1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2016 Broadcom
4 */
5
6 /*
7 * This file works with the SPU2 version of the SPU. SPU2 has different message
8 * formats than the previous version of the SPU. All SPU message format
9 * differences should be hidden in the spux.c,h files.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14
15 #include "util.h"
16 #include "spu.h"
17 #include "spu2.h"
18
19 #define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */
20
21 /*
22 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
23 * register. Defaults to 2.
24 */
25 #define SPU2_RX_STATUS_LEN 2
26
27 enum spu2_proto_sel {
28 SPU2_PROTO_RESV = 0,
29 SPU2_MACSEC_SECTAG8_ECB = 1,
30 SPU2_MACSEC_SECTAG8_SCB = 2,
31 SPU2_MACSEC_SECTAG16 = 3,
32 SPU2_MACSEC_SECTAG16_8_XPN = 4,
33 SPU2_IPSEC = 5,
34 SPU2_IPSEC_ESN = 6,
35 SPU2_TLS_CIPHER = 7,
36 SPU2_TLS_AEAD = 8,
37 SPU2_DTLS_CIPHER = 9,
38 SPU2_DTLS_AEAD = 10
39 };
40
41 static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
42 "DES", "3DES"
43 };
44
45 static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
46 "XTS", "CCM", "GCM"
47 };
48
49 static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
50 "Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
51 "SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
52 "SHA3-384", "SHA3-512"
53 };
54
55 static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
56 "Rabin", "CCM", "GCM", "Reserved"
57 };
58
spu2_ciph_type_name(enum spu2_cipher_type cipher_type)59 static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
60 {
61 if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
62 return "Reserved";
63 return spu2_cipher_type_names[cipher_type];
64 }
65
spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)66 static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
67 {
68 if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
69 return "Reserved";
70 return spu2_cipher_mode_names[cipher_mode];
71 }
72
spu2_hash_type_name(enum spu2_hash_type hash_type)73 static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
74 {
75 if (hash_type >= SPU2_HASH_TYPE_LAST)
76 return "Reserved";
77 return spu2_hash_type_names[hash_type];
78 }
79
spu2_hash_mode_name(enum spu2_hash_mode hash_mode)80 static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
81 {
82 if (hash_mode >= SPU2_HASH_MODE_LAST)
83 return "Reserved";
84 return spu2_hash_mode_names[hash_mode];
85 }
86
87 /*
88 * Convert from a software cipher mode value to the corresponding value
89 * for SPU2.
90 */
spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,enum spu2_cipher_mode * spu2_mode)91 static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
92 enum spu2_cipher_mode *spu2_mode)
93 {
94 switch (cipher_mode) {
95 case CIPHER_MODE_ECB:
96 *spu2_mode = SPU2_CIPHER_MODE_ECB;
97 break;
98 case CIPHER_MODE_CBC:
99 *spu2_mode = SPU2_CIPHER_MODE_CBC;
100 break;
101 case CIPHER_MODE_OFB:
102 *spu2_mode = SPU2_CIPHER_MODE_OFB;
103 break;
104 case CIPHER_MODE_CFB:
105 *spu2_mode = SPU2_CIPHER_MODE_CFB;
106 break;
107 case CIPHER_MODE_CTR:
108 *spu2_mode = SPU2_CIPHER_MODE_CTR;
109 break;
110 case CIPHER_MODE_CCM:
111 *spu2_mode = SPU2_CIPHER_MODE_CCM;
112 break;
113 case CIPHER_MODE_GCM:
114 *spu2_mode = SPU2_CIPHER_MODE_GCM;
115 break;
116 case CIPHER_MODE_XTS:
117 *spu2_mode = SPU2_CIPHER_MODE_XTS;
118 break;
119 default:
120 return -EINVAL;
121 }
122 return 0;
123 }
124
125 /**
126 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
127 * cipher type and mode.
