• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  */
4 
5 #include <linux/gfp.h>
6 #include <linux/init.h>
7 #include <linux/ratelimit.h>
8 #include <linux/usb.h>
9 #include <linux/usb/audio.h>
10 #include <linux/slab.h>
11 
12 #include <sound/core.h>
13 #include <sound/pcm.h>
14 #include <sound/pcm_params.h>
15 
16 #include "usbaudio.h"
17 #include "helper.h"
18 #include "card.h"
19 #include "endpoint.h"
20 #include "pcm.h"
21 #include "quirks.h"
22 
23 #define EP_FLAG_RUNNING		1
24 #define EP_FLAG_STOPPING	2
25 
26 /*
27  * snd_usb_endpoint is a model that abstracts everything related to an
28  * USB endpoint and its streaming.
29  *
30  * There are functions to activate and deactivate the streaming URBs and
31  * optional callbacks to let the pcm logic handle the actual content of the
32  * packets for playback and record. Thus, the bus streaming and the audio
33  * handlers are fully decoupled.
34  *
35  * There are two different types of endpoints in audio applications.
36  *
37  * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
38  * inbound and outbound traffic.
39  *
40  * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
41  * expect the payload to carry Q10.14 / Q16.16 formatted sync information
42  * (3 or 4 bytes).
43  *
44  * Each endpoint has to be configured prior to being used by calling
45  * snd_usb_endpoint_set_params().
46  *
47  * The model incorporates a reference counting, so that multiple users
48  * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
49  * only the first user will effectively start the URBs, and only the last
50  * one to stop it will tear the URBs down again.
51  */
52 
53 /*
54  * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
55  * this will overflow at approx 524 kHz
56  */
get_usb_full_speed_rate(unsigned int rate)57 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
58 {
59 	return ((rate << 13) + 62) / 125;
60 }
61 
62 /*
63  * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
64  * this will overflow at approx 4 MHz
65  */
get_usb_high_speed_rate(unsigned int rate)66 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
67 {
68 	return ((rate << 10) + 62) / 125;
69 }
70 
71 /*
72  * release a urb data
73  */
release_urb_ctx(struct snd_urb_ctx * u)74 static void release_urb_ctx(struct snd_urb_ctx *u)
75 {
76 	if (u->buffer_size)
77 		usb_free_coherent(u->ep->chip->dev, u->buffer_size,
78 				  u->urb->transfer_buffer,
79 				  u->urb->transfer_dma);
80 	usb_free_urb(u->urb);
81 	u->urb = NULL;
82 }
83 
usb_error_string(int err)84 static const char *usb_error_string(int err)
85 {
86 	switch (err) {
87 	case -ENODEV:
88 		return "no device";
89 	case -ENOENT:
90 		return "endpoint not enabled";
91 	case -EPIPE:
92 		return "endpoint stalled";
93 	case -ENOSPC:
94 		return "not enough bandwidth";
95 	case -ESHUTDOWN:
96 		return "device disabled";
97 	case -EHOSTUNREACH:
98 		return "device suspended";
99 	case -EINVAL:
100 	case -EAGAIN:
101 	case -EFBIG:
102 	case -EMSGSIZE:
103 		return "internal error";
104 	default:
105 		return "unknown error";
106 	}
107 }
108 
109 /**
110  * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
111  *
112  * @ep: The snd_usb_endpoint
113  *
114  * Determine whether an endpoint is driven by an implicit feedback
115  * data endpoint source.
116  */
snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint * ep)117 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
118 {
119 	return  ep->sync_master &&
120 		ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
121 		ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
122 		usb_pipeout(ep->pipe);
123 }
124 
125 /*
126  * For streaming based on information derived from sync endpoints,
127  * prepare_outbound_urb_sizes() will call slave_next_packet_size() to
128  * determine the number of samples to be sent in the next packet.
129  *
130  * For implicit feedback, slave_next_packet_size() is unused.
131  */
snd_usb_endpoint_slave_next_packet_size(struct snd_usb_endpoint * ep)132 int snd_usb_endpoint_slave_next_packet_size(struct snd_usb_endpoint *ep)
133 {
134 	unsigned long flags;
135 	int ret;
136 
137 	if (ep->fill_max)
138 		return ep->maxframesize;
139 
140 	spin_lock_irqsave(&ep->lock, flags);
141 	ep->phase = (ep->phase & 0xffff)
142 		+ (ep->freqm << ep->datainterval);
143 	ret = min(ep->phase >> 16, ep->maxframesize);
144 	spin_unlock_irqrestore(&ep->lock, flags);
145 
146 	return ret;
147 }
148 
149 /*
150  * For adaptive and synchronous endpoints, prepare_outbound_urb_sizes()
151  * will call next_packet_size() to determine the number of samples to be
152  * sent in the next packet.
153  */
snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint * ep)154 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
155 {
156 	int ret;
157 
158 	if (ep->fill_max)
159 		return ep->maxframesize;
160 
161 	ep->sample_accum += ep->sample_rem;
162 	if (ep->sample_accum >= ep->pps) {
163 		ep->sample_accum -= ep->pps;
164 		ret = ep->packsize[1];
165 	} else {
166 		ret = ep->packsize[0];
167 	}
168 
169 	return ret;
170 }
171 
retire_outbound_urb(struct snd_usb_endpoint * ep,struct snd_urb_ctx * urb_ctx)172 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
173 				struct snd_urb_ctx *urb_ctx)
174 {
175 	if (ep->retire_data_urb)
176 		ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
177 }
178 
retire_inbound_urb(struct snd_usb_endpoint * ep,struct snd_urb_ctx * urb_ctx)179 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
180 			       struct snd_urb_ctx *urb_ctx)
181 {
182 	struct urb *urb = urb_ctx->urb;
183 
184 	if (unlikely(ep->skip_packets > 0)) {
185 		ep->skip_packets--;
186 		return;
187 	}
188 
189 	if (ep->sync_slave)
190 		snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
191 
192 	if (ep->retire_data_urb)
193 		ep->retire_data_urb(ep->data_subs, urb);
194 }
195 
prepare_silent_urb(struct snd_usb_endpoint * ep,struct snd_urb_ctx * ctx)196 static void prepare_silent_urb(struct snd_usb_endpoint *ep,
197 			       struct snd_urb_ctx *ctx)
198 {
199 	struct urb *urb = ctx->urb;
200 	unsigned int offs = 0;
201 	unsigned int extra = 0;
202 	__le32 packet_length;
203 	int i;
204 
205 	/* For tx_length_quirk, put packet length at start of packet */
206 	if (ep->chip->tx_length_quirk)
207 		extra = sizeof(packet_length);
208 
209 	for (i = 0; i < ctx->packets; ++i) {
210 		unsigned int offset;
211 		unsigned int length;
212 		int counts;
213 
214 		if (ctx->packet_size[i])
215 			counts = ctx->packet_size[i];
216 		else if (ep->sync_master)
217 			counts = snd_usb_endpoint_slave_next_packet_size(ep);
218 		else
219 			counts = snd_usb_endpoint_next_packet_size(ep);
220 
221 		length = counts * ep->stride; /* number of silent bytes */
222 		offset = offs * ep->stride + extra * i;
223 		urb->iso_frame_desc[i].offset = offset;
224 		urb->iso_frame_desc[i].length = length + extra;
225 		if (extra) {
226 			packet_length = cpu_to_le32(length);
227 			memcpy(urb->transfer_buffer + offset,
228 			       &packet_length, sizeof(packet_length));
229 		}
230 		memset(urb->transfer_buffer + offset + extra,
231 		       ep->silence_value, length);
232 		offs += counts;
233 	}
234 
235 	urb->number_of_packets = ctx->packets;
236 	urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
237 }
238 
239 /*
240  * Prepare a PLAYBACK urb for submission to the bus.
