• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha.h>
25 
26 #include <net/sch_generic.h>
27 
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30 #include <uapi/linux/bpf.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark call to interpreter with arguments */
73 #define BPF_CALL_ARGS	0xe0
74 
75 /* unused opcode to mark speculation barrier for mitigating
76  * Speculative Store Bypass
77  */
78 #define BPF_NOSPEC	0xc0
79 
80 /* As per nm, we expose JITed images as text (code) section for
81  * kallsyms. That way, tools like perf can find it to match
82  * addresses.
83  */
84 #define BPF_SYM_ELF_TYPE	't'
85 
86 /* BPF program can access up to 512 bytes of stack space. */
87 #define MAX_BPF_STACK	512
88 
89 /* Helper macros for filter block array initializers. */
90 
91 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
92 
93 #define BPF_ALU64_REG(OP, DST, SRC)				\
94 	((struct bpf_insn) {					\
95 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
96 		.dst_reg = DST,					\
97 		.src_reg = SRC,					\
98 		.off   = 0,					\
99 		.imm   = 0 })
100 
101 #define BPF_ALU32_REG(OP, DST, SRC)				\
102 	((struct bpf_insn) {					\
103 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
104 		.dst_reg = DST,					\
105 		.src_reg = SRC,					\
106 		.off   = 0,					\
107 		.imm   = 0 })
108 
109 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
110 
111 #define BPF_ALU64_IMM(OP, DST, IMM)				\
112 	((struct bpf_insn) {					\
113 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
114 		.dst_reg = DST,					\
115 		.src_reg = 0,					\
116 		.off   = 0,					\
117 		.imm   = IMM })
118 
119 #define BPF_ALU32_IMM(OP, DST, IMM)				\
120 	((struct bpf_insn) {					\
121 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
122 		.dst_reg = DST,					\
123 		.src_reg = 0,					\
124 		.off   = 0,					\
125 		.imm   = IMM })
126 
127 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
128 
129 #define BPF_ENDIAN(TYPE, DST, LEN)				\
130 	((struct bpf_insn) {					\
131 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
132 		.dst_reg = DST,					\
133 		.src_reg = 0,					\
134 		.off   = 0,					\
135 		.imm   = LEN })
136 
137 /* Short form of mov, dst_reg = src_reg */
138 
139 #define BPF_MOV64_REG(DST, SRC)					\
140 	((struct bpf_insn) {					\
141 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
142 		.dst_reg = DST,					\
143 		.src_reg = SRC,					\
144 		.off   = 0,					\
145 		.imm   = 0 })
146 
147 #define BPF_MOV32_REG(DST, SRC)					\
148 	((struct bpf_insn) {					\
149 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
150 		.dst_reg = DST,					\
151 		.src_reg = SRC,					\
152 		.off   = 0,					\
153 		.imm   = 0 })
154 
155 /* Short form of mov, dst_reg = imm32 */
156 
157 #define BPF_MOV64_IMM(DST, IMM)					\
158 	((struct bpf_insn) {					\
159 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
160 		.dst_reg = DST,					\
161 		.src_reg = 0,					\
162 		.off   = 0,					\
163 		.imm   = IMM })
164 
165 #define BPF_MOV32_IMM(DST, IMM)					\
166 	((struct bpf_insn) {					\
167 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
168 		.dst_reg = DST,					\
169 		.src_reg = 0,					\
170 		.off   = 0,					\
171 		.imm   = IMM })
172 
173 /* Special form of mov32, used for doing explicit zero extension on dst. */
174 #define BPF_ZEXT_REG(DST)					\
175 	((struct bpf_insn) {					\
176 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
177 		.dst_reg = DST,					\
178 		.src_reg = DST,					\
179 		.off   = 0,					\
180 		.imm   = 1 })
181 
insn_is_zext(const struct bpf_insn * insn)182 static inline bool insn_is_zext(const struct bpf_insn *insn)
183 {
184 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
185 }
186 
187 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
188 #define BPF_LD_IMM64(DST, IMM)					\
189 	BPF_LD_IMM64_RAW(DST, 0, IMM)
190 
191 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
192 	((struct bpf_insn) {					\
193 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
194 		.dst_reg = DST,					\
195 		.src_reg = SRC,					\
196 		.off   = 0,					\
197 		.imm   = (__u32) (IMM) }),			\
198 	((struct bpf_insn) {					\
199 		.code  = 0, /* zero is reserved opcode */	\
200 		.dst_reg = 0,					\
201 		.src_reg = 0,					\
202 		.off   = 0,					\
203 		.imm   = ((__u64) (IMM)) >> 32 })
204 
205 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
206 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
207 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
208 
209 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
210 
211 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
212 	((struct bpf_insn) {					\
213 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
214 		.dst_reg = DST,					\
215 		.src_reg = SRC,					\
216 		.off   = 0,					\
217 		.imm   = IMM })
218 
219 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
220 	((struct bpf_insn) {					\
221 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
222 		.dst_reg = DST,					\
223 		.src_reg = SRC,					\
224 		.off   = 0,					\
225 		.imm   = IMM })
226 
227 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
228 
229 #define BPF_LD_ABS(SIZE, IMM)					\
230 	((struct bpf_insn) {					\
231 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
232 		.dst_reg = 0,					\
233 		.src_reg = 0,					\
234 		.off   = 0,					\
235 		.imm   = IMM })
236 
237 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
238 
239 #define BPF_LD_IND(SIZE, SRC, IMM)				\
240 	((struct bpf_insn) {					\
241 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
242 		.dst_reg = 0,					\
243 		.src_reg = SRC,					\
244 		.off   = 0,					\
245 		.imm   = IMM })
246 
247 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
248 