128 * @cipher_alg: [in] cipher algorithm value from software enumeration
129 * @cipher_mode: [in] cipher mode value from software enumeration
130 * @cipher_type: [in] cipher type value from software enumeration
131 * @spu2_type: [out] cipher type value used by spu2 hardware
132 * @spu2_mode: [out] cipher mode value used by spu2 hardware
133 *
134 * Return: 0 if successful
135 */
spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,enum spu_cipher_mode cipher_mode,enum spu_cipher_type cipher_type,enum spu2_cipher_type * spu2_type,enum spu2_cipher_mode * spu2_mode)136 static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
137 enum spu_cipher_mode cipher_mode,
138 enum spu_cipher_type cipher_type,
139 enum spu2_cipher_type *spu2_type,
140 enum spu2_cipher_mode *spu2_mode)
141 {
142 int err;
143
144 err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
145 if (err) {
146 flow_log("Invalid cipher mode %d\n", cipher_mode);
147 return err;
148 }
149
150 switch (cipher_alg) {
151 case CIPHER_ALG_NONE:
152 *spu2_type = SPU2_CIPHER_TYPE_NONE;
153 break;
154 case CIPHER_ALG_RC4:
155 /* SPU2 does not support RC4 */
156 err = -EINVAL;
157 *spu2_type = SPU2_CIPHER_TYPE_NONE;
158 break;
159 case CIPHER_ALG_DES:
160 *spu2_type = SPU2_CIPHER_TYPE_DES;
161 break;
162 case CIPHER_ALG_3DES:
163 *spu2_type = SPU2_CIPHER_TYPE_3DES;
164 break;
165 case CIPHER_ALG_AES:
166 switch (cipher_type) {
167 case CIPHER_TYPE_AES128:
168 *spu2_type = SPU2_CIPHER_TYPE_AES128;
169 break;
170 case CIPHER_TYPE_AES192:
171 *spu2_type = SPU2_CIPHER_TYPE_AES192;
172 break;
173 case CIPHER_TYPE_AES256:
174 *spu2_type = SPU2_CIPHER_TYPE_AES256;
175 break;
176 default:
177 err = -EINVAL;
178 }
179 break;
180 case CIPHER_ALG_LAST:
181 default:
182 err = -EINVAL;
183 break;
184 }
185
186 if (err)
187 flow_log("Invalid cipher alg %d or type %d\n",
188 cipher_alg, cipher_type);
189 return err;
190 }
191
192 /*
193 * Convert from a software hash mode value to the corresponding value
194 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
195 */
spu2_hash_mode_xlate(enum hash_mode hash_mode,enum spu2_hash_mode * spu2_mode)196 static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
197 enum spu2_hash_mode *spu2_mode)
198 {
199 switch (hash_mode) {
200 case HASH_MODE_XCBC:
201 *spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
202 break;
203 case HASH_MODE_CMAC:
204 *spu2_mode = SPU2_HASH_MODE_CMAC;
205 break;
206 case HASH_MODE_HMAC:
207 *spu2_mode = SPU2_HASH_MODE_HMAC;
208 break;
209 case HASH_MODE_CCM:
210 *spu2_mode = SPU2_HASH_MODE_CCM;
211 break;
212 case HASH_MODE_GCM:
213 *spu2_mode = SPU2_HASH_MODE_GCM;
214 break;
215 default:
216 return -EINVAL;
217 }
218 return 0;
219 }
220
221 /**
222 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
223 * and mode.
