1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 spi_controller_put(spi->controller);
51 kfree(spi->driver_override);
52 kfree(spi);
53 }
54
55 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 const struct spi_device *spi = to_spi_device(dev);
59 int len;
60
61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 if (len != -ENODEV)
63 return len;
64
65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)69 static ssize_t driver_override_store(struct device *dev,
70 struct device_attribute *a,
71 const char *buf, size_t count)
72 {
73 struct spi_device *spi = to_spi_device(dev);
74 const char *end = memchr(buf, '\n', count);
75 const size_t len = end ? end - buf : count;
76 const char *driver_override, *old;
77
78 /* We need to keep extra room for a newline when displaying value */
79 if (len >= (PAGE_SIZE - 1))
80 return -EINVAL;
81
82 driver_override = kstrndup(buf, len, GFP_KERNEL);
83 if (!driver_override)
84 return -ENOMEM;
85
86 device_lock(dev);
87 old = spi->driver_override;
88 if (len) {
89 spi->driver_override = driver_override;
90 } else {
91 /* Empty string, disable driver override */
92 spi->driver_override = NULL;
93 kfree(driver_override);
94 }
95 device_unlock(dev);
96 kfree(old);
97
98 return count;
99 }
100
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)101 static ssize_t driver_override_show(struct device *dev,
102 struct device_attribute *a, char *buf)
103 {
104 const struct spi_device *spi = to_spi_device(dev);
105 ssize_t len;
106
107 device_lock(dev);
108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 device_unlock(dev);
110 return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file) \
115 static ssize_t spi_controller_##field##_show(struct device *dev, \
116 struct device_attribute *attr, \
117 char *buf) \
118 { \
119 struct spi_controller *ctlr = container_of(dev, \
120 struct spi_controller, dev); \
121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
122 } \
123 static struct device_attribute dev_attr_spi_controller_##field = { \
124 .attr = { .name = file, .mode = 0444 }, \
125 .show = spi_controller_##field##_show, \
126 }; \
127 static ssize_t spi_device_##field##_show(struct device *dev, \
128 struct device_attribute *attr, \
129 char *buf) \
130 { \
131 struct spi_device *spi = to_spi_device(dev); \
132 return spi_statistics_##field##_show(&spi->statistics, buf); \
133 } \
134 static struct device_attribute dev_attr_spi_device_##field = { \
135 .attr = { .name = file, .mode = 0444 }, \
136 .show = spi_device_##field##_show, \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 char *buf) \
142 { \
143 unsigned long flags; \
144 ssize_t len; \
145 spin_lock_irqsave(&stat->lock, flags); \
146 len = sprintf(buf, format_string, stat->field); \
147 spin_unlock_irqrestore(&stat->lock, flags); \
148 return len; \
149 } \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string) \
153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
154 field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
171 "transfer_bytes_histo_" number, \
172 transfer_bytes_histo[index], "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194 &dev_attr_modalias.attr,
195 &dev_attr_driver_override.attr,
196 NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200 .attrs = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204 &dev_attr_spi_device_messages.attr,
205 &dev_attr_spi_device_transfers.attr,
206 &dev_attr_spi_device_errors.attr,
207 &dev_attr_spi_device_timedout.attr,
208 &dev_attr_spi_device_spi_sync.attr,
209 &dev_attr_spi_device_spi_sync_immediate.attr,
210 &dev_attr_spi_device_spi_async.attr,
211 &dev_attr_spi_device_bytes.attr,
212 &dev_attr_spi_device_bytes_rx.attr,
213 &dev_attr_spi_device_bytes_tx.attr,
214 &dev_attr_spi_device_transfer_bytes_histo0.attr,
215 &dev_attr_spi_device_transfer_bytes_histo1.attr,
216 &dev_attr_spi_device_transfer_bytes_histo2.attr,
217 &dev_attr_spi_device_transfer_bytes_histo3.attr,
218 &dev_attr_spi_device_transfer_bytes_histo4.attr,
219 &dev_attr_spi_device_transfer_bytes_histo5.attr,
220 &dev_attr_spi_device_transfer_bytes_histo6.attr,
221 &dev_attr_spi_device_transfer_bytes_histo7.attr,
222 &dev_attr_spi_device_transfer_bytes_histo8.attr,
223 &dev_attr_spi_device_transfer_bytes_histo9.attr,
224 &dev_attr_spi_device_transfer_bytes_histo10.attr,
225 &dev_attr_spi_device_transfer_bytes_histo11.attr,
226 &dev_attr_spi_device_transfer_bytes_histo12.attr,
227 &dev_attr_spi_device_transfer_bytes_histo13.attr,
228 &dev_attr_spi_device_transfer_bytes_histo14.attr,
229 &dev_attr_spi_device_transfer_bytes_histo15.attr,
230 &dev_attr_spi_device_transfer_bytes_histo16.attr,
231 &dev_attr_spi_device_transfers_split_maxsize.attr,
232 NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236 .name = "statistics",
237 .attrs = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241 &spi_dev_group,
242 &spi_device_statistics_group,
243 NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 &dev_attr_spi_controller_messages.attr,
248 &dev_attr_spi_controller_transfers.attr,
249 &dev_attr_spi_controller_errors.attr,
250 &dev_attr_spi_controller_timedout.attr,
251 &dev_attr_spi_controller_spi_sync.attr,
252 &dev_attr_spi_controller_spi_sync_immediate.attr,
253 &dev_attr_spi_controller_spi_async.attr,
254 &dev_attr_spi_controller_bytes.attr,
255 &dev_attr_spi_controller_bytes_rx.attr,
256 &dev_attr_spi_controller_bytes_tx.attr,
257 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 &dev_attr_spi_controller_transfers_split_maxsize.attr,
275 NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279 .name = "statistics",
280 .attrs = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284 &spi_controller_statistics_group,
285 NULL,
286 };
287
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 struct spi_transfer *xfer,
290 struct spi_controller *ctlr)
291 {
292 unsigned long flags;
293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295 if (l2len < 0)
296 l2len = 0;
297
298 spin_lock_irqsave(&stats->lock, flags);
299
300 stats->transfers++;
301 stats->transfer_bytes_histo[l2len]++;
302
303 stats->bytes += xfer->len;
304 if ((xfer->tx_buf) &&
305 (xfer->tx_buf != ctlr->dummy_tx))
306 stats->bytes_tx += xfer->len;
307 if ((xfer->rx_buf) &&
308 (xfer->rx_buf != ctlr->dummy_rx))
309 stats->bytes_rx += xfer->len;
310
311 spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316 * and the sysfs version makes coldplug work too.
317 */
318
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 const struct spi_device *sdev)
321 {
322 while (id->name[0]) {
323 if (!strcmp(sdev->modalias, id->name))
324 return id;
325 id++;
326 }
327 return NULL;
328 }
329
spi_get_device_id(const struct spi_device * sdev)330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333
334 return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337
spi_match_device(struct device * dev,struct device_driver * drv)338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 const struct spi_device *spi = to_spi_device(dev);
341 const struct spi_driver *sdrv = to_spi_driver(drv);
342
343 /* Check override first, and if set, only use the named driver */
344 if (spi->driver_override)
345 return strcmp(spi->driver_override, drv->name) == 0;
346
347 /* Attempt an OF style match */
348 if (of_driver_match_device(dev, drv))
349 return 1;
350
351 /* Then try ACPI */
352 if (acpi_driver_match_device(dev, drv))
353 return 1;
354
355 if (sdrv->id_table)
356 return !!spi_match_id(sdrv->id_table, spi);
357
358 return strcmp(spi->modalias, drv->name) == 0;
359 }
360
spi_uevent(struct device * dev,struct kobj_uevent_env * env)361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 const struct spi_device *spi = to_spi_device(dev);
364 int rc;
365
366 rc = acpi_device_uevent_modalias(dev, env);
367 if (rc != -ENODEV)
368 return rc;
369
370 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372
373 struct bus_type spi_bus_type = {
374 .name = "spi",
375 .dev_groups = spi_dev_groups,
376 .match = spi_match_device,
377 .uevent = spi_uevent,
378 };
379 EXPORT_SYMBOL_GPL(spi_bus_type);
380
381
spi_drv_probe(struct device * dev)382 static int spi_drv_probe(struct device *dev)
383 {
384 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
385 struct spi_device *spi = to_spi_device(dev);
386 int ret;
387
388 ret = of_clk_set_defaults(dev->of_node, false);
389 if (ret)
390 return ret;
391
392 if (dev->of_node) {
393 spi->irq = of_irq_get(dev->of_node, 0);
394 if (spi->irq == -EPROBE_DEFER)
395 return -EPROBE_DEFER;
396 if (spi->irq < 0)
397 spi->irq = 0;
398 }
399
400 ret = dev_pm_domain_attach(dev, true);
401 if (ret)
402 return ret;
403
404 if (sdrv->probe) {
405 ret = sdrv->probe(spi);
406 if (ret)
407 dev_pm_domain_detach(dev, true);
408 }
409
410 return ret;
411 }
412
spi_drv_remove(struct device * dev)413 static int spi_drv_remove(struct device *dev)
414 {
415 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
416 int ret = 0;
417
418 if (sdrv->remove)
419 ret = sdrv->remove(to_spi_device(dev));
420 dev_pm_domain_detach(dev, true);
421
422 return ret;
423 }
424
spi_drv_shutdown(struct device * dev)425 static void spi_drv_shutdown(struct device *dev)
426 {
427 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
428
429 sdrv->shutdown(to_spi_device(dev));
430 }
431
432 /**
433 * __spi_register_driver - register a SPI driver
434 * @owner: owner module of the driver to register
435 * @sdrv: the driver to register
436 * Context: can sleep
437 *
438 * Return: zero on success, else a negative error code.
439 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)440 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 {
442 sdrv->driver.owner = owner;
443 sdrv->driver.bus = &spi_bus_type;
444 sdrv->driver.probe = spi_drv_probe;
445 sdrv->driver.remove = spi_drv_remove;
446 if (sdrv->shutdown)
447 sdrv->driver.shutdown = spi_drv_shutdown;
448 return driver_register(&sdrv->driver);
449 }
450 EXPORT_SYMBOL_GPL(__spi_register_driver);
451
452 /*-------------------------------------------------------------------------*/
453
454 /* SPI devices should normally not be created by SPI device drivers; that
455 * would make them board-specific. Similarly with SPI controller drivers.
456 * Device registration normally goes into like arch/.../mach.../board-YYY.c
457 * with other readonly (flashable) information about mainboard devices.
458 */
459
460 struct boardinfo {
461 struct list_head list;
462 struct spi_board_info board_info;
463 };
464
465 static LIST_HEAD(board_list);
466 static LIST_HEAD(spi_controller_list);
467
468 /*
469 * Used to protect add/del operation for board_info list and
470 * spi_controller list, and their matching process
471 * also used to protect object of type struct idr
472 */
473 static DEFINE_MUTEX(board_lock);
474
475 /*
476 * Prevents addition of devices with same chip select and
477 * addition of devices below an unregistering controller.
478 */
479 static DEFINE_MUTEX(spi_add_lock);
480
481 /**
482 * spi_alloc_device - Allocate a new SPI device
483 * @ctlr: Controller to which device is connected
484 * Context: can sleep
485 *
486 * Allows a driver to allocate and initialize a spi_device without
487 * registering it immediately. This allows a driver to directly
488 * fill the spi_device with device parameters before calling
489 * spi_add_device() on it.
490 *
491 * Caller is responsible to call spi_add_device() on the returned
492 * spi_device structure to add it to the SPI controller. If the caller
493 * needs to discard the spi_device without adding it, then it should
494 * call spi_dev_put() on it.
495 *
496 * Return: a pointer to the new device, or NULL.
497 */
spi_alloc_device(struct spi_controller * ctlr)498 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 {
500 struct spi_device *spi;
501
502 if (!spi_controller_get(ctlr))
503 return NULL;
504
505 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 if (!spi) {
507 spi_controller_put(ctlr);
508 return NULL;
509 }
510
511 spi->master = spi->controller = ctlr;
512 spi->dev.parent = &ctlr->dev;
513 spi->dev.bus = &spi_bus_type;
514 spi->dev.release = spidev_release;
515 spi->cs_gpio = -ENOENT;
516 spi->mode = ctlr->buswidth_override_bits;
517
518 spin_lock_init(&spi->statistics.lock);
519
520 device_initialize(&spi->dev);
521 return spi;
522 }
523 EXPORT_SYMBOL_GPL(spi_alloc_device);
524
spi_dev_set_name(struct spi_device * spi)525 static void spi_dev_set_name(struct spi_device *spi)
526 {
527 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528
529 if (adev) {
530 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
531 return;
532 }
533
534 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
535 spi->chip_select);
536 }
537
spi_dev_check(struct device * dev,void * data)538 static int spi_dev_check(struct device *dev, void *data)
539 {
540 struct spi_device *spi = to_spi_device(dev);
541 struct spi_device *new_spi = data;
542
543 if (spi->controller == new_spi->controller &&
544 spi->chip_select == new_spi->chip_select)
545 return -EBUSY;
546 return 0;
547 }
548
spi_cleanup(struct spi_device * spi)549 static void spi_cleanup(struct spi_device *spi)
550 {
551 if (spi->controller->cleanup)
552 spi->controller->cleanup(spi);
553 }
554
555 /**
556 * spi_add_device - Add spi_device allocated with spi_alloc_device
557 * @spi: spi_device to register
558 *
559 * Companion function to spi_alloc_device. Devices allocated with
560 * spi_alloc_device can be added onto the spi bus with this function.
561 *
562 * Return: 0 on success; negative errno on failure
563 */
spi_add_device(struct spi_device * spi)564 int spi_add_device(struct spi_device *spi)
565 {
566 struct spi_controller *ctlr = spi->controller;
567 struct device *dev = ctlr->dev.parent;
568 int status;
569
570 /* Chipselects are numbered 0..max; validate. */
571 if (spi->chip_select >= ctlr->num_chipselect) {
572 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
573 ctlr->num_chipselect);
574 return -EINVAL;
575 }
576
577 /* Set the bus ID string */
578 spi_dev_set_name(spi);
579
580 /* We need to make sure there's no other device with this
581 * chipselect **BEFORE** we call setup(), else we'll trash
582 * its configuration. Lock against concurrent add() calls.
583 */
584 mutex_lock(&spi_add_lock);
585
586 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
587 if (status) {
588 dev_err(dev, "chipselect %d already in use\n",
589 spi->chip_select);
590 goto done;
591 }
592
593 /* Controller may unregister concurrently */
594 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
595 !device_is_registered(&ctlr->dev)) {
596 status = -ENODEV;
597 goto done;
598 }
599
600 /* Descriptors take precedence */
601 if (ctlr->cs_gpiods)
602 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
603 else if (ctlr->cs_gpios)
604 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
605
606 /* Drivers may modify this initial i/o setup, but will
607 * normally rely on the device being setup. Devices
608 * using SPI_CS_HIGH can't coexist well otherwise...
609 */
610 status = spi_setup(spi);
611 if (status < 0) {
612 dev_err(dev, "can't setup %s, status %d\n",
613 dev_name(&spi->dev), status);
614 goto done;
615 }
616
617 /* Device may be bound to an active driver when this returns */
618 status = device_add(&spi->dev);
619 if (status < 0) {
620 dev_err(dev, "can't add %s, status %d\n",
621 dev_name(&spi->dev), status);
622 spi_cleanup(spi);
623 } else {
624 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
625 }
626
627 done:
628 mutex_unlock(&spi_add_lock);
629 return status;
630 }
631 EXPORT_SYMBOL_GPL(spi_add_device);
632
633 /**
634 * spi_new_device - instantiate one new SPI device
635 * @ctlr: Controller to which device is connected
636 * @chip: Describes the SPI device
637 * Context: can sleep
638 *
639 * On typical mainboards, this is purely internal; and it's not needed
640 * after board init creates the hard-wired devices. Some development
641 * platforms may not be able to use spi_register_board_info though, and
642 * this is exported so that for example a USB or parport based adapter
643 * driver could add devices (which it would learn about out-of-band).