249 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
250 	((struct bpf_insn) {					\
251 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
252 		.dst_reg = DST,					\
253 		.src_reg = SRC,					\
254 		.off   = OFF,					\
255 		.imm   = 0 })
256 
257 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
258 
259 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
260 	((struct bpf_insn) {					\
261 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
262 		.dst_reg = DST,					\
263 		.src_reg = SRC,					\
264 		.off   = OFF,					\
265 		.imm   = 0 })
266 
267 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
268 
269 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
270 	((struct bpf_insn) {					\
271 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
272 		.dst_reg = DST,					\
273 		.src_reg = SRC,					\
274 		.off   = OFF,					\
275 		.imm   = 0 })
276 
277 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
278 
279 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
280 	((struct bpf_insn) {					\
281 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
282 		.dst_reg = DST,					\
283 		.src_reg = 0,					\
284 		.off   = OFF,					\
285 		.imm   = IMM })
286 
287 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
288 
289 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
290 	((struct bpf_insn) {					\
291 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
292 		.dst_reg = DST,					\
293 		.src_reg = SRC,					\
294 		.off   = OFF,					\
295 		.imm   = 0 })
296 
297 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
298 
299 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
300 	((struct bpf_insn) {					\
301 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
302 		.dst_reg = DST,					\
303 		.src_reg = 0,					\
304 		.off   = OFF,					\
305 		.imm   = IMM })
306 
307 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
308 
309 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
310 	((struct bpf_insn) {					\
311 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
312 		.dst_reg = DST,					\
313 		.src_reg = SRC,					\
314 		.off   = OFF,					\
315 		.imm   = 0 })
316 
317 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
318 
319 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
320 	((struct bpf_insn) {					\
321 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
322 		.dst_reg = DST,					\
323 		.src_reg = 0,					\
324 		.off   = OFF,					\
325 		.imm   = IMM })
326 
327 /* Unconditional jumps, goto pc + off16 */
328 
329 #define BPF_JMP_A(OFF)						\
330 	((struct bpf_insn) {					\
331 		.code  = BPF_JMP | BPF_JA,			\
332 		.dst_reg = 0,					\
333 		.src_reg = 0,					\
334 		.off   = OFF,					\
335 		.imm   = 0 })
336 
337 /* Relative call */
338 
339 #define BPF_CALL_REL(TGT)					\
340 	((struct bpf_insn) {					\
341 		.code  = BPF_JMP | BPF_CALL,			\
342 		.dst_reg = 0,					\
343 		.src_reg = BPF_PSEUDO_CALL,			\
344 		.off   = 0,					\
345 		.imm   = TGT })
346 
347 /* Function call */
348 
349 #define BPF_CAST_CALL(x)					\
350 		((u64 (*)(u64, u64, u64, u64, u64))(x))
351 
352 #define BPF_EMIT_CALL(FUNC)					\
353 	((struct bpf_insn) {					\
354 		.code  = BPF_JMP | BPF_CALL,			\
355 		.dst_reg = 0,					\
356 		.src_reg = 0,					\
357 		.off   = 0,					\
358 		.imm   = ((FUNC) - __bpf_call_base) })
359 
360 /* Raw code statement block */
361 
362 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
363 	((struct bpf_insn) {					\
364 		.code  = CODE,					\
365 		.dst_reg = DST,					\
366 		.src_reg = SRC,					\
367 		.off   = OFF,					\
368 		.imm   = IMM })
369 
370 /* Program exit */
371 
372 #define BPF_EXIT_INSN()						\
373 	((struct bpf_insn) {					\
374 		.code  = BPF_JMP | BPF_EXIT,			\
375 		.dst_reg = 0,					\
376 		.src_reg = 0,					\
377 		.off   = 0,					\
378 		.imm   = 0 })
379 
380 /* Speculation barrier */
381 
382 #define BPF_ST_NOSPEC()						\
383 	((struct bpf_insn) {					\
384 		.code  = BPF_ST | BPF_NOSPEC,			\
385 		.dst_reg = 0,					\
386 		.src_reg = 0,					\
387 		.off   = 0,					\
388 		.imm   = 0 })
389 
390 /* Internal classic blocks for direct assignment */
391 
392 #define __BPF_STMT(CODE, K)					\
393 	((struct sock_filter) BPF_STMT(CODE, K))
394 
395 #define __BPF_JUMP(CODE, K, JT, JF)				\
396 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
397 
398 #define bytes_to_bpf_size(bytes)				\
399 ({								\
400 	int bpf_size = -EINVAL;					\
401 								\
402 	if (bytes == sizeof(u8))				\
403 		bpf_size = BPF_B;				\
404 	else if (bytes == sizeof(u16))				\
405 		bpf_size = BPF_H;				\
406 	else if (bytes == sizeof(u32))				\
407 		bpf_size = BPF_W;				\
408 	else if (bytes == sizeof(u64))				\
409 		bpf_size = BPF_DW;				\
410 								\
411 	bpf_size;						\
412 })
413 
414 #define bpf_size_to_bytes(bpf_size)				\
415 ({								\
416 	int bytes = -EINVAL;					\
417 								\
418 	if (bpf_size == BPF_B)					\
419 		bytes = sizeof(u8);				\
420 	else if (bpf_size == BPF_H)				\
421 		bytes = sizeof(u16);				\
422 	else if (bpf_size == BPF_W)				\
423 		bytes = sizeof(u32);				\
424 	else if (bpf_size == BPF_DW)				\
425 		bytes = sizeof(u64);				\
426 								\
427 	bytes;							\
428 })
429 
430 #define BPF_SIZEOF(type)					\
431 	({							\
432 		const int __size = bytes_to_bpf_size(sizeof(type)); \
433 		BUILD_BUG_ON(__size < 0);			\
434 		__size;						\
435 	})
436 
437 #define BPF_FIELD_SIZEOF(type, field)				\
438 	({							\
439 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
440 		BUILD_BUG_ON(__size < 0);			\
441 		__size;						\
442 	})
443 
444 #define BPF_LDST_BYTES(insn)					\
445 	({							\
446 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
447 		WARN_ON(__size < 0);				\
448 		__size;						\
449 	})
450 
