• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 SLB support.
4  *
5  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6  * Based on earlier code written by:
7  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8  *    Copyright (c) 2001 Dave Engebretsen
9  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10  */
11 
12 #include <asm/asm-prototypes.h>
13 #include <asm/mmu.h>
14 #include <asm/mmu_context.h>
15 #include <asm/paca.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/cputable.h>
18 #include <asm/cacheflush.h>
19 #include <asm/smp.h>
20 #include <linux/compiler.h>
21 #include <linux/context_tracking.h>
22 #include <linux/mm_types.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 #include "internal.h"
29 
30 
31 enum slb_index {
32 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
33 	KSTACK_INDEX	= 1, /* Kernel stack map */
34 };
35 
36 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
37 
38 #define slb_esid_mask(ssize)	\
39 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
40 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)41 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
42 					 enum slb_index index)
43 {
44 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
45 }
46 
__mk_vsid_data(unsigned long vsid,int ssize,unsigned long flags)47 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
48 					 unsigned long flags)
49 {
50 	return (vsid << slb_vsid_shift(ssize)) | flags |
51 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
52 }
53 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)54 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
55 					 unsigned long flags)
56 {
57 	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
58 }
59 
60 bool stress_slb_enabled __initdata;
61 
parse_stress_slb(char * p)62 static int __init parse_stress_slb(char *p)
63 {
64 	stress_slb_enabled = true;
65 	return 0;
66 }
67 early_param("stress_slb", parse_stress_slb);
68 
69 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
70 
assert_slb_presence(bool present,unsigned long ea)71 static void assert_slb_presence(bool present, unsigned long ea)
72 {
73 #ifdef CONFIG_DEBUG_VM
74 	unsigned long tmp;
75 
76 	WARN_ON_ONCE(mfmsr() & MSR_EE);
77 
78 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
79 		return;
80 
81 	/*
82 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
83 	 * ignores all other bits from 0-27, so just clear them all.
84 	 */
85 	ea &= ~((1UL << SID_SHIFT) - 1);
86 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
87 
88 	WARN_ON(present == (tmp == 0));
89 #endif
90 }
91 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)92 static inline void slb_shadow_update(unsigned long ea, int ssize,
93 				     unsigned long flags,
94 				     enum slb_index index)
95 {
96 	struct slb_shadow *p = get_slb_shadow();
97 
98 	/*
99 	 * Clear the ESID first so the entry is not valid while we are
100 	 * updating it.  No write barriers are needed here, provided
101 	 * we only update the current CPU's SLB shadow buffer.
102 	 */
103 	WRITE_ONCE(p->save_area[index].esid, 0);
104 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
105 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
106 }
107 
slb_shadow_clear(enum slb_index index)108 static inline void slb_shadow_clear(enum slb_index index)
109 {
110 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
111 }
112 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)113 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
114 					unsigned long flags,
115 					enum slb_index index)
116 {
117 	/*
118 	 * Updating the shadow buffer before writing the SLB ensures
119 	 * we don't get a stale entry here if we get preempted by PHYP
120 	 * between these two statements.
121 	 */
122 	slb_shadow_update(ea, ssize, flags, index);
123 
124 	assert_slb_presence(false, ea);
125 	asm volatile("slbmte  %0,%1" :
126 		     : "r" (mk_vsid_data(ea, ssize, flags)),
127 		       "r" (mk_esid_data(ea, ssize, index))
128 		     : "memory" );
129 }
130 
131 /*
132  * Insert bolted entries into SLB (which may not be empty, so don't clear
133  * slb_cache_ptr).
134  */
__slb_restore_bolted_realmode(void)135 void __slb_restore_bolted_realmode(void)
136 {
137 	struct slb_shadow *p = get_slb_shadow();
138 	enum slb_index index;
139 
140 	 /* No isync needed because realmode. */
141 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
142 		asm volatile("slbmte  %0,%1" :
143 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
144 		       "r" (be64_to_cpu(p->save_area[index].esid)));
145 	}
146 
147 	assert_slb_presence(true, local_paca->kstack);
148 }
149 
150 /*
151  * Insert the bolted entries into an empty SLB.
