;
6933 #endif
6934 #ifdef CONFIG_CGROUP_NET_CLASSID
6935 	case BPF_FUNC_get_cgroup_classid:
6936 		return &bpf_get_cgroup_classid_curr_proto;
6937 #endif
6938 	case BPF_FUNC_sk_storage_get:
6939 		return &bpf_sk_storage_get_cg_sock_proto;
6940 	default:
6941 		return bpf_base_func_proto(func_id);
6942 	}
6943 }
6944 
6945 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6946 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6947 {
6948 	switch (func_id) {
6949 	/* inet and inet6 sockets are created in a process
6950 	 * context so there is always a valid uid/gid
6951 	 */
6952 	case BPF_FUNC_get_current_uid_gid:
6953 		return &bpf_get_current_uid_gid_proto;
6954 	case BPF_FUNC_bind:
6955 		switch (prog->expected_attach_type) {
6956 		case BPF_CGROUP_INET4_CONNECT:
6957 		case BPF_CGROUP_INET6_CONNECT:
6958 			return &bpf_bind_proto;
6959 		default:
6960 			return NULL;
6961 		}
6962 	case BPF_FUNC_get_socket_cookie:
6963 		return &bpf_get_socket_cookie_sock_addr_proto;
6964 	case BPF_FUNC_get_netns_cookie:
6965 		return &bpf_get_netns_cookie_sock_addr_proto;
6966 	case BPF_FUNC_get_local_storage:
6967 		return &bpf_get_local_storage_proto;
6968 	case BPF_FUNC_perf_event_output:
6969 		return &bpf_event_output_data_proto;
6970 	case BPF_FUNC_get_current_pid_tgid:
6971 		return &bpf_get_current_pid_tgid_proto;
6972 	case BPF_FUNC_get_current_comm:
6973 		return &bpf_get_current_comm_proto;
6974 #ifdef CONFIG_CGROUPS
6975 	case BPF_FUNC_get_current_cgroup_id:
6976 		return &bpf_get_current_cgroup_id_proto;
6977 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6978 		return &bpf_get_current_ancestor_cgroup_id_proto;
6979 #endif
6980 #ifdef CONFIG_CGROUP_NET_CLASSID
6981 	case BPF_FUNC_get_cgroup_classid:
6982 		return &bpf_get_cgroup_classid_curr_proto;
6983 #endif
6984 #ifdef CONFIG_INET
6985 	case BPF_FUNC_sk_lookup_tcp:
6986 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6987 	case BPF_FUNC_sk_lookup_udp:
6988 		return &bpf_sock_addr_sk_lookup_udp_proto;
6989 	case BPF_FUNC_sk_release:
6990 		return &bpf_sk_release_proto;
6991 	case BPF_FUNC_skc_lookup_tcp:
6992 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6993 #endif /* CONFIG_INET */
6994 	case BPF_FUNC_sk_storage_get:
6995 		return &bpf_sk_storage_get_proto;
6996 	case BPF_FUNC_sk_storage_delete:
6997 		return &bpf_sk_storage_delete_proto;
6998 	case BPF_FUNC_setsockopt:
6999 		switch (prog->expected_attach_type) {
7000 		case BPF_CGROUP_INET4_CONNECT:
7001 		case BPF_CGROUP_INET6_CONNECT:
7002 			return &bpf_sock_addr_setsockopt_proto;
7003 		default:
7004 			return NULL;
7005 		}
7006 	case BPF_FUNC_getsockopt:
7007 		switch (prog->expected_attach_type) {
7008 		case BPF_CGROUP_INET4_CONNECT:
7009 		case BPF_CGROUP_INET6_CONNECT:
7010 			return &bpf_sock_addr_getsockopt_proto;
7011 		default:
7012 			return NULL;
7013 		}
7014 	default:
7015 		return bpf_sk_base_func_proto(func_id);
7016 	}
7017 }
7018 
7019 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7020 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7021 {
7022 	switch (func_id) {
7023 	case BPF_FUNC_skb_load_bytes:
7024 		return &bpf_skb_load_bytes_proto;
7025 	case BPF_FUNC_skb_load_bytes_relative:
7026 		return &bpf_skb_load_bytes_relative_proto;
7027 	case BPF_FUNC_get_socket_cookie:
7028 		return &bpf_get_socket_cookie_proto;
7029 	case BPF_FUNC_get_socket_uid:
7030 		return &bpf_get_socket_uid_proto;
7031 	case BPF_FUNC_perf_event_output:
7032 		return &bpf_skb_event_output_proto;
7033 	default:
7034 		return bpf_sk_base_func_proto(func_id);
7035 	}
7036 }
7037 
7038 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7039 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7040 
7041 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7042 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7043 {
7044 	switch (func_id) {
7045 	case BPF_FUNC_get_local_storage:
7046 		return &bpf_get_local_storage_proto;
7047 	case BPF_FUNC_sk_fullsock:
7048 		return &bpf_sk_fullsock_proto;
7049 	case BPF_FUNC_sk_storage_get:
7050 		return &bpf_sk_storage_get_proto;
7051 	case BPF_FUNC_sk_storage_delete:
7052 		return &bpf_sk_storage_delete_proto;
7053 	case BPF_FUNC_perf_event_output:
7054 		return &bpf_skb_event_output_proto;
7055 #ifdef CONFIG_SOCK_CGROUP_DATA
7056 	case BPF_FUNC_skb_cgroup_id:
7057 		return &bpf_skb_cgroup_id_proto;
7058 	case BPF_FUNC_skb_ancestor_cgroup_id:
7059 		return &bpf_skb_ancestor_cgroup_id_proto;
7060 	case BPF_FUNC_sk_cgroup_id:
7061 		return &bpf_sk_cgroup_id_proto;
7062 	case BPF_FUNC_sk_ancestor_cgroup_id:
7063 		return &bpf_sk_ancestor_cgroup_id_proto;
7064 #endif
7065 #ifdef CONFIG_INET
7066 	case BPF_FUNC_sk_lookup_tcp:
7067 		return &bpf_sk_lookup_tcp_proto;
7068 	case BPF_FUNC_sk_lookup_udp:
7069 		return &bpf_sk_lookup_udp_proto;
7070 	case BPF_FUNC_sk_release:
7071 		return &bpf_sk_release_proto;
7072 	case BPF_FUNC_skc_lookup_tcp:
7073 		return &bpf_skc_lookup_tcp_proto;
7074 	case BPF_FUNC_tcp_sock:
7075 		return &bpf_tcp_sock_proto;
7076 	case BPF_FUNC_get_listener_sock:
7077 		return &bpf_get_listener_sock_proto;
7078 	case BPF_FUNC_skb_ecn_set_ce:
7079 		return &bpf_skb_ecn_set_ce_proto;
7080 #endif
7081 	default:
7082 		return sk_filter_func_proto(func_id, prog);
7083 	}
7084 }
7085 
7086 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7087 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7088 {
7089 	switch (func_id) {
7090 	case BPF_FUNC_skb_store_bytes:
7091 		return &bpf_skb_store_bytes_proto;
7092 	case BPF_FUNC_skb_load_bytes:
7093 		return &bpf_skb_load_bytes_proto;
7094 	case BPF_FUNC_skb_load_bytes_relative:
7095 		return &bpf_skb_load_bytes_relative_proto;
7096 	case BPF_FUNC_skb_pull_data:
7097 		return &bpf_skb_pull_data_proto;
7098 	case BPF_FUNC_csum_diff:
7099 		return &bpf_csum_diff_proto;
7100 	case BPF_FUNC_csum_update:
7101 		return &bpf_csum_update_proto;
7102 	case BPF_FUNC_csum_level:
7103 		return &bpf_csum_level_proto;
7104 	case BPF_FUNC_l3_csum_replace:
7105 		return &bpf_l3_csum_replace_proto;
7106 	case BPF_FUNC_l4_csum_replace:
7107 		return &bpf_l4_csum_replace_proto;
7108 	case BPF_FUNC_clone_redirect:
7109 		return &bpf_clone_redirect_proto;
7110 	case BPF_FUNC_get_cgroup_classid:
7111 		return &bpf_get_cgroup_classid_proto;
7112 	case BPF_FUNC_skb_vlan_push:
7113 		return &bpf_skb_vlan_push_proto;
7114 	case BPF_FUNC_skb_vlan_pop:
7115 		return &bpf_skb_vlan_pop_proto;
7116 	case BPF_FUNC_skb_change_proto:
7117 		return &bpf_skb_change_proto_proto;
7118 	case BPF_FUNC_skb_change_type:
7119 		return &bpf_skb_change_type_proto;
7120 	case BPF_FUNC_skb_adjust_room:
7121 		return &bpf_skb_adjust_room_proto;
7122 	case BPF_FUNC_skb_change_tail:
7123 		return &bpf_skb_change_tail_proto;
7124 	case BPF_FUNC_skb_change_head:
7125 		return &bpf_skb_change_head_proto;
7126 	case BPF_FUNC_skb_get_tunnel_key:
7127 		return &bpf_skb_get_tunnel_key_proto;
7128 	case BPF_FUNC_skb_set_tunnel_key:
7129 		return bpf_get_skb_set_tunnel_proto(func_id);
7130 	case BPF_FUNC_skb_get_tunnel_opt:
7131 		return &bpf_skb_get_tunnel_opt_proto;
7132 	case BPF_FUNC_skb_set_tunnel_opt:
7133 		return bpf_get_skb_set_tunnel_proto(func_id);
7134 	case BPF_FUNC_redirect:
7135 		return &bpf_redirect_proto;
7136 	case BPF_FUNC_redirect_neigh:
7137 		return &bpf_redirect_neigh_proto;
7138 	case BPF_FUNC_redirect_peer:
7139 		return &bpf_redirect_peer_proto;
7140 	case BPF_FUNC_get_route_realm:
7141 		return &bpf_get_route_realm_proto;
7142 	case BPF_FUNC_get_hash_recalc:
7143 		return &bpf_get_hash_recalc_proto;
7144 	case BPF_FUNC_set_hash_invalid:
7145 		return &bpf_set_hash_invalid_proto;
7146 	case BPF_FUNC_set_hash:
7147 		return &bpf_set_hash_proto;
7148 	case BPF_FUNC_perf_event_output:
7149 		return &bpf_skb_event_output_proto;
7150 	case BPF_FUNC_get_smp_processor_id:
7151 		return &bpf_get_smp_processor_id_proto;
7152 	case BPF_FUNC_skb_under_cgroup:
7153 		return &bpf_skb_under_cgroup_proto;
7154 	case BPF_FUNC_get_socket_cookie:
7155 		return &bpf_get_socket_cookie_proto;
7156 	case BPF_FUNC_get_socket_uid:
7157 		return &bpf_get_socket_uid_proto;
7158 	case BPF_FUNC_fib_lookup:
7159 		return &bpf_skb_fib_lookup_proto;
7160 	case BPF_FUNC_sk_fullsock:
7161 		return &bpf_sk_fullsock_proto;
7162 	case BPF_FUNC_sk_storage_get:
7163 		return &bpf_sk_storage_get_proto;
7164 	case BPF_FUNC_sk_storage_delete:
7165 		return &bpf_sk_storage_delete_proto;
7166 #ifdef CONFIG_XFRM
7167 	case BPF_FUNC_skb_get_xfrm_state:
7168 		return &bpf_skb_get_xfrm_state_proto;
7169 #endif
7170 #ifdef CONFIG_CGROUP_NET_CLASSID
7171 	case BPF_FUNC_skb_cgroup_classid:
7172 		return &bpf_skb_cgroup_classid_proto;
7173 #endif
7174 #ifdef CONFIG_SOCK_CGROUP_DATA
7175 	case BPF_FUNC_skb_cgroup_id:
7176 		return &bpf_skb_cgroup_id_proto;
7177 	case BPF_FUNC_skb_ancestor_cgroup_id:
7178 		return &bpf_skb_ancestor_cgroup_id_proto;
7179 #endif
7180 #ifdef CONFIG_INET
7181 	case BPF_FUNC_sk_lookup_tcp:
7182 		return &bpf_sk_lookup_tcp_proto;
7183 	case BPF_FUNC_sk_lookup_udp:
7184 		return &bpf_sk_lookup_udp_proto;
7185 	case BPF_FUNC_sk_release:
7186 		return &bpf_sk_release_proto;
7187 	case BPF_FUNC_tcp_sock:
7188 		return &bpf_tcp_sock_proto;
7189 	case BPF_FUNC_get_listener_sock:
7190 		return &bpf_get_listener_sock_proto;
7191 	case BPF_FUNC_skc_lookup_tcp:
7192 		return &bpf_skc_lookup_tcp_proto;
7193 	case BPF_FUNC_tcp_check_syncookie:
7194 		return &bpf_tcp_check_syncookie_proto;
7195 	case BPF_FUNC_skb_ecn_set_ce:
7196 		return &bpf_skb_ecn_set_ce_proto;
7197 	case BPF_FUNC_tcp_gen_syncookie:
7198 		return &bpf_tcp_gen_syncookie_proto;
7199 	case BPF_FUNC_sk_assign:
7200 		return &bpf_sk_assign_proto;
7201 #endif
7202 	default:
7203 		return bpf_sk_base_func_proto(func_id);
7204 	}
7205 }
7206 
7207 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7208 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7209 {
7210 	switch (func_id) {
7211 	case BPF_FUNC_perf_event_output:
7212 		return &bpf_xdp_event_output_proto;
7213 	case BPF_FUNC_get_smp_processor_id:
7214 		return &bpf_get_smp_processor_id_proto;
7215 	case BPF_FUNC_csum_diff:
7216 		return &bpf_csum_diff_proto;
7217 	case BPF_FUNC_xdp_adjust_head:
7218 		return &bpf_xdp_adjust_head_proto;
7219 	case BPF_FUNC_xdp_adjust_meta:
7220 		return &bpf_xdp_adjust_meta_proto;
7221 	case BPF_FUNC_redirect:
7222 		return &bpf_xdp_redirect_proto;
7223 	case BPF_FUNC_redirect_map:
7224 		return &bpf_xdp_redirect_map_proto;
7225 	case BPF_FUNC_xdp_adjust_tail:
7226 		return &bpf_xdp_adjust_tail_proto;
7227 	case BPF_FUNC_fib_lookup:
7228 		return &bpf_xdp_fib_lookup_proto;
7229 #ifdef CONFIG_INET
7230 	case BPF_FUNC_sk_lookup_udp:
7231 		return &bpf_xdp_sk_lookup_udp_proto;
7232 	case BPF_FUNC_sk_lookup_tcp:
7233 		return &bpf_xdp_sk_lookup_tcp_proto;
7234 	case BPF_FUNC_sk_release:
7235 		return &bpf_sk_release_proto;
7236 	case BPF_FUNC_skc_lookup_tcp:
7237 		return &bpf_xdp_skc_lookup_tcp_proto;
7238 	case BPF_FUNC_tcp_check_syncookie:
7239 		return &bpf_tcp_check_syncookie_proto;
7240 	case BPF_FUNC_tcp_gen_syncookie:
7241 		return &bpf_tcp_gen_syncookie_proto;
7242 #endif
7243 	default:
7244 		return bpf_sk_base_func_proto(func_id);
7245 	}
7246 }
7247 
7248 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7249 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7250 
7251 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7252 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7253 {
7254 	switch (func_id) {
7255 	case BPF_FUNC_setsockopt:
7256 		return &bpf_sock_ops_setsockopt_proto;