644 *
645 * Return: the new device, or NULL.
646 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)647 struct spi_device *spi_new_device(struct spi_controller *ctlr,
648 struct spi_board_info *chip)
649 {
650 struct spi_device *proxy;
651 int status;
652
653 /* NOTE: caller did any chip->bus_num checks necessary.
654 *
655 * Also, unless we change the return value convention to use
656 * error-or-pointer (not NULL-or-pointer), troubleshootability
657 * suggests syslogged diagnostics are best here (ugh).
658 */
659
660 proxy = spi_alloc_device(ctlr);
661 if (!proxy)
662 return NULL;
663
664 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
665
666 proxy->chip_select = chip->chip_select;
667 proxy->max_speed_hz = chip->max_speed_hz;
668 proxy->mode = chip->mode;
669 proxy->irq = chip->irq;
670 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
671 proxy->dev.platform_data = (void *) chip->platform_data;
672 proxy->controller_data = chip->controller_data;
673 proxy->controller_state = NULL;
674
675 if (chip->properties) {
676 status = device_add_properties(&proxy->dev, chip->properties);
677 if (status) {
678 dev_err(&ctlr->dev,
679 "failed to add properties to '%s': %d\n",
680 chip->modalias, status);
681 goto err_dev_put;
682 }
683 }
684
685 status = spi_add_device(proxy);
686 if (status < 0)
687 goto err_remove_props;
688
689 return proxy;
690
691 err_remove_props:
692 if (chip->properties)
693 device_remove_properties(&proxy->dev);
694 err_dev_put:
695 spi_dev_put(proxy);
696 return NULL;
697 }
698 EXPORT_SYMBOL_GPL(spi_new_device);
699
700 /**
701 * spi_unregister_device - unregister a single SPI device
702 * @spi: spi_device to unregister
703 *
704 * Start making the passed SPI device vanish. Normally this would be handled
705 * by spi_unregister_controller().
706 */
spi_unregister_device(struct spi_device * spi)707 void spi_unregister_device(struct spi_device *spi)
708 {
709 if (!spi)
710 return;
711
712 if (spi->dev.of_node) {
713 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
714 of_node_put(spi->dev.of_node);
715 }
716 if (ACPI_COMPANION(&spi->dev))
717 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
718 device_del(&spi->dev);
719 spi_cleanup(spi);
720 put_device(&spi->dev);
721 }
722 EXPORT_SYMBOL_GPL(spi_unregister_device);
723
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)724 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
725 struct spi_board_info *bi)
726 {
727 struct spi_device *dev;
728
729 if (ctlr->bus_num != bi->bus_num)
730 return;
731
732 dev = spi_new_device(ctlr, bi);
733 if (!dev)
734 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
735 bi->modalias);
736 }
737
738 /**
739 * spi_register_board_info - register SPI devices for a given board
740 * @info: array of chip descriptors
741 * @n: how many descriptors are provided
742 * Context: can sleep
743 *
744 * Board-specific early init code calls this (probably during arch_initcall)
745 * with segments of the SPI device table. Any device nodes are created later,
746 * after the relevant parent SPI controller (bus_num) is defined. We keep
747 * this table of devices forever, so that reloading a controller driver will
748 * not make Linux forget about these hard-wired devices.
749 *
750 * Other code can also call this, e.g. a particular add-on board might provide
751 * SPI devices through its expansion connector, so code initializing that board
752 * would naturally declare its SPI devices.
753 *
754 * The board info passed can safely be __initdata ... but be careful of
755 * any embedded pointers (platform_data, etc), they're copied as-is.
756 * Device properties are deep-copied though.
757 *
758 * Return: zero on success, else a negative error code.
759 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)760 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
761 {
762 struct boardinfo *bi;
763 int i;
764
765 if (!n)
766 return 0;
767
768 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
769 if (!bi)
770 return -ENOMEM;
771
772 for (i = 0; i < n; i++, bi++, info++) {
773 struct spi_controller *ctlr;
774
775 memcpy(&bi->board_info, info, sizeof(*info));
776 if (info->properties) {
777 bi->board_info.properties =
778 property_entries_dup(info->properties);
779 if (IS_ERR(bi->board_info.properties))
780 return PTR_ERR(bi->board_info.properties);
781 }
782
783 mutex_lock(&board_lock);
784 list_add_tail(&bi->list, &board_list);
785 list_for_each_entry(ctlr, &spi_controller_list, list)
786 spi_match_controller_to_boardinfo(ctlr,
787 &bi->board_info);
788 mutex_unlock(&board_lock);
789 }
790
791 return 0;
792 }
793
794 /*-------------------------------------------------------------------------*/
795
spi_set_cs(struct spi_device * spi,bool enable,bool force)796 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
797 {
798 bool enable1 = enable;
799
800 /*
801 * Avoid calling into the driver (or doing delays) if the chip select
802 * isn't actually changing from the last time this was called.
803 */
804 if (!force && (spi->controller->last_cs_enable == enable) &&
805 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
806 return;
807
808 spi->controller->last_cs_enable = enable;
809 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
810
811 if (!spi->controller->set_cs_timing) {
812 if (enable1)
813 spi_delay_exec(&spi->controller->cs_setup, NULL);
814 else
815 spi_delay_exec(&spi->controller->cs_hold, NULL);
816 }
817
818 if (spi->mode & SPI_CS_HIGH)
819 enable = !enable;
820
821 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
822 if (!(spi->mode & SPI_NO_CS)) {
823 if (spi->cs_gpiod) {
824 /*
825 * Historically ACPI has no means of the GPIO polarity and
826 * thus the SPISerialBus() resource defines it on the per-chip
827 * basis. In order to avoid a chain of negations, the GPIO
828 * polarity is considered being Active High. Even for the cases
829 * when _DSD() is involved (in the updated versions of ACPI)
830 * the GPIO CS polarity must be defined Active High to avoid
831 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
832 * into account.
833 */
834 if (has_acpi_companion(&spi->dev))
835 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
836 else
837 /* Polarity handled by GPIO library */
838 gpiod_set_value_cansleep(spi->cs_gpiod, enable1);
839 } else {
840 /*
841 * invert the enable line, as active low is
842 * default for SPI.
843 */
844 gpio_set_value_cansleep(spi->cs_gpio, !enable);
845 }
846 }
847 /* Some SPI masters need both GPIO CS & slave_select */
848 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
849 spi->controller->set_cs)
850 spi->controller->set_cs(spi, !enable);
851 } else if (spi->controller->set_cs) {
852 spi->controller->set_cs(spi, !enable);
853 }
854
855 if (!spi->controller->set_cs_timing) {
856 if (!enable1)
857 spi_delay_exec(&spi->controller->cs_inactive, NULL);
858 }
859 }
860
861 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)862 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
863 struct sg_table *sgt, void *buf, size_t len,
864 enum dma_data_direction dir)
865 {
866 const bool vmalloced_buf = is_vmalloc_addr(buf);
867 unsigned int max_seg_size = dma_get_max_seg_size(dev);
868 #ifdef CONFIG_HIGHMEM
869 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
870 (unsigned long)buf < (PKMAP_BASE +
871 (LAST_PKMAP * PAGE_SIZE)));
872 #else
873 const bool kmap_buf = false;
874 #endif
875 int desc_len;
876 int sgs;
877 struct page *vm_page;
878 struct scatterlist *sg;
879 void *sg_buf;
880 size_t min;
881 int i, ret;
882
883 if (vmalloced_buf || kmap_buf) {
884 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
885 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
886 } else if (virt_addr_valid(buf)) {
887 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
888 sgs = DIV_ROUND_UP(len, desc_len);
889 } else {
890 return -EINVAL;
891 }
892
893 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
894 if (ret != 0)
895 return ret;
896
897 sg = &sgt->sgl[0];
898 for (i = 0; i < sgs; i++) {
899
900 if (vmalloced_buf || kmap_buf) {
901 /*
902 * Next scatterlist entry size is the minimum between
903 * the desc_len and the remaining buffer length that
904 * fits in a page.
905 */
906 min = min_t(size_t, desc_len,
907 min_t(size_t, len,
908 PAGE_SIZE - offset_in_page(buf)));
909 if (vmalloced_buf)
910 vm_page = vmalloc_to_page(buf);
911 else
912 vm_page = kmap_to_page(buf);
913 if (!vm_page) {
914 sg_free_table(sgt);
915 return -ENOMEM;
916 }
917 sg_set_page(sg, vm_page,
918 min, offset_in_page(buf));
919 } else {
920 min = min_t(size_t, len, desc_len);
921 sg_buf = buf;
922 sg_set_buf(sg, sg_buf, min);
923 }
924
925 buf += min;
926 len -= min;
927 sg = sg_next(sg);
928 }
929
930 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
931 if (!ret)
932 ret = -ENOMEM;
933 if (ret < 0) {
934 sg_free_table(sgt);
935 return ret;
936 }
937
938 sgt->nents = ret;
939
940 return 0;
941 }
942
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)943 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
944 struct sg_table *sgt, enum dma_data_direction dir)
945 {
946 if (sgt->orig_nents) {
947 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
948 sg_free_table(sgt);
949 }
950 }
951
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)952 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
953 {
954 struct device *tx_dev, *rx_dev;
955 struct spi_transfer *xfer;
956 int ret;
957
958 if (!ctlr->can_dma)
959 return 0;
960
961 if (ctlr->dma_tx)
962 tx_dev = ctlr->dma_tx->device->dev;
963 else
964 tx_dev = ctlr->dev.parent;
965
966 if (ctlr->dma_rx)
967 rx_dev = ctlr->dma_rx->device->dev;
968 else
969 rx_dev = ctlr->dev.parent;
970
971 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
972 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
973 continue;
974
975 if (xfer->tx_buf != NULL) {
976 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
977 (void *)xfer->tx_buf, xfer->len,
978 DMA_TO_DEVICE);
979 if (ret != 0)
980 return ret;
981 }
982
983 if (xfer->rx_buf != NULL) {
984 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
985 xfer->rx_buf, xfer->len,
986 DMA_FROM_DEVICE);
987 if (ret != 0) {
988 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
989 DMA_TO_DEVICE);
990 return ret;
991 }
992 }
993 }
994
995 ctlr->cur_msg_mapped = true;
996
997 return 0;
998 }
999
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1000 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1001 {
1002 struct spi_transfer *xfer;
1003 struct device *tx_dev, *rx_dev;
1004
1005 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1006 return 0;
1007
1008 if (ctlr->dma_tx)
1009 tx_dev = ctlr->dma_tx->device->dev;
1010 else
1011 tx_dev = ctlr->dev.parent;
1012
1013 if (ctlr->dma_rx)
1014 rx_dev = ctlr->dma_rx->device->dev;
1015 else
1016 rx_dev = ctlr->dev.parent;
1017
1018 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1019 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1020 continue;
1021
1022 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1023 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1024 }
1025
1026 ctlr->cur_msg_mapped = false;
1027
1028 return 0;
1029 }
1030 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1031 static inline int __spi_map_msg(struct spi_controller *ctlr,
1032 struct spi_message *msg)
1033 {
1034 return 0;
1035 }
1036
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1037 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1038 struct spi_message *msg)
1039 {
1040 return 0;
1041 }
1042 #endif /* !CONFIG_HAS_DMA */
1043
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1044 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1045 struct spi_message *msg)
1046 {
1047 struct spi_transfer *xfer;
1048
1049 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1050 /*
1051 * Restore the original value of tx_buf or rx_buf if they are
1052 * NULL.
1053 */
1054 if (xfer->tx_buf == ctlr->dummy_tx)
1055 xfer->tx_buf = NULL;
1056 if (xfer->rx_buf == ctlr->dummy_rx)
1057 xfer->rx_buf = NULL;
1058 }
1059
1060 return __spi_unmap_msg(ctlr, msg);
1061 }
1062
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1063 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1064 {
1065 struct spi_transfer *xfer;
1066 void *tmp;
1067 unsigned int max_tx, max_rx;
1068
1069 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1070 && !(msg->spi->mode & SPI_3WIRE)) {
1071 max_tx = 0;
1072 max_rx = 0;
1073
1074 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1075 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1076 !xfer->tx_buf)
1077 max_tx = max(xfer->len, max_tx);
1078 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1079 !xfer->rx_buf)
1080 max_rx = max(xfer->len, max_rx);
1081 }
1082
1083 if (max_tx) {
1084 tmp = krealloc(ctlr->dummy_tx, max_tx,
1085 GFP_KERNEL | GFP_DMA);
1086 if (!tmp)
1087 return -ENOMEM;
1088 ctlr->dummy_tx = tmp;
1089 memset(tmp, 0, max_tx);
1090 }
1091
1092 if (max_rx) {
1093 tmp = krealloc(ctlr->dummy_rx, max_rx,
1094 GFP_KERNEL | GFP_DMA);
1095 if (!tmp)
1096 return -ENOMEM;
1097 ctlr->dummy_rx = tmp;
1098 }
1099
1100 if (max_tx || max_rx) {
1101 list_for_each_entry(xfer, &msg->transfers,
1102 transfer_list) {
1103 if (!xfer->len)
1104 continue;
1105 if (!xfer->tx_buf)
1106 xfer->tx_buf = ctlr->dummy_tx;
1107 if (!xfer->rx_buf)
1108 xfer->rx_buf = ctlr->dummy_rx;
1109 }
1110 }
1111 }
1112
1113 return __spi_map_msg(ctlr, msg);
1114 }
1115
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1116 static int spi_transfer_wait(struct spi_controller *ctlr,
1117 struct spi_message *msg,
1118 struct spi_transfer *xfer)
1119 {
1120 struct spi_statistics *statm = &ctlr->statistics;
1121 struct spi_statistics *stats = &msg->spi->statistics;
1122 u32 speed_hz = xfer->speed_hz;
1123 unsigned long long ms;
1124
1125 if (spi_controller_is_slave(ctlr)) {
1126 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1127 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1128 return -EINTR;
1129 }
1130 } else {
1131 if (!speed_hz)
1132 speed_hz = 100000;
1133
1134 ms = 8LL * 1000LL * xfer->len;
1135 do_div(ms, speed_hz);
1136 ms += ms + 200; /* some tolerance */
1137
1138 if (ms > UINT_MAX)
1139 ms = UINT_MAX;
1140
1141 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1142 msecs_to_jiffies(ms));
1143
1144 if (ms == 0) {
1145 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1146 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1147 dev_err(&msg->spi->dev,
1148 "SPI transfer timed out\n");
1149 return -ETIMEDOUT;
1150 }
1151 }
1152
1153 return 0;
1154 }
1155
_spi_transfer_delay_ns(u32 ns)1156 static void _spi_transfer_delay_ns(u32 ns)
1157 {
1158 if (!ns)
1159 return;
1160 if (ns <= 1000) {
1161 ndelay(ns);
1162 } else {
1163 u32 us = DIV_ROUND_UP(ns, 1000);
1164
1165 if (us <= 10)
1166 udelay(us);
1167 else
1168 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1169 }
1170 }
1171
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1172 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1173 {
1174 u32 delay = _delay->value;
1175 u32 unit = _delay->unit;
1176 u32 hz;
1177
1178 if (!delay)
1179 return 0;
1180
1181 switch (unit) {
1182 case SPI_DELAY_UNIT_USECS:
1183 delay *= 1000;
1184 break;
1185 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1186 break;
1187 case SPI_DELAY_UNIT_SCK:
1188 /* clock cycles need to be obtained from spi_transfer */
1189 if (!xfer)
1190 return -EINVAL;
1191 /* if there is no effective speed know, then approximate
1192 * by underestimating with half the requested hz
1193 */
1194 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1195 if (!hz)
1196 return -EINVAL;
1197 delay *= DIV_ROUND_UP(1000000000, hz);
1198 break;
1199 default:
1200 return -EINVAL;
1201 }
1202
1203 return delay;
1204 }
1205 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1206
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1207 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1208 {
1209 int delay;
1210
1211 might_sleep();
1212
1213 if (!_delay)
1214 return -EINVAL;
1215
1216 delay = spi_delay_to_ns(_delay, xfer);
1217 if (delay < 0)
1218 return delay;
1219
1220 _spi_transfer_delay_ns(delay);
1221
1222 return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(spi_delay_exec);
1225
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1226 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1227 struct spi_transfer *xfer)
1228 {
1229 u32 delay = xfer->cs_change_delay.value;
1230 u32 unit = xfer->cs_change_delay.unit;
1231 int ret;
1232
1233 /* return early on "fast" mode - for everything but USECS */
1234 if (!delay) {
1235 if (unit == SPI_DELAY_UNIT_USECS)
1236 _spi_transfer_delay_ns(10000);
1237 return;
1238 }
1239
1240 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1241 if (ret) {
1242 dev_err_once(&msg->spi->dev,
1243 "Use of unsupported delay unit %i, using default of 10us\n",
1244 unit);
1245 _spi_transfer_delay_ns(10000);
1246 }
1247 }
1248
1249 /*
1250 * spi_transfer_one_message - Default implementation of transfer_one_message()
1251 *
1252 * This is a standard implementation of transfer_one_message() for
1253 * drivers which implement a transfer_one() operation. It provides
1254 * standard handling of delays and chip select management.