451 #define __BPF_MAP_0(m, v, ...) v
452 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
453 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
454 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
455 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
456 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
457 
458 #define __BPF_REG_0(...) __BPF_PAD(5)
459 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
460 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
461 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
462 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
463 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
464 
465 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
466 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
467 
468 #define __BPF_CAST(t, a)						       \
469 	(__force t)							       \
470 	(__force							       \
471 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
472 				      (unsigned long)0, (t)0))) a
473 #define __BPF_V void
474 #define __BPF_N
475 
476 #define __BPF_DECL_ARGS(t, a) t   a
477 #define __BPF_DECL_REGS(t, a) u64 a
478 
479 #define __BPF_PAD(n)							       \
480 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
481 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
482 
483 #define BPF_CALL_x(x, name, ...)					       \
484 	static __always_inline						       \
485 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
486 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
487 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
488 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
489 	{								       \
490 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
491 	}								       \
492 	static __always_inline						       \
493 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
494 
495 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
496 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
497 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
498 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
499 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
500 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
501 
502 #define bpf_ctx_range(TYPE, MEMBER)						\
503 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
504 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
505 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
506 #if BITS_PER_LONG == 64
507 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
508 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
509 #else
510 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
511 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
512 #endif /* BITS_PER_LONG == 64 */
513 
514 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
515 	({									\
516 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
517 		*(PTR_SIZE) = (SIZE);						\
518 		offsetof(TYPE, MEMBER);						\
519 	})
520 
521 /* A struct sock_filter is architecture independent. */
522 struct compat_sock_fprog {
523 	u16		len;
524 	compat_uptr_t	filter;	/* struct sock_filter * */
525 };
526 
527 struct sock_fprog_kern {
528 	u16			len;
529 	struct sock_filter	*filter;
530 };
531 
532 /* Some arches need doubleword alignment for their instructions and/or data */
533 #define BPF_IMAGE_ALIGNMENT 8
534 
535 struct bpf_binary_header {
536 	u32 pages;
537 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
538 };
539 
540 struct bpf_prog {
541 	u16			pages;		/* Number of allocated pages */
542 	u16			jited:1,	/* Is our filter JIT'ed? */
543 				jit_requested:1,/* archs need to JIT the prog */
544 				gpl_compatible:1, /* Is filter GPL compatible? */
545 				cb_access:1,	/* Is control block accessed? */
546 				dst_needed:1,	/* Do we need dst entry? */
547 				blinded:1,	/* Was blinded */
548 				is_func:1,	/* program is a bpf function */
549 				kprobe_override:1, /* Do we override a kprobe? */
550 				has_callchain_buf:1, /* callchain buffer allocated? */
551 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
552 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
553 	enum bpf_prog_type	type;		/* Type of BPF program */
554 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
555 	u32			len;		/* Number of filter blocks */
556 	u32			jited_len;	/* Size of jited insns in bytes */
557 	u8			tag[BPF_TAG_SIZE];
558 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
559 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
560 	unsigned int		(*bpf_func)(const void *ctx,
561 					    const struct bpf_insn *insn);
562 	/* Instructions for interpreter */
563 	struct sock_filter	insns[0];
564 	struct bpf_insn		insnsi[];
565 };
566 
567 struct sk_filter {
568 	refcount_t	refcnt;
569 	struct rcu_head	rcu;
570 	struct bpf_prog	*prog;
571 };
572 
573 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
574 
575 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
576 	u32 __ret;							\
577 	cant_migrate();							\
578 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
579 		struct bpf_prog_stats *__stats;				\
580 		u64 __start = sched_clock();				\
581 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
582 		__stats = this_cpu_ptr(prog->aux->stats);		\
583 		u64_stats_update_begin(&__stats->syncp);		\
584 		__stats->cnt++;						\
585 		__stats->nsecs += sched_clock() - __start;		\
586 		u64_stats_update_end(&__stats->syncp);			\
587 	} else {							\
588 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
589 	}								\
590 	__ret; })
591 
592 #define BPF_PROG_RUN(prog, ctx)						\
593 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
594 
595 /*
596  * Use in preemptible and therefore migratable context to make sure that
597  * the execution of the BPF program runs on one CPU.