152  */
slb_restore_bolted_realmode(void)153 void slb_restore_bolted_realmode(void)
154 {
155 	__slb_restore_bolted_realmode();
156 	get_paca()->slb_cache_ptr = 0;
157 
158 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
159 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
160 }
161 
162 /*
163  * This flushes all SLB entries including 0, so it must be realmode.
164  */
slb_flush_all_realmode(void)165 void slb_flush_all_realmode(void)
166 {
167 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
168 }
169 
__slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)170 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
171 {
172 	struct slb_shadow *p = get_slb_shadow();
173 	unsigned long ksp_esid_data, ksp_vsid_data;
174 	u32 ih;
175 
176 	/*
177 	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
178 	 * information created with Class=0 entries, which we use for kernel
179 	 * SLB entries (the SLB entries themselves are still invalidated).
180 	 *
181 	 * Older processors will ignore this optimisation. Over-invalidation
182 	 * is fine because we never rely on lookaside information existing.
183 	 */
184 	if (preserve_kernel_lookaside)
185 		ih = 1;
186 	else
187 		ih = 0;
188 
189 	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
190 	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
191 
192 	asm volatile(PPC_SLBIA(%0)"	\n"
193 		     "slbmte	%1, %2	\n"
194 		     :: "i" (ih),
195 			"r" (ksp_vsid_data),
196 			"r" (ksp_esid_data)
197 		     : "memory");
198 }
199 
200 /*
201  * This flushes non-bolted entries, it can be run in virtual mode. Must
202  * be called with interrupts disabled.
203  */
slb_flush_and_restore_bolted(void)204 void slb_flush_and_restore_bolted(void)
205 {
206 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
207 
208 	WARN_ON(!irqs_disabled());
209 
210 	/*
211 	 * We can't take a PMU exception in the following code, so hard
212 	 * disable interrupts.
213 	 */
214 	hard_irq_disable();
215 
216 	isync();
217 	__slb_flush_and_restore_bolted(false);
218 	isync();
219 
220 	assert_slb_presence(true, get_paca()->kstack);
221 
222 	get_paca()->slb_cache_ptr = 0;
223 
224 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
225 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
226 }
227 
slb_save_contents(struct slb_entry * slb_ptr)228 void slb_save_contents(struct slb_entry *slb_ptr)
229 {
230 	int i;
231 	unsigned long e, v;
232 
233 	/* Save slb_cache_ptr value. */
234 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
235 
236 	if (!slb_ptr)
237 		return;
238 
239 	for (i = 0; i < mmu_slb_size; i++) {
240 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
241 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
242 		slb_ptr->esid = e;
243 		slb_ptr->vsid = v;
244 		slb_ptr++;
245 	}
246 }
247 
slb_dump_contents(struct slb_entry * slb_ptr)248 void slb_dump_contents(struct slb_entry *slb_ptr)
249 {
250 	int i, n;
251 	unsigned long e, v;
252 	unsigned long llp;
253 
254 	if (!slb_ptr)
255 		return;
256 
257 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
258 	pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
259 
260 	for (i = 0; i < mmu_slb_size; i++) {
261 		e = slb_ptr->esid;
262 		v = slb_ptr->vsid;
263 		slb_ptr++;
264 
265 		if (!e && !v)
266 			continue;
267 
268 		pr_err("%02d %016lx %016lx\n", i, e, v);
269 
270 		if (!(e & SLB_ESID_V)) {
271 			pr_err("\n");
272 			continue;
273 		}
274 		llp = v & SLB_VSID_LLP;
275 		if (v & SLB_VSID_B_1T) {
276 			pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
277 			       GET_ESID_1T(e),
278 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
279 		} else {
280 			pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
281 			       GET_ESID(e),
282 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
283 		}
284 	}
285 	pr_err("----------------------------------\n");
286 
287 	/* Dump slb cache entires as well. */
288 	pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
289 	pr_err("Valid SLB cache entries:\n");
290 	n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
291 	for (i = 0; i < n; i++)
292 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
293 	pr_err("Rest of SLB cache entries:\n");
294 	for (i = n; i < SLB_CACHE_ENTRIES; i++)
295 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
296 }
297 
slb_vmalloc_update(void)298 void slb_vmalloc_update(void)
299 {
300 	/*
301 	 * vmalloc is not bolted, so just have to flush non-bolted.