1255 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1256 static int spi_transfer_one_message(struct spi_controller *ctlr,
1257 struct spi_message *msg)
1258 {
1259 struct spi_transfer *xfer;
1260 bool keep_cs = false;
1261 int ret = 0;
1262 struct spi_statistics *statm = &ctlr->statistics;
1263 struct spi_statistics *stats = &msg->spi->statistics;
1264
1265 spi_set_cs(msg->spi, true, false);
1266
1267 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1268 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1269
1270 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1271 trace_spi_transfer_start(msg, xfer);
1272
1273 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1274 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1275
1276 if (!ctlr->ptp_sts_supported) {
1277 xfer->ptp_sts_word_pre = 0;
1278 ptp_read_system_prets(xfer->ptp_sts);
1279 }
1280
1281 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1282 reinit_completion(&ctlr->xfer_completion);
1283
1284 fallback_pio:
1285 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1286 if (ret < 0) {
1287 if (ctlr->cur_msg_mapped &&
1288 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1289 __spi_unmap_msg(ctlr, msg);
1290 ctlr->fallback = true;
1291 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1292 goto fallback_pio;
1293 }
1294
1295 SPI_STATISTICS_INCREMENT_FIELD(statm,
1296 errors);
1297 SPI_STATISTICS_INCREMENT_FIELD(stats,
1298 errors);
1299 dev_err(&msg->spi->dev,
1300 "SPI transfer failed: %d\n", ret);
1301 goto out;
1302 }
1303
1304 if (ret > 0) {
1305 ret = spi_transfer_wait(ctlr, msg, xfer);
1306 if (ret < 0)
1307 msg->status = ret;
1308 }
1309 } else {
1310 if (xfer->len)
1311 dev_err(&msg->spi->dev,
1312 "Bufferless transfer has length %u\n",
1313 xfer->len);
1314 }
1315
1316 if (!ctlr->ptp_sts_supported) {
1317 ptp_read_system_postts(xfer->ptp_sts);
1318 xfer->ptp_sts_word_post = xfer->len;
1319 }
1320
1321 trace_spi_transfer_stop(msg, xfer);
1322
1323 if (msg->status != -EINPROGRESS)
1324 goto out;
1325
1326 spi_transfer_delay_exec(xfer);
1327
1328 if (xfer->cs_change) {
1329 if (list_is_last(&xfer->transfer_list,
1330 &msg->transfers)) {
1331 keep_cs = true;
1332 } else {
1333 spi_set_cs(msg->spi, false, false);
1334 _spi_transfer_cs_change_delay(msg, xfer);
1335 spi_set_cs(msg->spi, true, false);
1336 }
1337 }
1338
1339 msg->actual_length += xfer->len;
1340 }
1341
1342 out:
1343 if (ret != 0 || !keep_cs)
1344 spi_set_cs(msg->spi, false, false);
1345
1346 if (msg->status == -EINPROGRESS)
1347 msg->status = ret;
1348
1349 if (msg->status && ctlr->handle_err)
1350 ctlr->handle_err(ctlr, msg);
1351
1352 spi_finalize_current_message(ctlr);
1353
1354 return ret;
1355 }
1356
1357 /**
1358 * spi_finalize_current_transfer - report completion of a transfer
1359 * @ctlr: the controller reporting completion
1360 *
1361 * Called by SPI drivers using the core transfer_one_message()
1362 * implementation to notify it that the current interrupt driven
1363 * transfer has finished and the next one may be scheduled.
1364 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1365 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1366 {
1367 complete(&ctlr->xfer_completion);
1368 }
1369 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1370
spi_idle_runtime_pm(struct spi_controller * ctlr)1371 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1372 {
1373 if (ctlr->auto_runtime_pm) {
1374 pm_runtime_mark_last_busy(ctlr->dev.parent);
1375 pm_runtime_put_autosuspend(ctlr->dev.parent);
1376 }
1377 }
1378
1379 /**
1380 * __spi_pump_messages - function which processes spi message queue
1381 * @ctlr: controller to process queue for
1382 * @in_kthread: true if we are in the context of the message pump thread
1383 *
1384 * This function checks if there is any spi message in the queue that
1385 * needs processing and if so call out to the driver to initialize hardware
1386 * and transfer each message.
1387 *
1388 * Note that it is called both from the kthread itself and also from
1389 * inside spi_sync(); the queue extraction handling at the top of the
1390 * function should deal with this safely.
1391 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1392 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1393 {
1394 struct spi_transfer *xfer;
1395 struct spi_message *msg;
1396 bool was_busy = false;
1397 unsigned long flags;
1398 int ret;
1399
1400 /* Lock queue */
1401 spin_lock_irqsave(&ctlr->queue_lock, flags);
1402
1403 /* Make sure we are not already running a message */
1404 if (ctlr->cur_msg) {
1405 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1406 return;
1407 }
1408
1409 /* If another context is idling the device then defer */
1410 if (ctlr->idling) {
1411 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1412 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413 return;
1414 }
1415
1416 /* Check if the queue is idle */
1417 if (list_empty(&ctlr->queue) || !ctlr->running) {
1418 if (!ctlr->busy) {
1419 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420 return;
1421 }
1422
1423 /* Defer any non-atomic teardown to the thread */
1424 if (!in_kthread) {
1425 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1426 !ctlr->unprepare_transfer_hardware) {
1427 spi_idle_runtime_pm(ctlr);
1428 ctlr->busy = false;
1429 trace_spi_controller_idle(ctlr);
1430 } else {
1431 kthread_queue_work(ctlr->kworker,
1432 &ctlr->pump_messages);
1433 }
1434 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1435 return;
1436 }
1437
1438 ctlr->busy = false;
1439 ctlr->idling = true;
1440 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1441
1442 kfree(ctlr->dummy_rx);
1443 ctlr->dummy_rx = NULL;
1444 kfree(ctlr->dummy_tx);
1445 ctlr->dummy_tx = NULL;
1446 if (ctlr->unprepare_transfer_hardware &&
1447 ctlr->unprepare_transfer_hardware(ctlr))
1448 dev_err(&ctlr->dev,
1449 "failed to unprepare transfer hardware\n");
1450 spi_idle_runtime_pm(ctlr);
1451 trace_spi_controller_idle(ctlr);
1452
1453 spin_lock_irqsave(&ctlr->queue_lock, flags);
1454 ctlr->idling = false;
1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1456 return;
1457 }
1458
1459 /* Extract head of queue */
1460 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1461 ctlr->cur_msg = msg;
1462
1463 list_del_init(&msg->queue);
1464 if (ctlr->busy)
1465 was_busy = true;
1466 else
1467 ctlr->busy = true;
1468 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1469
1470 mutex_lock(&ctlr->io_mutex);
1471
1472 if (!was_busy && ctlr->auto_runtime_pm) {
1473 ret = pm_runtime_get_sync(ctlr->dev.parent);
1474 if (ret < 0) {
1475 pm_runtime_put_noidle(ctlr->dev.parent);
1476 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1477 ret);
1478 mutex_unlock(&ctlr->io_mutex);
1479 return;
1480 }
1481 }
1482
1483 if (!was_busy)
1484 trace_spi_controller_busy(ctlr);
1485
1486 if (!was_busy && ctlr->prepare_transfer_hardware) {
1487 ret = ctlr->prepare_transfer_hardware(ctlr);
1488 if (ret) {
1489 dev_err(&ctlr->dev,
1490 "failed to prepare transfer hardware: %d\n",
1491 ret);
1492
1493 if (ctlr->auto_runtime_pm)
1494 pm_runtime_put(ctlr->dev.parent);
1495
1496 msg->status = ret;
1497 spi_finalize_current_message(ctlr);
1498
1499 mutex_unlock(&ctlr->io_mutex);
1500 return;
1501 }
1502 }
1503
1504 trace_spi_message_start(msg);
1505
1506 if (ctlr->prepare_message) {
1507 ret = ctlr->prepare_message(ctlr, msg);
1508 if (ret) {
1509 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1510 ret);
1511 msg->status = ret;
1512 spi_finalize_current_message(ctlr);
1513 goto out;
1514 }
1515 ctlr->cur_msg_prepared = true;
1516 }
1517
1518 ret = spi_map_msg(ctlr, msg);
1519 if (ret) {
1520 msg->status = ret;
1521 spi_finalize_current_message(ctlr);
1522 goto out;
1523 }
1524
1525 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1526 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1527 xfer->ptp_sts_word_pre = 0;
1528 ptp_read_system_prets(xfer->ptp_sts);
1529 }
1530 }
1531
1532 ret = ctlr->transfer_one_message(ctlr, msg);
1533 if (ret) {
1534 dev_err(&ctlr->dev,
1535 "failed to transfer one message from queue\n");
1536 goto out;
1537 }
1538
1539 out:
1540 mutex_unlock(&ctlr->io_mutex);
1541
1542 /* Prod the scheduler in case transfer_one() was busy waiting */
1543 if (!ret)
1544 cond_resched();
1545 }
1546
1547 /**
1548 * spi_pump_messages - kthread work function which processes spi message queue
1549 * @work: pointer to kthread work struct contained in the controller struct
1550 */
spi_pump_messages(struct kthread_work * work)1551 static void spi_pump_messages(struct kthread_work *work)
1552 {
1553 struct spi_controller *ctlr =
1554 container_of(work, struct spi_controller, pump_messages);
1555
1556 __spi_pump_messages(ctlr, true);
1557 }
1558
1559 /**
1560 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1561 * TX timestamp for the requested byte from the SPI
1562 * transfer. The frequency with which this function
1563 * must be called (once per word, once for the whole
1564 * transfer, once per batch of words etc) is arbitrary
1565 * as long as the @tx buffer offset is greater than or
1566 * equal to the requested byte at the time of the
1567 * call. The timestamp is only taken once, at the
1568 * first such call. It is assumed that the driver
1569 * advances its @tx buffer pointer monotonically.
1570 * @ctlr: Pointer to the spi_controller structure of the driver
1571 * @xfer: Pointer to the transfer being timestamped
1572 * @progress: How many words (not bytes) have been transferred so far
1573 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1574 * transfer, for less jitter in time measurement. Only compatible
1575 * with PIO drivers. If true, must follow up with
1576 * spi_take_timestamp_post or otherwise system will crash.
1577 * WARNING: for fully predictable results, the CPU frequency must
1578 * also be under control (governor).
1579 */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1580 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1581 struct spi_transfer *xfer,
1582 size_t progress, bool irqs_off)
1583 {
1584 if (!xfer->ptp_sts)
1585 return;
1586
1587 if (xfer->timestamped)
1588 return;
1589
1590 if (progress > xfer->ptp_sts_word_pre)
1591 return;
1592
1593 /* Capture the resolution of the timestamp */
1594 xfer->ptp_sts_word_pre = progress;
1595
1596 if (irqs_off) {
1597 local_irq_save(ctlr->irq_flags);
1598 preempt_disable();
1599 }
1600
1601 ptp_read_system_prets(xfer->ptp_sts);
1602 }
1603 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1604
1605 /**
1606 * spi_take_timestamp_post - helper for drivers to collect the end of the
1607 * TX timestamp for the requested byte from the SPI
1608 * transfer. Can be called with an arbitrary
1609 * frequency: only the first call where @tx exceeds
1610 * or is equal to the requested word will be
1611 * timestamped.
1612 * @ctlr: Pointer to the spi_controller structure of the driver
1613 * @xfer: Pointer to the transfer being timestamped
1614 * @progress: How many words (not bytes) have been transferred so far
1615 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1616 */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1617 void spi_take_timestamp_post(struct spi_controller *ctlr,
1618 struct spi_transfer *xfer,
1619 size_t progress, bool irqs_off)
1620 {
1621 if (!xfer->ptp_sts)
1622 return;
1623
1624 if (xfer->timestamped)
1625 return;
1626
1627 if (progress < xfer->ptp_sts_word_post)
1628 return;
1629
1630 ptp_read_system_postts(xfer->ptp_sts);
1631
1632 if (irqs_off) {
1633 local_irq_restore(ctlr->irq_flags);
1634 preempt_enable();
1635 }
1636
1637 /* Capture the resolution of the timestamp */
1638 xfer->ptp_sts_word_post = progress;
1639
1640 xfer->timestamped = true;
1641 }
1642 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1643
1644 /**
1645 * spi_set_thread_rt - set the controller to pump at realtime priority
1646 * @ctlr: controller to boost priority of
1647 *
1648 * This can be called because the controller requested realtime priority
1649 * (by setting the ->rt value before calling spi_register_controller()) or
1650 * because a device on the bus said that its transfers needed realtime
1651 * priority.
1652 *
1653 * NOTE: at the moment if any device on a bus says it needs realtime then
1654 * the thread will be at realtime priority for all transfers on that
1655 * controller. If this eventually becomes a problem we may see if we can
1656 * find a way to boost the priority only temporarily during relevant
1657 * transfers.
1658 */
spi_set_thread_rt(struct spi_controller * ctlr)1659 static void spi_set_thread_rt(struct spi_controller *ctlr)
1660 {
1661 dev_info(&ctlr->dev,
1662 "will run message pump with realtime priority\n");
1663 sched_set_fifo(ctlr->kworker->task);
1664 }
1665
spi_init_queue(struct spi_controller * ctlr)1666 static int spi_init_queue(struct spi_controller *ctlr)
1667 {
1668 ctlr->running = false;
1669 ctlr->busy = false;
1670
1671 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1672 if (IS_ERR(ctlr->kworker)) {
1673 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1674 return PTR_ERR(ctlr->kworker);
1675 }
1676
1677 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1678
1679 /*
1680 * Controller config will indicate if this controller should run the
1681 * message pump with high (realtime) priority to reduce the transfer
1682 * latency on the bus by minimising the delay between a transfer
1683 * request and the scheduling of the message pump thread. Without this
1684 * setting the message pump thread will remain at default priority.