7257 	case BPF_FUNC_getsockopt:
7258 		return &bpf_sock_ops_getsockopt_proto;
7259 	case BPF_FUNC_sock_ops_cb_flags_set:
7260 		return &bpf_sock_ops_cb_flags_set_proto;
7261 	case BPF_FUNC_sock_map_update:
7262 		return &bpf_sock_map_update_proto;
7263 	case BPF_FUNC_sock_hash_update:
7264 		return &bpf_sock_hash_update_proto;
7265 	case BPF_FUNC_get_socket_cookie:
7266 		return &bpf_get_socket_cookie_sock_ops_proto;
7267 	case BPF_FUNC_get_local_storage:
7268 		return &bpf_get_local_storage_proto;
7269 	case BPF_FUNC_perf_event_output:
7270 		return &bpf_event_output_data_proto;
7271 	case BPF_FUNC_sk_storage_get:
7272 		return &bpf_sk_storage_get_proto;
7273 	case BPF_FUNC_sk_storage_delete:
7274 		return &bpf_sk_storage_delete_proto;
7275 #ifdef CONFIG_INET
7276 	case BPF_FUNC_load_hdr_opt:
7277 		return &bpf_sock_ops_load_hdr_opt_proto;
7278 	case BPF_FUNC_store_hdr_opt:
7279 		return &bpf_sock_ops_store_hdr_opt_proto;
7280 	case BPF_FUNC_reserve_hdr_opt:
7281 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7282 	case BPF_FUNC_tcp_sock:
7283 		return &bpf_tcp_sock_proto;
7284 #endif /* CONFIG_INET */
7285 	default:
7286 		return bpf_sk_base_func_proto(func_id);
7287 	}
7288 }
7289 
7290 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7291 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7292 
7293 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7294 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7295 {
7296 	switch (func_id) {
7297 	case BPF_FUNC_msg_redirect_map:
7298 		return &bpf_msg_redirect_map_proto;
7299 	case BPF_FUNC_msg_redirect_hash:
7300 		return &bpf_msg_redirect_hash_proto;
7301 	case BPF_FUNC_msg_apply_bytes:
7302 		return &bpf_msg_apply_bytes_proto;
7303 	case BPF_FUNC_msg_cork_bytes:
7304 		return &bpf_msg_cork_bytes_proto;
7305 	case BPF_FUNC_msg_pull_data:
7306 		return &bpf_msg_pull_data_proto;
7307 	case BPF_FUNC_msg_push_data:
7308 		return &bpf_msg_push_data_proto;
7309 	case BPF_FUNC_msg_pop_data:
7310 		return &bpf_msg_pop_data_proto;
7311 	case BPF_FUNC_perf_event_output:
7312 		return &bpf_event_output_data_proto;
7313 	case BPF_FUNC_get_current_uid_gid:
7314 		return &bpf_get_current_uid_gid_proto;
7315 	case BPF_FUNC_get_current_pid_tgid:
7316 		return &bpf_get_current_pid_tgid_proto;
7317 	case BPF_FUNC_sk_storage_get:
7318 		return &bpf_sk_storage_get_proto;
7319 	case BPF_FUNC_sk_storage_delete:
7320 		return &bpf_sk_storage_delete_proto;
7321 #ifdef CONFIG_CGROUPS
7322 	case BPF_FUNC_get_current_cgroup_id:
7323 		return &bpf_get_current_cgroup_id_proto;
7324 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7325 		return &bpf_get_current_ancestor_cgroup_id_proto;
7326 #endif
7327 #ifdef CONFIG_CGROUP_NET_CLASSID
7328 	case BPF_FUNC_get_cgroup_classid:
7329 		return &bpf_get_cgroup_classid_curr_proto;
7330 #endif
7331 	default:
7332 		return bpf_sk_base_func_proto(func_id);
7333 	}
7334 }
7335 
7336 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7337 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7338 
7339 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7340 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7341 {
7342 	switch (func_id) {
7343 	case BPF_FUNC_skb_store_bytes:
7344 		return &bpf_skb_store_bytes_proto;
7345 	case BPF_FUNC_skb_load_bytes:
7346 		return &bpf_skb_load_bytes_proto;
7347 	case BPF_FUNC_skb_pull_data:
7348 		return &sk_skb_pull_data_proto;
7349 	case BPF_FUNC_skb_change_tail:
7350 		return &sk_skb_change_tail_proto;
7351 	case BPF_FUNC_skb_change_head:
7352 		return &sk_skb_change_head_proto;
7353 	case BPF_FUNC_skb_adjust_room:
7354 		return &sk_skb_adjust_room_proto;
7355 	case BPF_FUNC_get_socket_cookie:
7356 		return &bpf_get_socket_cookie_proto;
7357 	case BPF_FUNC_get_socket_uid:
7358 		return &bpf_get_socket_uid_proto;
7359 	case BPF_FUNC_sk_redirect_map:
7360 		return &bpf_sk_redirect_map_proto;
7361 	case BPF_FUNC_sk_redirect_hash:
7362 		return &bpf_sk_redirect_hash_proto;
7363 	case BPF_FUNC_perf_event_output:
7364 		return &bpf_skb_event_output_proto;
7365 #ifdef CONFIG_INET
7366 	case BPF_FUNC_sk_lookup_tcp:
7367 		return &bpf_sk_lookup_tcp_proto;
7368 	case BPF_FUNC_sk_lookup_udp:
7369 		return &bpf_sk_lookup_udp_proto;
7370 	case BPF_FUNC_sk_release:
7371 		return &bpf_sk_release_proto;
7372 	case BPF_FUNC_skc_lookup_tcp:
7373 		return &bpf_skc_lookup_tcp_proto;
7374 #endif
7375 	default:
7376 		return bpf_sk_base_func_proto(func_id);
7377 	}
7378 }
7379 
7380 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7381 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7382 {
7383 	switch (func_id) {
7384 	case BPF_FUNC_skb_load_bytes:
7385 		return &bpf_flow_dissector_load_bytes_proto;
7386 	default:
7387 		return bpf_sk_base_func_proto(func_id);
7388 	}
7389 }
7390 
7391 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7392 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7393 {
7394 	switch (func_id) {
7395 	case BPF_FUNC_skb_load_bytes:
7396 		return &bpf_skb_load_bytes_proto;
7397 	case BPF_FUNC_skb_pull_data:
7398 		return &bpf_skb_pull_data_proto;
7399 	case BPF_FUNC_csum_diff:
7400 		return &bpf_csum_diff_proto;
7401 	case BPF_FUNC_get_cgroup_classid:
7402 		return &bpf_get_cgroup_classid_proto;
7403 	case BPF_FUNC_get_route_realm:
7404 		return &bpf_get_route_realm_proto;
7405 	case BPF_FUNC_get_hash_recalc:
7406 		return &bpf_get_hash_recalc_proto;
7407 	case BPF_FUNC_perf_event_output:
7408 		return &bpf_skb_event_output_proto;
7409 	case BPF_FUNC_get_smp_processor_id:
7410 		return &bpf_get_smp_processor_id_proto;
7411 	case BPF_FUNC_skb_under_cgroup:
7412 		return &bpf_skb_under_cgroup_proto;
7413 	default:
7414 		return bpf_sk_base_func_proto(func_id);
7415 	}
7416 }
7417 
7418 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7419 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7420 {
7421 	switch (func_id) {
7422 	case BPF_FUNC_lwt_push_encap:
7423 		return &bpf_lwt_in_push_encap_proto;
7424 	default:
7425 		return lwt_out_func_proto(func_id, prog);
7426 	}
7427 }
7428 
7429 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7430 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7431 {
7432 	switch (func_id) {
7433 	case BPF_FUNC_skb_get_tunnel_key:
7434 		return &bpf_skb_get_tunnel_key_proto;
7435 	case BPF_FUNC_skb_set_tunnel_key:
7436 		return bpf_get_skb_set_tunnel_proto(func_id);
7437 	case BPF_FUNC_skb_get_tunnel_opt:
7438 		return &bpf_skb_get_tunnel_opt_proto;
7439 	case BPF_FUNC_skb_set_tunnel_opt:
7440 		return bpf_get_skb_set_tunnel_proto(func_id);
7441 	case BPF_FUNC_redirect:
7442 		return &bpf_redirect_proto;
7443 	case BPF_FUNC_clone_redirect:
7444 		return &bpf_clone_redirect_proto;
7445 	case BPF_FUNC_skb_change_tail:
7446 		return &bpf_skb_change_tail_proto;
7447 	case BPF_FUNC_skb_change_head:
7448 		return &bpf_skb_change_head_proto;
7449 	case BPF_FUNC_skb_store_bytes:
7450 		return &bpf_skb_store_bytes_proto;
7451 	case BPF_FUNC_csum_update:
7452 		return &bpf_csum_update_proto;
7453 	case BPF_FUNC_csum_level:
7454 		return &bpf_csum_level_proto;
7455 	case BPF_FUNC_l3_csum_replace:
7456 		return &bpf_l3_csum_replace_proto;
7457 	case BPF_FUNC_l4_csum_replace:
7458 		return &bpf_l4_csum_replace_proto;
7459 	case BPF_FUNC_set_hash_invalid:
7460 		return &bpf_set_hash_invalid_proto;
7461 	case BPF_FUNC_lwt_push_encap:
7462 		return &bpf_lwt_xmit_push_encap_proto;
7463 	default:
7464 		return lwt_out_func_proto(func_id, prog);
7465 	}
7466 }
7467 
7468 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7469 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7470 {
7471 	switch (func_id) {
7472 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7473 	case BPF_FUNC_lwt_seg6_store_bytes:
7474 		return &bpf_lwt_seg6_store_bytes_proto;
7475 	case BPF_FUNC_lwt_seg6_action:
7476 		return &bpf_lwt_seg6_action_proto;
7477 	case BPF_FUNC_lwt_seg6_adjust_srh:
7478 		return &bpf_lwt_seg6_adjust_srh_proto;
7479 #endif
7480 	default:
7481 		return lwt_out_func_proto(func_id, prog);
7482 	}
7483 }
7484 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7485 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7486 				    const struct bpf_prog *prog,
7487 				    struct bpf_insn_access_aux *info)
7488 {
7489 	const int size_default = sizeof(__u32);
7490 
7491 	if (off < 0 || off >= sizeof(struct __sk_buff))
7492 		return false;
7493 
7494 	/* The verifier guarantees that size > 0. */
7495 	if (off % size != 0)
7496 		return false;
7497 
7498 	switch (off) {
7499 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7500 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7501 			return false;
7502 		break;
7503 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7504 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7505 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7506 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7507 	case bpf_ctx_range(struct __sk_buff, data):
7508 	case bpf_ctx_range(struct __sk_buff, data_meta):
7509 	case bpf_ctx_range(struct __sk_buff, data_end):
7510 		if (size != size_default)
7511 			return false;
7512 		break;
7513 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7514 		return false;
7515 	case bpf_ctx_range(struct __sk_buff, tstamp):
7516 		if (size != sizeof(__u64))
7517 			return false;
7518 		break;
7519 	case offsetof(struct __sk_buff, sk):
7520 		if (type == BPF_WRITE || size != sizeof(__u64))
7521 			return false;
7522 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7523 		break;
7524 	default:
7525 		/* Only narrow read access allowed for now. */
7526 		if (type == BPF_WRITE) {
7527 			if (size != size_default)
7528 				return false;
7529 		} else {
7530 			bpf_ctx_record_field_size(info, size_default);
7531 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7532 				return false;
7533 		}
7534 	}
7535 
7536 	return true;
7537 }
7538 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7539 static bool sk_filter_is_valid_access(int off, int size,
7540 				      enum bpf_access_type type,
7541 				      const struct bpf_prog *prog,
7542 				      struct bpf_insn_access_aux *info)
7543 {
7544 	switch (off) {
7545 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7546 	case bpf_ctx_range(struct __sk_buff, data):
7547 	case bpf_ctx_range(struct __sk_buff, data_meta):
7548 	case bpf_ctx_range(struct __sk_buff, data_end):
7549 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7550 	case bpf_ctx_range(struct __sk_buff, tstamp):
7551 	case bpf_ctx_range(struct __sk_buff, wire_len):
7552 		return false;
7553 	}
7554 
7555 	if (type == BPF_WRITE) {
7556 		switch (off) {
7557 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7558 			break;
7559 		default:
7560 			return false;
7561 		}
7562 	}
7563 
7564 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7565 }
7566 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7567 static bool cg_skb_is_valid_access(int off, int size,
7568 				   enum bpf_access_type type,
7569 				   const struct bpf_prog *prog,
7570 				   struct bpf_insn_access_aux *info)
7571 {
7572 	switch (off) {
7573 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7574 	case bpf_ctx_range(struct __sk_buff, data_meta):
7575 	case bpf_ctx_range(struct __sk_buff, wire_len):
7576 		return false;
7577 	case bpf_ctx_range(struct __sk_buff, data):
7578 	case bpf_ctx_range(struct __sk_buff, data_end):
7579 		if (!bpf_capable())
7580 			return false;
7581 		break;
7582 	}
7583 
7584 	if (type == BPF_WRITE) {
7585 		switch (off) {
7586 		case bpf_ctx_range(struct __sk_buff, mark):