598  *
599  * This uses migrate_disable/enable() explicitly to document that the
600  * invocation of a BPF program does not require reentrancy protection
601  * against a BPF program which is invoked from a preempting task.
602  *
603  * For non RT enabled kernels migrate_disable/enable() maps to
604  * preempt_disable/enable(), i.e. it disables also preemption.
605  */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)606 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
607 					  const void *ctx)
608 {
609 	u32 ret;
610 
611 	migrate_disable();
612 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
613 	migrate_enable();
614 	return ret;
615 }
616 
617 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
618 
619 struct bpf_skb_data_end {
620 	struct qdisc_skb_cb qdisc_cb;
621 	void *data_meta;
622 	void *data_end;
623 };
624 
625 struct bpf_nh_params {
626 	u32 nh_family;
627 	union {
628 		u32 ipv4_nh;
629 		struct in6_addr ipv6_nh;
630 	};
631 };
632 
633 struct bpf_redirect_info {
634 	u32 flags;
635 	u32 tgt_index;
636 	void *tgt_value;
637 	struct bpf_map *map;
638 	u32 kern_flags;
639 	struct bpf_nh_params nh;
640 };
641 
642 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
643 
644 /* flags for bpf_redirect_info kern_flags */
645 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
646 
647 /* Compute the linear packet data range [data, data_end) which
648  * will be accessed by various program types (cls_bpf, act_bpf,
649  * lwt, ...). Subsystems allowing direct data access must (!)
650  * ensure that cb[] area can be written to when BPF program is
651  * invoked (otherwise cb[] save/restore is necessary).
652  */
bpf_compute_data_pointers(struct sk_buff * skb)653 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
654 {
655 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
656 
657 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
658 	cb->data_meta = skb->data - skb_metadata_len(skb);
659 	cb->data_end  = skb->data + skb_headlen(skb);
660 }
661 
662 /* Similar to bpf_compute_data_pointers(), except that save orginal
663  * data in cb->data and cb->meta_data for restore.
664  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)665 static inline void bpf_compute_and_save_data_end(
666 	struct sk_buff *skb, void **saved_data_end)
667 {
668 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
669 
670 	*saved_data_end = cb->data_end;
671 	cb->data_end  = skb->data + skb_headlen(skb);
672 }
673 
674 /* Restore data saved by bpf_compute_data_pointers(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)675 static inline void bpf_restore_data_end(
676 	struct sk_buff *skb, void *saved_data_end)
677 {
678 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
679 
680 	cb->data_end = saved_data_end;
681 }
682 
bpf_skb_cb(struct sk_buff * skb)683 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
684 {
685 	/* eBPF programs may read/write skb->cb[] area to transfer meta
686 	 * data between tail calls. Since this also needs to work with
687 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
688 	 *
689 	 * In some socket filter cases, the cb unfortunately needs to be
690 	 * saved/restored so that protocol specific skb->cb[] data won't
691 	 * be lost. In any case, due to unpriviledged eBPF programs
692 	 * attached to sockets, we need to clear the bpf_skb_cb() area
693 	 * to not leak previous contents to user space.
694 	 */
695 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
696 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
697 		     sizeof_field(struct qdisc_skb_cb, data));
698 
699 	return qdisc_skb_cb(skb)->data;
700 }
701 
702 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)703 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
704 					 struct sk_buff *skb)
705 {
706 	u8 *cb_data = bpf_skb_cb(skb);
707 	u8 cb_saved[BPF_SKB_CB_LEN];
708 	u32 res;
709 
710 	if (unlikely(prog->cb_access)) {
711 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
712 		memset(cb_data, 0, sizeof(cb_saved));
713 	}
714 
715 	res = BPF_PROG_RUN(prog, skb);
716 
717 	if (unlikely(prog->cb_access))
718 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
719 
720 	return res;
721 }
722 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)723 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
724 				       struct sk_buff *skb)
725 {
726 	u32 res;
727 
728 	migrate_disable();
729 	res = __bpf_prog_run_save_cb(prog, skb);
730 	migrate_enable();
731 	return res;
732 }
733 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)734 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
735 					struct sk_buff *skb)
736 {
737 	u8 *cb_data = bpf_skb_cb(skb);
738 	u32 res;
739 
740 	if (unlikely(prog->cb_access))
741 		memset(cb_data, 0, BPF_SKB_CB_LEN);
742 
743 	res = bpf_prog_run_pin_on_cpu(prog, skb);
744 	return res;
745 }
746 
DECLARE_BPF_DISPATCHER(xdp)747 DECLARE_BPF_DISPATCHER(xdp)
748 
749 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
750 					    struct xdp_buff *xdp)
751 {
752 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
753 	 * can be released while still running, or map elements could be
754 	 * freed early while still having concurrent users. XDP fastpath
755 	 * already takes rcu_read_lock() when fetching the program, so
756 	 * it's not necessary here anymore.