241  */
prepare_outbound_urb(struct snd_usb_endpoint * ep,struct snd_urb_ctx * ctx)242 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
243 				 struct snd_urb_ctx *ctx)
244 {
245 	struct urb *urb = ctx->urb;
246 	unsigned char *cp = urb->transfer_buffer;
247 
248 	urb->dev = ep->chip->dev; /* we need to set this at each time */
249 
250 	switch (ep->type) {
251 	case SND_USB_ENDPOINT_TYPE_DATA:
252 		if (ep->prepare_data_urb) {
253 			ep->prepare_data_urb(ep->data_subs, urb);
254 		} else {
255 			/* no data provider, so send silence */
256 			prepare_silent_urb(ep, ctx);
257 		}
258 		break;
259 
260 	case SND_USB_ENDPOINT_TYPE_SYNC:
261 		if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
262 			/*
263 			 * fill the length and offset of each urb descriptor.
264 			 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
265 			 */
266 			urb->iso_frame_desc[0].length = 4;
267 			urb->iso_frame_desc[0].offset = 0;
268 			cp[0] = ep->freqn;
269 			cp[1] = ep->freqn >> 8;
270 			cp[2] = ep->freqn >> 16;
271 			cp[3] = ep->freqn >> 24;
272 		} else {
273 			/*
274 			 * fill the length and offset of each urb descriptor.
275 			 * the fixed 10.14 frequency is passed through the pipe.
276 			 */
277 			urb->iso_frame_desc[0].length = 3;
278 			urb->iso_frame_desc[0].offset = 0;
279 			cp[0] = ep->freqn >> 2;
280 			cp[1] = ep->freqn >> 10;
281 			cp[2] = ep->freqn >> 18;
282 		}
283 
284 		break;
285 	}
286 }
287 
288 /*
289  * Prepare a CAPTURE or SYNC urb for submission to the bus.
290  */
prepare_inbound_urb(struct snd_usb_endpoint * ep,struct snd_urb_ctx * urb_ctx)291 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
292 				       struct snd_urb_ctx *urb_ctx)
293 {
294 	int i, offs;
295 	struct urb *urb = urb_ctx->urb;
296 
297 	urb->dev = ep->chip->dev; /* we need to set this at each time */
298 
299 	switch (ep->type) {
300 	case SND_USB_ENDPOINT_TYPE_DATA:
301 		offs = 0;
302 		for (i = 0; i < urb_ctx->packets; i++) {
303 			urb->iso_frame_desc[i].offset = offs;
304 			urb->iso_frame_desc[i].length = ep->curpacksize;
305 			offs += ep->curpacksize;
306 		}
307 
308 		urb->transfer_buffer_length = offs;
309 		urb->number_of_packets = urb_ctx->packets;
310 		break;
311 
312 	case SND_USB_ENDPOINT_TYPE_SYNC:
313 		urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
314 		urb->iso_frame_desc[0].offset = 0;
315 		break;
316 	}
317 }
318 
319 /*
320  * Send output urbs that have been prepared previously. URBs are dequeued
321  * from ep->ready_playback_urbs and in case there aren't any available
322  * or there are no packets that have been prepared, this function does
323  * nothing.
324  *
325  * The reason why the functionality of sending and preparing URBs is separated
326  * is that host controllers don't guarantee the order in which they return
327  * inbound and outbound packets to their submitters.
328  *
329  * This function is only used for implicit feedback endpoints. For endpoints
330  * driven by dedicated sync endpoints, URBs are immediately re-submitted
331  * from their completion handler.