7587 		case bpf_ctx_range(struct __sk_buff, priority):
7588 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7589 			break;
7590 		case bpf_ctx_range(struct __sk_buff, tstamp):
7591 			if (!bpf_capable())
7592 				return false;
7593 			break;
7594 		default:
7595 			return false;
7596 		}
7597 	}
7598 
7599 	switch (off) {
7600 	case bpf_ctx_range(struct __sk_buff, data):
7601 		info->reg_type = PTR_TO_PACKET;
7602 		break;
7603 	case bpf_ctx_range(struct __sk_buff, data_end):
7604 		info->reg_type = PTR_TO_PACKET_END;
7605 		break;
7606 	}
7607 
7608 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7609 }
7610 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7611 static bool lwt_is_valid_access(int off, int size,
7612 				enum bpf_access_type type,
7613 				const struct bpf_prog *prog,
7614 				struct bpf_insn_access_aux *info)
7615 {
7616 	switch (off) {
7617 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7618 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7619 	case bpf_ctx_range(struct __sk_buff, data_meta):
7620 	case bpf_ctx_range(struct __sk_buff, tstamp):
7621 	case bpf_ctx_range(struct __sk_buff, wire_len):
7622 		return false;
7623 	}
7624 
7625 	if (type == BPF_WRITE) {
7626 		switch (off) {
7627 		case bpf_ctx_range(struct __sk_buff, mark):
7628 		case bpf_ctx_range(struct __sk_buff, priority):
7629 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7630 			break;
7631 		default:
7632 			return false;
7633 		}
7634 	}
7635 
7636 	switch (off) {
7637 	case bpf_ctx_range(struct __sk_buff, data):
7638 		info->reg_type = PTR_TO_PACKET;
7639 		break;
7640 	case bpf_ctx_range(struct __sk_buff, data_end):
7641 		info->reg_type = PTR_TO_PACKET_END;
7642 		break;
7643 	}
7644 
7645 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7646 }
7647 
7648 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)7649 static bool __sock_filter_check_attach_type(int off,
7650 					    enum bpf_access_type access_type,
7651 					    enum bpf_attach_type attach_type)
7652 {
7653 	switch (off) {
7654 	case offsetof(struct bpf_sock, bound_dev_if):
7655 	case offsetof(struct bpf_sock, mark):
7656 	case offsetof(struct bpf_sock, priority):
7657 		switch (attach_type) {
7658 		case BPF_CGROUP_INET_SOCK_CREATE:
7659 		case BPF_CGROUP_INET_SOCK_RELEASE:
7660 			goto full_access;
7661 		default:
7662 			return false;
7663 		}
7664 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7665 		switch (attach_type) {
7666 		case BPF_CGROUP_INET4_POST_BIND:
7667 			goto read_only;
7668 		default:
7669 			return false;
7670 		}
7671 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7672 		switch (attach_type) {
7673 		case BPF_CGROUP_INET6_POST_BIND:
7674 			goto read_only;
7675 		default:
7676 			return false;
7677 		}
7678 	case bpf_ctx_range(struct bpf_sock, src_port):
7679 		switch (attach_type) {
7680 		case BPF_CGROUP_INET4_POST_BIND:
7681 		case BPF_CGROUP_INET6_POST_BIND:
7682 			goto read_only;
7683 		default:
7684 			return false;
7685 		}
7686 	}
7687 read_only:
7688 	return access_type == BPF_READ;
7689 full_access:
7690 	return true;
7691 }
7692 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7693 bool bpf_sock_common_is_valid_access(int off, int size,
7694 				     enum bpf_access_type type,
7695 				     struct bpf_insn_access_aux *info)
7696 {
7697 	switch (off) {
7698 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7699 		return false;
7700 	default:
7701 		return bpf_sock_is_valid_access(off, size, type, info);
7702 	}
7703 }
7704 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7705 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7706 			      struct bpf_insn_access_aux *info)
7707 {
7708 	const int size_default = sizeof(__u32);
7709 
7710 	if (off < 0 || off >= sizeof(struct bpf_sock))
7711 		return false;
7712 	if (off % size != 0)
7713 		return false;
7714 
7715 	switch (off) {
7716 	case offsetof(struct bpf_sock, state):
7717 	case offsetof(struct bpf_sock, family):
7718 	case offsetof(struct bpf_sock, type):
7719 	case offsetof(struct bpf_sock, protocol):
7720 	case offsetof(struct bpf_sock, dst_port):
7721 	case offsetof(struct bpf_sock, src_port):
7722 	case offsetof(struct bpf_sock, rx_queue_mapping):
7723 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7724 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7725 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7726 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7727 		bpf_ctx_record_field_size(info, size_default);
7728 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7729 	}
7730 
7731 	return size == size_default;
7732 }
7733 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7734 static bool sock_filter_is_valid_access(int off, int size,
7735 					enum bpf_access_type type,
7736 					const struct bpf_prog *prog,
7737 					struct bpf_insn_access_aux *info)
7738 {
7739 	if (!bpf_sock_is_valid_access(off, size, type, info))
7740 		return false;
7741 	return __sock_filter_check_attach_type(off, type,
7742 					       prog->expected_attach_type);
7743 }
7744 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7745 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7746 			     const struct bpf_prog *prog)
7747 {
7748 	/* Neither direct read nor direct write requires any preliminary
7749 	 * action.
7750 	 */
7751 	return 0;
7752 }
7753 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)7754 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7755 				const struct bpf_prog *prog, int drop_verdict)
7756 {
7757 	struct bpf_insn *insn = insn_buf;
7758 
7759 	if (!direct_write)
7760 		return 0;
7761 
7762 	/* if (!skb->cloned)
7763 	 *       goto start;
7764 	 *
7765 	 * (Fast-path, otherwise approximation that we might be
7766 	 *  a clone, do the rest in helper.)
7767 	 */
7768 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7769 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7770 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7771 
7772 	/* ret = bpf_skb_pull_data(skb, 0); */
7773 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7774 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7775 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7776 			       BPF_FUNC_skb_pull_data);
7777 	/* if (!ret)
7778 	 *      goto restore;
7779 	 * return TC_ACT_SHOT;
7780 	 */
7781 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7782 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7783 	*insn++ = BPF_EXIT_INSN();
7784 
7785 	/* restore: */
7786 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7787 	/* start: */
7788 	*insn++ = prog->insnsi[0];
7789 
7790 	return insn - insn_buf;
7791 }
7792 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)7793 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7794 			  struct bpf_insn *insn_buf)
7795 {
7796 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7797 	struct bpf_insn *insn = insn_buf;
7798 
7799 	if (!indirect) {
7800 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7801 	} else {
7802 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7803 		if (orig->imm)
7804 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7805 	}
7806 	/* We're guaranteed here that CTX is in R6. */
7807 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7808 
7809 	switch (BPF_SIZE(orig->code)) {
7810 	case BPF_B:
7811 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7812 		break;
7813 	case BPF_H:
7814 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7815 		break;
7816 	case BPF_W:
7817 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7818 		break;
7819 	}
7820 
7821 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7822 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7823 	*insn++ = BPF_EXIT_INSN();
7824 
7825 	return insn - insn_buf;
7826 }
7827 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7828 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7829 			       const struct bpf_prog *prog)
7830 {
7831 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7832 }
7833 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7834 static bool tc_cls_act_is_valid_access(int off, int size,
7835 				       enum bpf_access_type type,
7836 				       const struct bpf_prog *prog,
7837 				       struct bpf_insn_access_aux *info)
7838 {
7839 	if (type == BPF_WRITE) {
7840 		switch (off) {
7841 		case bpf_ctx_range(struct __sk_buff, mark):
7842 		case bpf_ctx_range(struct __sk_buff, tc_index):
7843 		case bpf_ctx_range(struct __sk_buff, priority):
7844 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7845 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7846 		case bpf_ctx_range(struct __sk_buff, tstamp):
7847 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7848 			break;
7849 		default:
7850 			return false;
7851 		}
7852 	}
7853 
7854 	switch (off) {
7855 	case bpf_ctx_range(struct __sk_buff, data):
7856 		info->reg_type = PTR_TO_PACKET;
7857 		break;
7858 	case bpf_ctx_range(struct __sk_buff, data_meta):
7859 		info->reg_type = PTR_TO_PACKET_META;
7860 		break;
7861 	case bpf_ctx_range(struct __sk_buff, data_end):
7862 		info->reg_type = PTR_TO_PACKET_END;
7863 		break;
7864 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7865 		return false;
7866 	}
7867 
7868 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7869 }
7870 
__is_valid_xdp_access(int off,int size)7871 static bool __is_valid_xdp_access(int off, int size)
7872 {
7873 	if (off < 0 || off >= sizeof(struct xdp_md))
7874 		return false;
7875 	if (off % size != 0)
7876 		return false;
7877 	if (size != sizeof(__u32))
7878 		return false;
7879 
7880 	return true;
7881 }
7882 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7883 static bool xdp_is_valid_access(int off, int size,
7884 				enum bpf_access_type type,
7885 				const struct bpf_prog *prog,
7886 				struct bpf_insn_access_aux *info)
7887 {
7888 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7889 		switch (off) {
7890 		case offsetof(struct xdp_md, egress_ifindex):
7891 			return false;
7892 		}
7893 	}
7894 
7895 	if (type == BPF_WRITE) {
7896 		if (bpf_prog_is_dev_bound(prog->aux)) {
7897 			switch (off) {
7898 			case offsetof(struct xdp_md, rx_queue_index):
7899 				return __is_valid_xdp_access(off, size);
7900 			}
7901 		}
7902 		return false;
7903 	}
7904 
7905 	switch (off) {
7906 	case offsetof(struct xdp_md, data):
7907 		info->reg_type = PTR_TO_PACKET;
7908 		break;
7909 	case offsetof(struct xdp_md, data_meta):
7910 		info->reg_type = PTR_TO_PACKET_META;
7911 		break;
7912 	case offsetof(struct xdp_md, data_end):
7913 		info->reg_type = PTR_TO_PACKET_END;
7914 		break;
7915 	}
7916 
7917 	return __is_valid_xdp_access(off, size);
7918 }
7919 
bpf_warn_invalid_xdp_action(u32 act)7920 void bpf_warn_invalid_xdp_action(u32 act)
7921 {
7922 	const u32 act_max = XDP_REDIRECT;
7923 
7924 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
7925 		     act > act_max ? "Illegal" : "Driver unsupported",
7926 		     act);
7927 }
7928 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7929 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7930 static bool sock_addr_is_valid_access(int off, int size,
7931 				      enum bpf_access_type type,
7932 				      const struct bpf_prog *prog,
7933 				      struct bpf_insn_access_aux *info)
7934 {
7935 	const int size_default = sizeof(__u32);
7936 
7937 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7938 		return false;
7939 	if (off % size != 0)
7940 		return false;
7941 
7942 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7943 	 * versa.