302 	 */
303 	slb_flush_and_restore_bolted();
304 }
305 
preload_hit(struct thread_info * ti,unsigned long esid)306 static bool preload_hit(struct thread_info *ti, unsigned long esid)
307 {
308 	unsigned char i;
309 
310 	for (i = 0; i < ti->slb_preload_nr; i++) {
311 		unsigned char idx;
312 
313 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
314 		if (esid == ti->slb_preload_esid[idx])
315 			return true;
316 	}
317 	return false;
318 }
319 
preload_add(struct thread_info * ti,unsigned long ea)320 static bool preload_add(struct thread_info *ti, unsigned long ea)
321 {
322 	unsigned char idx;
323 	unsigned long esid;
324 
325 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
326 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
327 		if (ea & ESID_MASK_1T)
328 			ea &= ESID_MASK_1T;
329 	}
330 
331 	esid = ea >> SID_SHIFT;
332 
333 	if (preload_hit(ti, esid))
334 		return false;
335 
336 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
337 	ti->slb_preload_esid[idx] = esid;
338 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
339 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
340 	else
341 		ti->slb_preload_nr++;
342 
343 	return true;
344 }
345 
preload_age(struct thread_info * ti)346 static void preload_age(struct thread_info *ti)
347 {
348 	if (!ti->slb_preload_nr)
349 		return;
350 	ti->slb_preload_nr--;
351 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
352 }
353 
slb_setup_new_exec(void)354 void slb_setup_new_exec(void)
355 {
356 	struct thread_info *ti = current_thread_info();
357 	struct mm_struct *mm = current->mm;
358 	unsigned long exec = 0x10000000;
359 
360 	WARN_ON(irqs_disabled());
361 
362 	/*
363 	 * preload cache can only be used to determine whether a SLB
364 	 * entry exists if it does not start to overflow.
365 	 */
366 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
367 		return;
368 
369 	hard_irq_disable();
370 
371 	/*
372 	 * We have no good place to clear the slb preload cache on exec,
373 	 * flush_thread is about the earliest arch hook but that happens
374 	 * after we switch to the mm and have aleady preloaded the SLBEs.
375 	 *
376 	 * For the most part that's probably okay to use entries from the
377 	 * previous exec, they will age out if unused. It may turn out to
378 	 * be an advantage to clear the cache before switching to it,
379 	 * however.
380 	 */
381 
382 	/*
383 	 * preload some userspace segments into the SLB.
384 	 * Almost all 32 and 64bit PowerPC executables are linked at
385 	 * 0x10000000 so it makes sense to preload this segment.