332  */
queue_pending_output_urbs(struct snd_usb_endpoint * ep)333 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
334 {
335 	while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
336 
337 		unsigned long flags;
338 		struct snd_usb_packet_info *packet;
339 		struct snd_urb_ctx *ctx = NULL;
340 		int err, i;
341 
342 		spin_lock_irqsave(&ep->lock, flags);
343 		if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
344 			packet = ep->next_packet + ep->next_packet_read_pos;
345 			ep->next_packet_read_pos++;
346 			ep->next_packet_read_pos %= MAX_URBS;
347 
348 			/* take URB out of FIFO */
349 			if (!list_empty(&ep->ready_playback_urbs)) {
350 				ctx = list_first_entry(&ep->ready_playback_urbs,
351 					       struct snd_urb_ctx, ready_list);
352 				list_del_init(&ctx->ready_list);
353 			}
354 		}
355 		spin_unlock_irqrestore(&ep->lock, flags);
356 
357 		if (ctx == NULL)
358 			return;
359 
360 		/* copy over the length information */
361 		for (i = 0; i < packet->packets; i++)
362 			ctx->packet_size[i] = packet->packet_size[i];
363 
364 		/* call the data handler to fill in playback data */
365 		prepare_outbound_urb(ep, ctx);
366 
367 		err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
368 		if (err < 0)
369 			usb_audio_err(ep->chip,
370 				"Unable to submit urb #%d: %d (urb %p)\n",
371 				ctx->index, err, ctx->urb);
372 		else
373 			set_bit(ctx->index, &ep->active_mask);
374 	}
375 }
376 
377 /*
378  * complete callback for urbs
379  */
snd_complete_urb(struct urb * urb)380 static void snd_complete_urb(struct urb *urb)
381 {
382 	struct snd_urb_ctx *ctx = urb->context;
383 	struct snd_usb_endpoint *ep = ctx->ep;
384 	struct snd_pcm_substream *substream;
385 	unsigned long flags;
386 	int err;
387 
388 	if (unlikely(urb->status == -ENOENT ||		/* unlinked */
389 		     urb->status == -ENODEV ||		/* device removed */
390 		     urb->status == -ECONNRESET ||	/* unlinked */
391 		     urb->status == -ESHUTDOWN))	/* device disabled */
392 		goto exit_clear;
393 	/* device disconnected */
394 	if (unlikely(atomic_read(&ep->chip->shutdown)))
395 		goto exit_clear;
396 
397 	if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
398 		goto exit_clear;
399 
400 	if (usb_pipeout(ep->pipe)) {
401 		retire_outbound_urb(ep, ctx);
402 		/* can be stopped during retire callback */
403 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
404 			goto exit_clear;
405 
406 		if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
407 			spin_lock_irqsave(&ep->lock, flags);
408 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
409 			spin_unlock_irqrestore(&ep->lock, flags);
410 			queue_pending_output_urbs(ep);
411 
412 			goto exit_clear;
413 		}
414 
415 		prepare_outbound_urb(ep, ctx);
416 		/* can be stopped during prepare callback */
417 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
418 			goto exit_clear;
419 	} else {
420 		retire_inbound_urb(ep, ctx);
421 		/* can be stopped during retire callback */
422 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
423 			goto exit_clear;
424 
425 		prepare_inbound_urb(ep, ctx);
426 	}
427 
428 	err = usb_submit_urb(urb, GFP_ATOMIC);
429 	if (err == 0)
430 		return;
431 
432 	usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
433 	if (ep->data_subs && ep->data_subs->pcm_substream) {
434 		substream = ep->data_subs->pcm_substream;
435 		snd_pcm_stop_xrun(substream);
436 	}
437 
438 exit_clear:
439 	clear_bit(ctx->index, &ep->active_mask);
440 }
441 
442 /**
443  * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
444  *
445  * @chip: The chip
446  * @alts: The USB host interface
447  * @ep_num: The number of the endpoint to use
448  * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
449  * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
450  *
451  * If the requested endpoint has not been added to the given chip before,
452  * a new instance is created. Otherwise, a pointer to the previoulsy
453  * created instance is returned. In case of any error, NULL is returned.
454  *
455  * New endpoints will be added to chip->ep_list and must be freed by
456  * calling snd_usb_endpoint_free().
457  *
458  * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
459  * bNumEndpoints > 1 beforehand.
460  */
snd_usb_add_endpoint(struct snd_usb_audio * chip,struct usb_host_interface * alts,int ep_num,int direction,int type)461 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
462 					      struct usb_host_interface *alts,
463 					      int ep_num, int direction, int type)
464 {
465 	struct snd_usb_endpoint *ep;
466 	int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
467 
468 	if (WARN_ON(!alts))
469 		return NULL;
470 
471 	mutex_lock(&chip->mutex);
472 
473 	list_for_each_entry(ep, &chip->ep_list, list) {
474 		if (ep->ep_num == ep_num &&
475 		    ep->iface == alts->desc.bInterfaceNumber &&
476 		    ep->altsetting == alts->desc.bAlternateSetting) {
477 			usb_audio_dbg(ep->chip,
478 				      "Re-using EP %x in iface %d,%d @%p\n",
479 					ep_num, ep->iface, ep->altsetting, ep);
480 			goto __exit_unlock;
481 		}
482 	}
483 
484 	usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
485 		    is_playback ? "playback" : "capture",
486 		    type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
487 		    ep_num);
488 
489 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490 	if (!ep)
491 		goto __exit_unlock;
492 
493 	ep->chip = chip;
494 	spin_lock_init(&ep->lock);
495 	ep->type = type;
496 	ep->ep_num = ep_num;
497 	ep->iface = alts->desc.bInterfaceNumber;
498 	ep->altsetting = alts->desc.bAlternateSetting;
499 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
500 	ep_num &= USB_ENDPOINT_NUMBER_MASK;
501 
502 	if (is_playback)
503 		ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
504 	else
505 		ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
506 
507 	if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
508 		if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
509 		    get_endpoint(alts, 1)->bRefresh >= 1 &&
510 		    get_endpoint(alts, 1)->bRefresh <= 9)
511 			ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
512 		else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
513 			ep->syncinterval = 1;
514 		else if (get_endpoint(alts, 1)->bInterval >= 1 &&
515 			 get_endpoint(alts, 1)->bInterval <= 16)
516 			ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
517 		else
518 			ep->syncinterval = 3;
519 
520 		ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
521 	}
522 
523 	list_add_tail(&ep->list, &chip->ep_list);
524 
525 	ep->is_implicit_feedback = 0;
526 
527 __exit_unlock:
528 	mutex_unlock(&chip->mutex);
529 
530 	return ep;
531 }
532 
533 /*
534  *  wait until all urbs are processed.
535  */
wait_clear_urbs(struct snd_usb_endpoint * ep)536 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
537 {
538 	unsigned long end_time = jiffies + msecs_to_jiffies(1000);
539 	int alive;
540 
541 	do {
542 		alive = bitmap_weight(&ep->active_mask, ep->nurbs);
543 		if (!alive)
544 			break;
545 
546 		schedule_timeout_uninterruptible(1);
547 	} while (time_before(jiffies, end_time));
548 
549 	if (alive)
550 		usb_audio_err(ep->chip,
551 			"timeout: still %d active urbs on EP #%x\n",
552 			alive, ep->ep_num);
553 	clear_bit(EP_FLAG_STOPPING, &ep->flags);
554 
555 	ep->data_subs = NULL;
556 	ep->sync_slave = NULL;
557 	ep->retire_data_urb = NULL;
558 	ep->prepare_data_urb = NULL;
559 
560 	return 0;
561 }
562 
563 /* sync the pending stop operation;
564  * this function itself doesn't trigger the stop operation
565  */
snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint * ep)566 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
567 {
568 	if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
569 		wait_clear_urbs(ep);
570 }
571 
572 /*
573  * unlink active urbs.