1685 */
1686 if (ctlr->rt)
1687 spi_set_thread_rt(ctlr);
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * spi_get_next_queued_message() - called by driver to check for queued
1694 * messages
1695 * @ctlr: the controller to check for queued messages
1696 *
1697 * If there are more messages in the queue, the next message is returned from
1698 * this call.
1699 *
1700 * Return: the next message in the queue, else NULL if the queue is empty.
1701 */
spi_get_next_queued_message(struct spi_controller * ctlr)1702 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1703 {
1704 struct spi_message *next;
1705 unsigned long flags;
1706
1707 /* get a pointer to the next message, if any */
1708 spin_lock_irqsave(&ctlr->queue_lock, flags);
1709 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1710 queue);
1711 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712
1713 return next;
1714 }
1715 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1716
1717 /**
1718 * spi_finalize_current_message() - the current message is complete
1719 * @ctlr: the controller to return the message to
1720 *
1721 * Called by the driver to notify the core that the message in the front of the
1722 * queue is complete and can be removed from the queue.
1723 */
spi_finalize_current_message(struct spi_controller * ctlr)1724 void spi_finalize_current_message(struct spi_controller *ctlr)
1725 {
1726 struct spi_transfer *xfer;
1727 struct spi_message *mesg;
1728 unsigned long flags;
1729 int ret;
1730
1731 spin_lock_irqsave(&ctlr->queue_lock, flags);
1732 mesg = ctlr->cur_msg;
1733 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1734
1735 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1736 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1737 ptp_read_system_postts(xfer->ptp_sts);
1738 xfer->ptp_sts_word_post = xfer->len;
1739 }
1740 }
1741
1742 if (unlikely(ctlr->ptp_sts_supported))
1743 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1744 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1745
1746 spi_unmap_msg(ctlr, mesg);
1747
1748 /* In the prepare_messages callback the spi bus has the opportunity to
1749 * split a transfer to smaller chunks.
1750 * Release splited transfers here since spi_map_msg is done on the
1751 * splited transfers.
1752 */
1753 spi_res_release(ctlr, mesg);
1754
1755 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1756 ret = ctlr->unprepare_message(ctlr, mesg);
1757 if (ret) {
1758 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1759 ret);
1760 }
1761 }
1762
1763 spin_lock_irqsave(&ctlr->queue_lock, flags);
1764 ctlr->cur_msg = NULL;
1765 ctlr->cur_msg_prepared = false;
1766 ctlr->fallback = false;
1767 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1768 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1769
1770 trace_spi_message_done(mesg);
1771
1772 mesg->state = NULL;
1773 if (mesg->complete)
1774 mesg->complete(mesg->context);
1775 }
1776 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1777
spi_start_queue(struct spi_controller * ctlr)1778 static int spi_start_queue(struct spi_controller *ctlr)
1779 {
1780 unsigned long flags;
1781
1782 spin_lock_irqsave(&ctlr->queue_lock, flags);
1783
1784 if (ctlr->running || ctlr->busy) {
1785 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786 return -EBUSY;
1787 }
1788
1789 ctlr->running = true;
1790 ctlr->cur_msg = NULL;
1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792
1793 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1794
1795 return 0;
1796 }
1797
spi_stop_queue(struct spi_controller * ctlr)1798 static int spi_stop_queue(struct spi_controller *ctlr)
1799 {
1800 unsigned long flags;
1801 unsigned limit = 500;
1802 int ret = 0;
1803
1804 spin_lock_irqsave(&ctlr->queue_lock, flags);
1805
1806 /*
1807 * This is a bit lame, but is optimized for the common execution path.
1808 * A wait_queue on the ctlr->busy could be used, but then the common
1809 * execution path (pump_messages) would be required to call wake_up or
1810 * friends on every SPI message. Do this instead.
1811 */
1812 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1813 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1814 usleep_range(10000, 11000);
1815 spin_lock_irqsave(&ctlr->queue_lock, flags);
1816 }
1817
1818 if (!list_empty(&ctlr->queue) || ctlr->busy)
1819 ret = -EBUSY;
1820 else
1821 ctlr->running = false;
1822
1823 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1824
1825 if (ret) {
1826 dev_warn(&ctlr->dev, "could not stop message queue\n");
1827 return ret;
1828 }
1829 return ret;
1830 }
1831
spi_destroy_queue(struct spi_controller * ctlr)1832 static int spi_destroy_queue(struct spi_controller *ctlr)
1833 {
1834 int ret;
1835
1836 ret = spi_stop_queue(ctlr);
1837
1838 /*
1839 * kthread_flush_worker will block until all work is done.
1840 * If the reason that stop_queue timed out is that the work will never
1841 * finish, then it does no good to call flush/stop thread, so
1842 * return anyway.
1843 */
1844 if (ret) {
1845 dev_err(&ctlr->dev, "problem destroying queue\n");
1846 return ret;
1847 }
1848
1849 kthread_destroy_worker(ctlr->kworker);
1850
1851 return 0;
1852 }
1853
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1854 static int __spi_queued_transfer(struct spi_device *spi,
1855 struct spi_message *msg,
1856 bool need_pump)
1857 {
1858 struct spi_controller *ctlr = spi->controller;
1859 unsigned long flags;
1860
1861 spin_lock_irqsave(&ctlr->queue_lock, flags);
1862
1863 if (!ctlr->running) {
1864 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1865 return -ESHUTDOWN;
1866 }
1867 msg->actual_length = 0;
1868 msg->status = -EINPROGRESS;
1869
1870 list_add_tail(&msg->queue, &ctlr->queue);
1871 if (!ctlr->busy && need_pump)
1872 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1873
1874 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1875 return 0;
1876 }
1877
1878 /**
1879 * spi_queued_transfer - transfer function for queued transfers
1880 * @spi: spi device which is requesting transfer
1881 * @msg: spi message which is to handled is queued to driver queue
1882 *
1883 * Return: zero on success, else a negative error code.
1884 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1885 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1886 {
1887 return __spi_queued_transfer(spi, msg, true);
1888 }
1889
spi_controller_initialize_queue(struct spi_controller * ctlr)1890 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1891 {
1892 int ret;
1893
1894 ctlr->transfer = spi_queued_transfer;
1895 if (!ctlr->transfer_one_message)
1896 ctlr->transfer_one_message = spi_transfer_one_message;
1897
1898 /* Initialize and start queue */
1899 ret = spi_init_queue(ctlr);
1900 if (ret) {
1901 dev_err(&ctlr->dev, "problem initializing queue\n");
1902 goto err_init_queue;
1903 }
1904 ctlr->queued = true;
1905 ret = spi_start_queue(ctlr);
1906 if (ret) {
1907 dev_err(&ctlr->dev, "problem starting queue\n");
1908 goto err_start_queue;
1909 }
1910
1911 return 0;
1912
1913 err_start_queue:
1914 spi_destroy_queue(ctlr);
1915 err_init_queue:
1916 return ret;
1917 }
1918
1919 /**
1920 * spi_flush_queue - Send all pending messages in the queue from the callers'
1921 * context
1922 * @ctlr: controller to process queue for
1923 *
1924 * This should be used when one wants to ensure all pending messages have been
1925 * sent before doing something. Is used by the spi-mem code to make sure SPI
1926 * memory operations do not preempt regular SPI transfers that have been queued
1927 * before the spi-mem operation.
1928 */
spi_flush_queue(struct spi_controller * ctlr)1929 void spi_flush_queue(struct spi_controller *ctlr)
1930 {
1931 if (ctlr->transfer == spi_queued_transfer)
1932 __spi_pump_messages(ctlr, false);
1933 }
1934
1935 /*-------------------------------------------------------------------------*/
1936
1937 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1938 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1939 struct device_node *nc)
1940 {
1941 u32 value;
1942 int rc;
1943
1944 /* Mode (clock phase/polarity/etc.) */
1945 if (of_property_read_bool(nc, "spi-cpha"))
1946 spi->mode |= SPI_CPHA;
1947 if (of_property_read_bool(nc, "spi-cpol"))
1948 spi->mode |= SPI_CPOL;
1949 if (of_property_read_bool(nc, "spi-3wire"))
1950 spi->mode |= SPI_3WIRE;
1951 if (of_property_read_bool(nc, "spi-lsb-first"))
1952 spi->mode |= SPI_LSB_FIRST;
1953 if (of_property_read_bool(nc, "spi-cs-high"))
1954 spi->mode |= SPI_CS_HIGH;
1955
1956 /* Device DUAL/QUAD mode */
1957 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1958 switch (value) {
1959 case 1:
1960 break;
1961 case 2:
1962 spi->mode |= SPI_TX_DUAL;
1963 break;
1964 case 4:
1965 spi->mode |= SPI_TX_QUAD;
1966 break;
1967 case 8:
1968 spi->mode |= SPI_TX_OCTAL;
1969 break;
1970 default:
1971 dev_warn(&ctlr->dev,
1972 "spi-tx-bus-width %d not supported\n",
1973 value);
1974 break;
1975 }
1976 }
1977
1978 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1979 switch (value) {
1980 case 1:
1981 break;
1982 case 2:
1983 spi->mode |= SPI_RX_DUAL;
1984 break;
1985 case 4:
1986 spi->mode |= SPI_RX_QUAD;
1987 break;
1988 case 8:
1989 spi->mode |= SPI_RX_OCTAL;
1990 break;
1991 default:
1992 dev_warn(&ctlr->dev,
1993 "spi-rx-bus-width %d not supported\n",
1994 value);
1995 break;
1996 }
1997 }
1998
1999 if (spi_controller_is_slave(ctlr)) {
2000 if (!of_node_name_eq(nc, "slave")) {
2001 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2002 nc);
2003 return -EINVAL;
2004 }
2005 return 0;
2006 }
2007
2008 /* Device address */
2009 rc = of_property_read_u32(nc, "reg", &value);
2010 if (rc) {
2011 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2012 nc, rc);
2013 return rc;
2014 }
2015 spi->chip_select = value;
2016
2017 /* Device speed */
2018 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2019 spi->max_speed_hz = value;
2020
2021 return 0;
2022 }
2023
2024 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2025 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2026 {
2027 struct spi_device *spi;
2028 int rc;
2029
2030 /* Alloc an spi_device */
2031 spi = spi_alloc_device(ctlr);
2032 if (!spi) {
2033 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2034 rc = -ENOMEM;
2035 goto err_out;
2036 }
2037
2038 /* Select device driver */
2039 rc = of_modalias_node(nc, spi->modalias,
2040 sizeof(spi->modalias));
2041 if (rc < 0) {
2042 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2043 goto err_out;
2044 }
2045
2046 rc = of_spi_parse_dt(ctlr, spi, nc);
2047 if (rc)
2048 goto err_out;
2049
2050 /* Store a pointer to the node in the device structure */
2051 of_node_get(nc);
2052 spi->dev.of_node = nc;
2053 spi->dev.fwnode = of_fwnode_handle(nc);
2054
2055 /* Register the new device */
2056 rc = spi_add_device(spi);
2057 if (rc) {
2058 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2059 goto err_of_node_put;
2060 }
2061
2062 return spi;
2063
2064 err_of_node_put:
2065 of_node_put(nc);
2066 err_out:
2067 spi_dev_put(spi);
2068 return ERR_PTR(rc);
2069 }
2070
2071 /**
2072 * of_register_spi_devices() - Register child devices onto the SPI bus
2073 * @ctlr: Pointer to spi_controller device
2074 *
2075 * Registers an spi_device for each child node of controller node which
2076 * represents a valid SPI slave.
2077 */
of_register_spi_devices(struct spi_controller * ctlr)2078 static void of_register_spi_devices(struct spi_controller *ctlr)
2079 {
2080 struct spi_device *spi;
2081 struct device_node *nc;
2082
2083 if (!ctlr->dev.of_node)
2084 return;
2085
2086 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2087 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2088 continue;
2089 spi = of_register_spi_device(ctlr, nc);
2090 if (IS_ERR(spi)) {
2091 dev_warn(&ctlr->dev,
2092 "Failed to create SPI device for %pOF\n", nc);
2093 of_node_clear_flag(nc, OF_POPULATED);
2094 }
2095 }
2096 }
2097 #else
of_register_spi_devices(struct spi_controller * ctlr)2098 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2099 #endif
2100
2101 #ifdef CONFIG_ACPI
2102 struct acpi_spi_lookup {
2103 struct spi_controller *ctlr;
2104 u32 max_speed_hz;
2105 u32 mode;
2106 int irq;
2107 u8 bits_per_word;
2108 u8 chip_select;
2109 };
2110
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2111 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2112 struct acpi_spi_lookup *lookup)
2113 {
2114 const union acpi_object *obj;
2115
2116 if (!x86_apple_machine)
2117 return;
2118
2119 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2120 && obj->buffer.length >= 4)
2121 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2122
2123 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2124 && obj->buffer.length == 8)
2125 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2126
2127 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2128 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2129 lookup->mode |= SPI_LSB_FIRST;
2130
2131 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2132 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2133 lookup->mode |= SPI_CPOL;
2134
2135 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2136 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2137 lookup->mode |= SPI_CPHA;
2138 }
2139
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2140 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2141 {
2142 struct acpi_spi_lookup *lookup = data;
2143 struct spi_controller *ctlr = lookup->ctlr;
2144
2145 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2146 struct acpi_resource_spi_serialbus *sb;
2147 acpi_handle parent_handle;
2148 acpi_status status;
2149
2150 sb = &ares->data.spi_serial_bus;
2151 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2152
2153 status = acpi_get_handle(NULL,
2154 sb->resource_source.string_ptr,
2155 &parent_handle);
2156
2157 if (ACPI_FAILURE(status) ||
2158 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2159 return -ENODEV;
2160
2161 /*
2162 * ACPI DeviceSelection numbering is handled by the
2163 * host controller driver in Windows and can vary
2164 * from driver to driver. In Linux we always expect
2165 * 0 .. max - 1 so we need to ask the driver to
2166 * translate between the two schemes.