386 	 */
387 	if (!is_kernel_addr(exec)) {
388 		if (preload_add(ti, exec))
389 			slb_allocate_user(mm, exec);
390 	}
391 
392 	/* Libraries and mmaps. */
393 	if (!is_kernel_addr(mm->mmap_base)) {
394 		if (preload_add(ti, mm->mmap_base))
395 			slb_allocate_user(mm, mm->mmap_base);
396 	}
397 
398 	/* see switch_slb */
399 	asm volatile("isync" : : : "memory");
400 
401 	local_irq_enable();
402 }
403 
preload_new_slb_context(unsigned long start,unsigned long sp)404 void preload_new_slb_context(unsigned long start, unsigned long sp)
405 {
406 	struct thread_info *ti = current_thread_info();
407 	struct mm_struct *mm = current->mm;
408 	unsigned long heap = mm->start_brk;
409 
410 	WARN_ON(irqs_disabled());
411 
412 	/* see above */
413 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
414 		return;
415 
416 	hard_irq_disable();
417 
418 	/* Userspace entry address. */
419 	if (!is_kernel_addr(start)) {
420 		if (preload_add(ti, start))
421 			slb_allocate_user(mm, start);
422 	}
423 
424 	/* Top of stack, grows down. */
425 	if (!is_kernel_addr(sp)) {
426 		if (preload_add(ti, sp))
427 			slb_allocate_user(mm, sp);
428 	}
429 
430 	/* Bottom of heap, grows up. */
431 	if (heap && !is_kernel_addr(heap)) {
432 		if (preload_add(ti, heap))
433 			slb_allocate_user(mm, heap);
434 	}
435 
436 	/* see switch_slb */
437 	asm volatile("isync" : : : "memory");
438 
439 	local_irq_enable();
440 }
441 
slb_cache_slbie_kernel(unsigned int index)442 static void slb_cache_slbie_kernel(unsigned int index)
443 {
444 	unsigned long slbie_data = get_paca()->slb_cache[index];
445 	unsigned long ksp = get_paca()->kstack;
446 
447 	slbie_data <<= SID_SHIFT;
448 	slbie_data |= 0xc000000000000000ULL;
449 	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
450 		return;
451 	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
452 
453 	asm volatile("slbie %0" : : "r" (slbie_data));
454 }
455 
slb_cache_slbie_user(unsigned int index)456 static void slb_cache_slbie_user(unsigned int index)
457 {
458 	unsigned long slbie_data = get_paca()->slb_cache[index];
459 
460 	slbie_data <<= SID_SHIFT;
461 	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
462 	slbie_data |= SLBIE_C; /* user slbs have C=1 */
463 
464 	asm volatile("slbie %0" : : "r" (slbie_data));
465 }
466 
467 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)468 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
469 {
470 	struct thread_info *ti = task_thread_info(tsk);
471 	unsigned char i;
472 
473 	/*
474 	 * We need interrupts hard-disabled here, not just soft-disabled,
475 	 * so that a PMU interrupt can't occur, which might try to access
476 	 * user memory (to get a stack trace) and possible cause an SLB miss
477 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
478 	 */
479 	hard_irq_disable();
480 	isync();
481 	if (stress_slb()) {
482 		__slb_flush_and_restore_bolted(false);
483 		isync();
484 		get_paca()->slb_cache_ptr = 0;
485 		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
486 
487 	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
488 		/*
489 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
490 		 * associated lookaside structures, which matches what
491 		 * switch_slb wants. So ARCH_300 does not use the slb
492 		 * cache.
493 		 */
494 		asm volatile(PPC_SLBIA(3));
495 
496 	} else {
497 		unsigned long offset = get_paca()->slb_cache_ptr;
498 
499 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
500 		    offset <= SLB_CACHE_ENTRIES) {
501 			/*
502 			 * Could assert_slb_presence(true) here, but
503 			 * hypervisor or machine check could have come
504 			 * in and removed the entry at this point.
505 			 */
506 
507 			for (i = 0; i < offset; i++)
508 				slb_cache_slbie_user(i);
509 
510 			/* Workaround POWER5 < DD2.1 issue */
511 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
512 				slb_cache_slbie_user(0);
513 
514 		} else {
515 			/* Flush but retain kernel lookaside information */
516 			__slb_flush_and_restore_bolted(true);
517 			isync();
518 
519 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
520 		}
521 
522 		get_paca()->slb_cache_ptr = 0;
523 	}
524 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
525 
526 	copy_mm_to_paca(mm);
527 
528 	/*
529 	 * We gradually age out SLBs after a number of context switches to
530 	 * reduce reload overhead of unused entries (like we do with FP/VEC
531 	 * reload). Each time we wrap 256 switches, take an entry out of the
532 	 * SLB preload cache.