7944 	 */
7945 	switch (off) {
7946 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7947 		switch (prog->expected_attach_type) {
7948 		case BPF_CGROUP_INET4_BIND:
7949 		case BPF_CGROUP_INET4_CONNECT:
7950 		case BPF_CGROUP_INET4_GETPEERNAME:
7951 		case BPF_CGROUP_INET4_GETSOCKNAME:
7952 		case BPF_CGROUP_UDP4_SENDMSG:
7953 		case BPF_CGROUP_UDP4_RECVMSG:
7954 			break;
7955 		default:
7956 			return false;
7957 		}
7958 		break;
7959 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7960 		switch (prog->expected_attach_type) {
7961 		case BPF_CGROUP_INET6_BIND:
7962 		case BPF_CGROUP_INET6_CONNECT:
7963 		case BPF_CGROUP_INET6_GETPEERNAME:
7964 		case BPF_CGROUP_INET6_GETSOCKNAME:
7965 		case BPF_CGROUP_UDP6_SENDMSG:
7966 		case BPF_CGROUP_UDP6_RECVMSG:
7967 			break;
7968 		default:
7969 			return false;
7970 		}
7971 		break;
7972 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7973 		switch (prog->expected_attach_type) {
7974 		case BPF_CGROUP_UDP4_SENDMSG:
7975 			break;
7976 		default:
7977 			return false;
7978 		}
7979 		break;
7980 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7981 				msg_src_ip6[3]):
7982 		switch (prog->expected_attach_type) {
7983 		case BPF_CGROUP_UDP6_SENDMSG:
7984 			break;
7985 		default:
7986 			return false;
7987 		}
7988 		break;
7989 	}
7990 
7991 	switch (off) {
7992 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7993 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7994 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7995 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7996 				msg_src_ip6[3]):
7997 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7998 		if (type == BPF_READ) {
7999 			bpf_ctx_record_field_size(info, size_default);
8000 
8001 			if (bpf_ctx_wide_access_ok(off, size,
8002 						   struct bpf_sock_addr,
8003 						   user_ip6))
8004 				return true;
8005 
8006 			if (bpf_ctx_wide_access_ok(off, size,
8007 						   struct bpf_sock_addr,
8008 						   msg_src_ip6))
8009 				return true;
8010 
8011 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8012 				return false;
8013 		} else {
8014 			if (bpf_ctx_wide_access_ok(off, size,
8015 						   struct bpf_sock_addr,
8016 						   user_ip6))
8017 				return true;
8018 
8019 			if (bpf_ctx_wide_access_ok(off, size,
8020 						   struct bpf_sock_addr,
8021 						   msg_src_ip6))
8022 				return true;
8023 
8024 			if (size != size_default)
8025 				return false;
8026 		}
8027 		break;
8028 	case offsetof(struct bpf_sock_addr, sk):
8029 		if (type != BPF_READ)
8030 			return false;
8031 		if (size != sizeof(__u64))
8032 			return false;
8033 		info->reg_type = PTR_TO_SOCKET;
8034 		break;
8035 	default:
8036 		if (type == BPF_READ) {
8037 			if (size != size_default)
8038 				return false;
8039 		} else {
8040 			return false;
8041 		}
8042 	}
8043 
8044 	return true;
8045 }
8046 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8047 static bool sock_ops_is_valid_access(int off, int size,
8048 				     enum bpf_access_type type,
8049 				     const struct bpf_prog *prog,
8050 				     struct bpf_insn_access_aux *info)
8051 {
8052 	const int size_default = sizeof(__u32);
8053 
8054 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8055 		return false;
8056 
8057 	/* The verifier guarantees that size > 0. */
8058 	if (off % size != 0)
8059 		return false;
8060 
8061 	if (type == BPF_WRITE) {
8062 		switch (off) {
8063 		case offsetof(struct bpf_sock_ops, reply):
8064 		case offsetof(struct bpf_sock_ops, sk_txhash):
8065 			if (size != size_default)
8066 				return false;
8067 			break;
8068 		default:
8069 			return false;
8070 		}
8071 	} else {
8072 		switch (off) {
8073 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8074 					bytes_acked):
8075 			if (size != sizeof(__u64))
8076 				return false;
8077 			break;
8078 		case offsetof(struct bpf_sock_ops, sk):
8079 			if (size != sizeof(__u64))
8080 				return false;
8081 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8082 			break;
8083 		case offsetof(struct bpf_sock_ops, skb_data):
8084 			if (size != sizeof(__u64))
8085 				return false;
8086 			info->reg_type = PTR_TO_PACKET;
8087 			break;
8088 		case offsetof(struct bpf_sock_ops, skb_data_end):
8089 			if (size != sizeof(__u64))
8090 				return false;
8091 			info->reg_type = PTR_TO_PACKET_END;
8092 			break;
8093 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8094 			bpf_ctx_record_field_size(info, size_default);
8095 			return bpf_ctx_narrow_access_ok(off, size,
8096 							size_default);
8097 		default:
8098 			if (size != size_default)
8099 				return false;
8100 			break;
8101 		}
8102 	}
8103 
8104 	return true;
8105 }
8106 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8107 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8108 			   const struct bpf_prog *prog)
8109 {
8110 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8111 }
8112 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8113 static bool sk_skb_is_valid_access(int off, int size,
8114 				   enum bpf_access_type type,
8115 				   const struct bpf_prog *prog,
8116 				   struct bpf_insn_access_aux *info)
8117 {
8118 	switch (off) {
8119 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8120 	case bpf_ctx_range(struct __sk_buff, data_meta):
8121 	case bpf_ctx_range(struct __sk_buff, tstamp):
8122 	case bpf_ctx_range(struct __sk_buff, wire_len):
8123 		return false;
8124 	}
8125 
8126 	if (type == BPF_WRITE) {
8127 		switch (off) {
8128 		case bpf_ctx_range(struct __sk_buff, tc_index):
8129 		case bpf_ctx_range(struct __sk_buff, priority):
8130 			break;
8131 		default:
8132 			return false;
8133 		}
8134 	}
8135 
8136 	switch (off) {
8137 	case bpf_ctx_range(struct __sk_buff, mark):
8138 		return false;
8139 	case bpf_ctx_range(struct __sk_buff, data):
8140 		info->reg_type = PTR_TO_PACKET;
8141 		break;
8142 	case bpf_ctx_range(struct __sk_buff, data_end):
8143 		info->reg_type = PTR_TO_PACKET_END;
8144 		break;
8145 	}
8146 
8147 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8148 }
8149 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8150 static bool sk_msg_is_valid_access(int off, int size,
8151 				   enum bpf_access_type type,
8152 				   const struct bpf_prog *prog,
8153 				   struct bpf_insn_access_aux *info)
8154 {
8155 	if (type == BPF_WRITE)
8156 		return false;
8157 
8158 	if (off % size != 0)
8159 		return false;
8160 
8161 	switch (off) {
8162 	case offsetof(struct sk_msg_md, data):
8163 		info->reg_type = PTR_TO_PACKET;
8164 		if (size != sizeof(__u64))
8165 			return false;
8166 		break;
8167 	case offsetof(struct sk_msg_md, data_end):
8168 		info->reg_type = PTR_TO_PACKET_END;
8169 		if (size != sizeof(__u64))
8170 			return false;
8171 		break;
8172 	case offsetof(struct sk_msg_md, sk):
8173 		if (size != sizeof(__u64))
8174 			return false;
8175 		info->reg_type = PTR_TO_SOCKET;
8176 		break;
8177 	case bpf_ctx_range(struct sk_msg_md, family):
8178 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8179 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8180 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8181 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8182 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8183 	case bpf_ctx_range(struct sk_msg_md, local_port):
8184 	case bpf_ctx_range(struct sk_msg_md, size):
8185 		if (size != sizeof(__u32))
8186 			return false;
8187 		break;
8188 	default:
8189 		return false;
8190 	}
8191 	return true;
8192 }
8193 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8194 static bool flow_dissector_is_valid_access(int off, int size,
8195 					   enum bpf_access_type type,
8196 					   const struct bpf_prog *prog,
8197 					   struct bpf_insn_access_aux *info)
8198 {
8199 	const int size_default = sizeof(__u32);
8200 
8201 	if (off < 0 || off >= sizeof(struct __sk_buff))
8202 		return false;
8203 
8204 	if (type == BPF_WRITE)
8205 		return false;
8206 
8207 	switch (off) {
8208 	case bpf_ctx_range(struct __sk_buff, data):
8209 		if (size != size_default)
8210 			return false;
8211 		info->reg_type = PTR_TO_PACKET;
8212 		return true;
8213 	case bpf_ctx_range(struct __sk_buff, data_end):
8214 		if (size != size_default)
8215 			return false;
8216 		info->reg_type = PTR_TO_PACKET_END;
8217 		return true;
8218 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8219 		if (size != sizeof(__u64))
8220 			return false;
8221 		info->reg_type = PTR_TO_FLOW_KEYS;
8222 		return true;
8223 	default:
8224 		return false;
8225 	}
8226 }
8227 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8228 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8229 					     const struct bpf_insn *si,
8230 					     struct bpf_insn *insn_buf,
8231 					     struct bpf_prog *prog,
8232 					     u32 *target_size)
8233 
8234 {
8235 	struct bpf_insn *insn = insn_buf;
8236 
8237 	switch (si->off) {
8238 	case offsetof(struct __sk_buff, data):
8239 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8240 				      si->dst_reg, si->src_reg,
8241 				      offsetof(struct bpf_flow_dissector, data));
8242 		break;
8243 
8244 	case offsetof(struct __sk_buff, data_end):
8245 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8246 				      si->dst_reg, si->src_reg,
8247 				      offsetof(struct bpf_flow_dissector, data_end));
8248 		break;
8249 
8250 	case offsetof(struct __sk_buff, flow_keys):
8251 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8252 				      si->dst_reg, si->src_reg,
8253 				      offsetof(struct bpf_flow_dissector, flow_keys));
8254 		break;
8255 	}
8256 
8257 	return insn - insn_buf;
8258 }
8259 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8260 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8261 						  struct bpf_insn *insn)
8262 {
8263 	/* si->dst_reg = skb_shinfo(SKB); */
8264 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8265 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8266 			      BPF_REG_AX, si->src_reg,
8267 			      offsetof(struct sk_buff, end));
8268 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8269 			      si->dst_reg, si->src_reg,
8270 			      offsetof(struct sk_buff, head));
8271 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8272 #else
8273 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8274 			      si->dst_reg, si->src_reg,
8275 			      offsetof(struct sk_buff, end));
8276 #endif
8277 
8278 	return insn;
8279 }
8280 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8281 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8282 				  const struct bpf_insn *si,
8283 				  struct bpf_insn *insn_buf,
8284 				  struct bpf_prog *prog, u32 *target_size)
8285 {
8286 	struct bpf_insn *insn = insn_buf;
8287 	int off;
8288 
8289 	switch (si->off) {
8290 	case offsetof(struct __sk_buff, len):
8291 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8292 				      bpf_target_off(struct sk_buff, len, 4,
8293 						     target_size));
8294 		break;
8295 
8296 	case offsetof(struct __sk_buff, protocol):
8297 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8298 				      bpf_target_off(struct sk_buff, protocol, 2,
8299 						     target_size));
8300 		break;
8301 
8302 	case offsetof(struct __sk_buff, vlan_proto):
8303 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8304 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8305 						     target_size));
8306 		break;
8307 
8308 	case offsetof(struct __sk_buff, priority):
8309 		if (type == BPF_WRITE)
8310 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8311 					      bpf_target_off(struct sk_buff, priority, 4,
8312 							     target_size));
8313 		else
8314 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8315 					      bpf_target_off(struct sk_buff, priority, 4,
8316 							     target_size));
8317 		break;
8318 
8319 	case offsetof(struct __sk_buff, ingress_ifindex):
8320 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8321 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8322 						     target_size));
8323 		break;
8324 
8325 	case offsetof(struct __sk_buff, ifindex):
8326 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8327 				      si->dst_reg, si->src_reg,
8328 				      offsetof(struct sk_buff, dev));
8329 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8330 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8331 				      bpf_target_off(struct net_device, ifindex, 4,
8332 						     target_size));
8333 		break;
8334 
8335 	case offsetof(struct __sk_buff, hash):
8336 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8337 				      bpf_target_off(struct sk_buff, hash, 4,
8338 						     target_size));
8339 		break;
8340 
8341 	case offsetof(struct __sk_buff, mark):
8342 		if (type == BPF_WRITE)
8343 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8344 					      bpf_target_off(struct sk_buff, mark, 4,
8345 							     target_size));
8346 		else
8347 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8348 					      bpf_target_off(struct sk_buff, mark, 4,
8349 							     target_size));
8350 		break;
8351 
8352 	case offsetof(struct __sk_buff, pkt_type):
8353 		*target_size = 1;
8354 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8355 				      PKT_TYPE_OFFSET());
8356 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8357 #ifdef __BIG_ENDIAN_BITFIELD
8358 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8359 #endif
8360 		break;
8361 
8362 	case offsetof(struct __sk_buff, queue_mapping):
8363 		if (type == BPF_WRITE) {
8364 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8365 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8366 					      bpf_target_off(struct sk_buff,
8367 							     queue_mapping,
8368 							     2, target_size));
8369 		} else {
8370 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8371 					      bpf_target_off(struct sk_buff,
8372 							     queue_mapping,
8373 							     2, target_size));
8374 		}
8375 		break;
8376 
8377 	case offsetof(struct __sk_buff, vlan_present):
8378 		*target_size = 1;
8379 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8380 				      PKT_VLAN_PRESENT_OFFSET());
8381 		if (PKT_VLAN_PRESENT_BIT)
8382 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8383 		if (PKT_VLAN_PRESENT_BIT < 7)
8384 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8385 		break;
8386 
8387 	case offsetof(struct __sk_buff, vlan_tci):
8388 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8389 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8390 						     target_size));
8391 		break;
8392 
8393 	case offsetof(struct __sk_buff, cb[0]) ...
8394 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8395 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8396 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8397 			      offsetof(struct qdisc_skb_cb, data)) %
8398 			     sizeof(__u64));
8399 
8400 		prog->cb_access = 1;
8401 		off  = si->off;
8402 		off -= offsetof(struct __sk_buff, cb[0]);
8403 		off += offsetof(struct sk_buff, cb);
8404 		off += offsetof(struct qdisc_skb_cb, data);
8405 		if (type == BPF_WRITE)
8406 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8407 					      si->src_reg, off);
8408 		else
8409 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8410 					      si->src_reg, off);
8411 		break;
8412 
8413 	case offsetof(struct __sk_buff, tc_classid):
8414 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8415 
8416 		off  = si->off;
8417 		off -= offsetof(struct __sk_buff, tc_classid);
8418 		off += offsetof(struct sk_buff, cb);
8419 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8420 		*target_size = 2;
8421 		if (type == BPF_WRITE)
8422 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8423 					      si->src_reg, off);
8424 		else
8425 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8426 					      si->src_reg, off);
8427 		break;
8428 
8429 	case offsetof(struct __sk_buff, data):
8430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8431 				      si->dst_reg, si->src_reg,
8432 				      offsetof(struct sk_buff, data));
8433 		break;
8434 
8435 	case offsetof(struct __sk_buff, data_meta):
8436 		off  = si->off;
8437 		off -= offsetof(struct __sk_buff, data_meta);
8438 		off += offsetof(struct sk_buff, cb);
8439 		off += offsetof(struct bpf_skb_data_end, data_meta);
8440 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8441 				      si->src_reg, off);
8442 		break;
8443 
8444 	case offsetof(struct __sk_buff, data_end):
8445 		off  = si->off;
8446 		off -= offsetof(struct __sk_buff, data_end);
8447 		off += offsetof(struct sk_buff, cb);
8448 		off += offsetof(struct bpf_skb_data_end, data_end);
8449 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8450 				      si->src_reg, off);
8451 		break;
8452 
8453 	case offsetof(struct __sk_buff, tc_index):
8454 #ifdef CONFIG_NET_SCHED
8455 		if (type == BPF_WRITE)
8456 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8457 					      bpf_target_off(struct sk_buff, tc_index, 2,
8458 							     target_size));
8459 		else
8460 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8461 					      bpf_target_off(struct sk_buff, tc_index, 2,
8462 							     target_size));
8463 #else
8464 		*target_size = 2;
8465 		if (type == BPF_WRITE)
8466 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8467 		else
8468 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8469 #endif
8470 		break;
8471 
8472 	case offsetof(struct __sk_buff, napi_id):
8473 #if defined(CONFIG_NET_RX_BUSY_POLL)
8474 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8475 				      bpf_target_off(struct sk_buff, napi_id, 4,
8476 						     target_size));
8477 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8478 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8479 #else
8480 		*target_size = 4;
8481 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8482 #endif
8483 		break;
8484 	case offsetof(struct __sk_buff, family):
8485 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8486 
8487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8488 				      si->dst_reg, si->src_reg,
8489 				      offsetof(struct sk_buff, sk));
8490 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8491 				      bpf_target_off(struct sock_common,
8492 						     skc_family,
8493 						     2, target_size));
8494 		break;
8495 	case offsetof(struct __sk_buff, remote_ip4):
8496 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8497 
8498 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8499 				      si->dst_reg, si->src_reg,
8500 				      offsetof(struct sk_buff, sk));
8501 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8502 				      bpf_target_off(struct sock_common,
8503 						     skc_daddr,