574  */
deactivate_urbs(struct snd_usb_endpoint * ep,bool force)575 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
576 {
577 	unsigned int i;
578 
579 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
580 
581 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
582 	ep->next_packet_read_pos = 0;
583 	ep->next_packet_write_pos = 0;
584 
585 	for (i = 0; i < ep->nurbs; i++) {
586 		if (test_bit(i, &ep->active_mask)) {
587 			if (!test_and_set_bit(i, &ep->unlink_mask)) {
588 				struct urb *u = ep->urb[i].urb;
589 				usb_unlink_urb(u);
590 			}
591 		}
592 	}
593 
594 	return 0;
595 }
596 
597 /*
598  * release an endpoint's urbs
599  */
release_urbs(struct snd_usb_endpoint * ep,int force)600 static void release_urbs(struct snd_usb_endpoint *ep, int force)
601 {
602 	int i;
603 
604 	/* route incoming urbs to nirvana */
605 	ep->retire_data_urb = NULL;
606 	ep->prepare_data_urb = NULL;
607 
608 	/* stop urbs */
609 	deactivate_urbs(ep, force);
610 	wait_clear_urbs(ep);
611 
612 	for (i = 0; i < ep->nurbs; i++)
613 		release_urb_ctx(&ep->urb[i]);
614 
615 	usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
616 			  ep->syncbuf, ep->sync_dma);
617 
618 	ep->syncbuf = NULL;
619 	ep->nurbs = 0;
620 }
621 
622 /*
623  * Check data endpoint for format differences
624  */
check_ep_params(struct snd_usb_endpoint * ep,snd_pcm_format_t pcm_format,unsigned int channels,unsigned int period_bytes,unsigned int frames_per_period,unsigned int periods_per_buffer,struct audioformat * fmt,struct snd_usb_endpoint * sync_ep)625 static bool check_ep_params(struct snd_usb_endpoint *ep,
626 			      snd_pcm_format_t pcm_format,
627 			      unsigned int channels,
628 			      unsigned int period_bytes,
629 			      unsigned int frames_per_period,
630 			      unsigned int periods_per_buffer,
631 			      struct audioformat *fmt,
632 			      struct snd_usb_endpoint *sync_ep)
633 {
634 	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
635 	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
636 	unsigned int max_urbs;
637 	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
638 	int tx_length_quirk = (ep->chip->tx_length_quirk &&
639 			       usb_pipeout(ep->pipe));
640 	bool ret = 1;
641 
642 	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
643 		/*
644 		 * When operating in DSD DOP mode, the size of a sample frame
645 		 * in hardware differs from the actual physical format width
646 		 * because we need to make room for the DOP markers.
647 		 */
648 		frame_bits += channels << 3;
649 	}
650 
651 	ret = ret && (ep->datainterval == fmt->datainterval);
652 	ret = ret && (ep->stride == frame_bits >> 3);
653 
654 	switch (pcm_format) {
655 	case SNDRV_PCM_FORMAT_U8:
656 		ret = ret && (ep->silence_value == 0x80);
657 		break;
658 	case SNDRV_PCM_FORMAT_DSD_U8:
659 	case SNDRV_PCM_FORMAT_DSD_U16_LE:
660 	case SNDRV_PCM_FORMAT_DSD_U32_LE:
661 	case SNDRV_PCM_FORMAT_DSD_U16_BE:
662 	case SNDRV_PCM_FORMAT_DSD_U32_BE:
663 		ret = ret && (ep->silence_value == 0x69);
664 		break;
665 	default:
666 		ret = ret && (ep->silence_value == 0);
667 	}
668 
669 	/* assume max. frequency is 50% higher than nominal */
670 	ret = ret && (ep->freqmax == ep->freqn + (ep->freqn >> 1));
671 	/* Round up freqmax to nearest integer in order to calculate maximum
672 	 * packet size, which must represent a whole number of frames.
673 	 * This is accomplished by adding 0x0.ffff before converting the
674 	 * Q16.16 format into integer.
675 	 * In order to accurately calculate the maximum packet size when
676 	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
677 	 * multiply by the data interval prior to rounding. For instance,
678 	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
679 	 * frames with a data interval of 1, but 11 (10.25) frames with a
680 	 * data interval of 2.
681 	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
682 	 * maximum datainterval value of 3, at USB full speed, higher for
683 	 * USB high speed, noting that ep->freqmax is in units of
684 	 * frames per packet in Q16.16 format.)
685 	 */
686 	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
687 			 (frame_bits >> 3);
688 	if (tx_length_quirk)
689 		maxsize += sizeof(__le32); /* Space for length descriptor */
690 	/* but wMaxPacketSize might reduce this */
691 	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
692 		/* whatever fits into a max. size packet */
693 		unsigned int data_maxsize = maxsize = ep->maxpacksize;
694 
695 		if (tx_length_quirk)
696 			/* Need to remove the length descriptor to calc freq */
697 			data_maxsize -= sizeof(__le32);
698 		ret = ret && (ep->freqmax == (data_maxsize / (frame_bits >> 3))
699 				<< (16 - ep->datainterval));
700 	}
701 
702 	if (ep->fill_max)
703 		ret = ret && (ep->curpacksize == ep->maxpacksize);
704 	else
705 		ret = ret && (ep->curpacksize == maxsize);
706 
707 	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
708 		packs_per_ms = 8 >> ep->datainterval;
709 		max_packs_per_urb = MAX_PACKS_HS;
710 	} else {
711 		packs_per_ms = 1;
712 		max_packs_per_urb = MAX_PACKS;
713 	}
714 	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
715 		max_packs_per_urb = min(max_packs_per_urb,
716 					1U << sync_ep->syncinterval);
717 	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
718 
719 	/*
720 	 * Capture endpoints need to use small URBs because there's no way
721 	 * to tell in advance where the next period will end, and we don't
722 	 * want the next URB to complete much after the period ends.
723 	 *
724 	 * Playback endpoints with implicit sync much use the same parameters
725 	 * as their corresponding capture endpoint.
726 	 */
727 	if (usb_pipein(ep->pipe) ||
728 			snd_usb_endpoint_implicit_feedback_sink(ep)) {
729 
730 		urb_packs = packs_per_ms;
731 		/*
732 		 * Wireless devices can poll at a max rate of once per 4ms.
733 		 * For dataintervals less than 5, increase the packet count to
734 		 * allow the host controller to use bursting to fill in the
735 		 * gaps.