533 	 */
534 	tsk->thread.load_slb++;
535 	if (!tsk->thread.load_slb) {
536 		unsigned long pc = KSTK_EIP(tsk);
537 
538 		preload_age(ti);
539 		preload_add(ti, pc);
540 	}
541 
542 	for (i = 0; i < ti->slb_preload_nr; i++) {
543 		unsigned char idx;
544 		unsigned long ea;
545 
546 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
547 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
548 
549 		slb_allocate_user(mm, ea);
550 	}
551 
552 	/*
553 	 * Synchronize slbmte preloads with possible subsequent user memory
554 	 * address accesses by the kernel (user mode won't happen until
555 	 * rfid, which is safe).
556 	 */
557 	isync();
558 }
559 
slb_set_size(u16 size)560 void slb_set_size(u16 size)
561 {
562 	mmu_slb_size = size;
563 }
564 
slb_initialize(void)565 void slb_initialize(void)
566 {
567 	unsigned long linear_llp, vmalloc_llp, io_llp;
568 	unsigned long lflags;
569 	static int slb_encoding_inited;
570 #ifdef CONFIG_SPARSEMEM_VMEMMAP
571 	unsigned long vmemmap_llp;
572 #endif
573 
574 	/* Prepare our SLB miss handler based on our page size */
575 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
576 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
577 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
578 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
579 #ifdef CONFIG_SPARSEMEM_VMEMMAP
580 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
581 #endif
582 	if (!slb_encoding_inited) {
583 		slb_encoding_inited = 1;
584 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
585 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
586 #ifdef CONFIG_SPARSEMEM_VMEMMAP
587 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
588 #endif
589 	}
590 
591 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
592 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
593 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
594 
595 	lflags = SLB_VSID_KERNEL | linear_llp;
596 
597 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
598 	asm volatile("isync":::"memory");
599 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
600 	asm volatile("isync; slbia; isync":::"memory");
601 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
602 
603 	/*
604 	 * For the boot cpu, we're running on the stack in init_thread_union,
605 	 * which is in the first segment of the linear mapping, and also
606 	 * get_paca()->kstack hasn't been initialized yet.
607 	 * For secondary cpus, we need to bolt the kernel stack entry now.
608 	 */
609 	slb_shadow_clear(KSTACK_INDEX);
610 	if (raw_smp_processor_id() != boot_cpuid &&
611 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
612 		create_shadowed_slbe(get_paca()->kstack,
613 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
614 
615 	asm volatile("isync":::"memory");
616 }
617 
slb_cache_update(unsigned long esid_data)618 static void slb_cache_update(unsigned long esid_data)
619 {
620 	int slb_cache_index;
621 
622 	if (cpu_has_feature(CPU_FTR_ARCH_300))
623 		return; /* ISAv3.0B and later does not use slb_cache */
624 
625 	if (stress_slb())
626 		return;
627 
628 	/*
629 	 * Now update slb cache entries
630 	 */
631 	slb_cache_index = local_paca->slb_cache_ptr;
632 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
633 		/*
634 		 * We have space in slb cache for optimized switch_slb().
635 		 * Top 36 bits from esid_data as per ISA
636 		 */
637 		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
638 		local_paca->slb_cache_ptr++;
639 	} else {
640 		/*
641 		 * Our cache is full and the current cache content strictly
642 		 * doesn't indicate the active SLB conents. Bump the ptr
643 		 * so that switch_slb() will ignore the cache.
644 		 */
645 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
646 	}
647 }
648 
alloc_slb_index(bool kernel)649 static enum slb_index alloc_slb_index(bool kernel)
650 {
651 	enum slb_index index;
652 
653 	/*
654 	 * The allocation bitmaps can become out of synch with the SLB
655 	 * when the _switch code does slbie when bolting a new stack
656 	 * segment and it must not be anywhere else in the SLB. This leaves
657 	 * a kernel allocated entry that is unused in the SLB. With very
658 	 * large systems or small segment sizes, the bitmaps could slowly
659 	 * fill with these entries. They will eventually be cleared out
660 	 * by the round robin allocator in that case, so it's probably not
661 	 * worth accounting for.
662 	 */
663 
664 	/*
665 	 * SLBs beyond 32 entries are allocated with stab_rr only
666 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
667 	 * future CPU has more.