8504 						     4, target_size));
8505 		break;
8506 	case offsetof(struct __sk_buff, local_ip4):
8507 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8508 					  skc_rcv_saddr) != 4);
8509 
8510 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8511 				      si->dst_reg, si->src_reg,
8512 				      offsetof(struct sk_buff, sk));
8513 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8514 				      bpf_target_off(struct sock_common,
8515 						     skc_rcv_saddr,
8516 						     4, target_size));
8517 		break;
8518 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8519 	     offsetof(struct __sk_buff, remote_ip6[3]):
8520 #if IS_ENABLED(CONFIG_IPV6)
8521 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8522 					  skc_v6_daddr.s6_addr32[0]) != 4);
8523 
8524 		off = si->off;
8525 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8526 
8527 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8528 				      si->dst_reg, si->src_reg,
8529 				      offsetof(struct sk_buff, sk));
8530 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8531 				      offsetof(struct sock_common,
8532 					       skc_v6_daddr.s6_addr32[0]) +
8533 				      off);
8534 #else
8535 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8536 #endif
8537 		break;
8538 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8539 	     offsetof(struct __sk_buff, local_ip6[3]):
8540 #if IS_ENABLED(CONFIG_IPV6)
8541 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8542 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8543 
8544 		off = si->off;
8545 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8546 
8547 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8548 				      si->dst_reg, si->src_reg,
8549 				      offsetof(struct sk_buff, sk));
8550 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8551 				      offsetof(struct sock_common,
8552 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8553 				      off);
8554 #else
8555 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8556 #endif
8557 		break;
8558 
8559 	case offsetof(struct __sk_buff, remote_port):
8560 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8561 
8562 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8563 				      si->dst_reg, si->src_reg,
8564 				      offsetof(struct sk_buff, sk));
8565 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8566 				      bpf_target_off(struct sock_common,
8567 						     skc_dport,
8568 						     2, target_size));
8569 #ifndef __BIG_ENDIAN_BITFIELD
8570 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8571 #endif
8572 		break;
8573 
8574 	case offsetof(struct __sk_buff, local_port):
8575 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8576 
8577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8578 				      si->dst_reg, si->src_reg,
8579 				      offsetof(struct sk_buff, sk));
8580 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8581 				      bpf_target_off(struct sock_common,
8582 						     skc_num, 2, target_size));
8583 		break;
8584 
8585 	case offsetof(struct __sk_buff, tstamp):
8586 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8587 
8588 		if (type == BPF_WRITE)
8589 			*insn++ = BPF_STX_MEM(BPF_DW,
8590 					      si->dst_reg, si->src_reg,
8591 					      bpf_target_off(struct sk_buff,
8592 							     tstamp, 8,
8593 							     target_size));
8594 		else
8595 			*insn++ = BPF_LDX_MEM(BPF_DW,
8596 					      si->dst_reg, si->src_reg,
8597 					      bpf_target_off(struct sk_buff,
8598 							     tstamp, 8,
8599 							     target_size));
8600 		break;
8601 
8602 	case offsetof(struct __sk_buff, gso_segs):
8603 		insn = bpf_convert_shinfo_access(si, insn);
8604 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8605 				      si->dst_reg, si->dst_reg,
8606 				      bpf_target_off(struct skb_shared_info,
8607 						     gso_segs, 2,
8608 						     target_size));
8609 		break;
8610 	case offsetof(struct __sk_buff, gso_size):
8611 		insn = bpf_convert_shinfo_access(si, insn);
8612 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8613 				      si->dst_reg, si->dst_reg,
8614 				      bpf_target_off(struct skb_shared_info,
8615 						     gso_size, 2,
8616 						     target_size));
8617 		break;
8618 	case offsetof(struct __sk_buff, wire_len):
8619 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8620 
8621 		off = si->off;
8622 		off -= offsetof(struct __sk_buff, wire_len);
8623 		off += offsetof(struct sk_buff, cb);
8624 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8625 		*target_size = 4;
8626 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8627 		break;
8628 
8629 	case offsetof(struct __sk_buff, sk):
8630 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8631 				      si->dst_reg, si->src_reg,
8632 				      offsetof(struct sk_buff, sk));
8633 		break;
8634 	}
8635 
8636 	return insn - insn_buf;
8637 }
8638 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8639 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8640 				const struct bpf_insn *si,
8641 				struct bpf_insn *insn_buf,
8642 				struct bpf_prog *prog, u32 *target_size)
8643 {
8644 	struct bpf_insn *insn = insn_buf;
8645 	int off;
8646 
8647 	switch (si->off) {
8648 	case offsetof(struct bpf_sock, bound_dev_if):
8649 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8650 
8651 		if (type == BPF_WRITE)
8652 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8653 					offsetof(struct sock, sk_bound_dev_if));
8654 		else
8655 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8656 				      offsetof(struct sock, sk_bound_dev_if));
8657 		break;
8658 
8659 	case offsetof(struct bpf_sock, mark):
8660 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8661 
8662 		if (type == BPF_WRITE)
8663 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8664 					offsetof(struct sock, sk_mark));
8665 		else
8666 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8667 				      offsetof(struct sock, sk_mark));
8668 		break;
8669 
8670 	case offsetof(struct bpf_sock, priority):
8671 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8672 
8673 		if (type == BPF_WRITE)
8674 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8675 					offsetof(struct sock, sk_priority));
8676 		else
8677 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8678 				      offsetof(struct sock, sk_priority));
8679 		break;
8680 
8681 	case offsetof(struct bpf_sock, family):
8682 		*insn++ = BPF_LDX_MEM(
8683 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8684 			si->dst_reg, si->src_reg,
8685 			bpf_target_off(struct sock_common,
8686 				       skc_family,
8687 				       sizeof_field(struct sock_common,
8688 						    skc_family),
8689 				       target_size));
8690 		break;
8691 
8692 	case offsetof(struct bpf_sock, type):
8693 		*insn++ = BPF_LDX_MEM(
8694 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8695 			si->dst_reg, si->src_reg,
8696 			bpf_target_off(struct sock, sk_type,
8697 				       sizeof_field(struct sock, sk_type),
8698 				       target_size));
8699 		break;
8700 
8701 	case offsetof(struct bpf_sock, protocol):
8702 		*insn++ = BPF_LDX_MEM(
8703 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8704 			si->dst_reg, si->src_reg,
8705 			bpf_target_off(struct sock, sk_protocol,
8706 				       sizeof_field(struct sock, sk_protocol),
8707 				       target_size));
8708 		break;
8709 
8710 	case offsetof(struct bpf_sock, src_ip4):
8711 		*insn++ = BPF_LDX_MEM(
8712 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8713 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8714 				       sizeof_field(struct sock_common,
8715 						    skc_rcv_saddr),
8716 				       target_size));
8717 		break;
8718 
8719 	case offsetof(struct bpf_sock, dst_ip4):
8720 		*insn++ = BPF_LDX_MEM(
8721 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8722 			bpf_target_off(struct sock_common, skc_daddr,
8723 				       sizeof_field(struct sock_common,
8724 						    skc_daddr),
8725 				       target_size));
8726 		break;
8727 
8728 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8729 #if IS_ENABLED(CONFIG_IPV6)
8730 		off = si->off;
8731 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8732 		*insn++ = BPF_LDX_MEM(
8733 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8734 			bpf_target_off(
8735 				struct sock_common,
8736 				skc_v6_rcv_saddr.s6_addr32[0],
8737 				sizeof_field(struct sock_common,
8738 					     skc_v6_rcv_saddr.s6_addr32[0]),
8739 				target_size) + off);
8740 #else
8741 		(void)off;
8742 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8743 #endif
8744 		break;
8745 
8746 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8747 #if IS_ENABLED(CONFIG_IPV6)
8748 		off = si->off;
8749 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8750 		*insn++ = BPF_LDX_MEM(
8751 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8752 			bpf_target_off(struct sock_common,
8753 				       skc_v6_daddr.s6_addr32[0],
8754 				       sizeof_field(struct sock_common,
8755 						    skc_v6_daddr.s6_addr32[0]),
8756 				       target_size) + off);
8757 #else
8758 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8759 		*target_size = 4;
8760 #endif
8761 		break;
8762 
8763 	case offsetof(struct bpf_sock, src_port):
8764 		*insn++ = BPF_LDX_MEM(
8765 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8766 			si->dst_reg, si->src_reg,
8767 			bpf_target_off(struct sock_common, skc_num,
8768 				       sizeof_field(struct sock_common,
8769 						    skc_num),
8770 				       target_size));
8771 		break;
8772 
8773 	case offsetof(struct bpf_sock, dst_port):
8774 		*insn++ = BPF_LDX_MEM(
8775 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8776 			si->dst_reg, si->src_reg,
8777 			bpf_target_off(struct sock_common, skc_dport,
8778 				       sizeof_field(struct sock_common,
8779 						    skc_dport),
8780 				       target_size));
8781 		break;
8782 
8783 	case offsetof(struct bpf_sock, state):
8784 		*insn++ = BPF_LDX_MEM(
8785 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8786 			si->dst_reg, si->src_reg,
8787 			bpf_target_off(struct sock_common, skc_state,
8788 				       sizeof_field(struct sock_common,
8789 						    skc_state),
8790 				       target_size));
8791 		break;
8792 	case offsetof(struct bpf_sock, rx_queue_mapping):
8793 #ifdef CONFIG_XPS
8794 		*insn++ = BPF_LDX_MEM(
8795 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8796 			si->dst_reg, si->src_reg,
8797 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8798 				       sizeof_field(struct sock,
8799 						    sk_rx_queue_mapping),
8800 				       target_size));
8801 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8802 				      1);
8803 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8804 #else
8805 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8806 		*target_size = 2;
8807 #endif
8808 		break;
8809 	}
8810 
8811 	return insn - insn_buf;
8812 }
8813 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8814 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8815 					 const struct bpf_insn *si,
8816 					 struct bpf_insn *insn_buf,
8817 					 struct bpf_prog *prog, u32 *target_size)
8818 {
8819 	struct bpf_insn *insn = insn_buf;
8820 
8821 	switch (si->off) {
8822 	case offsetof(struct __sk_buff, ifindex):
8823 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8824 				      si->dst_reg, si->src_reg,
8825 				      offsetof(struct sk_buff, dev));
8826 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8827 				      bpf_target_off(struct net_device, ifindex, 4,
8828 						     target_size));
8829 		break;
8830 	default:
8831 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8832 					      target_size);
8833 	}
8834 
8835 	return insn - insn_buf;
8836 }
8837 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8838 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8839 				  const struct bpf_insn *si,
8840 				  struct bpf_insn *insn_buf,
8841 				  struct bpf_prog *prog, u32 *target_size)
8842 {
8843 	struct bpf_insn *insn = insn_buf;
8844 
8845 	switch (si->off) {
8846 	case offsetof(struct xdp_md, data):
8847 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8848 				      si->dst_reg, si->src_reg,
8849 				      offsetof(struct xdp_buff, data));
8850 		break;
8851 	case offsetof(struct xdp_md, data_meta):
8852 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8853 				      si->dst_reg, si->src_reg,
8854 				      offsetof(struct xdp_buff, data_meta));
8855 		break;
8856 	case offsetof(struct xdp_md, data_end):
8857 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8858 				      si->dst_reg, si->src_reg,
8859 				      offsetof(struct xdp_buff, data_end));
8860 		break;
8861 	case offsetof(struct xdp_md, ingress_ifindex):
8862 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8863 				      si->dst_reg, si->src_reg,
8864 				      offsetof(struct xdp_buff, rxq));
8865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8866 				      si->dst_reg, si->dst_reg,
8867 				      offsetof(struct xdp_rxq_info, dev));
8868 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8869 				      offsetof(struct net_device, ifindex));
8870 		break;
8871 	case offsetof(struct xdp_md, rx_queue_index):
8872 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8873 				      si->dst_reg, si->src_reg,
8874 				      offsetof(struct xdp_buff, rxq));
8875 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8876 				      offsetof(struct xdp_rxq_info,
8877 					       queue_index));
8878 		break;
8879 	case offsetof(struct xdp_md, egress_ifindex):
8880 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8881 				      si->dst_reg, si->src_reg,
8882 				      offsetof(struct xdp_buff, txq));
8883 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8884 				      si->dst_reg, si->dst_reg,
8885 				      offsetof(struct xdp_txq_info, dev));
8886 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8887 				      offsetof(struct net_device, ifindex));
8888 		break;
8889 	}
8890 
8891 	return insn - insn_buf;
8892 }
8893 
8894 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8895  * context Structure, F is Field in context structure that contains a pointer
8896  * to Nested Structure of type NS that has the field NF.
8897  *
8898  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8899  * sure that SIZE is not greater than actual size of S.F.NF.
8900  *
8901  * If offset OFF is provided, the load happens from that offset relative to
8902  * offset of NF.
8903  */
8904 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8905 	do {								       \
8906 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8907 				      si->src_reg, offsetof(S, F));	       \
8908 		*insn++ = BPF_LDX_MEM(					       \
8909 			SIZE, si->dst_reg, si->dst_reg,			       \
8910 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8911 				       target_size)			       \
8912 				+ OFF);					       \
8913 	} while (0)
8914 
8915 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8916 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8917 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8918 
8919 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8920  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8921  *
8922  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8923  * "register" since two registers available in convert_ctx_access are not
8924  * enough: we can't override neither SRC, since it contains value to store, nor
8925  * DST since it contains pointer to context that may be used by later
8926  * instructions. But we need a temporary place to save pointer to nested
8927  * structure whose field we want to store to.
8928  */
8929 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8930 	do {								       \
8931 		int tmp_reg = BPF_REG_9;				       \
8932 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8933 			--tmp_reg;					       \
8934 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8935 			--tmp_reg;					       \
8936 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8937 				      offsetof(S, TF));			       \
8938 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8939 				      si->dst_reg, offsetof(S, F));	       \
8940 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8941 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8942 				       target_size)			       \
8943 				+ OFF);					       \
8944 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8945 				      offsetof(S, TF));			       \
8946 	} while (0)
8947 
8948 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8949 						      TF)		       \
8950 	do {								       \
8951 		if (type == BPF_WRITE) {				       \
8952 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8953 							 OFF, TF);	       \
8954 		} else {						       \
8955 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
8956 				S, NS, F, NF, SIZE, OFF);  \
8957 		}							       \
8958 	} while (0)
8959 
8960 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
8961 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
8962 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8963 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8964 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8965 					const struct bpf_insn *si,
8966 					struct bpf_insn *insn_buf,
8967 					struct bpf_prog *prog, u32 *target_size)
8968 {
8969 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8970 	struct bpf_insn *insn = insn_buf;
8971 
8972 	switch (si->off) {
8973 	case offsetof(struct bpf_sock_addr, user_family):
8974 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8975 					    struct sockaddr, uaddr, sa_family);
8976 		break;
8977 
8978 	case offsetof(struct bpf_sock_addr, user_ip4):
8979 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8980 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8981 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8982 		break;
8983 
8984 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8985 		off = si->off;
8986 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8987 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8988 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8989 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8990 			tmp_reg);
8991 		break;
8992 
8993 	case offsetof(struct bpf_sock_addr, user_port):
8994 		/* To get port we need to know sa_family first and then treat
8995 		 * sockaddr as either sockaddr_in or sockaddr_in6.
8996 		 * Though we can simplify since port field has same offset and
8997 		 * size in both structures.
8998 		 * Here we check this invariant and use just one of the
8999 		 * structures if it's true.