2167 */
2168 if (ctlr->fw_translate_cs) {
2169 int cs = ctlr->fw_translate_cs(ctlr,
2170 sb->device_selection);
2171 if (cs < 0)
2172 return cs;
2173 lookup->chip_select = cs;
2174 } else {
2175 lookup->chip_select = sb->device_selection;
2176 }
2177
2178 lookup->max_speed_hz = sb->connection_speed;
2179 lookup->bits_per_word = sb->data_bit_length;
2180
2181 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2182 lookup->mode |= SPI_CPHA;
2183 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2184 lookup->mode |= SPI_CPOL;
2185 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2186 lookup->mode |= SPI_CS_HIGH;
2187 }
2188 } else if (lookup->irq < 0) {
2189 struct resource r;
2190
2191 if (acpi_dev_resource_interrupt(ares, 0, &r))
2192 lookup->irq = r.start;
2193 }
2194
2195 /* Always tell the ACPI core to skip this resource */
2196 return 1;
2197 }
2198
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2199 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2200 struct acpi_device *adev)
2201 {
2202 acpi_handle parent_handle = NULL;
2203 struct list_head resource_list;
2204 struct acpi_spi_lookup lookup = {};
2205 struct spi_device *spi;
2206 int ret;
2207
2208 if (acpi_bus_get_status(adev) || !adev->status.present ||
2209 acpi_device_enumerated(adev))
2210 return AE_OK;
2211
2212 lookup.ctlr = ctlr;
2213 lookup.irq = -1;
2214
2215 INIT_LIST_HEAD(&resource_list);
2216 ret = acpi_dev_get_resources(adev, &resource_list,
2217 acpi_spi_add_resource, &lookup);
2218 acpi_dev_free_resource_list(&resource_list);
2219
2220 if (ret < 0)
2221 /* found SPI in _CRS but it points to another controller */
2222 return AE_OK;
2223
2224 if (!lookup.max_speed_hz &&
2225 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2226 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2227 /* Apple does not use _CRS but nested devices for SPI slaves */
2228 acpi_spi_parse_apple_properties(adev, &lookup);
2229 }
2230
2231 if (!lookup.max_speed_hz)
2232 return AE_OK;
2233
2234 spi = spi_alloc_device(ctlr);
2235 if (!spi) {
2236 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2237 dev_name(&adev->dev));
2238 return AE_NO_MEMORY;
2239 }
2240
2241
2242 ACPI_COMPANION_SET(&spi->dev, adev);
2243 spi->max_speed_hz = lookup.max_speed_hz;
2244 spi->mode |= lookup.mode;
2245 spi->irq = lookup.irq;
2246 spi->bits_per_word = lookup.bits_per_word;
2247 spi->chip_select = lookup.chip_select;
2248
2249 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2250 sizeof(spi->modalias));
2251
2252 if (spi->irq < 0)
2253 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2254
2255 acpi_device_set_enumerated(adev);
2256
2257 adev->power.flags.ignore_parent = true;
2258 if (spi_add_device(spi)) {
2259 adev->power.flags.ignore_parent = false;
2260 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2261 dev_name(&adev->dev));
2262 spi_dev_put(spi);
2263 }
2264
2265 return AE_OK;
2266 }
2267
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2268 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2269 void *data, void **return_value)
2270 {
2271 struct spi_controller *ctlr = data;
2272 struct acpi_device *adev;
2273
2274 if (acpi_bus_get_device(handle, &adev))
2275 return AE_OK;
2276
2277 return acpi_register_spi_device(ctlr, adev);
2278 }
2279
2280 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2281
acpi_register_spi_devices(struct spi_controller * ctlr)2282 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2283 {
2284 acpi_status status;
2285 acpi_handle handle;
2286
2287 handle = ACPI_HANDLE(ctlr->dev.parent);
2288 if (!handle)
2289 return;
2290
2291 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2292 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2293 acpi_spi_add_device, NULL, ctlr, NULL);
2294 if (ACPI_FAILURE(status))
2295 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2296 }
2297 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2298 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2299 #endif /* CONFIG_ACPI */
2300
spi_controller_release(struct device * dev)2301 static void spi_controller_release(struct device *dev)
2302 {
2303 struct spi_controller *ctlr;
2304
2305 ctlr = container_of(dev, struct spi_controller, dev);
2306 kfree(ctlr);
2307 }
2308
2309 static struct class spi_master_class = {
2310 .name = "spi_master",
2311 .owner = THIS_MODULE,
2312 .dev_release = spi_controller_release,
2313 .dev_groups = spi_master_groups,
2314 };
2315
2316 #ifdef CONFIG_SPI_SLAVE
2317 /**
2318 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2319 * controller
2320 * @spi: device used for the current transfer
2321 */
spi_slave_abort(struct spi_device * spi)2322 int spi_slave_abort(struct spi_device *spi)
2323 {
2324 struct spi_controller *ctlr = spi->controller;
2325
2326 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2327 return ctlr->slave_abort(ctlr);
2328
2329 return -ENOTSUPP;
2330 }
2331 EXPORT_SYMBOL_GPL(spi_slave_abort);
2332
match_true(struct device * dev,void * data)2333 static int match_true(struct device *dev, void *data)
2334 {
2335 return 1;
2336 }
2337
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2338 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2339 char *buf)
2340 {
2341 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2342 dev);
2343 struct device *child;
2344
2345 child = device_find_child(&ctlr->dev, NULL, match_true);
2346 return sprintf(buf, "%s\n",
2347 child ? to_spi_device(child)->modalias : NULL);
2348 }
2349
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2350 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2351 const char *buf, size_t count)
2352 {
2353 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2354 dev);
2355 struct spi_device *spi;
2356 struct device *child;
2357 char name[32];
2358 int rc;
2359
2360 rc = sscanf(buf, "%31s", name);
2361 if (rc != 1 || !name[0])
2362 return -EINVAL;
2363
2364 child = device_find_child(&ctlr->dev, NULL, match_true);
2365 if (child) {
2366 /* Remove registered slave */
2367 device_unregister(child);
2368 put_device(child);
2369 }
2370
2371 if (strcmp(name, "(null)")) {
2372 /* Register new slave */
2373 spi = spi_alloc_device(ctlr);
2374 if (!spi)
2375 return -ENOMEM;
2376
2377 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2378
2379 rc = spi_add_device(spi);
2380 if (rc) {
2381 spi_dev_put(spi);
2382 return rc;
2383 }
2384 }
2385
2386 return count;
2387 }
2388
2389 static DEVICE_ATTR_RW(slave);
2390
2391 static struct attribute *spi_slave_attrs[] = {
2392 &dev_attr_slave.attr,
2393 NULL,
2394 };
2395
2396 static const struct attribute_group spi_slave_group = {
2397 .attrs = spi_slave_attrs,
2398 };
2399
2400 static const struct attribute_group *spi_slave_groups[] = {
2401 &spi_controller_statistics_group,
2402 &spi_slave_group,
2403 NULL,
2404 };
2405
2406 static struct class spi_slave_class = {
2407 .name = "spi_slave",
2408 .owner = THIS_MODULE,
2409 .dev_release = spi_controller_release,
2410 .dev_groups = spi_slave_groups,
2411 };
2412 #else
2413 extern struct class spi_slave_class; /* dummy */
2414 #endif
2415
2416 /**
2417 * __spi_alloc_controller - allocate an SPI master or slave controller
2418 * @dev: the controller, possibly using the platform_bus
2419 * @size: how much zeroed driver-private data to allocate; the pointer to this
2420 * memory is in the driver_data field of the returned device, accessible
2421 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2422 * drivers granting DMA access to portions of their private data need to
2423 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2424 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2425 * slave (true) controller
2426 * Context: can sleep
2427 *
2428 * This call is used only by SPI controller drivers, which are the
2429 * only ones directly touching chip registers. It's how they allocate
2430 * an spi_controller structure, prior to calling spi_register_controller().
2431 *
2432 * This must be called from context that can sleep.
2433 *
2434 * The caller is responsible for assigning the bus number and initializing the
2435 * controller's methods before calling spi_register_controller(); and (after
2436 * errors adding the device) calling spi_controller_put() to prevent a memory
2437 * leak.
2438 *
2439 * Return: the SPI controller structure on success, else NULL.
2440 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2441 struct spi_controller *__spi_alloc_controller(struct device *dev,
2442 unsigned int size, bool slave)
2443 {
2444 struct spi_controller *ctlr;
2445 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2446
2447 if (!dev)
2448 return NULL;
2449
2450 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2451 if (!ctlr)
2452 return NULL;
2453
2454 device_initialize(&ctlr->dev);
2455 ctlr->bus_num = -1;
2456 ctlr->num_chipselect = 1;
2457 ctlr->slave = slave;
2458 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2459 ctlr->dev.class = &spi_slave_class;
2460 else
2461 ctlr->dev.class = &spi_master_class;
2462 ctlr->dev.parent = dev;
2463 pm_suspend_ignore_children(&ctlr->dev, true);
2464 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2465
2466 return ctlr;
2467 }
2468 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2469
devm_spi_release_controller(struct device * dev,void * ctlr)2470 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2471 {
2472 spi_controller_put(*(struct spi_controller **)ctlr);
2473 }
2474
2475 /**
2476 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2477 * @dev: physical device of SPI controller
2478 * @size: how much zeroed driver-private data to allocate
2479 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2480 * Context: can sleep
2481 *
2482 * Allocate an SPI controller and automatically release a reference on it
2483 * when @dev is unbound from its driver. Drivers are thus relieved from
2484 * having to call spi_controller_put().
2485 *
2486 * The arguments to this function are identical to __spi_alloc_controller().
2487 *
2488 * Return: the SPI controller structure on success, else NULL.
2489 */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2490 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2491 unsigned int size,
2492 bool slave)
2493 {
2494 struct spi_controller **ptr, *ctlr;
2495
2496 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2497 GFP_KERNEL);
2498 if (!ptr)
2499 return NULL;
2500
2501 ctlr = __spi_alloc_controller(dev, size, slave);
2502 if (ctlr) {
2503 ctlr->devm_allocated = true;
2504 *ptr = ctlr;
2505 devres_add(dev, ptr);
2506 } else {
2507 devres_free(ptr);
2508 }
2509
2510 return ctlr;
2511 }
2512 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2513
2514 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2515 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2516 {
2517 int nb, i, *cs;
2518 struct device_node *np = ctlr->dev.of_node;
2519
2520 if (!np)
2521 return 0;
2522
2523 nb = of_gpio_named_count(np, "cs-gpios");
2524 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2525
2526 /* Return error only for an incorrectly formed cs-gpios property */
2527 if (nb == 0 || nb == -ENOENT)
2528 return 0;
2529 else if (nb < 0)
2530 return nb;
2531
2532 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2533 GFP_KERNEL);
2534 ctlr->cs_gpios = cs;
2535
2536 if (!ctlr->cs_gpios)
2537 return -ENOMEM;
2538
2539 for (i = 0; i < ctlr->num_chipselect; i++)
2540 cs[i] = -ENOENT;
2541
2542 for (i = 0; i < nb; i++)
2543 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2544
2545 return 0;
2546 }
2547 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2548 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2549 {
2550 return 0;
2551 }
2552 #endif
2553
2554 /**
2555 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2556 * @ctlr: The SPI master to grab GPIO descriptors for
2557 */
spi_get_gpio_descs(struct spi_controller * ctlr)2558 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2559 {
2560 int nb, i;
2561 struct gpio_desc **cs;
2562 struct device *dev = &ctlr->dev;
2563 unsigned long native_cs_mask = 0;
2564 unsigned int num_cs_gpios = 0;
2565
2566 nb = gpiod_count(dev, "cs");
2567 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2568
2569 /* No GPIOs at all is fine, else return the error */
2570 if (nb == 0 || nb == -ENOENT)
2571 return 0;
2572 else if (nb < 0)
2573 return nb;
2574
2575 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2576 GFP_KERNEL);
2577 if (!cs)
2578 return -ENOMEM;
2579 ctlr->cs_gpiods = cs;
2580
2581 for (i = 0; i < nb; i++) {
2582 /*
2583 * Most chipselects are active low, the inverted
2584 * semantics are handled by special quirks in gpiolib,
2585 * so initializing them GPIOD_OUT_LOW here means
2586 * "unasserted", in most cases this will drive the physical
2587 * line high.
2588 */
2589 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2590 GPIOD_OUT_LOW);
2591 if (IS_ERR(cs[i]))
2592 return PTR_ERR(cs[i]);
2593
2594 if (cs[i]) {
2595 /*
2596 * If we find a CS GPIO, name it after the device and
2597 * chip select line.
2598 */
2599 char *gpioname;
2600
2601 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2602 dev_name(dev), i);
2603 if (!gpioname)
2604 return -ENOMEM;
2605 gpiod_set_consumer_name(cs[i], gpioname);
2606 num_cs_gpios++;
2607 continue;
2608 }
2609
2610 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2611 dev_err(dev, "Invalid native chip select %d\n", i);
2612 return -EINVAL;
2613 }
2614 native_cs_mask |= BIT(i);
2615 }
2616
2617 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2618
2619 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2620 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2621 dev_err(dev, "No unused native chip select available\n");
2622 return -EINVAL;
2623 }
2624
2625 return 0;
2626 }
2627
spi_controller_check_ops(struct spi_controller * ctlr)2628 static int spi_controller_check_ops(struct spi_controller *ctlr)
2629 {
2630 /*
2631 * The controller may implement only the high-level SPI-memory like
2632 * operations if it does not support regular SPI transfers, and this is
2633 * valid use case.
2634 * If ->mem_ops is NULL, we request that at least one of the
2635 * ->transfer_xxx() method be implemented.
2636 */
2637 if (ctlr->mem_ops) {
2638 if (!ctlr->mem_ops->exec_op)
2639 return -EINVAL;
2640 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2641 !ctlr->transfer_one_message) {
2642 return -EINVAL;
2643 }
2644
2645 return 0;
2646 }
2647
2648 /**
2649 * spi_register_controller - register SPI master or slave controller
2650 * @ctlr: initialized master, originally from spi_alloc_master() or
2651 * spi_alloc_slave()
2652 * Context: can sleep
2653 *
2654 * SPI controllers connect to their drivers using some non-SPI bus,
2655 * such as the platform bus. The final stage of probe() in that code
2656 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2657 *
2658 * SPI controllers use board specific (often SOC specific) bus numbers,
2659 * and board-specific addressing for SPI devices combines those numbers
2660 * with chip select numbers. Since SPI does not directly support dynamic
2661 * device identification, boards need configuration tables telling which
2662 * chip is at which address.
2663 *
2664 * This must be called from context that can sleep. It returns zero on
2665 * success, else a negative error code (dropping the controller's refcount).
2666 * After a successful return, the caller is responsible for calling
2667 * spi_unregister_controller().
2668 *
2669 * Return: zero on success, else a negative error code.
2670 */
spi_register_controller(struct spi_controller * ctlr)2671 int spi_register_controller(struct spi_controller *ctlr)
2672 {
2673 struct device *dev = ctlr->dev.parent;
2674 struct boardinfo *bi;
2675 int status;
2676 int id, first_dynamic;
2677
2678 if (!dev)
2679 return -ENODEV;
2680
2681 /*
2682 * Make sure all necessary hooks are implemented before registering
2683 * the SPI controller.
2684 */
2685 status = spi_controller_check_ops(ctlr);
2686 if (status)
2687 return status;
2688
2689 if (ctlr->bus_num >= 0) {
2690 /* devices with a fixed bus num must check-in with the num */
2691 mutex_lock(&board_lock);
2692 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2693 ctlr->bus_num + 1, GFP_KERNEL);
2694 mutex_unlock(&board_lock);
2695 if (WARN(id < 0, "couldn't get idr"))
2696 return id == -ENOSPC ? -EBUSY : id;
2697 ctlr->bus_num = id;
2698 } else if (ctlr->dev.of_node) {
2699 /* allocate dynamic bus number using Linux idr */
2700 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2701 if (id >= 0) {
2702 ctlr->bus_num = id;
2703 mutex_lock(&board_lock);
2704 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2705 ctlr->bus_num + 1, GFP_KERNEL);
2706 mutex_unlock(&board_lock);
2707 if (WARN(id < 0, "couldn't get idr"))
2708 return id == -ENOSPC ? -EBUSY : id;
2709 }
2710 }
2711 if (ctlr->bus_num < 0) {
2712 first_dynamic = of_alias_get_highest_id("spi");
2713 if (first_dynamic < 0)
2714 first_dynamic = 0;
2715 else
2716 first_dynamic++;
2717
2718 mutex_lock(&board_lock);
2719 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2720 0, GFP_KERNEL);
2721 mutex_unlock(&board_lock);
2722 if (WARN(id < 0, "couldn't get idr"))
2723 return id;
2724 ctlr->bus_num = id;
2725 }
2726 INIT_LIST_HEAD(&ctlr->queue);
2727 spin_lock_init(&ctlr->queue_lock);
2728 spin_lock_init(&ctlr->bus_lock_spinlock);
2729 mutex_init(&ctlr->bus_lock_mutex);
2730 mutex_init(&ctlr->io_mutex);
2731 ctlr->bus_lock_flag = 0;
2732 init_completion(&ctlr->xfer_completion);
2733 if (!ctlr->max_dma_len)
2734 ctlr->max_dma_len = INT_MAX;
2735
2736 /* register the device, then userspace will see it.
2737 * registration fails if the bus ID is in use.
2738 */
2739 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2740
2741 if (!spi_controller_is_slave(ctlr)) {
2742 if (ctlr->use_gpio_descriptors) {
2743 status = spi_get_gpio_descs(ctlr);
2744 if (status)
2745 goto free_bus_id;
2746 /*
2747 * A controller using GPIO descriptors always
2748 * supports SPI_CS_HIGH if need be.