668 	 */
669 	if (local_paca->slb_used_bitmap != U32_MAX) {
670 		index = ffz(local_paca->slb_used_bitmap);
671 		local_paca->slb_used_bitmap |= 1U << index;
672 		if (kernel)
673 			local_paca->slb_kern_bitmap |= 1U << index;
674 	} else {
675 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
676 		index = local_paca->stab_rr;
677 		if (index < (mmu_slb_size - 1))
678 			index++;
679 		else
680 			index = SLB_NUM_BOLTED;
681 		local_paca->stab_rr = index;
682 		if (index < 32) {
683 			if (kernel)
684 				local_paca->slb_kern_bitmap |= 1U << index;
685 			else
686 				local_paca->slb_kern_bitmap &= ~(1U << index);
687 		}
688 	}
689 	BUG_ON(index < SLB_NUM_BOLTED);
690 
691 	return index;
692 }
693 
slb_insert_entry(unsigned long ea,unsigned long context,unsigned long flags,int ssize,bool kernel)694 static long slb_insert_entry(unsigned long ea, unsigned long context,
695 				unsigned long flags, int ssize, bool kernel)
696 {
697 	unsigned long vsid;
698 	unsigned long vsid_data, esid_data;
699 	enum slb_index index;
700 
701 	vsid = get_vsid(context, ea, ssize);
702 	if (!vsid)
703 		return -EFAULT;
704 
705 	/*
706 	 * There must not be a kernel SLB fault in alloc_slb_index or before
707 	 * slbmte here or the allocation bitmaps could get out of whack with
708 	 * the SLB.
709 	 *
710 	 * User SLB faults or preloads take this path which might get inlined
711 	 * into the caller, so add compiler barriers here to ensure unsafe
712 	 * memory accesses do not come between.
713 	 */
714 	barrier();
715 
716 	index = alloc_slb_index(kernel);
717 
718 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
719 	esid_data = mk_esid_data(ea, ssize, index);
720 
721 	/*
722 	 * No need for an isync before or after this slbmte. The exception
723 	 * we enter with and the rfid we exit with are context synchronizing.
724 	 * User preloads should add isync afterwards in case the kernel
725 	 * accesses user memory before it returns to userspace with rfid.
726 	 */
727 	assert_slb_presence(false, ea);
728 	if (stress_slb()) {
729 		int slb_cache_index = local_paca->slb_cache_ptr;
730 
731 		/*
732 		 * stress_slb() does not use slb cache, repurpose as a
733 		 * cache of inserted (non-bolted) kernel SLB entries. All
734 		 * non-bolted kernel entries are flushed on any user fault,
735 		 * or if there are already 3 non-boled kernel entries.
736 		 */
737 		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
738 		if (!kernel || slb_cache_index == 3) {
739 			int i;
740 
741 			for (i = 0; i < slb_cache_index; i++)
742 				slb_cache_slbie_kernel(i);
743 			slb_cache_index = 0;
744 		}
745 
746 		if (kernel)
747 			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
748 		local_paca->slb_cache_ptr = slb_cache_index;
749 	}
750 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
751 
752 	barrier();
753 
754 	if (!kernel)
755 		slb_cache_update(esid_data);
756 
757 	return 0;
758 }
759 
slb_allocate_kernel(unsigned long ea,unsigned long id)760 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
761 {
762 	unsigned long context;
763 	unsigned long flags;
764 	int ssize;
765 
766 	if (id == LINEAR_MAP_REGION_ID) {
767 
768 		/* We only support upto H_MAX_PHYSMEM_BITS */
769 		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
770 			return -EFAULT;
771 
772 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
773 
774 #ifdef CONFIG_SPARSEMEM_VMEMMAP
775 	} else if (id == VMEMMAP_REGION_ID) {
776 
777 		if (ea >= H_VMEMMAP_END)
778 			return -EFAULT;
779 
780 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
781 #endif
782 	} else if (id == VMALLOC_REGION_ID) {
783 
784 		if (ea >= H_VMALLOC_END)
785 			return -EFAULT;
786 
787 		flags = local_paca->vmalloc_sllp;
788 
789 	} else if (id == IO_REGION_ID) {
790 
791 		if (ea >= H_KERN_IO_END)
792 			return -EFAULT;
793 
794 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
795 
796 	} else {
797 		return -EFAULT;
798 	}
799 
800 	ssize = MMU_SEGSIZE_1T;
801 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
802 		ssize = MMU_SEGSIZE_256M;
803 
804 	context = get_kernel_context(ea);
805 
806 	return slb_insert_entry(ea, context, flags, ssize, true);
807 }
808 
slb_allocate_user(struct mm_struct * mm,unsigned long ea)809 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
810 {
811 	unsigned long context;
812 	unsigned long flags;
813 	int bpsize;
814 	int ssize;
815 
816 	/*
817 	 * consider this as bad access if we take a SLB miss
818 	 * on an address above addr limit.