736 		 */
737 		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
738 			int interval = ep->datainterval;
739 
740 			while (interval < 5) {
741 				urb_packs <<= 1;
742 				++interval;
743 			}
744 		}
745 		/* make capture URBs <= 1 ms and smaller than a period */
746 		urb_packs = min(max_packs_per_urb, urb_packs);
747 		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
748 			urb_packs >>= 1;
749 		ret = ret && (ep->nurbs == MAX_URBS);
750 
751 	/*
752 	 * Playback endpoints without implicit sync are adjusted so that
753 	 * a period fits as evenly as possible in the smallest number of
754 	 * URBs.  The total number of URBs is adjusted to the size of the
755 	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
756 	 */
757 	} else {
758 		/* determine how small a packet can be */
759 		minsize = (ep->freqn >> (16 - ep->datainterval)) *
760 				(frame_bits >> 3);
761 		/* with sync from device, assume it can be 12% lower */
762 		if (sync_ep)
763 			minsize -= minsize >> 3;
764 		minsize = max(minsize, 1u);
765 
766 		/* how many packets will contain an entire ALSA period? */
767 		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
768 
769 		/* how many URBs will contain a period? */
770 		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
771 				max_packs_per_urb);
772 		/* how many packets are needed in each URB? */
773 		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
774 
775 		/* limit the number of frames in a single URB */
776 		ret = ret && (ep->max_urb_frames ==
777 			DIV_ROUND_UP(frames_per_period, urbs_per_period));
778 
779 		/* try to use enough URBs to contain an entire ALSA buffer */
780 		max_urbs = min((unsigned) MAX_URBS,
781 				MAX_QUEUE * packs_per_ms / urb_packs);
782 		ret = ret && (ep->nurbs == min(max_urbs,
783 				urbs_per_period * periods_per_buffer));
784 	}
785 
786 	ret = ret && (ep->datainterval == fmt->datainterval);
787 	ret = ret && (ep->maxpacksize == fmt->maxpacksize);
788 	ret = ret &&
789 		(ep->fill_max == !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX));
790 
791 	return ret;
792 }
793 
794 /*
795  * configure a data endpoint
796  */
data_ep_set_params(struct snd_usb_endpoint * ep,snd_pcm_format_t pcm_format,unsigned int channels,unsigned int period_bytes,unsigned int frames_per_period,unsigned int periods_per_buffer,struct audioformat * fmt,struct snd_usb_endpoint * sync_ep)797 static int data_ep_set_params(struct snd_usb_endpoint *ep,
798 			      snd_pcm_format_t pcm_format,
799 			      unsigned int channels,
800 			      unsigned int period_bytes,
801 			      unsigned int frames_per_period,
802 			      unsigned int periods_per_buffer,
803 			      struct audioformat *fmt,
804 			      struct snd_usb_endpoint *sync_ep)
805 {
806 	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
807 	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
808 	unsigned int max_urbs, i;
809 	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
810 	int tx_length_quirk = (ep->chip->tx_length_quirk &&
811 			       usb_pipeout(ep->pipe));
812 
813 	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
814 		/*
815 		 * When operating in DSD DOP mode, the size of a sample frame
816 		 * in hardware differs from the actual physical format width
817 		 * because we need to make room for the DOP markers.
818 		 */
819 		frame_bits += channels << 3;
820 	}
821 
822 	ep->datainterval = fmt->datainterval;
823 	ep->stride = frame_bits >> 3;
824 
825 	switch (pcm_format) {
826 	case SNDRV_PCM_FORMAT_U8:
827 		ep->silence_value = 0x80;
828 		break;
829 	case SNDRV_PCM_FORMAT_DSD_U8:
830 	case SNDRV_PCM_FORMAT_DSD_U16_LE:
831 	case SNDRV_PCM_FORMAT_DSD_U32_LE:
832 	case SNDRV_PCM_FORMAT_DSD_U16_BE:
833 	case SNDRV_PCM_FORMAT_DSD_U32_BE:
834 		ep->silence_value = 0x69;
835 		break;
836 	default:
837 		ep->silence_value = 0;
838 	}
839 
840 	/* assume max. frequency is 50% higher than nominal */
841 	ep->freqmax = ep->freqn + (ep->freqn >> 1);
842 	/* Round up freqmax to nearest integer in order to calculate maximum
843 	 * packet size, which must represent a whole number of frames.
844 	 * This is accomplished by adding 0x0.ffff before converting the
845 	 * Q16.16 format into integer.
846 	 * In order to accurately calculate the maximum packet size when
847 	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
848 	 * multiply by the data interval prior to rounding. For instance,
849 	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
850 	 * frames with a data interval of 1, but 11 (10.25) frames with a
851 	 * data interval of 2.
852 	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
853 	 * maximum datainterval value of 3, at USB full speed, higher for
854 	 * USB high speed, noting that ep->freqmax is in units of
855 	 * frames per packet in Q16.16 format.)
856 	 */
857 	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
858 			 (frame_bits >> 3);
859 	if (tx_length_quirk)
860 		maxsize += sizeof(__le32); /* Space for length descriptor */
861 	/* but wMaxPacketSize might reduce this */
862 	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
863 		/* whatever fits into a max. size packet */
864 		unsigned int data_maxsize = maxsize = ep->maxpacksize;
865 
866 		if (tx_length_quirk)
867 			/* Need to remove the length descriptor to calc freq */
868 			data_maxsize -= sizeof(__le32);
869 		ep->freqmax = (data_maxsize / (frame_bits >> 3))
870 				<< (16 - ep->datainterval);
871 	}
872 
873 	if (ep->fill_max)
874 		ep->curpacksize = ep->maxpacksize;
875 	else
876 		ep->curpacksize = maxsize;
877 
878 	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
879 		packs_per_ms = 8 >> ep->datainterval;
880 		max_packs_per_urb = MAX_PACKS_HS;
881 	} else {
882 		packs_per_ms = 1;
883 		max_packs_per_urb = MAX_PACKS;
884 	}
885 	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
886 		max_packs_per_urb = min(max_packs_per_urb,
887 					1U << sync_ep->syncinterval);
888 	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
889 
890 	/*
891 	 * Capture endpoints need to use small URBs because there's no way
892 	 * to tell in advance where the next period will end, and we don't
893 	 * want the next URB to complete much after the period ends.
894 	 *
895 	 * Playback endpoints with implicit sync much use the same parameters
896 	 * as their corresponding capture endpoint.
897 	 */
898 	if (usb_pipein(ep->pipe) ||
899 			snd_usb_endpoint_implicit_feedback_sink(ep)) {
900 
901 		urb_packs = packs_per_ms;
902 		/*
903 		 * Wireless devices can poll at a max rate of once per 4ms.