9000 		 */
9001 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9002 			     offsetof(struct sockaddr_in6, sin6_port));
9003 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9004 			     sizeof_field(struct sockaddr_in6, sin6_port));
9005 		/* Account for sin6_port being smaller than user_port. */
9006 		port_size = min(port_size, BPF_LDST_BYTES(si));
9007 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9008 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9009 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9010 		break;
9011 
9012 	case offsetof(struct bpf_sock_addr, family):
9013 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9014 					    struct sock, sk, sk_family);
9015 		break;
9016 
9017 	case offsetof(struct bpf_sock_addr, type):
9018 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9019 					    struct sock, sk, sk_type);
9020 		break;
9021 
9022 	case offsetof(struct bpf_sock_addr, protocol):
9023 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9024 					    struct sock, sk, sk_protocol);
9025 		break;
9026 
9027 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9028 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9029 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9030 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9031 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9032 		break;
9033 
9034 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9035 				msg_src_ip6[3]):
9036 		off = si->off;
9037 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9038 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9039 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9040 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9041 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9042 		break;
9043 	case offsetof(struct bpf_sock_addr, sk):
9044 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9045 				      si->dst_reg, si->src_reg,
9046 				      offsetof(struct bpf_sock_addr_kern, sk));
9047 		break;
9048 	}
9049 
9050 	return insn - insn_buf;
9051 }
9052 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9053 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9054 				       const struct bpf_insn *si,
9055 				       struct bpf_insn *insn_buf,
9056 				       struct bpf_prog *prog,
9057 				       u32 *target_size)
9058 {
9059 	struct bpf_insn *insn = insn_buf;
9060 	int off;
9061 
9062 /* Helper macro for adding read access to tcp_sock or sock fields. */
9063 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9064 	do {								      \
9065 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9066 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9067 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9068 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9069 			reg--;						      \
9070 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9071 			reg--;						      \
9072 		if (si->dst_reg == si->src_reg) {			      \
9073 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9074 					  offsetof(struct bpf_sock_ops_kern,  \
9075 					  temp));			      \
9076 			fullsock_reg = reg;				      \
9077 			jmp += 2;					      \
9078 		}							      \
9079 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9080 						struct bpf_sock_ops_kern,     \
9081 						is_fullsock),		      \
9082 				      fullsock_reg, si->src_reg,	      \
9083 				      offsetof(struct bpf_sock_ops_kern,      \
9084 					       is_fullsock));		      \
9085 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9086 		if (si->dst_reg == si->src_reg)				      \
9087 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9088 				      offsetof(struct bpf_sock_ops_kern,      \
9089 				      temp));				      \
9090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9091 						struct bpf_sock_ops_kern, sk),\
9092 				      si->dst_reg, si->src_reg,		      \
9093 				      offsetof(struct bpf_sock_ops_kern, sk));\
9094 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9095 						       OBJ_FIELD),	      \
9096 				      si->dst_reg, si->dst_reg,		      \
9097 				      offsetof(OBJ, OBJ_FIELD));	      \
9098 		if (si->dst_reg == si->src_reg)	{			      \
9099 			*insn++ = BPF_JMP_A(1);				      \
9100 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9101 				      offsetof(struct bpf_sock_ops_kern,      \
9102 				      temp));				      \
9103 		}							      \
9104 	} while (0)
9105 
9106 #define SOCK_OPS_GET_SK()							      \
9107 	do {								      \
9108 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9109 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9110 			reg--;						      \
9111 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9112 			reg--;						      \
9113 		if (si->dst_reg == si->src_reg) {			      \
9114 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9115 					  offsetof(struct bpf_sock_ops_kern,  \
9116 					  temp));			      \
9117 			fullsock_reg = reg;				      \
9118 			jmp += 2;					      \
9119 		}							      \
9120 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9121 						struct bpf_sock_ops_kern,     \
9122 						is_fullsock),		      \
9123 				      fullsock_reg, si->src_reg,	      \
9124 				      offsetof(struct bpf_sock_ops_kern,      \
9125 					       is_fullsock));		      \
9126 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9127 		if (si->dst_reg == si->src_reg)				      \
9128 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9129 				      offsetof(struct bpf_sock_ops_kern,      \
9130 				      temp));				      \
9131 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9132 						struct bpf_sock_ops_kern, sk),\
9133 				      si->dst_reg, si->src_reg,		      \
9134 				      offsetof(struct bpf_sock_ops_kern, sk));\
9135 		if (si->dst_reg == si->src_reg)	{			      \
9136 			*insn++ = BPF_JMP_A(1);				      \
9137 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9138 				      offsetof(struct bpf_sock_ops_kern,      \
9139 				      temp));				      \
9140 		}							      \
9141 	} while (0)
9142 
9143 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9144 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9145 
9146 /* Helper macro for adding write access to tcp_sock or sock fields.
9147  * The macro is called with two registers, dst_reg which contains a pointer
9148  * to ctx (context) and src_reg which contains the value that should be
9149  * stored. However, we need an additional register since we cannot overwrite
9150  * dst_reg because it may be used later in the program.
9151  * Instead we "borrow" one of the other register. We first save its value
9152  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9153  * it at the end of the macro.
9154  */
9155 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9156 	do {								      \
9157 		int reg = BPF_REG_9;					      \
9158 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9159 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9160 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9161 			reg--;						      \
9162 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9163 			reg--;						      \
9164 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9165 				      offsetof(struct bpf_sock_ops_kern,      \
9166 					       temp));			      \
9167 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9168 						struct bpf_sock_ops_kern,     \
9169 						is_fullsock),		      \
9170 				      reg, si->dst_reg,			      \
9171 				      offsetof(struct bpf_sock_ops_kern,      \
9172 					       is_fullsock));		      \
9173 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9175 						struct bpf_sock_ops_kern, sk),\
9176 				      reg, si->dst_reg,			      \
9177 				      offsetof(struct bpf_sock_ops_kern, sk));\
9178 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9179 				      reg, si->src_reg,			      \
9180 				      offsetof(OBJ, OBJ_FIELD));	      \
9181 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9182 				      offsetof(struct bpf_sock_ops_kern,      \
9183 					       temp));			      \
9184 	} while (0)
9185 
9186 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9187 	do {								      \
9188 		if (TYPE == BPF_WRITE)					      \
9189 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9190 		else							      \
9191 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9192 	} while (0)
9193 
9194 	if (insn > insn_buf)
9195 		return insn - insn_buf;
9196 
9197 	switch (si->off) {
9198 	case offsetof(struct bpf_sock_ops, op):
9199 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9200 						       op),
9201 				      si->dst_reg, si->src_reg,
9202 				      offsetof(struct bpf_sock_ops_kern, op));
9203 		break;
9204 
9205 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9206 	     offsetof(struct bpf_sock_ops, replylong[3]):
9207 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9208 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9209 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9210 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9211 		off = si->off;
9212 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9213 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9214 		if (type == BPF_WRITE)
9215 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9216 					      off);
9217 		else
9218 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9219 					      off);
9220 		break;
9221 
9222 	case offsetof(struct bpf_sock_ops, family):
9223 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9224 
9225 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9226 					      struct bpf_sock_ops_kern, sk),
9227 				      si->dst_reg, si->src_reg,
9228 				      offsetof(struct bpf_sock_ops_kern, sk));
9229 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9230 				      offsetof(struct sock_common, skc_family));
9231 		break;
9232 
9233 	case offsetof(struct bpf_sock_ops, remote_ip4):
9234 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9235 
9236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9237 						struct bpf_sock_ops_kern, sk),
9238 				      si->dst_reg, si->src_reg,
9239 				      offsetof(struct bpf_sock_ops_kern, sk));
9240 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9241 				      offsetof(struct sock_common, skc_daddr));
9242 		break;
9243 
9244 	case offsetof(struct bpf_sock_ops, local_ip4):
9245 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9246 					  skc_rcv_saddr) != 4);
9247 
9248 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9249 					      struct bpf_sock_ops_kern, sk),
9250 				      si->dst_reg, si->src_reg,
9251 				      offsetof(struct bpf_sock_ops_kern, sk));
9252 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9253 				      offsetof(struct sock_common,
9254 					       skc_rcv_saddr));
9255 		break;
9256 
9257 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9258 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9259 #if IS_ENABLED(CONFIG_IPV6)
9260 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9261 					  skc_v6_daddr.s6_addr32[0]) != 4);
9262 
9263 		off = si->off;
9264 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9266 						struct bpf_sock_ops_kern, sk),
9267 				      si->dst_reg, si->src_reg,
9268 				      offsetof(struct bpf_sock_ops_kern, sk));
9269 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9270 				      offsetof(struct sock_common,
9271 					       skc_v6_daddr.s6_addr32[0]) +
9272 				      off);
9273 #else
9274 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9275 #endif
9276 		break;
9277 
9278 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9279 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9280 #if IS_ENABLED(CONFIG_IPV6)
9281 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9282 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9283 
9284 		off = si->off;
9285 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9286 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9287 						struct bpf_sock_ops_kern, sk),
9288 				      si->dst_reg, si->src_reg,
9289 				      offsetof(struct bpf_sock_ops_kern, sk));
9290 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9291 				      offsetof(struct sock_common,
9292 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9293 				      off);
9294 #else
9295 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9296 #endif
9297 		break;
9298 
9299 	case offsetof(struct bpf_sock_ops, remote_port):
9300 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9301 
9302 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9303 						struct bpf_sock_ops_kern, sk),
9304 				      si->dst_reg, si->src_reg,
9305 				      offsetof(struct bpf_sock_ops_kern, sk));
9306 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9307 				      offsetof(struct sock_common, skc_dport));
9308 #ifndef __BIG_ENDIAN_BITFIELD
9309 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9310 #endif
9311 		break;
9312 
9313 	case offsetof(struct bpf_sock_ops, local_port):
9314 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9315 
9316 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9317 						struct bpf_sock_ops_kern, sk),
9318 				      si->dst_reg, si->src_reg,
9319 				      offsetof(struct bpf_sock_ops_kern, sk));
9320 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9321 				      offsetof(struct sock_common, skc_num));
9322 		break;
9323 
9324 	case offsetof(struct bpf_sock_ops, is_fullsock):
9325 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9326 						struct bpf_sock_ops_kern,
9327 						is_fullsock),
9328 				      si->dst_reg, si->src_reg,
9329 				      offsetof(struct bpf_sock_ops_kern,
9330 					       is_fullsock));
9331 		break;
9332 
9333 	case offsetof(struct bpf_sock_ops, state):
9334 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9335 
9336 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9337 						struct bpf_sock_ops_kern, sk),
9338 				      si->dst_reg, si->src_reg,
9339 				      offsetof(struct bpf_sock_ops_kern, sk));
9340 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9341 				      offsetof(struct sock_common, skc_state));
9342 		break;
9343 
9344 	case offsetof(struct bpf_sock_ops, rtt_min):
9345 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9346 			     sizeof(struct minmax));
9347 		BUILD_BUG_ON(sizeof(struct minmax) <
9348 			     sizeof(struct minmax_sample));
9349 
9350 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9351 						struct bpf_sock_ops_kern, sk),
9352 				      si->dst_reg, si->src_reg,
9353 				      offsetof(struct bpf_sock_ops_kern, sk));
9354 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9355 				      offsetof(struct tcp_sock, rtt_min) +
9356 				      sizeof_field(struct minmax_sample, t));
9357 		break;
9358 
9359 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9360 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9361 				   struct tcp_sock);
9362 		break;
9363 
9364 	case offsetof(struct bpf_sock_ops, sk_txhash):
9365 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9366 					  struct sock, type);
9367 		break;
9368 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9369 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9370 		break;
9371 	case offsetof(struct bpf_sock_ops, srtt_us):
9372 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9373 		break;
9374 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9375 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9376 		break;
9377 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9378 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9379 		break;
9380 	case offsetof(struct bpf_sock_ops, snd_nxt):
9381 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9382 		break;
9383 	case offsetof(struct bpf_sock_ops, snd_una):
9384 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9385 		break;
9386 	case offsetof(struct bpf_sock_ops, mss_cache):
9387 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9388 		break;
9389 	case offsetof(struct bpf_sock_ops, ecn_flags):
9390 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9391 		break;
9392 	case offsetof(struct bpf_sock_ops, rate_delivered):
9393 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9394 		break;
9395 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9396 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9397 		break;
9398 	case offsetof(struct bpf_sock_ops, packets_out):
9399 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9400 		break;
9401 	case offsetof(struct bpf_sock_ops, retrans_out):
9402 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9403 		break;
9404 	case offsetof(struct bpf_sock_ops, total_retrans):
9405 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9406 		break;
9407 	case offsetof(struct bpf_sock_ops, segs_in):
9408 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9409 		break;
9410 	case offsetof(struct bpf_sock_ops, data_segs_in):
9411 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9412 		break;
9413 	case offsetof(struct bpf_sock_ops, segs_out):
9414 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9415 		break;
9416 	case offsetof(struct bpf_sock_ops, data_segs_out):
9417 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9418 		break;
9419 	case offsetof(struct bpf_sock_ops, lost_out):
9420 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9421 		break;
9422 	case offsetof(struct bpf_sock_ops, sacked_out):
9423 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9424 		break;
9425 	case offsetof(struct bpf_sock_ops, bytes_received):
9426 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9427 		break;
9428 	case offsetof(struct bpf_sock_ops, bytes_acked):
9429 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9430 		break;
9431 	case offsetof(struct bpf_sock_ops, sk):
9432 		SOCK_OPS_GET_SK();
9433 		break;
9434 	case offsetof(struct bpf_sock_ops, skb_data_end):
9435 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9436 						       skb_data_end),
9437 				      si->dst_reg, si->src_reg,
9438 				      offsetof(struct bpf_sock_ops_kern,
9439 					       skb_data_end));
9440 		break;
9441 	case offsetof(struct bpf_sock_ops, skb_data):
9442 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9443 						       skb),
9444 				      si->dst_reg, si->src_reg,
9445 				      offsetof(struct bpf_sock_ops_kern,
9446 					       skb));
9447 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9448 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9449 				      si->dst_reg, si->dst_reg,
9450 				      offsetof(struct sk_buff, data));
9451 		break;
9452 	case offsetof(struct bpf_sock_ops, skb_len):
9453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9454 						       skb),
9455 				      si->dst_reg, si->src_reg,
9456 				      offsetof(struct bpf_sock_ops_kern,
9457 					       skb));
9458 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9459 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9460 				      si->dst_reg, si->dst_reg,
9461 				      offsetof(struct sk_buff, len));
9462 		break;
9463 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9464 		off = offsetof(struct sk_buff, cb);
9465 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9466 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9468 						       skb),
9469 				      si->dst_reg, si->src_reg,
9470 				      offsetof(struct bpf_sock_ops_kern,
9471 					       skb));
9472 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9473 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9474 						       tcp_flags),
9475 				      si->dst_reg, si->dst_reg, off);
9476 		break;
9477 	}
9478 	return insn - insn_buf;
9479 }
9480 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9481 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9482 				     const struct bpf_insn *si,
9483 				     struct bpf_insn *insn_buf,
9484 				     struct bpf_prog *prog, u32 *target_size)
9485 {
9486 	struct bpf_insn *insn = insn_buf;
9487 	int off;
9488 
9489 	switch (si->off) {
9490 	case offsetof(struct __sk_buff, data_end):
9491 		off  = si->off;
9492 		off -= offsetof(struct __sk_buff, data_end);
9493 		off += offsetof(struct sk_buff, cb);
9494 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9495 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9496 				      si->src_reg, off);
9497 		break;
9498 	case offsetof(struct __sk_buff, cb[0]) ...