2749 */
2750 ctlr->mode_bits |= SPI_CS_HIGH;
2751 } else {
2752 /* Legacy code path for GPIOs from DT */
2753 status = of_spi_get_gpio_numbers(ctlr);
2754 if (status)
2755 goto free_bus_id;
2756 }
2757 }
2758
2759 /*
2760 * Even if it's just one always-selected device, there must
2761 * be at least one chipselect.
2762 */
2763 if (!ctlr->num_chipselect) {
2764 status = -EINVAL;
2765 goto free_bus_id;
2766 }
2767
2768 status = device_add(&ctlr->dev);
2769 if (status < 0)
2770 goto free_bus_id;
2771 dev_dbg(dev, "registered %s %s\n",
2772 spi_controller_is_slave(ctlr) ? "slave" : "master",
2773 dev_name(&ctlr->dev));
2774
2775 /*
2776 * If we're using a queued driver, start the queue. Note that we don't
2777 * need the queueing logic if the driver is only supporting high-level
2778 * memory operations.
2779 */
2780 if (ctlr->transfer) {
2781 dev_info(dev, "controller is unqueued, this is deprecated\n");
2782 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2783 status = spi_controller_initialize_queue(ctlr);
2784 if (status) {
2785 device_del(&ctlr->dev);
2786 goto free_bus_id;
2787 }
2788 }
2789 /* add statistics */
2790 spin_lock_init(&ctlr->statistics.lock);
2791
2792 mutex_lock(&board_lock);
2793 list_add_tail(&ctlr->list, &spi_controller_list);
2794 list_for_each_entry(bi, &board_list, list)
2795 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2796 mutex_unlock(&board_lock);
2797
2798 /* Register devices from the device tree and ACPI */
2799 of_register_spi_devices(ctlr);
2800 acpi_register_spi_devices(ctlr);
2801 return status;
2802
2803 free_bus_id:
2804 mutex_lock(&board_lock);
2805 idr_remove(&spi_master_idr, ctlr->bus_num);
2806 mutex_unlock(&board_lock);
2807 return status;
2808 }
2809 EXPORT_SYMBOL_GPL(spi_register_controller);
2810
devm_spi_unregister(struct device * dev,void * res)2811 static void devm_spi_unregister(struct device *dev, void *res)
2812 {
2813 spi_unregister_controller(*(struct spi_controller **)res);
2814 }
2815
2816 /**
2817 * devm_spi_register_controller - register managed SPI master or slave
2818 * controller
2819 * @dev: device managing SPI controller
2820 * @ctlr: initialized controller, originally from spi_alloc_master() or
2821 * spi_alloc_slave()
2822 * Context: can sleep
2823 *
2824 * Register a SPI device as with spi_register_controller() which will
2825 * automatically be unregistered and freed.
2826 *
2827 * Return: zero on success, else a negative error code.
2828 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2829 int devm_spi_register_controller(struct device *dev,
2830 struct spi_controller *ctlr)
2831 {
2832 struct spi_controller **ptr;
2833 int ret;
2834
2835 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2836 if (!ptr)
2837 return -ENOMEM;
2838
2839 ret = spi_register_controller(ctlr);
2840 if (!ret) {
2841 *ptr = ctlr;
2842 devres_add(dev, ptr);
2843 } else {
2844 devres_free(ptr);
2845 }
2846
2847 return ret;
2848 }
2849 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2850
__unregister(struct device * dev,void * null)2851 static int __unregister(struct device *dev, void *null)
2852 {
2853 spi_unregister_device(to_spi_device(dev));
2854 return 0;
2855 }
2856
2857 /**
2858 * spi_unregister_controller - unregister SPI master or slave controller
2859 * @ctlr: the controller being unregistered
2860 * Context: can sleep
2861 *
2862 * This call is used only by SPI controller drivers, which are the
2863 * only ones directly touching chip registers.
2864 *
2865 * This must be called from context that can sleep.
2866 *
2867 * Note that this function also drops a reference to the controller.
2868 */
spi_unregister_controller(struct spi_controller * ctlr)2869 void spi_unregister_controller(struct spi_controller *ctlr)
2870 {
2871 struct spi_controller *found;
2872 int id = ctlr->bus_num;
2873
2874 /* Prevent addition of new devices, unregister existing ones */
2875 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2876 mutex_lock(&spi_add_lock);
2877
2878 device_for_each_child(&ctlr->dev, NULL, __unregister);
2879
2880 /* First make sure that this controller was ever added */
2881 mutex_lock(&board_lock);
2882 found = idr_find(&spi_master_idr, id);
2883 mutex_unlock(&board_lock);
2884 if (ctlr->queued) {
2885 if (spi_destroy_queue(ctlr))
2886 dev_err(&ctlr->dev, "queue remove failed\n");
2887 }
2888 mutex_lock(&board_lock);
2889 list_del(&ctlr->list);
2890 mutex_unlock(&board_lock);
2891
2892 device_del(&ctlr->dev);
2893
2894 /* Release the last reference on the controller if its driver
2895 * has not yet been converted to devm_spi_alloc_master/slave().
2896 */
2897 if (!ctlr->devm_allocated)
2898 put_device(&ctlr->dev);
2899
2900 /* free bus id */
2901 mutex_lock(&board_lock);
2902 if (found == ctlr)
2903 idr_remove(&spi_master_idr, id);
2904 mutex_unlock(&board_lock);
2905
2906 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2907 mutex_unlock(&spi_add_lock);
2908 }
2909 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2910
spi_controller_suspend(struct spi_controller * ctlr)2911 int spi_controller_suspend(struct spi_controller *ctlr)
2912 {
2913 int ret;
2914
2915 /* Basically no-ops for non-queued controllers */
2916 if (!ctlr->queued)
2917 return 0;
2918
2919 ret = spi_stop_queue(ctlr);
2920 if (ret)
2921 dev_err(&ctlr->dev, "queue stop failed\n");
2922
2923 return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2926
spi_controller_resume(struct spi_controller * ctlr)2927 int spi_controller_resume(struct spi_controller *ctlr)
2928 {
2929 int ret;
2930
2931 if (!ctlr->queued)
2932 return 0;
2933
2934 ret = spi_start_queue(ctlr);
2935 if (ret)
2936 dev_err(&ctlr->dev, "queue restart failed\n");
2937
2938 return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(spi_controller_resume);
2941
__spi_controller_match(struct device * dev,const void * data)2942 static int __spi_controller_match(struct device *dev, const void *data)
2943 {
2944 struct spi_controller *ctlr;
2945 const u16 *bus_num = data;
2946
2947 ctlr = container_of(dev, struct spi_controller, dev);
2948 return ctlr->bus_num == *bus_num;
2949 }
2950
2951 /**
2952 * spi_busnum_to_master - look up master associated with bus_num
2953 * @bus_num: the master's bus number
2954 * Context: can sleep
2955 *
2956 * This call may be used with devices that are registered after
2957 * arch init time. It returns a refcounted pointer to the relevant
2958 * spi_controller (which the caller must release), or NULL if there is
2959 * no such master registered.
2960 *
2961 * Return: the SPI master structure on success, else NULL.
2962 */
spi_busnum_to_master(u16 bus_num)2963 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2964 {
2965 struct device *dev;
2966 struct spi_controller *ctlr = NULL;
2967
2968 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2969 __spi_controller_match);
2970 if (dev)
2971 ctlr = container_of(dev, struct spi_controller, dev);
2972 /* reference got in class_find_device */
2973 return ctlr;
2974 }
2975 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2976
2977 /*-------------------------------------------------------------------------*/
2978
2979 /* Core methods for SPI resource management */
2980
2981 /**
2982 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2983 * during the processing of a spi_message while using
2984 * spi_transfer_one
2985 * @spi: the spi device for which we allocate memory
2986 * @release: the release code to execute for this resource
2987 * @size: size to alloc and return
2988 * @gfp: GFP allocation flags
2989 *
2990 * Return: the pointer to the allocated data
2991 *
2992 * This may get enhanced in the future to allocate from a memory pool
2993 * of the @spi_device or @spi_controller to avoid repeated allocations.
2994 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2995 void *spi_res_alloc(struct spi_device *spi,
2996 spi_res_release_t release,
2997 size_t size, gfp_t gfp)
2998 {
2999 struct spi_res *sres;
3000
3001 sres = kzalloc(sizeof(*sres) + size, gfp);
3002 if (!sres)
3003 return NULL;
3004
3005 INIT_LIST_HEAD(&sres->entry);
3006 sres->release = release;
3007
3008 return sres->data;
3009 }
3010 EXPORT_SYMBOL_GPL(spi_res_alloc);
3011
3012 /**
3013 * spi_res_free - free an spi resource
3014 * @res: pointer to the custom data of a resource
3015 *
3016 */
spi_res_free(void * res)3017 void spi_res_free(void *res)
3018 {
3019 struct spi_res *sres = container_of(res, struct spi_res, data);
3020
3021 if (!res)
3022 return;
3023
3024 WARN_ON(!list_empty(&sres->entry));
3025 kfree(sres);
3026 }
3027 EXPORT_SYMBOL_GPL(spi_res_free);
3028
3029 /**
3030 * spi_res_add - add a spi_res to the spi_message
3031 * @message: the spi message
3032 * @res: the spi_resource
3033 */
spi_res_add(struct spi_message * message,void * res)3034 void spi_res_add(struct spi_message *message, void *res)
3035 {
3036 struct spi_res *sres = container_of(res, struct spi_res, data);
3037
3038 WARN_ON(!list_empty(&sres->entry));
3039 list_add_tail(&sres->entry, &message->resources);
3040 }
3041 EXPORT_SYMBOL_GPL(spi_res_add);
3042
3043 /**
3044 * spi_res_release - release all spi resources for this message
3045 * @ctlr: the @spi_controller
3046 * @message: the @spi_message
3047 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)3048 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3049 {
3050 struct spi_res *res, *tmp;
3051
3052 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3053 if (res->release)
3054 res->release(ctlr, message, res->data);
3055
3056 list_del(&res->entry);
3057
3058 kfree(res);
3059 }
3060 }
3061 EXPORT_SYMBOL_GPL(spi_res_release);
3062
3063 /*-------------------------------------------------------------------------*/
3064
3065 /* Core methods for spi_message alterations */
3066
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3067 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3068 struct spi_message *msg,
3069 void *res)
3070 {
3071 struct spi_replaced_transfers *rxfer = res;
3072 size_t i;
3073
3074 /* call extra callback if requested */
3075 if (rxfer->release)
3076 rxfer->release(ctlr, msg, res);
3077
3078 /* insert replaced transfers back into the message */
3079 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3080
3081 /* remove the formerly inserted entries */
3082 for (i = 0; i < rxfer->inserted; i++)
3083 list_del(&rxfer->inserted_transfers[i].transfer_list);
3084 }
3085
3086 /**
3087 * spi_replace_transfers - replace transfers with several transfers
3088 * and register change with spi_message.resources
3089 * @msg: the spi_message we work upon
3090 * @xfer_first: the first spi_transfer we want to replace
3091 * @remove: number of transfers to remove
3092 * @insert: the number of transfers we want to insert instead
3093 * @release: extra release code necessary in some circumstances
3094 * @extradatasize: extra data to allocate (with alignment guarantees
3095 * of struct @spi_transfer)
3096 * @gfp: gfp flags
3097 *
3098 * Returns: pointer to @spi_replaced_transfers,
3099 * PTR_ERR(...) in case of errors.
3100 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3101 struct spi_replaced_transfers *spi_replace_transfers(
3102 struct spi_message *msg,
3103 struct spi_transfer *xfer_first,
3104 size_t remove,
3105 size_t insert,
3106 spi_replaced_release_t release,
3107 size_t extradatasize,
3108 gfp_t gfp)
3109 {
3110 struct spi_replaced_transfers *rxfer;
3111 struct spi_transfer *xfer;
3112 size_t i;
3113
3114 /* allocate the structure using spi_res */
3115 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3116 struct_size(rxfer, inserted_transfers, insert)
3117 + extradatasize,
3118 gfp);
3119 if (!rxfer)
3120 return ERR_PTR(-ENOMEM);
3121
3122 /* the release code to invoke before running the generic release */
3123 rxfer->release = release;
3124
3125 /* assign extradata */
3126 if (extradatasize)
3127 rxfer->extradata =
3128 &rxfer->inserted_transfers[insert];
3129
3130 /* init the replaced_transfers list */
3131 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3132
3133 /* assign the list_entry after which we should reinsert
3134 * the @replaced_transfers - it may be spi_message.messages!
3135 */
3136 rxfer->replaced_after = xfer_first->transfer_list.prev;
3137
3138 /* remove the requested number of transfers */
3139 for (i = 0; i < remove; i++) {
3140 /* if the entry after replaced_after it is msg->transfers
3141 * then we have been requested to remove more transfers
3142 * than are in the list
3143 */
3144 if (rxfer->replaced_after->next == &msg->transfers) {
3145 dev_err(&msg->spi->dev,
3146 "requested to remove more spi_transfers than are available\n");
3147 /* insert replaced transfers back into the message */
3148 list_splice(&rxfer->replaced_transfers,
3149 rxfer->replaced_after);
3150
3151 /* free the spi_replace_transfer structure */
3152 spi_res_free(rxfer);
3153
3154 /* and return with an error */
3155 return ERR_PTR(-EINVAL);
3156 }
3157
3158 /* remove the entry after replaced_after from list of
3159 * transfers and add it to list of replaced_transfers
3160 */
3161 list_move_tail(rxfer->replaced_after->next,
3162 &rxfer->replaced_transfers);
3163 }
3164
3165 /* create copy of the given xfer with identical settings
3166 * based on the first transfer to get removed
3167 */
3168 for (i = 0; i < insert; i++) {
3169 /* we need to run in reverse order */
3170 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3171
3172 /* copy all spi_transfer data */
3173 memcpy(xfer, xfer_first, sizeof(*xfer));
3174
3175 /* add to list */
3176 list_add(&xfer->transfer_list, rxfer->replaced_after);
3177
3178 /* clear cs_change and delay for all but the last */
3179 if (i) {
3180 xfer->cs_change = false;
3181 xfer->delay_usecs = 0;
3182 xfer->delay.value = 0;
3183 }
3184 }
3185
3186 /* set up inserted */
3187 rxfer->inserted = insert;
3188
3189 /* and register it with spi_res/spi_message */
3190 spi_res_add(msg, rxfer);
3191
3192 return rxfer;
3193 }
3194 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3195
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3196 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3197 struct spi_message *msg,
3198 struct spi_transfer **xferp,
3199 size_t maxsize,
3200 gfp_t gfp)
3201 {
3202 struct spi_transfer *xfer = *xferp, *xfers;
3203 struct spi_replaced_transfers *srt;
3204 size_t offset;
3205 size_t count, i;
3206
3207 /* calculate how many we have to replace */
3208 count = DIV_ROUND_UP(xfer->len, maxsize);
3209
3210 /* create replacement */
3211 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3212 if (IS_ERR(srt))
3213 return PTR_ERR(srt);
3214 xfers = srt->inserted_transfers;
3215
3216 /* now handle each of those newly inserted spi_transfers
3217 * note that the replacements spi_transfers all are preset
3218 * to the same values as *xferp, so tx_buf, rx_buf and len
3219 * are all identical (as well as most others)
3220 * so we just have to fix up len and the pointers.