904 		 * For dataintervals less than 5, increase the packet count to
905 		 * allow the host controller to use bursting to fill in the
906 		 * gaps.
907 		 */
908 		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
909 			int interval = ep->datainterval;
910 			while (interval < 5) {
911 				urb_packs <<= 1;
912 				++interval;
913 			}
914 		}
915 		/* make capture URBs <= 1 ms and smaller than a period */
916 		urb_packs = min(max_packs_per_urb, urb_packs);
917 		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
918 			urb_packs >>= 1;
919 		ep->nurbs = MAX_URBS;
920 
921 	/*
922 	 * Playback endpoints without implicit sync are adjusted so that
923 	 * a period fits as evenly as possible in the smallest number of
924 	 * URBs.  The total number of URBs is adjusted to the size of the
925 	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
926 	 */
927 	} else {
928 		/* determine how small a packet can be */
929 		minsize = (ep->freqn >> (16 - ep->datainterval)) *
930 				(frame_bits >> 3);
931 		/* with sync from device, assume it can be 12% lower */
932 		if (sync_ep)
933 			minsize -= minsize >> 3;
934 		minsize = max(minsize, 1u);
935 
936 		/* how many packets will contain an entire ALSA period? */
937 		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
938 
939 		/* how many URBs will contain a period? */
940 		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
941 				max_packs_per_urb);
942 		/* how many packets are needed in each URB? */
943 		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
944 
945 		/* limit the number of frames in a single URB */
946 		ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
947 					urbs_per_period);
948 
949 		/* try to use enough URBs to contain an entire ALSA buffer */
950 		max_urbs = min((unsigned) MAX_URBS,
951 				MAX_QUEUE * packs_per_ms / urb_packs);
952 		ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
953 	}
954 
955 	/* allocate and initialize data urbs */
956 	for (i = 0; i < ep->nurbs; i++) {
957 		struct snd_urb_ctx *u = &ep->urb[i];
958 		u->index = i;
959 		u->ep = ep;
960 		u->packets = urb_packs;
961 		u->buffer_size = maxsize * u->packets;
962 
963 		if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
964 			u->packets++; /* for transfer delimiter */
965 		u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
966 		if (!u->urb)
967 			goto out_of_memory;
968 
969 		u->urb->transfer_buffer =
970 			usb_alloc_coherent(ep->chip->dev, u->buffer_size,
971 					   GFP_KERNEL, &u->urb->transfer_dma);
972 		if (!u->urb->transfer_buffer)
973 			goto out_of_memory;
974 		u->urb->pipe = ep->pipe;
975 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
976 		u->urb->interval = 1 << ep->datainterval;
977 		u->urb->context = u;
978 		u->urb->complete = snd_complete_urb;
979 		INIT_LIST_HEAD(&u->ready_list);
980 	}
981 
982 	return 0;
983 
984 out_of_memory:
985 	release_urbs(ep, 0);
986 	return -ENOMEM;
987 }
988 
989 /*
990  * configure a sync endpoint
991  */
sync_ep_set_params(struct snd_usb_endpoint * ep)992 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
993 {
994 	int i;
995 
996 	ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
997 					 GFP_KERNEL, &ep->sync_dma);
998 	if (!ep->syncbuf)
999 		return -ENOMEM;
1000 
1001 	for (i = 0; i < SYNC_URBS; i++) {
1002 		struct snd_urb_ctx *u = &ep->urb[i];
1003 		u->index = i;
1004 		u->ep = ep;
1005 		u->packets = 1;
1006 		u->urb = usb_alloc_urb(1, GFP_KERNEL);
1007 		if (!u->urb)
1008 			goto out_of_memory;
1009 		u->urb->transfer_buffer = ep->syncbuf + i * 4;
1010 		u->urb->transfer_dma = ep->sync_dma + i * 4;
1011 		u->urb->transfer_buffer_length = 4;
1012 		u->urb->pipe = ep->pipe;
1013 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1014 		u->urb->number_of_packets = 1;
1015 		u->urb->interval = 1 << ep->syncinterval;
1016 		u->urb->context = u;
1017 		u->urb->complete = snd_complete_urb;
1018 	}
1019 
1020 	ep->nurbs = SYNC_URBS;
1021 
1022 	return 0;
1023 
1024 out_of_memory:
1025 	release_urbs(ep, 0);
1026 	return -ENOMEM;
1027 }
1028 
1029 /**
1030  * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
1031  *
1032  * @ep: the snd_usb_endpoint to configure
1033  * @pcm_format: the audio fomat.
1034  * @channels: the number of audio channels.
1035  * @period_bytes: the number of bytes in one alsa period.
1036  * @period_frames: the number of frames in one alsa period.
1037  * @buffer_periods: the number of periods in one alsa buffer.
1038  * @rate: the frame rate.
1039  * @fmt: the USB audio format information
1040  * @sync_ep: the sync endpoint to use, if any
1041  *
1042  * Determine the number of URBs to be used on this endpoint.
1043  * An endpoint must be configured before it can be started.
1044  * An endpoint that is already running can not be reconfigured.