757 	 */
758 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
759 }
760 
761 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
762 
bpf_prog_insn_size(const struct bpf_prog * prog)763 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
764 {
765 	return prog->len * sizeof(struct bpf_insn);
766 }
767 
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)768 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
769 {
770 	return round_up(bpf_prog_insn_size(prog) +
771 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
772 }
773 
bpf_prog_size(unsigned int proglen)774 static inline unsigned int bpf_prog_size(unsigned int proglen)
775 {
776 	return max(sizeof(struct bpf_prog),
777 		   offsetof(struct bpf_prog, insns[proglen]));
778 }
779 
bpf_prog_was_classic(const struct bpf_prog * prog)780 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
781 {
782 	/* When classic BPF programs have been loaded and the arch
783 	 * does not have a classic BPF JIT (anymore), they have been
784 	 * converted via bpf_migrate_filter() to eBPF and thus always
785 	 * have an unspec program type.
786 	 */
787 	return prog->type == BPF_PROG_TYPE_UNSPEC;
788 }
789 
bpf_ctx_off_adjust_machine(u32 size)790 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
791 {
792 	const u32 size_machine = sizeof(unsigned long);
793 
794 	if (size > size_machine && size % size_machine == 0)
795 		size = size_machine;
796 
797 	return size;
798 }
799 
800 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)801 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
802 {
803 	return size <= size_default && (size & (size - 1)) == 0;
804 }
805 
806 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)807 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
808 {
809 	u8 access_off = off & (size_default - 1);
810 
811 #ifdef __LITTLE_ENDIAN
812 	return access_off;
813 #else
814 	return size_default - (access_off + size);
815 #endif
816 }
817 
818 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
819 	(size == sizeof(__u64) &&					\
820 	off >= offsetof(type, field) &&					\
821 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
822 	off % sizeof(__u64) == 0)
823 
824 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
825 
bpf_prog_lock_ro(struct bpf_prog * fp)826 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
827 {
828 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
829 	if (!fp->jited) {
830 		set_vm_flush_reset_perms(fp);
831 		set_memory_ro((unsigned long)fp, fp->pages);
832 	}
833 #endif
834 }
835 
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)836 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
837 {
838 	set_vm_flush_reset_perms(hdr);
839 	set_memory_ro((unsigned long)hdr, hdr->pages);
840 	set_memory_x((unsigned long)hdr, hdr->pages);
841 }
842 
843 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)844 bpf_jit_binary_hdr(const struct bpf_prog *fp)
845 {
846 	unsigned long real_start = (unsigned long)fp->bpf_func;
847 	unsigned long addr = real_start & PAGE_MASK;
848 
849 	return (void *)addr;
850 }
851 
852 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)853 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
854 {
855 	return sk_filter_trim_cap(sk, skb, 1);
856 }
857 
858 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
859 void bpf_prog_free(struct bpf_prog *fp);
860 
861 bool bpf_opcode_in_insntable(u8 code);
862 
863 void bpf_prog_free_linfo(struct bpf_prog *prog);
864 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
865 			       const u32 *insn_to_jit_off);
866 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
867 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
868 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
869 
870 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
871 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
872 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
873 				  gfp_t gfp_extra_flags);
874 void __bpf_prog_free(struct bpf_prog *fp);
875 
bpf_prog_unlock_free(struct bpf_prog * fp)876 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
877 {
878 	__bpf_prog_free(fp);
879 }
880 
881 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
882 				       unsigned int flen);
883 
884 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
885 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
886 			      bpf_aux_classic_check_t trans, bool save_orig);
887 void bpf_prog_destroy(struct bpf_prog *fp);
888 
889 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
890 int sk_attach_bpf(u32 ufd, struct sock *sk);
891 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
892 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
893 void sk_reuseport_prog_free(struct bpf_prog *prog);
894 int sk_detach_filter(struct sock *sk);
895 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
896 		  unsigned int len);
897 
898 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
899 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
900 
901 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
902 #define __bpf_call_base_args \
903 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
904 	 (void *)__bpf_call_base)
905 
906 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
907 void bpf_jit_compile(struct bpf_prog *prog);
908 bool bpf_jit_needs_zext(void);
909 bool bpf_helper_changes_pkt_data(void *func);
910 
bpf_dump_raw_ok(const struct cred * cred)911 static inline bool bpf_dump_raw_ok(const struct cred *cred)
912 {
913 	/* Reconstruction of call-sites is dependent on kallsyms,
914 	 * thus make dump the same restriction.
915 	 */
916 	return kallsyms_show_value(cred);
917 }
918 
919 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
920 				       const struct bpf_insn *patch, u32 len);
921 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
922 
923 void bpf_clear_redirect_map(struct bpf_map *map);
924 
xdp_return_frame_no_direct(void)925 static inline bool xdp_return_frame_no_direct(void)
926 {
927 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
928 
929 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
930 }
931 
xdp_set_return_frame_no_direct(void)932 static inline void xdp_set_return_frame_no_direct(void)
933 {
934 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
935 
936 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
937 }
938 
xdp_clear_return_frame_no_direct(void)939 static inline void xdp_clear_return_frame_no_direct(void)
940 {
941 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
942 
943 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
944 }
945 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)946 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
947 				 unsigned int pktlen)
948 {
949 	unsigned int len;
950 
951 	if (unlikely(!(fwd->flags & IFF_UP)))
952 		return -ENETDOWN;
953 
954 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
955 	if (pktlen > len)
956 		return -EMSGSIZE;
957 
958 	return 0;
959 }
960 
961 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
962  * same cpu context. Further for best results no more than a single map
963  * for the do_redirect/do_flush pair should be used. This limitation is
964  * because we only track one map and force a flush when the map changes.