3221 *
3222 * this also includes support for the depreciated
3223 * spi_message.is_dma_mapped interface
3224 */
3225
3226 /* the first transfer just needs the length modified, so we
3227 * run it outside the loop
3228 */
3229 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3230
3231 /* all the others need rx_buf/tx_buf also set */
3232 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3233 /* update rx_buf, tx_buf and dma */
3234 if (xfers[i].rx_buf)
3235 xfers[i].rx_buf += offset;
3236 if (xfers[i].rx_dma)
3237 xfers[i].rx_dma += offset;
3238 if (xfers[i].tx_buf)
3239 xfers[i].tx_buf += offset;
3240 if (xfers[i].tx_dma)
3241 xfers[i].tx_dma += offset;
3242
3243 /* update length */
3244 xfers[i].len = min(maxsize, xfers[i].len - offset);
3245 }
3246
3247 /* we set up xferp to the last entry we have inserted,
3248 * so that we skip those already split transfers
3249 */
3250 *xferp = &xfers[count - 1];
3251
3252 /* increment statistics counters */
3253 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3254 transfers_split_maxsize);
3255 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3256 transfers_split_maxsize);
3257
3258 return 0;
3259 }
3260
3261 /**
3262 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3263 * when an individual transfer exceeds a
3264 * certain size
3265 * @ctlr: the @spi_controller for this transfer
3266 * @msg: the @spi_message to transform
3267 * @maxsize: the maximum when to apply this
3268 * @gfp: GFP allocation flags
3269 *
3270 * Return: status of transformation
3271 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3272 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3273 struct spi_message *msg,
3274 size_t maxsize,
3275 gfp_t gfp)
3276 {
3277 struct spi_transfer *xfer;
3278 int ret;
3279
3280 /* iterate over the transfer_list,
3281 * but note that xfer is advanced to the last transfer inserted
3282 * to avoid checking sizes again unnecessarily (also xfer does
3283 * potentiall belong to a different list by the time the
3284 * replacement has happened
3285 */
3286 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3287 if (xfer->len > maxsize) {
3288 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3289 maxsize, gfp);
3290 if (ret)
3291 return ret;
3292 }
3293 }
3294
3295 return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3298
3299 /*-------------------------------------------------------------------------*/
3300
3301 /* Core methods for SPI controller protocol drivers. Some of the
3302 * other core methods are currently defined as inline functions.
3303 */
3304
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3305 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3306 u8 bits_per_word)
3307 {
3308 if (ctlr->bits_per_word_mask) {
3309 /* Only 32 bits fit in the mask */
3310 if (bits_per_word > 32)
3311 return -EINVAL;
3312 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3313 return -EINVAL;
3314 }
3315
3316 return 0;
3317 }
3318
3319 /**
3320 * spi_setup - setup SPI mode and clock rate
3321 * @spi: the device whose settings are being modified
3322 * Context: can sleep, and no requests are queued to the device
3323 *
3324 * SPI protocol drivers may need to update the transfer mode if the
3325 * device doesn't work with its default. They may likewise need
3326 * to update clock rates or word sizes from initial values. This function
3327 * changes those settings, and must be called from a context that can sleep.
3328 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3329 * effect the next time the device is selected and data is transferred to
3330 * or from it. When this function returns, the spi device is deselected.
3331 *
3332 * Note that this call will fail if the protocol driver specifies an option
3333 * that the underlying controller or its driver does not support. For
3334 * example, not all hardware supports wire transfers using nine bit words,
3335 * LSB-first wire encoding, or active-high chipselects.
3336 *
3337 * Return: zero on success, else a negative error code.
3338 */
spi_setup(struct spi_device * spi)3339 int spi_setup(struct spi_device *spi)
3340 {
3341 unsigned bad_bits, ugly_bits;
3342 int status;
3343
3344 /* check mode to prevent that DUAL and QUAD set at the same time
3345 */
3346 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3347 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3348 dev_err(&spi->dev,
3349 "setup: can not select dual and quad at the same time\n");
3350 return -EINVAL;
3351 }
3352 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3353 */
3354 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3355 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3356 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3357 return -EINVAL;
3358 /* help drivers fail *cleanly* when they need options
3359 * that aren't supported with their current controller
3360 * SPI_CS_WORD has a fallback software implementation,
3361 * so it is ignored here.
3362 */
3363 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3364 /* nothing prevents from working with active-high CS in case if it
3365 * is driven by GPIO.
3366 */
3367 if (gpio_is_valid(spi->cs_gpio))
3368 bad_bits &= ~SPI_CS_HIGH;
3369 ugly_bits = bad_bits &
3370 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3371 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3372 if (ugly_bits) {
3373 dev_warn(&spi->dev,
3374 "setup: ignoring unsupported mode bits %x\n",
3375 ugly_bits);
3376 spi->mode &= ~ugly_bits;
3377 bad_bits &= ~ugly_bits;
3378 }
3379 if (bad_bits) {
3380 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3381 bad_bits);
3382 return -EINVAL;
3383 }
3384
3385 if (!spi->bits_per_word)
3386 spi->bits_per_word = 8;
3387
3388 status = __spi_validate_bits_per_word(spi->controller,
3389 spi->bits_per_word);
3390 if (status)
3391 return status;
3392
3393 if (!spi->max_speed_hz)
3394 spi->max_speed_hz = spi->controller->max_speed_hz;
3395
3396 mutex_lock(&spi->controller->io_mutex);
3397
3398 if (spi->controller->setup)
3399 status = spi->controller->setup(spi);
3400
3401 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3402 status = pm_runtime_get_sync(spi->controller->dev.parent);
3403 if (status < 0) {
3404 mutex_unlock(&spi->controller->io_mutex);
3405 pm_runtime_put_noidle(spi->controller->dev.parent);
3406 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3407 status);
3408 return status;
3409 }
3410
3411 /*
3412 * We do not want to return positive value from pm_runtime_get,
3413 * there are many instances of devices calling spi_setup() and
3414 * checking for a non-zero return value instead of a negative
3415 * return value.
3416 */
3417 status = 0;
3418
3419 spi_set_cs(spi, false, true);
3420 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3421 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3422 } else {
3423 spi_set_cs(spi, false, true);
3424 }
3425
3426 mutex_unlock(&spi->controller->io_mutex);
3427
3428 if (spi->rt && !spi->controller->rt) {
3429 spi->controller->rt = true;
3430 spi_set_thread_rt(spi->controller);
3431 }
3432
3433 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3434 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3435 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3436 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3437 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3438 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3439 spi->bits_per_word, spi->max_speed_hz,
3440 status);
3441
3442 return status;
3443 }
3444 EXPORT_SYMBOL_GPL(spi_setup);
3445
3446 /**
3447 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3448 * @spi: the device that requires specific CS timing configuration
3449 * @setup: CS setup time specified via @spi_delay
3450 * @hold: CS hold time specified via @spi_delay
3451 * @inactive: CS inactive delay between transfers specified via @spi_delay
3452 *
3453 * Return: zero on success, else a negative error code.
3454 */
spi_set_cs_timing(struct spi_device * spi,struct spi_delay * setup,struct spi_delay * hold,struct spi_delay * inactive)3455 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3456 struct spi_delay *hold, struct spi_delay *inactive)
3457 {
3458 size_t len;
3459
3460 if (spi->controller->set_cs_timing)
3461 return spi->controller->set_cs_timing(spi, setup, hold,
3462 inactive);
3463
3464 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3465 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3466 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3467 dev_err(&spi->dev,
3468 "Clock-cycle delays for CS not supported in SW mode\n");
3469 return -ENOTSUPP;
3470 }
3471
3472 len = sizeof(struct spi_delay);
3473
3474 /* copy delays to controller */
3475 if (setup)
3476 memcpy(&spi->controller->cs_setup, setup, len);
3477 else
3478 memset(&spi->controller->cs_setup, 0, len);
3479
3480 if (hold)
3481 memcpy(&spi->controller->cs_hold, hold, len);
3482 else
3483 memset(&spi->controller->cs_hold, 0, len);
3484
3485 if (inactive)
3486 memcpy(&spi->controller->cs_inactive, inactive, len);
3487 else
3488 memset(&spi->controller->cs_inactive, 0, len);
3489
3490 return 0;
3491 }
3492 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3493
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3494 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3495 struct spi_device *spi)
3496 {
3497 int delay1, delay2;
3498
3499 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3500 if (delay1 < 0)
3501 return delay1;
3502
3503 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3504 if (delay2 < 0)
3505 return delay2;
3506
3507 if (delay1 < delay2)
3508 memcpy(&xfer->word_delay, &spi->word_delay,
3509 sizeof(xfer->word_delay));
3510
3511 return 0;
3512 }
3513
__spi_validate(struct spi_device * spi,struct spi_message * message)3514 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3515 {
3516 struct spi_controller *ctlr = spi->controller;
3517 struct spi_transfer *xfer;
3518 int w_size;
3519
3520 if (list_empty(&message->transfers))
3521 return -EINVAL;
3522
3523 /* If an SPI controller does not support toggling the CS line on each
3524 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3525 * for the CS line, we can emulate the CS-per-word hardware function by
3526 * splitting transfers into one-word transfers and ensuring that
3527 * cs_change is set for each transfer.
3528 */
3529 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3530 spi->cs_gpiod ||
3531 gpio_is_valid(spi->cs_gpio))) {
3532 size_t maxsize;
3533 int ret;
3534
3535 maxsize = (spi->bits_per_word + 7) / 8;
3536
3537 /* spi_split_transfers_maxsize() requires message->spi */
3538 message->spi = spi;
3539
3540 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3541 GFP_KERNEL);
3542 if (ret)
3543 return ret;
3544
3545 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3546 /* don't change cs_change on the last entry in the list */
3547 if (list_is_last(&xfer->transfer_list, &message->transfers))
3548 break;
3549 xfer->cs_change = 1;
3550 }
3551 }
3552
3553 /* Half-duplex links include original MicroWire, and ones with
3554 * only one data pin like SPI_3WIRE (switches direction) or where
3555 * either MOSI or MISO is missing. They can also be caused by
3556 * software limitations.
3557 */
3558 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3559 (spi->mode & SPI_3WIRE)) {
3560 unsigned flags = ctlr->flags;
3561
3562 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3563 if (xfer->rx_buf && xfer->tx_buf)
3564 return -EINVAL;
3565 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3566 return -EINVAL;
3567 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3568 return -EINVAL;
3569 }
3570 }
3571
3572 /**
3573 * Set transfer bits_per_word and max speed as spi device default if
3574 * it is not set for this transfer.
3575 * Set transfer tx_nbits and rx_nbits as single transfer default
3576 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3577 * Ensure transfer word_delay is at least as long as that required by
3578 * device itself.
3579 */
3580 message->frame_length = 0;
3581 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3582 xfer->effective_speed_hz = 0;
3583 message->frame_length += xfer->len;
3584 if (!xfer->bits_per_word)
3585 xfer->bits_per_word = spi->bits_per_word;
3586
3587 if (!xfer->speed_hz)
3588 xfer->speed_hz = spi->max_speed_hz;
3589
3590 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3591 xfer->speed_hz = ctlr->max_speed_hz;
3592
3593 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3594 return -EINVAL;
3595
3596 /*
3597 * SPI transfer length should be multiple of SPI word size
3598 * where SPI word size should be power-of-two multiple
3599 */
3600 if (xfer->bits_per_word <= 8)
3601 w_size = 1;
3602 else if (xfer->bits_per_word <= 16)
3603 w_size = 2;
3604 else
3605 w_size = 4;
3606
3607 /* No partial transfers accepted */
3608 if (xfer->len % w_size)
3609 return -EINVAL;
3610
3611 if (xfer->speed_hz && ctlr->min_speed_hz &&
3612 xfer->speed_hz < ctlr->min_speed_hz)
3613 return -EINVAL;
3614
3615 if (xfer->tx_buf && !xfer->tx_nbits)
3616 xfer->tx_nbits = SPI_NBITS_SINGLE;
3617 if (xfer->rx_buf && !xfer->rx_nbits)
3618 xfer->rx_nbits = SPI_NBITS_SINGLE;
3619 /* check transfer tx/rx_nbits:
3620 * 1. check the value matches one of single, dual and quad
3621 * 2. check tx/rx_nbits match the mode in spi_device
3622 */
3623 if (xfer->tx_buf) {
3624 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3625 xfer->tx_nbits != SPI_NBITS_DUAL &&
3626 xfer->tx_nbits != SPI_NBITS_QUAD)
3627 return -EINVAL;
3628 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3629 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3630 return -EINVAL;
3631 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3632 !(spi->mode & SPI_TX_QUAD))
3633 return -EINVAL;
3634 }
3635 /* check transfer rx_nbits */
3636 if (xfer->rx_buf) {
3637 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3638 xfer->rx_nbits != SPI_NBITS_DUAL &&
3639 xfer->rx_nbits != SPI_NBITS_QUAD)
3640 return -EINVAL;
3641 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3642 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3643 return -EINVAL;
3644 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3645 !(spi->mode & SPI_RX_QUAD))
3646 return -EINVAL;
3647 }
3648
3649 if (_spi_xfer_word_delay_update(xfer, spi))
3650 return -EINVAL;
3651 }
3652
3653 message->status = -EINPROGRESS;
3654
3655 return 0;
3656 }
3657
__spi_async(struct spi_device * spi,struct spi_message * message)3658 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3659 {
3660 struct spi_controller *ctlr = spi->controller;
3661 struct spi_transfer *xfer;
3662
3663 /*
3664 * Some controllers do not support doing regular SPI transfers. Return
3665 * ENOTSUPP when this is the case.
3666 */
3667 if (!ctlr->transfer)
3668 return -ENOTSUPP;
3669
3670 message->spi = spi;
3671
3672 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3673 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3674
3675 trace_spi_message_submit(message);
3676
3677 if (!ctlr->ptp_sts_supported) {
3678 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3679 xfer->ptp_sts_word_pre = 0;
3680 ptp_read_system_prets(xfer->ptp_sts);
3681 }
3682 }
3683
3684 return ctlr->transfer(spi, message);
3685 }
3686
3687 /**
3688 * spi_async - asynchronous SPI transfer
3689 * @spi: device with which data will be exchanged
3690 * @message: describes the data transfers, including completion callback
3691 * Context: any (irqs may be blocked, etc)
3692 *
3693 * This call may be used in_irq and other contexts which can't sleep,
3694 * as well as from task contexts which can sleep.
3695 *
3696 * The completion callback is invoked in a context which can't sleep.
3697 * Before that invocation, the value of message->status is undefined.
3698 * When the callback is issued, message->status holds either zero (to
3699 * indicate complete success) or a negative error code. After that
3700 * callback returns, the driver which issued the transfer request may
3701 * deallocate the associated memory; it's no longer in use by any SPI
3702 * core or controller driver code.
3703 *
3704 * Note that although all messages to a spi_device are handled in
3705 * FIFO order, messages may go to different devices in other orders.
3706 * Some device might be higher priority, or have various "hard" access
3707 * time requirements, for example.
3708 *
3709 * On detection of any fault during the transfer, processing of
3710 * the entire message is aborted, and the device is deselected.
3711 * Until returning from the associated message completion callback,
3712 * no other spi_message queued to that device will be processed.
3713 * (This rule applies equally to all the synchronous transfer calls,
3714 * which are wrappers around this core asynchronous primitive.)
3715 *
3716 * Return: zero on success, else a negative error code.
3717 */
spi_async(struct spi_device * spi,struct spi_message * message)3718 int spi_async(struct spi_device *spi, struct spi_message *message)
3719 {
3720 struct spi_controller *ctlr = spi->controller;
3721 int ret;
3722 unsigned long flags;
3723
3724 ret = __spi_validate(spi, message);
3725 if (ret != 0)
3726 return ret;
3727
3728 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3729
3730 if (ctlr->bus_lock_flag)
3731 ret = -EBUSY;
3732 else
3733 ret = __spi_async(spi, message);
3734
3735 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3736
3737 return ret;
3738 }
3739 EXPORT_SYMBOL_GPL(spi_async);
3740
3741 /**
3742 * spi_async_locked - version of spi_async with exclusive bus usage
3743 * @spi: device with which data will be exchanged
3744 * @message: describes the data transfers, including completion callback
3745 * Context: any (irqs may be blocked, etc)
3746 *
3747 * This call may be used in_irq and other contexts which can't sleep,
3748 * as well as from task contexts which can sleep.