1045  */
snd_usb_endpoint_set_params(struct snd_usb_endpoint * ep,snd_pcm_format_t pcm_format,unsigned int channels,unsigned int period_bytes,unsigned int period_frames,unsigned int buffer_periods,unsigned int rate,struct audioformat * fmt,struct snd_usb_endpoint * sync_ep)1046 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
1047 				snd_pcm_format_t pcm_format,
1048 				unsigned int channels,
1049 				unsigned int period_bytes,
1050 				unsigned int period_frames,
1051 				unsigned int buffer_periods,
1052 				unsigned int rate,
1053 				struct audioformat *fmt,
1054 				struct snd_usb_endpoint *sync_ep)
1055 {
1056 	int err;
1057 
1058 	if (ep->use_count != 0) {
1059 		bool check = ep->is_implicit_feedback &&
1060 			check_ep_params(ep, pcm_format,
1061 					     channels, period_bytes,
1062 					     period_frames, buffer_periods,
1063 					     fmt, sync_ep);
1064 
1065 		if (!check) {
1066 			usb_audio_warn(ep->chip,
1067 				"Unable to change format on ep #%x: already in use\n",
1068 				ep->ep_num);
1069 			return -EBUSY;
1070 		}
1071 
1072 		usb_audio_dbg(ep->chip,
1073 			      "Ep #%x already in use as implicit feedback but format not changed\n",
1074 			      ep->ep_num);
1075 		return 0;
1076 	}
1077 
1078 	/* release old buffers, if any */
1079 	release_urbs(ep, 0);
1080 
1081 	ep->datainterval = fmt->datainterval;
1082 	ep->maxpacksize = fmt->maxpacksize;
1083 	ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
1084 
1085 	if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) {
1086 		ep->freqn = get_usb_full_speed_rate(rate);
1087 		ep->pps = 1000 >> ep->datainterval;
1088 	} else {
1089 		ep->freqn = get_usb_high_speed_rate(rate);
1090 		ep->pps = 8000 >> ep->datainterval;
1091 	}
1092 
1093 	ep->sample_rem = rate % ep->pps;
1094 	ep->packsize[0] = rate / ep->pps;
1095 	ep->packsize[1] = (rate + (ep->pps - 1)) / ep->pps;
1096 
1097 	/* calculate the frequency in 16.16 format */
1098 	ep->freqm = ep->freqn;
1099 	ep->freqshift = INT_MIN;
1100 
1101 	ep->phase = 0;
1102 
1103 	switch (ep->type) {
1104 	case  SND_USB_ENDPOINT_TYPE_DATA:
1105 		err = data_ep_set_params(ep, pcm_format, channels,
1106 					 period_bytes, period_frames,
1107 					 buffer_periods, fmt, sync_ep);
1108 		break;
1109 	case  SND_USB_ENDPOINT_TYPE_SYNC:
1110 		err = sync_ep_set_params(ep);
1111 		break;
1112 	default:
1113 		err = -EINVAL;
1114 	}
1115 
1116 	usb_audio_dbg(ep->chip,
1117 		"Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
1118 		ep->ep_num, ep->type, ep->nurbs, err);
1119 
1120 	return err;
1121 }
1122 
1123 /**
1124  * snd_usb_endpoint_start: start an snd_usb_endpoint
1125  *
1126  * @ep: the endpoint to start
1127  *
1128  * A call to this function will increment the use count of the endpoint.
1129  * In case it is not already running, the URBs for this endpoint will be
1130  * submitted. Otherwise, this function does nothing.
1131  *
1132  * Must be balanced to calls of snd_usb_endpoint_stop().
1133  *
1134  * Returns an error if the URB submission failed, 0 in all other cases.
1135  */
snd_usb_endpoint_start(struct snd_usb_endpoint * ep)1136 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
1137 {
1138 	int err;
1139 	unsigned int i;
1140 
1141 	if (atomic_read(&ep->chip->shutdown))
1142 		return -EBADFD;
1143 
1144 	/* already running? */
1145 	if (++ep->use_count != 1)
1146 		return 0;
1147 
1148 	/* just to be sure */
1149 	deactivate_urbs(ep, false);
1150 
1151 	ep->active_mask = 0;
1152 	ep->unlink_mask = 0;
1153 	ep->phase = 0;
1154 	ep->sample_accum = 0;
1155 
1156 	snd_usb_endpoint_start_quirk(ep);
1157 
1158 	/*
1159 	 * If this endpoint has a data endpoint as implicit feedback source,
1160 	 * don't start the urbs here. Instead, mark them all as available,
1161 	 * wait for the record urbs to return and queue the playback urbs
1162 	 * from that context.
1163 	 */
1164 
1165 	set_bit(EP_FLAG_RUNNING, &ep->flags);
1166 
1167 	if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
1168 		for (i = 0; i < ep->nurbs; i++) {
1169 			struct snd_urb_ctx *ctx = ep->urb + i;
1170 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
1171 		}
1172 
1173 		return 0;
1174 	}
1175 
1176 	for (i = 0; i < ep->nurbs; i++) {
1177 		struct urb *urb = ep->urb[i].urb;
1178 
1179 		if (snd_BUG_ON(!urb))
1180 			goto __error;
1181 
1182 		if (usb_pipeout(ep->pipe)) {
1183 			prepare_outbound_urb(ep, urb->context);
1184 		} else {
1185 			prepare_inbound_urb(ep, urb->context);
1186 		}
1187 
1188 		err = usb_submit_urb(urb, GFP_ATOMIC);
1189 		if (err < 0) {
1190 			usb_audio_err(ep->chip,
1191 				"cannot submit urb %d, error %d: %s\n",
1192 				i, err, usb_error_string(err));
1193 			goto __error;
1194 		}
1195 		set_bit(i, &ep->active_mask);
1196 	}
1197 
1198 	return 0;
1199 
1200 __error:
1201 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
1202 	ep->use_count--;
1203 	deactivate_urbs(ep, false);
1204 	return -EPIPE;
1205 }
1206 
1207 /**
1208  * snd_usb_endpoint_stop: stop an snd_usb_endpoint
1209  *
1210  * @ep: the endpoint to stop (may be NULL)
1211  *
1212  * A call to this function will decrement the use count of the endpoint.
1213  * In case the last user has requested the endpoint stop, the URBs will
1214  * actually be deactivated.
1215  *
1216  * Must be balanced to calls of snd_usb_endpoint_start().
1217  *
1218  * The caller needs to synchronize the pending stop operation via
1219  * snd_usb_endpoint_sync_pending_stop().
1220  */
snd_usb_endpoint_stop(struct snd_usb_endpoint * ep)1221 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
1222 {
1223 	if (!ep)
1224 		return;
1225 
1226 	if (snd_BUG_ON(ep->use_count == 0))
1227 		return;
1228 
1229 	if (--ep->use_count == 0) {
1230 		deactivate_urbs(ep, false);
1231 		set_bit(EP_FLAG_STOPPING, &ep->flags);
1232 	}
1233 }
1234 
1235 /**
1236  * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
1237  *
1238  * @ep: the endpoint to deactivate
1239  *
1240  * If the endpoint is not currently in use, this functions will
1241  * deactivate its associated URBs.
1242  *
1243  * In case of any active users, this functions does nothing.
1244  */
snd_usb_endpoint_deactivate(struct snd_usb_endpoint * ep)1245 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
1246 {
1247 	if (!ep)
1248 		return;
1249 
1250 	if (ep->use_count != 0)
1251 		return;
1252 
1253 	deactivate_urbs(ep, true);
1254 	wait_clear_urbs(ep);
1255 }
1256 
1257 /**
1258  * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1259  *
1260  * @ep: the endpoint to release
1261  *
1262  * This function does not care for the endpoint's use count but will tear
1263  * down all the streaming URBs immediately.