965  * This does not appear to be a real limitation for existing software.
966  */
967 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
968 			    struct xdp_buff *xdp, struct bpf_prog *prog);
969 int xdp_do_redirect(struct net_device *dev,
970 		    struct xdp_buff *xdp,
971 		    struct bpf_prog *prog);
972 void xdp_do_flush(void);
973 
974 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
975  * it is no longer only flushing maps. Keep this define for compatibility
976  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
977  */
978 #define xdp_do_flush_map xdp_do_flush
979 
980 void bpf_warn_invalid_xdp_action(u32 act);
981 
982 #ifdef CONFIG_INET
983 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
984 				  struct bpf_prog *prog, struct sk_buff *skb,
985 				  u32 hash);
986 #else
987 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)988 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
989 		     struct bpf_prog *prog, struct sk_buff *skb,
990 		     u32 hash)
991 {
992 	return NULL;
993 }
994 #endif
995 
996 #ifdef CONFIG_BPF_JIT
997 extern int bpf_jit_enable;
998 extern int bpf_jit_harden;
999 extern int bpf_jit_kallsyms;
1000 extern long bpf_jit_limit;
1001 extern long bpf_jit_limit_max;
1002 
1003 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1004 
1005 struct bpf_binary_header *
1006 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1007 		     unsigned int alignment,
1008 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1009 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1010 u64 bpf_jit_alloc_exec_limit(void);
1011 void *bpf_jit_alloc_exec(unsigned long size);
1012 void bpf_jit_free_exec(void *addr);
1013 void bpf_jit_free(struct bpf_prog *fp);
1014 
1015 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1016 				struct bpf_jit_poke_descriptor *poke);
1017 
1018 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1019 			  const struct bpf_insn *insn, bool extra_pass,
1020 			  u64 *func_addr, bool *func_addr_fixed);
1021 
1022 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1023 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1024 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1025 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1026 				u32 pass, void *image)
1027 {
1028 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1029 	       proglen, pass, image, current->comm, task_pid_nr(current));
1030 
1031 	if (image)
1032 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1033 			       16, 1, image, proglen, false);
1034 }
1035 
bpf_jit_is_ebpf(void)1036 static inline bool bpf_jit_is_ebpf(void)
1037 {
1038 # ifdef CONFIG_HAVE_EBPF_JIT
1039 	return true;
1040 # else
1041 	return false;
1042 # endif
1043 }
1044 
ebpf_jit_enabled(void)1045 static inline bool ebpf_jit_enabled(void)
1046 {
1047 	return bpf_jit_enable && bpf_jit_is_ebpf();
1048 }
1049 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1050 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1051 {
1052 	return fp->jited && bpf_jit_is_ebpf();
1053 }
1054 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1055 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1056 {
1057 	/* These are the prerequisites, should someone ever have the
1058 	 * idea to call blinding outside of them, we make sure to
1059 	 * bail out.
1060 	 */
1061 	if (!bpf_jit_is_ebpf())
1062 		return false;
1063 	if (!prog->jit_requested)
1064 		return false;
1065 	if (!bpf_jit_harden)
1066 		return false;
1067 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1068 		return false;
1069 
1070 	return true;
1071 }
1072 
bpf_jit_kallsyms_enabled(void)1073 static inline bool bpf_jit_kallsyms_enabled(void)
1074 {
1075 	/* There are a couple of corner cases where kallsyms should
1076 	 * not be enabled f.e. on hardening.
1077 	 */
1078 	if (bpf_jit_harden)
1079 		return false;
1080 	if (!bpf_jit_kallsyms)
1081 		return false;
1082 	if (bpf_jit_kallsyms == 1)
1083 		return true;
1084 
1085 	return false;
1086 }
1087 
1088 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1089 				 unsigned long *off, char *sym);
1090 bool is_bpf_text_address(unsigned long addr);
1091 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1092 		    char *sym);
1093 
1094 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1095 bpf_address_lookup(unsigned long addr, unsigned long *size,
1096 		   unsigned long *off, char **modname, char *sym)
1097 {
1098 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1099 
1100 	if (ret && modname)
1101 		*modname = NULL;
1102 	return ret;
1103 }
1104 
1105 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1106 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1107 
1108 #else /* CONFIG_BPF_JIT */
1109 
ebpf_jit_enabled(void)1110 static inline bool ebpf_jit_enabled(void)
1111 {
1112 	return false;
1113 }
1114 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1115 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1116 {
1117 	return false;