3749 *
3750 * The completion callback is invoked in a context which can't sleep.
3751 * Before that invocation, the value of message->status is undefined.
3752 * When the callback is issued, message->status holds either zero (to
3753 * indicate complete success) or a negative error code. After that
3754 * callback returns, the driver which issued the transfer request may
3755 * deallocate the associated memory; it's no longer in use by any SPI
3756 * core or controller driver code.
3757 *
3758 * Note that although all messages to a spi_device are handled in
3759 * FIFO order, messages may go to different devices in other orders.
3760 * Some device might be higher priority, or have various "hard" access
3761 * time requirements, for example.
3762 *
3763 * On detection of any fault during the transfer, processing of
3764 * the entire message is aborted, and the device is deselected.
3765 * Until returning from the associated message completion callback,
3766 * no other spi_message queued to that device will be processed.
3767 * (This rule applies equally to all the synchronous transfer calls,
3768 * which are wrappers around this core asynchronous primitive.)
3769 *
3770 * Return: zero on success, else a negative error code.
3771 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3772 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3773 {
3774 struct spi_controller *ctlr = spi->controller;
3775 int ret;
3776 unsigned long flags;
3777
3778 ret = __spi_validate(spi, message);
3779 if (ret != 0)
3780 return ret;
3781
3782 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3783
3784 ret = __spi_async(spi, message);
3785
3786 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3787
3788 return ret;
3789
3790 }
3791 EXPORT_SYMBOL_GPL(spi_async_locked);
3792
3793 /*-------------------------------------------------------------------------*/
3794
3795 /* Utility methods for SPI protocol drivers, layered on
3796 * top of the core. Some other utility methods are defined as
3797 * inline functions.
3798 */
3799
spi_complete(void * arg)3800 static void spi_complete(void *arg)
3801 {
3802 complete(arg);
3803 }
3804
__spi_sync(struct spi_device * spi,struct spi_message * message)3805 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3806 {
3807 DECLARE_COMPLETION_ONSTACK(done);
3808 int status;
3809 struct spi_controller *ctlr = spi->controller;
3810 unsigned long flags;
3811
3812 status = __spi_validate(spi, message);
3813 if (status != 0)
3814 return status;
3815
3816 message->complete = spi_complete;
3817 message->context = &done;
3818 message->spi = spi;
3819
3820 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3821 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3822
3823 /* If we're not using the legacy transfer method then we will
3824 * try to transfer in the calling context so special case.
3825 * This code would be less tricky if we could remove the
3826 * support for driver implemented message queues.
3827 */
3828 if (ctlr->transfer == spi_queued_transfer) {
3829 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3830
3831 trace_spi_message_submit(message);
3832
3833 status = __spi_queued_transfer(spi, message, false);
3834
3835 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3836 } else {
3837 status = spi_async_locked(spi, message);
3838 }
3839
3840 if (status == 0) {
3841 /* Push out the messages in the calling context if we
3842 * can.
3843 */
3844 if (ctlr->transfer == spi_queued_transfer) {
3845 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3846 spi_sync_immediate);
3847 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3848 spi_sync_immediate);
3849 __spi_pump_messages(ctlr, false);
3850 }
3851
3852 wait_for_completion(&done);
3853 status = message->status;
3854 }
3855 message->context = NULL;
3856 return status;
3857 }
3858
3859 /**
3860 * spi_sync - blocking/synchronous SPI data transfers
3861 * @spi: device with which data will be exchanged
3862 * @message: describes the data transfers
3863 * Context: can sleep
3864 *
3865 * This call may only be used from a context that may sleep. The sleep
3866 * is non-interruptible, and has no timeout. Low-overhead controller
3867 * drivers may DMA directly into and out of the message buffers.
3868 *
3869 * Note that the SPI device's chip select is active during the message,
3870 * and then is normally disabled between messages. Drivers for some
3871 * frequently-used devices may want to minimize costs of selecting a chip,
3872 * by leaving it selected in anticipation that the next message will go
3873 * to the same chip. (That may increase power usage.)
3874 *
3875 * Also, the caller is guaranteeing that the memory associated with the
3876 * message will not be freed before this call returns.
3877 *
3878 * Return: zero on success, else a negative error code.
3879 */
spi_sync(struct spi_device * spi,struct spi_message * message)3880 int spi_sync(struct spi_device *spi, struct spi_message *message)
3881 {
3882 int ret;
3883
3884 mutex_lock(&spi->controller->bus_lock_mutex);
3885 ret = __spi_sync(spi, message);
3886 mutex_unlock(&spi->controller->bus_lock_mutex);
3887
3888 return ret;
3889 }
3890 EXPORT_SYMBOL_GPL(spi_sync);
3891
3892 /**
3893 * spi_sync_locked - version of spi_sync with exclusive bus usage
3894 * @spi: device with which data will be exchanged
3895 * @message: describes the data transfers
3896 * Context: can sleep
3897 *
3898 * This call may only be used from a context that may sleep. The sleep
3899 * is non-interruptible, and has no timeout. Low-overhead controller
3900 * drivers may DMA directly into and out of the message buffers.
3901 *
3902 * This call should be used by drivers that require exclusive access to the
3903 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3904 * be released by a spi_bus_unlock call when the exclusive access is over.
3905 *
3906 * Return: zero on success, else a negative error code.
3907 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3908 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3909 {
3910 return __spi_sync(spi, message);
3911 }
3912 EXPORT_SYMBOL_GPL(spi_sync_locked);
3913
3914 /**
3915 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3916 * @ctlr: SPI bus master that should be locked for exclusive bus access
3917 * Context: can sleep
3918 *
3919 * This call may only be used from a context that may sleep. The sleep
3920 * is non-interruptible, and has no timeout.
3921 *
3922 * This call should be used by drivers that require exclusive access to the
3923 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3924 * exclusive access is over. Data transfer must be done by spi_sync_locked
3925 * and spi_async_locked calls when the SPI bus lock is held.
3926 *
3927 * Return: always zero.
3928 */
spi_bus_lock(struct spi_controller * ctlr)3929 int spi_bus_lock(struct spi_controller *ctlr)
3930 {
3931 unsigned long flags;
3932
3933 mutex_lock(&ctlr->bus_lock_mutex);
3934
3935 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3936 ctlr->bus_lock_flag = 1;
3937 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3938
3939 /* mutex remains locked until spi_bus_unlock is called */
3940
3941 return 0;
3942 }
3943 EXPORT_SYMBOL_GPL(spi_bus_lock);
3944
3945 /**
3946 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3947 * @ctlr: SPI bus master that was locked for exclusive bus access
3948 * Context: can sleep
3949 *
3950 * This call may only be used from a context that may sleep. The sleep
3951 * is non-interruptible, and has no timeout.
3952 *
3953 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3954 * call.
3955 *
3956 * Return: always zero.
3957 */
spi_bus_unlock(struct spi_controller * ctlr)3958 int spi_bus_unlock(struct spi_controller *ctlr)
3959 {
3960 ctlr->bus_lock_flag = 0;
3961
3962 mutex_unlock(&ctlr->bus_lock_mutex);
3963
3964 return 0;
3965 }
3966 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3967
3968 /* portable code must never pass more than 32 bytes */
3969 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3970
3971 static u8 *buf;
3972
3973 /**
3974 * spi_write_then_read - SPI synchronous write followed by read
3975 * @spi: device with which data will be exchanged
3976 * @txbuf: data to be written (need not be dma-safe)
3977 * @n_tx: size of txbuf, in bytes
3978 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3979 * @n_rx: size of rxbuf, in bytes
3980 * Context: can sleep
3981 *
3982 * This performs a half duplex MicroWire style transaction with the
3983 * device, sending txbuf and then reading rxbuf. The return value
3984 * is zero for success, else a negative errno status code.
3985 * This call may only be used from a context that may sleep.
3986 *
3987 * Parameters to this routine are always copied using a small buffer.
3988 * Performance-sensitive or bulk transfer code should instead use
3989 * spi_{async,sync}() calls with dma-safe buffers.
3990 *
3991 * Return: zero on success, else a negative error code.
3992 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3993 int spi_write_then_read(struct spi_device *spi,
3994 const void *txbuf, unsigned n_tx,
3995 void *rxbuf, unsigned n_rx)
3996 {
3997 static DEFINE_MUTEX(lock);
3998
3999 int status;
4000 struct spi_message message;
4001 struct spi_transfer x[2];
4002 u8 *local_buf;
4003
4004 /* Use preallocated DMA-safe buffer if we can. We can't avoid
4005 * copying here, (as a pure convenience thing), but we can
4006 * keep heap costs out of the hot path unless someone else is
4007 * using the pre-allocated buffer or the transfer is too large.
4008 */
4009 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4010 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4011 GFP_KERNEL | GFP_DMA);
4012 if (!local_buf)
4013 return -ENOMEM;
4014 } else {
4015 local_buf = buf;
4016 }
4017
4018 spi_message_init(&message);
4019 memset(x, 0, sizeof(x));
4020 if (n_tx) {
4021 x[0].len = n_tx;
4022 spi_message_add_tail(&x[0], &message);
4023 }
4024 if (n_rx) {
4025 x[1].len = n_rx;
4026 spi_message_add_tail(&x[1], &message);
4027 }
4028
4029 memcpy(local_buf, txbuf, n_tx);
4030 x[0].tx_buf = local_buf;
4031 x[1].rx_buf = local_buf + n_tx;
4032
4033 /* do the i/o */
4034 status = spi_sync(spi, &message);
4035 if (status == 0)
4036 memcpy(rxbuf, x[1].rx_buf, n_rx);
4037
4038 if (x[0].tx_buf == buf)
4039 mutex_unlock(&lock);
4040 else
4041 kfree(local_buf);
4042
4043 return status;
4044 }
4045 EXPORT_SYMBOL_GPL(spi_write_then_read);
4046
4047 /*-------------------------------------------------------------------------*/
4048
4049 #if IS_ENABLED(CONFIG_OF)
4050 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4051 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4052 {
4053 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4054
4055 return dev ? to_spi_device(dev) : NULL;
4056 }
4057 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4058 #endif /* IS_ENABLED(CONFIG_OF) */
4059
4060 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4061 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4062 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4063 {
4064 struct device *dev;
4065
4066 dev = class_find_device_by_of_node(&spi_master_class, node);
4067 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4068 dev = class_find_device_by_of_node(&spi_slave_class, node);
4069 if (!dev)
4070 return NULL;
4071
4072 /* reference got in class_find_device */
4073 return container_of(dev, struct spi_controller, dev);
4074 }
4075
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4076 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4077 void *arg)
4078 {
4079 struct of_reconfig_data *rd = arg;
4080 struct spi_controller *ctlr;
4081 struct spi_device *spi;
4082
4083 switch (of_reconfig_get_state_change(action, arg)) {
4084 case OF_RECONFIG_CHANGE_ADD:
4085 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4086 if (ctlr == NULL)
4087 return NOTIFY_OK; /* not for us */
4088
4089 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4090 put_device(&ctlr->dev);
4091 return NOTIFY_OK;
4092 }
4093
4094 spi = of_register_spi_device(ctlr, rd->dn);
4095 put_device(&ctlr->dev);
4096
4097 if (IS_ERR(spi)) {
4098 pr_err("%s: failed to create for '%pOF'\n",
4099 __func__, rd->dn);
4100 of_node_clear_flag(rd->dn, OF_POPULATED);
4101 return notifier_from_errno(PTR_ERR(spi));
4102 }
4103 break;
4104
4105 case OF_RECONFIG_CHANGE_REMOVE:
4106 /* already depopulated? */
4107 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4108 return NOTIFY_OK;
4109
4110 /* find our device by node */
4111 spi = of_find_spi_device_by_node(rd->dn);
4112 if (spi == NULL)
4113 return NOTIFY_OK; /* no? not meant for us */
4114
4115 /* unregister takes one ref away */
4116 spi_unregister_device(spi);
4117
4118 /* and put the reference of the find */
4119 put_device(&spi->dev);
4120 break;
4121 }
4122
4123 return NOTIFY_OK;
4124 }
4125
4126 static struct notifier_block spi_of_notifier = {
4127 .notifier_call = of_spi_notify,
4128 };
4129 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4130 extern struct notifier_block spi_of_notifier;
4131 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4132
4133 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4134 static int spi_acpi_controller_match(struct device *dev, const void *data)
4135 {
4136 return ACPI_COMPANION(dev->parent) == data;
4137 }
4138
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4139 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4140 {
4141 struct device *dev;
4142
4143 dev = class_find_device(&spi_master_class, NULL, adev,
4144 spi_acpi_controller_match);
4145 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4146 dev = class_find_device(&spi_slave_class, NULL, adev,
4147 spi_acpi_controller_match);
4148 if (!dev)
4149 return NULL;
4150
4151 return container_of(dev, struct spi_controller, dev);
4152 }
4153
acpi_spi_find_device_by_adev(struct acpi_device * adev)4154 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4155 {
4156 struct device *dev;
4157
4158 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4159 return to_spi_device(dev);
4160 }
4161
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4162 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4163 void *arg)
4164 {
4165 struct acpi_device *adev = arg;
4166 struct spi_controller *ctlr;
4167 struct spi_device *spi;
4168
4169 switch (value) {
4170 case ACPI_RECONFIG_DEVICE_ADD:
4171 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4172 if (!ctlr)
4173 break;
4174
4175 acpi_register_spi_device(ctlr, adev);
4176 put_device(&ctlr->dev);
4177 break;
4178 case ACPI_RECONFIG_DEVICE_REMOVE:
4179 if (!acpi_device_enumerated(adev))
4180 break;
4181
4182 spi = acpi_spi_find_device_by_adev(adev);
4183 if (!spi)
4184 break;
4185
4186 spi_unregister_device(spi);
4187 put_device(&spi->dev);
4188 break;
4189 }
4190
4191 return NOTIFY_OK;
4192 }
4193
4194 static struct notifier_block spi_acpi_notifier = {
4195 .notifier_call = acpi_spi_notify,
4196 };
4197 #else
4198 extern struct notifier_block spi_acpi_notifier;
4199 #endif
4200
spi_init(void)4201 static int __init spi_init(void)
4202 {
4203 int status;
4204
4205 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4206 if (!buf) {
4207 status = -ENOMEM;
4208 goto err0;
4209 }
4210
4211 status = bus_register(&spi_bus_type);
4212 if (status < 0)
4213 goto err1;
4214
4215 status = class_register(&spi_master_class);
4216 if (status < 0)
4217 goto err2;
4218
4219 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4220 status = class_register(&spi_slave_class);
4221 if (status < 0)
4222 goto err3;
4223 }
4224
4225 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4226 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4227 if (IS_ENABLED(CONFIG_ACPI))
4228 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4229
4230 return 0;
4231
4232 err3:
4233 class_unregister(&spi_master_class);
4234 err2:
4235 bus_unregister(&spi_bus_type);
4236 err1:
4237 kfree(buf);
4238 buf = NULL;
4239 err0:
4240 return status;
4241 }
4242
4243 /* board_info is normally registered in arch_initcall(),
4244 * but even essential drivers wait till later
4245 *
4246 * REVISIT only boardinfo really needs static linking. the rest (device and
4247 * driver registration) _could_ be dynamically linked (modular) ... costs
4248 * include needing to have boardinfo data structures be much more public.
4249 */
4250 postcore_initcall(spi_init);
4251