9499 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9500 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9501 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9502 			      offsetof(struct sk_skb_cb, data)) %
9503 			     sizeof(__u64));
9504 
9505 		prog->cb_access = 1;
9506 		off  = si->off;
9507 		off -= offsetof(struct __sk_buff, cb[0]);
9508 		off += offsetof(struct sk_buff, cb);
9509 		off += offsetof(struct sk_skb_cb, data);
9510 		if (type == BPF_WRITE)
9511 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9512 					      si->src_reg, off);
9513 		else
9514 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9515 					      si->src_reg, off);
9516 		break;
9517 
9518 
9519 	default:
9520 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9521 					      target_size);
9522 	}
9523 
9524 	return insn - insn_buf;
9525 }
9526 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9527 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9528 				     const struct bpf_insn *si,
9529 				     struct bpf_insn *insn_buf,
9530 				     struct bpf_prog *prog, u32 *target_size)
9531 {
9532 	struct bpf_insn *insn = insn_buf;
9533 #if IS_ENABLED(CONFIG_IPV6)
9534 	int off;
9535 #endif
9536 
9537 	/* convert ctx uses the fact sg element is first in struct */
9538 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9539 
9540 	switch (si->off) {
9541 	case offsetof(struct sk_msg_md, data):
9542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9543 				      si->dst_reg, si->src_reg,
9544 				      offsetof(struct sk_msg, data));
9545 		break;
9546 	case offsetof(struct sk_msg_md, data_end):
9547 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9548 				      si->dst_reg, si->src_reg,
9549 				      offsetof(struct sk_msg, data_end));
9550 		break;
9551 	case offsetof(struct sk_msg_md, family):
9552 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9553 
9554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9555 					      struct sk_msg, sk),
9556 				      si->dst_reg, si->src_reg,
9557 				      offsetof(struct sk_msg, sk));
9558 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9559 				      offsetof(struct sock_common, skc_family));
9560 		break;
9561 
9562 	case offsetof(struct sk_msg_md, remote_ip4):
9563 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9564 
9565 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9566 						struct sk_msg, sk),
9567 				      si->dst_reg, si->src_reg,
9568 				      offsetof(struct sk_msg, sk));
9569 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9570 				      offsetof(struct sock_common, skc_daddr));
9571 		break;
9572 
9573 	case offsetof(struct sk_msg_md, local_ip4):
9574 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9575 					  skc_rcv_saddr) != 4);
9576 
9577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9578 					      struct sk_msg, sk),
9579 				      si->dst_reg, si->src_reg,
9580 				      offsetof(struct sk_msg, sk));
9581 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9582 				      offsetof(struct sock_common,
9583 					       skc_rcv_saddr));
9584 		break;
9585 
9586 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9587 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9588 #if IS_ENABLED(CONFIG_IPV6)
9589 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9590 					  skc_v6_daddr.s6_addr32[0]) != 4);
9591 
9592 		off = si->off;
9593 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9594 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9595 						struct sk_msg, sk),
9596 				      si->dst_reg, si->src_reg,
9597 				      offsetof(struct sk_msg, sk));
9598 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9599 				      offsetof(struct sock_common,
9600 					       skc_v6_daddr.s6_addr32[0]) +
9601 				      off);
9602 #else
9603 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9604 #endif
9605 		break;
9606 
9607 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9608 	     offsetof(struct sk_msg_md, local_ip6[3]):
9609 #if IS_ENABLED(CONFIG_IPV6)
9610 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9611 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9612 
9613 		off = si->off;
9614 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9616 						struct sk_msg, sk),
9617 				      si->dst_reg, si->src_reg,
9618 				      offsetof(struct sk_msg, sk));
9619 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9620 				      offsetof(struct sock_common,
9621 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9622 				      off);
9623 #else
9624 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9625 #endif
9626 		break;
9627 
9628 	case offsetof(struct sk_msg_md, remote_port):
9629 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9630 
9631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9632 						struct sk_msg, sk),
9633 				      si->dst_reg, si->src_reg,
9634 				      offsetof(struct sk_msg, sk));
9635 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9636 				      offsetof(struct sock_common, skc_dport));
9637 #ifndef __BIG_ENDIAN_BITFIELD
9638 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9639 #endif
9640 		break;
9641 
9642 	case offsetof(struct sk_msg_md, local_port):
9643 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9644 
9645 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9646 						struct sk_msg, sk),
9647 				      si->dst_reg, si->src_reg,
9648 				      offsetof(struct sk_msg, sk));
9649 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9650 				      offsetof(struct sock_common, skc_num));
9651 		break;
9652 
9653 	case offsetof(struct sk_msg_md, size):
9654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9655 				      si->dst_reg, si->src_reg,
9656 				      offsetof(struct sk_msg_sg, size));
9657 		break;
9658 
9659 	case offsetof(struct sk_msg_md, sk):
9660 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9661 				      si->dst_reg, si->src_reg,
9662 				      offsetof(struct sk_msg, sk));
9663 		break;
9664 	}
9665 
9666 	return insn - insn_buf;
9667 }
9668 
9669 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9670 	.get_func_proto		= sk_filter_func_proto,
9671 	.is_valid_access	= sk_filter_is_valid_access,
9672 	.convert_ctx_access	= bpf_convert_ctx_access,
9673 	.gen_ld_abs		= bpf_gen_ld_abs,
9674 };
9675 
9676 const struct bpf_prog_ops sk_filter_prog_ops = {
9677 	.test_run		= bpf_prog_test_run_skb,
9678 };
9679 
9680 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9681 	.get_func_proto		= tc_cls_act_func_proto,
9682 	.is_valid_access	= tc_cls_act_is_valid_access,
9683 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9684 	.gen_prologue		= tc_cls_act_prologue,
9685 	.gen_ld_abs		= bpf_gen_ld_abs,
9686 };
9687 
9688 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9689 	.test_run		= bpf_prog_test_run_skb,
9690 };
9691 
9692 const struct bpf_verifier_ops xdp_verifier_ops = {
9693 	.get_func_proto		= xdp_func_proto,
9694 	.is_valid_access	= xdp_is_valid_access,
9695 	.convert_ctx_access	= xdp_convert_ctx_access,
9696 	.gen_prologue		= bpf_noop_prologue,
9697 };
9698 
9699 const struct bpf_prog_ops xdp_prog_ops = {
9700 	.test_run		= bpf_prog_test_run_xdp,
9701 };
9702 
9703 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9704 	.get_func_proto		= cg_skb_func_proto,
9705 	.is_valid_access	= cg_skb_is_valid_access,
9706 	.convert_ctx_access	= bpf_convert_ctx_access,
9707 };
9708 
9709 const struct bpf_prog_ops cg_skb_prog_ops = {
9710 	.test_run		= bpf_prog_test_run_skb,
9711 };
9712 
9713 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9714 	.get_func_proto		= lwt_in_func_proto,
9715 	.is_valid_access	= lwt_is_valid_access,
9716 	.convert_ctx_access	= bpf_convert_ctx_access,
9717 };
9718 
9719 const struct bpf_prog_ops lwt_in_prog_ops = {
9720 	.test_run		= bpf_prog_test_run_skb,
9721 };
9722 
9723 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9724 	.get_func_proto		= lwt_out_func_proto,
9725 	.is_valid_access	= lwt_is_valid_access,
9726 	.convert_ctx_access	= bpf_convert_ctx_access,
9727 };
9728 
9729 const struct bpf_prog_ops lwt_out_prog_ops = {
9730 	.test_run		= bpf_prog_test_run_skb,
9731 };
9732 
9733 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9734 	.get_func_proto		= lwt_xmit_func_proto,
9735 	.is_valid_access	= lwt_is_valid_access,
9736 	.convert_ctx_access	= bpf_convert_ctx_access,
9737 	.gen_prologue		= tc_cls_act_prologue,
9738 };
9739 
9740 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9741 	.test_run		= bpf_prog_test_run_skb,
9742 };
9743 
9744 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9745 	.get_func_proto		= lwt_seg6local_func_proto,
9746 	.is_valid_access	= lwt_is_valid_access,
9747 	.convert_ctx_access	= bpf_convert_ctx_access,
9748 };
9749 
9750 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9751 	.test_run		= bpf_prog_test_run_skb,
9752 };
9753 
9754 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9755 	.get_func_proto		= sock_filter_func_proto,
9756 	.is_valid_access	= sock_filter_is_valid_access,
9757 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9758 };
9759 
9760 const struct bpf_prog_ops cg_sock_prog_ops = {
9761 };
9762 
9763 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9764 	.get_func_proto		= sock_addr_func_proto,
9765 	.is_valid_access	= sock_addr_is_valid_access,
9766 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9767 };
9768 
9769 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9770 };
9771 
9772 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9773 	.get_func_proto		= sock_ops_func_proto,
9774 	.is_valid_access	= sock_ops_is_valid_access,
9775 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9776 };
9777 
9778 const struct bpf_prog_ops sock_ops_prog_ops = {
9779 };
9780 
9781 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9782 	.get_func_proto		= sk_skb_func_proto,
9783 	.is_valid_access	= sk_skb_is_valid_access,
9784 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9785 	.gen_prologue		= sk_skb_prologue,
9786 };
9787 
9788 const struct bpf_prog_ops sk_skb_prog_ops = {
9789 };
9790 
9791 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9792 	.get_func_proto		= sk_msg_func_proto,
9793 	.is_valid_access	= sk_msg_is_valid_access,
9794 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9795 	.gen_prologue		= bpf_noop_prologue,
9796 };
9797 
9798 const struct bpf_prog_ops sk_msg_prog_ops = {
9799 };
9800 
9801 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9802 	.get_func_proto		= flow_dissector_func_proto,
9803 	.is_valid_access	= flow_dissector_is_valid_access,
9804 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9805 };
9806 
9807 const struct bpf_prog_ops flow_dissector_prog_ops = {
9808 	.test_run		= bpf_prog_test_run_flow_dissector,
9809 };
9810 
sk_detach_filter(struct sock * sk)9811 int sk_detach_filter(struct sock *sk)
9812 {
9813 	int ret = -ENOENT;
9814 	struct sk_filter *filter;
9815 
9816 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9817 		return -EPERM;
9818 
9819 	filter = rcu_dereference_protected(sk->sk_filter,
9820 					   lockdep_sock_is_held(sk));
9821 	if (filter) {
9822 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9823 		sk_filter_uncharge(sk, filter);
9824 		ret = 0;
9825 	}
9826 
9827 	return ret;
9828 }
9829 EXPORT_SYMBOL_GPL(sk_detach_filter);
9830 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)9831 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9832 		  unsigned int len)
9833 {
9834 	struct sock_fprog_kern *fprog;
9835 	struct sk_filter *filter;
9836 	int ret = 0;
9837 
9838 	lock_sock(sk);
9839 	filter = rcu_dereference_protected(sk->sk_filter,
9840 					   lockdep_sock_is_held(sk));
9841 	if (!filter)
9842 		goto out;
9843 
9844 	/* We're copying the filter that has been originally attached,
9845 	 * so no conversion/decode needed anymore. eBPF programs that
9846 	 * have no original program cannot be dumped through this.
9847 	 */
9848 	ret = -EACCES;
9849 	fprog = filter->prog->orig_prog;
9850 	if (!fprog)
9851 		goto out;
9852 
9853 	ret = fprog->len;
9854 	if (!len)
9855 		/* User space only enquires number of filter blocks. */
9856 		goto out;
9857 
9858 	ret = -EINVAL;
9859 	if (len < fprog->len)
9860 		goto out;
9861 
9862 	ret = -EFAULT;
9863 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9864 		goto out;
9865 
9866 	/* Instead of bytes, the API requests to return the number
9867 	 * of filter blocks.
9868 	 */
9869 	ret = fprog->len;
9870 out:
9871 	release_sock(sk);
9872 	return ret;
9873 }
9874 
9875 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)9876 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9877 				    struct sock_reuseport *reuse,
9878 				    struct sock *sk, struct sk_buff *skb,
9879 				    u32 hash)
9880 {
9881 	reuse_kern->skb = skb;
9882 	reuse_kern->sk = sk;
9883 	reuse_kern->selected_sk = NULL;
9884 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9885 	reuse_kern->hash = hash;
9886 	reuse_kern->reuseport_id = reuse->reuseport_id;
9887 	reuse_kern->bind_inany = reuse->bind_inany;
9888 }
9889 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)9890 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9891 				  struct bpf_prog *prog, struct sk_buff *skb,
9892 				  u32 hash)
9893 {
9894 	struct sk_reuseport_kern reuse_kern;
9895 	enum sk_action action;
9896 
9897 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9898 	action = BPF_PROG_RUN(prog, &reuse_kern);
9899 
9900 	if (action == SK_PASS)
9901 		return reuse_kern.selected_sk;
9902 	else
9903 		return ERR_PTR(-ECONNREFUSED);
9904 }
9905 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)9906 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9907 	   struct bpf_map *, map, void *, key, u32, flags)
9908 {
9909 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9910 	struct sock_reuseport *reuse;
9911 	struct sock *selected_sk;
9912 
9913 	selected_sk = map->ops->map_lookup_elem(map, key);
9914 	if (!selected_sk)
9915 		return -ENOENT;
9916 
9917 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9918 	if (!reuse) {
9919 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9920 		if (sk_is_refcounted(selected_sk))
9921 			sock_put(selected_sk);
9922 
9923 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9924 		 * The only (!reuse) case here is - the sk has already been
9925 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9926 		 *
9927 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9928 		 * the sk may never be in the reuseport group to begin with.