1118 }
1119 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1120 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1121 {
1122 	return false;
1123 }
1124 
1125 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1126 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1127 			    struct bpf_jit_poke_descriptor *poke)
1128 {
1129 	return -ENOTSUPP;
1130 }
1131 
bpf_jit_free(struct bpf_prog * fp)1132 static inline void bpf_jit_free(struct bpf_prog *fp)
1133 {
1134 	bpf_prog_unlock_free(fp);
1135 }
1136 
bpf_jit_kallsyms_enabled(void)1137 static inline bool bpf_jit_kallsyms_enabled(void)
1138 {
1139 	return false;
1140 }
1141 
1142 static inline const char *
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1143 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1144 		     unsigned long *off, char *sym)
1145 {
1146 	return NULL;
1147 }
1148 
is_bpf_text_address(unsigned long addr)1149 static inline bool is_bpf_text_address(unsigned long addr)
1150 {
1151 	return false;
1152 }
1153 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1154 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1155 				  char *type, char *sym)
1156 {
1157 	return -ERANGE;
1158 }
1159 
1160 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1161 bpf_address_lookup(unsigned long addr, unsigned long *size,
1162 		   unsigned long *off, char **modname, char *sym)
1163 {
1164 	return NULL;
1165 }
1166 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1167 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1168 {
1169 }
1170 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1171 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1172 {
1173 }
1174 
1175 #endif /* CONFIG_BPF_JIT */
1176 
1177 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1178 
1179 #define BPF_ANC		BIT(15)
1180 
bpf_needs_clear_a(const struct sock_filter * first)1181 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1182 {
1183 	switch (first->code) {
1184 	case BPF_RET | BPF_K:
1185 	case BPF_LD | BPF_W | BPF_LEN:
1186 		return false;
1187 
1188 	case BPF_LD | BPF_W | BPF_ABS:
1189 	case BPF_LD | BPF_H | BPF_ABS:
1190 	case BPF_LD | BPF_B | BPF_ABS:
1191 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1192 			return true;
1193 		return false;
1194 
1195 	default:
1196 		return true;
1197 	}
1198 }
1199 
bpf_anc_helper(const struct sock_filter * ftest)1200 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1201 {
1202 	BUG_ON(ftest->code & BPF_ANC);
1203 
1204 	switch (ftest->code) {
1205 	case BPF_LD | BPF_W | BPF_ABS:
1206 	case BPF_LD | BPF_H | BPF_ABS:
1207 	case BPF_LD | BPF_B | BPF_ABS:
1208 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1209 				return BPF_ANC | SKF_AD_##CODE
1210 		switch (ftest->k) {
1211 		BPF_ANCILLARY(PROTOCOL);
1212 		BPF_ANCILLARY(PKTTYPE);
1213 		BPF_ANCILLARY(IFINDEX);
1214 		BPF_ANCILLARY(NLATTR);
1215 		BPF_ANCILLARY(NLATTR_NEST);
1216 		BPF_ANCILLARY(MARK);
1217 		BPF_ANCILLARY(QUEUE);
1218 		BPF_ANCILLARY(HATYPE);
1219 		BPF_ANCILLARY(RXHASH);
1220 		BPF_ANCILLARY(CPU);
1221 		BPF_ANCILLARY(ALU_XOR_X);
1222 		BPF_ANCILLARY(VLAN_TAG);
1223 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1224 		BPF_ANCILLARY(PAY_OFFSET);
1225 		BPF_ANCILLARY(RANDOM);
1226 		BPF_ANCILLARY(VLAN_TPID);
1227 		}
1228 		fallthrough;
1229 	default:
1230 		return ftest->code;
1231 	}
1232 }
1233 
1234 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1235 					   int k, unsigned int size);
1236 
bpf_load_pointer(const struct sk_buff * skb,int k,unsigned int size,void * buffer)1237 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1238 				     unsigned int size, void *buffer)
1239 {
1240 	if (k >= 0)
1241 		return skb_header_pointer(skb, k, size, buffer);
1242 
1243 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1244 }
1245 
bpf_tell_extensions(void)1246 static inline int bpf_tell_extensions(void)
1247 {
1248 	return SKF_AD_MAX;
1249 }
1250 
1251 struct bpf_sock_addr_kern {
1252 	struct sock *sk;
1253 	struct sockaddr *uaddr;
1254 	/* Temporary "register" to make indirect stores to nested structures
1255 	 * defined above. We need three registers to make such a store, but
1256 	 * only two (src and dst) are available at convert_ctx_access time
1257 	 */
1258 	u64 tmp_reg;
1259 	void *t_ctx;	/* Attach type specific context. */
1260 };
1261 
1262 struct bpf_sock_ops_kern {
1263 	struct	sock *sk;
1264 	union {
1265 		u32 args[4];
1266 		u32 reply;
1267 		u32 replylong[4];
1268 	};
1269 	struct sk_buff	*syn_skb;
1270 	struct sk_buff	*skb;
1271 	void	*skb_data_end;
1272 	u8	op;
1273 	u8	is_fullsock;
1274 	u8	remaining_opt_len;
1275 	u64	temp;			/* temp and everything after is not
1276 					 * initialized to 0 before calling
1277 					 * the BPF program. New fields that
1278 					 * should be initialized to 0 should
1279 					 * be inserted before temp.
1280 					 * temp is scratch storage used by
1281 					 * sock_ops_convert_ctx_access
1282 					 * as temporary storage of a register.