1264  */
snd_usb_endpoint_release(struct snd_usb_endpoint * ep)1265 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1266 {
1267 	release_urbs(ep, 1);
1268 }
1269 
1270 /**
1271  * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1272  *
1273  * @ep: the endpoint to free
1274  *
1275  * This free all resources of the given ep.
1276  */
snd_usb_endpoint_free(struct snd_usb_endpoint * ep)1277 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1278 {
1279 	kfree(ep);
1280 }
1281 
1282 /**
1283  * snd_usb_handle_sync_urb: parse an USB sync packet
1284  *
1285  * @ep: the endpoint to handle the packet
1286  * @sender: the sending endpoint
1287  * @urb: the received packet
1288  *
1289  * This function is called from the context of an endpoint that received
1290  * the packet and is used to let another endpoint object handle the payload.
1291  */
snd_usb_handle_sync_urb(struct snd_usb_endpoint * ep,struct snd_usb_endpoint * sender,const struct urb * urb)1292 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1293 			     struct snd_usb_endpoint *sender,
1294 			     const struct urb *urb)
1295 {
1296 	int shift;
1297 	unsigned int f;
1298 	unsigned long flags;
1299 
1300 	snd_BUG_ON(ep == sender);
1301 
1302 	/*
1303 	 * In case the endpoint is operating in implicit feedback mode, prepare
1304 	 * a new outbound URB that has the same layout as the received packet
1305 	 * and add it to the list of pending urbs. queue_pending_output_urbs()
1306 	 * will take care of them later.
1307 	 */
1308 	if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1309 	    ep->use_count != 0) {
1310 
1311 		/* implicit feedback case */
1312 		int i, bytes = 0;
1313 		struct snd_urb_ctx *in_ctx;
1314 		struct snd_usb_packet_info *out_packet;
1315 
1316 		in_ctx = urb->context;
1317 
1318 		/* Count overall packet size */
1319 		for (i = 0; i < in_ctx->packets; i++)
1320 			if (urb->iso_frame_desc[i].status == 0)
1321 				bytes += urb->iso_frame_desc[i].actual_length;
1322 
1323 		/*
1324 		 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1325 		 * streaming once it received a 0-byte OUT URB
1326 		 */
1327 		if (bytes == 0)
1328 			return;
1329 
1330 		spin_lock_irqsave(&ep->lock, flags);
1331 		out_packet = ep->next_packet + ep->next_packet_write_pos;
1332 
1333 		/*
1334 		 * Iterate through the inbound packet and prepare the lengths
1335 		 * for the output packet. The OUT packet we are about to send
1336 		 * will have the same amount of payload bytes per stride as the
1337 		 * IN packet we just received. Since the actual size is scaled
1338 		 * by the stride, use the sender stride to calculate the length
1339 		 * in case the number of channels differ between the implicitly
1340 		 * fed-back endpoint and the synchronizing endpoint.
1341 		 */
1342 
1343 		out_packet->packets = in_ctx->packets;
1344 		for (i = 0; i < in_ctx->packets; i++) {
1345 			if (urb->iso_frame_desc[i].status == 0)
1346 				out_packet->packet_size[i] =
1347 					urb->iso_frame_desc[i].actual_length / sender->stride;
1348 			else
1349 				out_packet->packet_size[i] = 0;
1350 		}
1351 
1352 		ep->next_packet_write_pos++;
1353 		ep->next_packet_write_pos %= MAX_URBS;
1354 		spin_unlock_irqrestore(&ep->lock, flags);
1355 		queue_pending_output_urbs(ep);
1356 
1357 		return;
1358 	}
1359 
1360 	/*
1361 	 * process after playback sync complete
1362 	 *
1363 	 * Full speed devices report feedback values in 10.14 format as samples
1364 	 * per frame, high speed devices in 16.16 format as samples per
1365 	 * microframe.
1366 	 *
1367 	 * Because the Audio Class 1 spec was written before USB 2.0, many high
1368 	 * speed devices use a wrong interpretation, some others use an
1369 	 * entirely different format.
1370 	 *
1371 	 * Therefore, we cannot predict what format any particular device uses
1372 	 * and must detect it automatically.
1373 	 */
1374 
1375 	if (urb->iso_frame_desc[0].status != 0 ||
1376 	    urb->iso_frame_desc[0].actual_length < 3)
1377 		return;
1378 
1379 	f = le32_to_cpup(urb->transfer_buffer);
1380 	if (urb->iso_frame_desc[0].actual_length == 3)
1381 		f &= 0x00ffffff;
1382 	else
1383 		f &= 0x0fffffff;
1384 
1385 	if (f == 0)
1386 		return;
1387 
1388 	if (unlikely(sender->tenor_fb_quirk)) {
1389 		/*
1390 		 * Devices based on Tenor 8802 chipsets (TEAC UD-H01
1391 		 * and others) sometimes change the feedback value
1392 		 * by +/- 0x1.0000.
1393 		 */
1394 		if (f < ep->freqn - 0x8000)
1395 			f += 0xf000;
1396 		else if (f > ep->freqn + 0x8000)
1397 			f -= 0xf000;
1398 	} else if (unlikely(ep->freqshift == INT_MIN)) {
1399 		/*
1400 		 * The first time we see a feedback value, determine its format
1401 		 * by shifting it left or right until it matches the nominal
1402 		 * frequency value.  This assumes that the feedback does not
1403 		 * differ from the nominal value more than +50% or -25%.
1404 		 */
1405 		shift = 0;
1406 		while (f < ep->freqn - ep->freqn / 4) {
1407 			f <<= 1;
1408 			shift++;
1409 		}
1410 		while (f > ep->freqn + ep->freqn / 2) {
1411 			f >>= 1;
1412 			shift--;
1413 		}
1414 		ep->freqshift = shift;
1415 	} else if (ep->freqshift >= 0)
1416 		f <<= ep->freqshift;
1417 	else
1418 		f >>= -ep->freqshift;
1419 
1420 	if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1421 		/*
1422 		 * If the frequency looks valid, set it.
1423 		 * This value is referred to in prepare_playback_urb().
1424 		 */
1425 		spin_lock_irqsave(&ep->lock, flags);
1426 		ep->freqm = f;
1427 		spin_unlock_irqrestore(&ep->lock, flags);
1428 	} else {
1429 		/*
1430 		 * Out of range; maybe the shift value is wrong.
1431 		 * Reset it so that we autodetect again the next time.
1432 		 */
1433 		ep->freqshift = INT_MIN;
1434 	}
1435 }
1436 
1437