819 	 */
820 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
821 		return -EFAULT;
822 
823 	context = get_user_context(&mm->context, ea);
824 	if (!context)
825 		return -EFAULT;
826 
827 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
828 		WARN_ON(1);
829 		return -EFAULT;
830 	}
831 
832 	ssize = user_segment_size(ea);
833 
834 	bpsize = get_slice_psize(mm, ea);
835 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
836 
837 	return slb_insert_entry(ea, context, flags, ssize, false);
838 }
839 
do_slb_fault(struct pt_regs * regs,unsigned long ea)840 long do_slb_fault(struct pt_regs *regs, unsigned long ea)
841 {
842 	unsigned long id = get_region_id(ea);
843 
844 	/* IRQs are not reconciled here, so can't check irqs_disabled */
845 	VM_WARN_ON(mfmsr() & MSR_EE);
846 
847 	if (unlikely(!(regs->msr & MSR_RI)))
848 		return -EINVAL;
849 
850 	/*
851 	 * SLB kernel faults must be very careful not to touch anything
852 	 * that is not bolted. E.g., PACA and global variables are okay,
853 	 * mm->context stuff is not.
854 	 *
855 	 * SLB user faults can access all of kernel memory, but must be
856 	 * careful not to touch things like IRQ state because it is not
857 	 * "reconciled" here. The difficulty is that we must use
858 	 * fast_exception_return to return from kernel SLB faults without
859 	 * looking at possible non-bolted memory. We could test user vs
860 	 * kernel faults in the interrupt handler asm and do a full fault,
861 	 * reconcile, ret_from_except for user faults which would make them
862 	 * first class kernel code. But for performance it's probably nicer
863 	 * if they go via fast_exception_return too.
864 	 */
865 	if (id >= LINEAR_MAP_REGION_ID) {
866 		long err;
867 #ifdef CONFIG_DEBUG_VM
868 		/* Catch recursive kernel SLB faults. */
869 		BUG_ON(local_paca->in_kernel_slb_handler);
870 		local_paca->in_kernel_slb_handler = 1;
871 #endif
872 		err = slb_allocate_kernel(ea, id);
873 #ifdef CONFIG_DEBUG_VM
874 		local_paca->in_kernel_slb_handler = 0;
875 #endif
876 		return err;
877 	} else {
878 		struct mm_struct *mm = current->mm;
879 		long err;
880 
881 		if (unlikely(!mm))
882 			return -EFAULT;
883 
884 		err = slb_allocate_user(mm, ea);
885 		if (!err)
886 			preload_add(current_thread_info(), ea);
887 
888 		return err;
889 	}
890 }
891 
do_bad_slb_fault(struct pt_regs * regs,unsigned long ea,long err)892 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
893 {
894 	if (err == -EFAULT) {
895 		if (user_mode(regs))
896 			_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
897 		else
898 			bad_page_fault(regs, ea, SIGSEGV);
899 	} else if (err == -EINVAL) {
900 		unrecoverable_exception(regs);
901 	} else {
902 		BUG();
903 	}
904 }
905