1283 					 */
1284 };
1285 
1286 struct bpf_sysctl_kern {
1287 	struct ctl_table_header *head;
1288 	struct ctl_table *table;
1289 	void *cur_val;
1290 	size_t cur_len;
1291 	void *new_val;
1292 	size_t new_len;
1293 	int new_updated;
1294 	int write;
1295 	loff_t *ppos;
1296 	/* Temporary "register" for indirect stores to ppos. */
1297 	u64 tmp_reg;
1298 };
1299 
1300 struct bpf_sockopt_kern {
1301 	struct sock	*sk;
1302 	u8		*optval;
1303 	u8		*optval_end;
1304 	s32		level;
1305 	s32		optname;
1306 	s32		optlen;
1307 	s32		retval;
1308 };
1309 
1310 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1311 
1312 struct bpf_sk_lookup_kern {
1313 	u16		family;
1314 	u16		protocol;
1315 	__be16		sport;
1316 	u16		dport;
1317 	struct {
1318 		__be32 saddr;
1319 		__be32 daddr;
1320 	} v4;
1321 	struct {
1322 		const struct in6_addr *saddr;
1323 		const struct in6_addr *daddr;
1324 	} v6;
1325 	struct sock	*selected_sk;
1326 	bool		no_reuseport;
1327 };
1328 
1329 extern struct static_key_false bpf_sk_lookup_enabled;
1330 
1331 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1332  *
1333  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1334  * SK_DROP. Their meaning is as follows:
1335  *
1336  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1337  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1338  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1339  *
1340  * This macro aggregates return values and selected sockets from
1341  * multiple BPF programs according to following rules in order:
1342  *
1343  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1344  *     macro result is SK_PASS and last ctx.selected_sk is used.
1345  *  2. If any program returned SK_DROP return value,
1346  *     macro result is SK_DROP.
1347  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1348  *
1349  * Caller must ensure that the prog array is non-NULL, and that the
1350  * array as well as the programs it contains remain valid.
1351  */
1352 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1353 	({								\
1354 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1355 		struct bpf_prog_array_item *_item;			\
1356 		struct sock *_selected_sk = NULL;			\
1357 		bool _no_reuseport = false;				\
1358 		struct bpf_prog *_prog;					\
1359 		bool _all_pass = true;					\
1360 		u32 _ret;						\
1361 									\
1362 		migrate_disable();					\
1363 		_item = &(array)->items[0];				\
1364 		while ((_prog = READ_ONCE(_item->prog))) {		\
1365 			/* restore most recent selection */		\
1366 			_ctx->selected_sk = _selected_sk;		\
1367 			_ctx->no_reuseport = _no_reuseport;		\
1368 									\
1369 			_ret = func(_prog, _ctx);			\
1370 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1371 				/* remember last non-NULL socket */	\
1372 				_selected_sk = _ctx->selected_sk;	\
1373 				_no_reuseport = _ctx->no_reuseport;	\
1374 			} else if (_ret == SK_DROP && _all_pass) {	\
1375 				_all_pass = false;			\
1376 			}						\
1377 			_item++;					\
1378 		}							\
1379 		_ctx->selected_sk = _selected_sk;			\
1380 		_ctx->no_reuseport = _no_reuseport;			\
1381 		migrate_enable();					\
1382 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1383 	 })
1384 
bpf_sk_lookup_run_v4(struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,struct sock ** psk)1385 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1386 					const __be32 saddr, const __be16 sport,
1387 					const __be32 daddr, const u16 dport,
1388 					struct sock **psk)
1389 {
1390 	struct bpf_prog_array *run_array;
1391 	struct sock *selected_sk = NULL;
1392 	bool no_reuseport = false;
1393 
1394 	rcu_read_lock();
1395 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1396 	if (run_array) {
1397 		struct bpf_sk_lookup_kern ctx = {
1398 			.family		= AF_INET,
1399 			.protocol	= protocol,
1400 			.v4.saddr	= saddr,
1401 			.v4.daddr	= daddr,
1402 			.sport		= sport,
1403 			.dport		= dport,
1404 		};
1405 		u32 act;
1406 
1407 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1408 		if (act == SK_PASS) {
1409 			selected_sk = ctx.selected_sk;
1410 			no_reuseport = ctx.no_reuseport;
1411 		} else {
1412 			selected_sk = ERR_PTR(-ECONNREFUSED);
1413 		}
1414 	}
1415 	rcu_read_unlock();
1416 	*psk = selected_sk;
1417 	return no_reuseport;
1418 }
1419 
1420 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,struct sock ** psk)1421 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1422 					const struct in6_addr *saddr,
1423 					const __be16 sport,
1424 					const struct in6_addr *daddr,
1425 					const u16 dport,
1426 					struct sock **psk)
1427 {
1428 	struct bpf_prog_array *run_array;
1429 	struct sock *selected_sk = NULL;
1430 	bool no_reuseport = false;
1431 
1432 	rcu_read_lock();
1433 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1434 	if (run_array) {
1435 		struct bpf_sk_lookup_kern ctx = {
1436 			.family		= AF_INET6,
1437 			.protocol	= protocol,
1438 			.v6.saddr	= saddr,
1439 			.v6.daddr	= daddr,
1440 			.sport		= sport,
1441 			.dport		= dport,
1442 		};
1443 		u32 act;
1444 
1445 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1446 		if (act == SK_PASS) {
1447 			selected_sk = ctx.selected_sk;
1448 			no_reuseport = ctx.no_reuseport;
1449 		} else {
1450 			selected_sk = ERR_PTR(-ECONNREFUSED);
1451 		}
1452 	}
1453 	rcu_read_unlock();
1454 	*psk = selected_sk;
1455 	return no_reuseport;
1456 }
1457 #endif /* IS_ENABLED(CONFIG_IPV6) */
1458 
1459 #endif /* __LINUX_FILTER_H__ */
1460