9929 		 */
9930 		return is_sockarray ? -ENOENT : -EINVAL;
9931 	}
9932 
9933 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9934 		struct sock *sk = reuse_kern->sk;
9935 
9936 		if (sk->sk_protocol != selected_sk->sk_protocol)
9937 			return -EPROTOTYPE;
9938 		else if (sk->sk_family != selected_sk->sk_family)
9939 			return -EAFNOSUPPORT;
9940 
9941 		/* Catch all. Likely bound to a different sockaddr. */
9942 		return -EBADFD;
9943 	}
9944 
9945 	reuse_kern->selected_sk = selected_sk;
9946 
9947 	return 0;
9948 }
9949 
9950 static const struct bpf_func_proto sk_select_reuseport_proto = {
9951 	.func           = sk_select_reuseport,
9952 	.gpl_only       = false,
9953 	.ret_type       = RET_INTEGER,
9954 	.arg1_type	= ARG_PTR_TO_CTX,
9955 	.arg2_type      = ARG_CONST_MAP_PTR,
9956 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
9957 	.arg4_type	= ARG_ANYTHING,
9958 };
9959 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)9960 BPF_CALL_4(sk_reuseport_load_bytes,
9961 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9962 	   void *, to, u32, len)
9963 {
9964 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9965 }
9966 
9967 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9968 	.func		= sk_reuseport_load_bytes,
9969 	.gpl_only	= false,
9970 	.ret_type	= RET_INTEGER,
9971 	.arg1_type	= ARG_PTR_TO_CTX,
9972 	.arg2_type	= ARG_ANYTHING,
9973 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9974 	.arg4_type	= ARG_CONST_SIZE,
9975 };
9976 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)9977 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9978 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9979 	   void *, to, u32, len, u32, start_header)
9980 {
9981 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9982 					       len, start_header);
9983 }
9984 
9985 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9986 	.func		= sk_reuseport_load_bytes_relative,
9987 	.gpl_only	= false,
9988 	.ret_type	= RET_INTEGER,
9989 	.arg1_type	= ARG_PTR_TO_CTX,
9990 	.arg2_type	= ARG_ANYTHING,
9991 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9992 	.arg4_type	= ARG_CONST_SIZE,
9993 	.arg5_type	= ARG_ANYTHING,
9994 };
9995 
9996 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)9997 sk_reuseport_func_proto(enum bpf_func_id func_id,
9998 			const struct bpf_prog *prog)
9999 {
10000 	switch (func_id) {
10001 	case BPF_FUNC_sk_select_reuseport:
10002 		return &sk_select_reuseport_proto;
10003 	case BPF_FUNC_skb_load_bytes:
10004 		return &sk_reuseport_load_bytes_proto;
10005 	case BPF_FUNC_skb_load_bytes_relative:
10006 		return &sk_reuseport_load_bytes_relative_proto;
10007 	default:
10008 		return bpf_base_func_proto(func_id);
10009 	}
10010 }
10011 
10012 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10013 sk_reuseport_is_valid_access(int off, int size,
10014 			     enum bpf_access_type type,
10015 			     const struct bpf_prog *prog,
10016 			     struct bpf_insn_access_aux *info)
10017 {
10018 	const u32 size_default = sizeof(__u32);
10019 
10020 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10021 	    off % size || type != BPF_READ)
10022 		return false;
10023 
10024 	switch (off) {
10025 	case offsetof(struct sk_reuseport_md, data):
10026 		info->reg_type = PTR_TO_PACKET;
10027 		return size == sizeof(__u64);
10028 
10029 	case offsetof(struct sk_reuseport_md, data_end):
10030 		info->reg_type = PTR_TO_PACKET_END;
10031 		return size == sizeof(__u64);
10032 
10033 	case offsetof(struct sk_reuseport_md, hash):
10034 		return size == size_default;
10035 
10036 	/* Fields that allow narrowing */
10037 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10038 		if (size < sizeof_field(struct sk_buff, protocol))
10039 			return false;
10040 		fallthrough;
10041 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10042 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10043 	case bpf_ctx_range(struct sk_reuseport_md, len):
10044 		bpf_ctx_record_field_size(info, size_default);
10045 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10046 
10047 	default:
10048 		return false;
10049 	}
10050 }
10051 
10052 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10053 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10054 			      si->dst_reg, si->src_reg,			\
10055 			      bpf_target_off(struct sk_reuseport_kern, F, \
10056 					     sizeof_field(struct sk_reuseport_kern, F), \
10057 					     target_size));		\
10058 	})
10059 
10060 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10061 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10062 				    struct sk_buff,			\
10063 				    skb,				\
10064 				    SKB_FIELD)
10065 
10066 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10067 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10068 				    struct sock,			\
10069 				    sk,					\
10070 				    SK_FIELD)
10071 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10072 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10073 					   const struct bpf_insn *si,
10074 					   struct bpf_insn *insn_buf,
10075 					   struct bpf_prog *prog,
10076 					   u32 *target_size)
10077 {
10078 	struct bpf_insn *insn = insn_buf;
10079 
10080 	switch (si->off) {
10081 	case offsetof(struct sk_reuseport_md, data):
10082 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10083 		break;
10084 
10085 	case offsetof(struct sk_reuseport_md, len):
10086 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10087 		break;
10088 
10089 	case offsetof(struct sk_reuseport_md, eth_protocol):
10090 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10091 		break;
10092 
10093 	case offsetof(struct sk_reuseport_md, ip_protocol):
10094 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10095 		break;
10096 
10097 	case offsetof(struct sk_reuseport_md, data_end):
10098 		SK_REUSEPORT_LOAD_FIELD(data_end);
10099 		break;
10100 
10101 	case offsetof(struct sk_reuseport_md, hash):
10102 		SK_REUSEPORT_LOAD_FIELD(hash);
10103 		break;
10104 
10105 	case offsetof(struct sk_reuseport_md, bind_inany):
10106 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10107 		break;
10108 	}
10109 
10110 	return insn - insn_buf;
10111 }
10112 
10113 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10114 	.get_func_proto		= sk_reuseport_func_proto,
10115 	.is_valid_access	= sk_reuseport_is_valid_access,
10116 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10117 };
10118 
10119 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10120 };
10121 
10122 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10123 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10124 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10125 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10126 	   struct sock *, sk, u64, flags)
10127 {
10128 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10129 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10130 		return -EINVAL;
10131 	if (unlikely(sk && sk_is_refcounted(sk)))
10132 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10133 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10134 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10135 
10136 	/* Check if socket is suitable for packet L3/L4 protocol */
10137 	if (sk && sk->sk_protocol != ctx->protocol)
10138 		return -EPROTOTYPE;
10139 	if (sk && sk->sk_family != ctx->family &&
10140 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10141 		return -EAFNOSUPPORT;
10142 
10143 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10144 		return -EEXIST;
10145 
10146 	/* Select socket as lookup result */
10147 	ctx->selected_sk = sk;
10148 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10149 	return 0;
10150 }
10151 
10152 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10153 	.func		= bpf_sk_lookup_assign,
10154 	.gpl_only	= false,
10155 	.ret_type	= RET_INTEGER,
10156 	.arg1_type	= ARG_PTR_TO_CTX,
10157 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10158 	.arg3_type	= ARG_ANYTHING,
10159 };
10160 
10161 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10162 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10163 {
10164 	switch (func_id) {
10165 	case BPF_FUNC_perf_event_output:
10166 		return &bpf_event_output_data_proto;
10167 	case BPF_FUNC_sk_assign:
10168 		return &bpf_sk_lookup_assign_proto;
10169 	case BPF_FUNC_sk_release:
10170 		return &bpf_sk_release_proto;
10171 	default:
10172 		return bpf_sk_base_func_proto(func_id);
10173 	}
10174 }
10175 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10176 static bool sk_lookup_is_valid_access(int off, int size,
10177 				      enum bpf_access_type type,
10178 				      const struct bpf_prog *prog,
10179 				      struct bpf_insn_access_aux *info)
10180 {
10181 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10182 		return false;
10183 	if (off % size != 0)
10184 		return false;
10185 	if (type != BPF_READ)
10186 		return false;
10187 
10188 	switch (off) {
10189 	case offsetof(struct bpf_sk_lookup, sk):
10190 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10191 		return size == sizeof(__u64);
10192 
10193 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10194 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10195 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10196 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10197 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10198 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10199 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10200 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10201 		bpf_ctx_record_field_size(info, sizeof(__u32));
10202 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10203 
10204 	default:
10205 		return false;
10206 	}
10207 }
10208 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10209 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10210 					const struct bpf_insn *si,
10211 					struct bpf_insn *insn_buf,
10212 					struct bpf_prog *prog,
10213 					u32 *target_size)
10214 {
10215 	struct bpf_insn *insn = insn_buf;
10216 
10217 	switch (si->off) {
10218 	case offsetof(struct bpf_sk_lookup, sk):
10219 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10220 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10221 		break;
10222 
10223 	case offsetof(struct bpf_sk_lookup, family):
10224 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10225 				      bpf_target_off(struct bpf_sk_lookup_kern,
10226 						     family, 2, target_size));
10227 		break;
10228 
10229 	case offsetof(struct bpf_sk_lookup, protocol):
10230 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10231 				      bpf_target_off(struct bpf_sk_lookup_kern,
10232 						     protocol, 2, target_size));
10233 		break;
10234 
10235 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10236 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10237 				      bpf_target_off(struct bpf_sk_lookup_kern,
10238 						     v4.saddr, 4, target_size));
10239 		break;
10240 
10241 	case offsetof(struct bpf_sk_lookup, local_ip4):
10242 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10243 				      bpf_target_off(struct bpf_sk_lookup_kern,
10244 						     v4.daddr, 4, target_size));
10245 		break;
10246 
10247 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10248 				remote_ip6[0], remote_ip6[3]): {
10249 #if IS_ENABLED(CONFIG_IPV6)
10250 		int off = si->off;
10251 
10252 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10253 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10254 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10255 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10256 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10257 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10258 #else
10259 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10260 #endif
10261 		break;
10262 	}
10263 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10264 				local_ip6[0], local_ip6[3]): {
10265 #if IS_ENABLED(CONFIG_IPV6)
10266 		int off = si->off;
10267 
10268 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10269 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10270 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10271 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10272 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10273 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10274 #else
10275 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10276 #endif
10277 		break;
10278 	}
10279 	case offsetof(struct bpf_sk_lookup, remote_port):
10280 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10281 				      bpf_target_off(struct bpf_sk_lookup_kern,
10282 						     sport, 2, target_size));
10283 		break;
10284 
10285 	case offsetof(struct bpf_sk_lookup, local_port):
10286 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10287 				      bpf_target_off(struct bpf_sk_lookup_kern,
10288 						     dport, 2, target_size));
10289 		break;
10290 	}
10291 
10292 	return insn - insn_buf;
10293 }
10294 
10295 const struct bpf_prog_ops sk_lookup_prog_ops = {
10296 };
10297 
10298 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10299 	.get_func_proto		= sk_lookup_func_proto,
10300 	.is_valid_access	= sk_lookup_is_valid_access,
10301 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10302 };
10303 
10304 #endif /* CONFIG_INET */
10305 
DEFINE_BPF_DISPATCHER(xdp)10306 DEFINE_BPF_DISPATCHER(xdp)
10307 
10308 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10309 {
10310 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10311 }
10312 
10313 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10314 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10315 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10316 BTF_SOCK_TYPE_xxx
10317 #undef BTF_SOCK_TYPE
10318 #else
10319 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10320 #endif
10321 
10322 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10323 {
10324 	/* tcp6_sock type is not generated in dwarf and hence btf,
10325 	 * trigger an explicit type generation here.
10326 	 */
10327 	BTF_TYPE_EMIT(struct tcp6_sock);
10328 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10329 	    sk->sk_family == AF_INET6)
10330 		return (unsigned long)sk;
10331 
10332 	return (unsigned long)NULL;
10333 }
10334 
10335 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10336 	.func			= bpf_skc_to_tcp6_sock,
10337 	.gpl_only		= false,
10338 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10339 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10340 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10341 };
10342 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10343 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10344 {
10345 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10346 		return (unsigned long)sk;
10347 
10348 	return (unsigned long)NULL;
10349 }
10350 
10351 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10352 	.func			= bpf_skc_to_tcp_sock,
10353 	.gpl_only		= false,
10354 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10355 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10356 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10357 };
10358 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10359 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10360 {
10361 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10362 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10363 	 */
10364 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10365 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10366 
10367 #ifdef CONFIG_INET
10368 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10369 		return (unsigned long)sk;
10370 #endif
10371 
10372 #if IS_BUILTIN(CONFIG_IPV6)
10373 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10374 		return (unsigned long)sk;
10375 #endif
10376 
10377 	return (unsigned long)NULL;
10378 }
10379 
10380 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10381 	.func			= bpf_skc_to_tcp_timewait_sock,
10382 	.gpl_only		= false,
10383 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10384 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10385 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10386 };
10387 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10388 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10389 {
10390 #ifdef CONFIG_INET
10391 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10392 		return (unsigned long)sk;
10393 #endif
10394 
10395 #if IS_BUILTIN(CONFIG_IPV6)
10396 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10397 		return (unsigned long)sk;
10398 #endif
10399 
10400 	return (unsigned long)NULL;
10401 }
10402 
10403 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10404 	.func			= bpf_skc_to_tcp_request_sock,
10405 	.gpl_only		= false,
10406 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10407 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10408 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10409 };
10410 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10411 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10412 {
10413 	/* udp6_sock type is not generated in dwarf and hence btf,
10414 	 * trigger an explicit type generation here.
10415 	 */
10416 	BTF_TYPE_EMIT(struct udp6_sock);
10417 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10418 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10419 		return (unsigned long)sk;
10420 
10421 	return (unsigned long)NULL;
10422 }
10423 
10424 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10425 	.func			= bpf_skc_to_udp6_sock,
10426 	.gpl_only		= false,
10427 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10428 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10429 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10430 };
10431 
10432 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10433 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10434 {
10435 	const struct bpf_func_proto *func;
10436 
10437 	switch (func_id) {
10438 	case BPF_FUNC_skc_to_tcp6_sock:
10439 		func = &bpf_skc_to_tcp6_sock_proto;
10440 		break;
10441 	case BPF_FUNC_skc_to_tcp_sock:
10442 		func = &bpf_skc_to_tcp_sock_proto;
10443 		break;
10444 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10445 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10446 		break;
10447 	case BPF_FUNC_skc_to_tcp_request_sock:
10448 		func = &bpf_skc_to_tcp_request_sock_proto;
10449 		break;
10450 	case BPF_FUNC_skc_to_udp6_sock:
10451 		func = &bpf_skc_to_udp6_sock_proto;
10452 		break;
10453 	default:
10454 		return bpf_base_func_proto(func_id);
10455 	}
10456 
10457 	if (!perfmon_capable())
10458 		return NULL;
10459 
10460 	return func;
10461 }
10462