224 * @hash_alg: [in] hash algorithm value from software enumeration
225 * @hash_mode: [in] hash mode value from software enumeration
226 * @hash_type: [in] hash type value from software enumeration
227 * @ciph_type: [in] cipher type value from software enumeration
228 * @spu2_type: [out] hash type value used by SPU2 hardware
229 * @spu2_mode: [out] hash mode value used by SPU2 hardware
230 *
231 * Return: 0 if successful
232 */
233 static int
spu2_hash_xlate(enum hash_alg hash_alg,enum hash_mode hash_mode,enum hash_type hash_type,enum spu_cipher_type ciph_type,enum spu2_hash_type * spu2_type,enum spu2_hash_mode * spu2_mode)234 spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
235 enum hash_type hash_type, enum spu_cipher_type ciph_type,
236 enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
237 {
238 int err;
239
240 err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
241 if (err) {
242 flow_log("Invalid hash mode %d\n", hash_mode);
243 return err;
244 }
245
246 switch (hash_alg) {
247 case HASH_ALG_NONE:
248 *spu2_type = SPU2_HASH_TYPE_NONE;
249 break;
250 case HASH_ALG_MD5:
251 *spu2_type = SPU2_HASH_TYPE_MD5;
252 break;
253 case HASH_ALG_SHA1:
254 *spu2_type = SPU2_HASH_TYPE_SHA1;
255 break;
256 case HASH_ALG_SHA224:
257 *spu2_type = SPU2_HASH_TYPE_SHA224;
258 break;
259 case HASH_ALG_SHA256:
260 *spu2_type = SPU2_HASH_TYPE_SHA256;
261 break;
262 case HASH_ALG_SHA384:
263 *spu2_type = SPU2_HASH_TYPE_SHA384;
264 break;
265 case HASH_ALG_SHA512:
266 *spu2_type = SPU2_HASH_TYPE_SHA512;
267 break;
268 case HASH_ALG_AES:
269 switch (ciph_type) {
270 case CIPHER_TYPE_AES128:
271 *spu2_type = SPU2_HASH_TYPE_AES128;
272 break;
273 case CIPHER_TYPE_AES192:
274 *spu2_type = SPU2_HASH_TYPE_AES192;
275 break;
276 case CIPHER_TYPE_AES256:
277 *spu2_type = SPU2_HASH_TYPE_AES256;
278 break;
279 default:
280 err = -EINVAL;
281 }
282 break;
283 case HASH_ALG_SHA3_224:
284 *spu2_type = SPU2_HASH_TYPE_SHA3_224;
285 break;
286 case HASH_ALG_SHA3_256:
287 *spu2_type = SPU2_HASH_TYPE_SHA3_256;
288 break;
289 case HASH_ALG_SHA3_384:
290 *spu2_type = SPU2_HASH_TYPE_SHA3_384;
291 break;
292 case HASH_ALG_SHA3_512:
293 *spu2_type = SPU2_HASH_TYPE_SHA3_512;
294 break;
295 case HASH_ALG_LAST:
296 default:
297 err = -EINVAL;
298 break;
299 }
300
301 if (err)
302 flow_log("Invalid hash alg %d or type %d\n",
303 hash_alg, hash_type);
304 return err;
305 }
306
307 /* Dump FMD ctrl0. The ctrl0 input is in host byte order */
spu2_dump_fmd_ctrl0(u64 ctrl0)308 static void spu2_dump_fmd_ctrl0(u64 ctrl0)
309 {
310 enum spu2_cipher_type ciph_type;
311 enum spu2_cipher_mode ciph_mode;
312 enum spu2_hash_type hash_type;
313 enum spu2_hash_mode hash_mode;
314 char *ciph_name;
315 char *ciph_mode_name;
316 char *hash_name;
317 char *hash_mode_name;
318 u8 cfb;
319 u8 proto;
320
321 packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
322 if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
323 packet_log(" encrypt\n");
324 else
325 packet_log(" decrypt\n");
326
327 ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
328 ciph_name = spu2_ciph_type_name(ciph_type);
329 packet_log(" Cipher type: %s\n", ciph_name);
330
331 if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
332 ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
333 ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
334 packet_log(" Cipher mode: %s\n", ciph_mode_name);
335 }
336
337 cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
338 packet_log(" CFB %#x\n", cfb);
339
340 proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
341 packet_log(" protocol %#x\n", proto);
342
343 if (ctrl0 & SPU2_HASH_FIRST)
344 packet_log(" hash first\n");
345 else
346 packet_log(" cipher first\n");
347
348 if (ctrl0 & SPU2_CHK_TAG)
349 packet_log(" check tag\n");
350
351 hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
352 hash_name = spu2_hash_type_name(hash_type);
353 packet_log(" Hash type: %s\n", hash_name);
354
355 if (hash_type != SPU2_HASH_TYPE_NONE) {
356 hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
357 hash_mode_name = spu2_hash_mode_name(hash_mode);
358 packet_log(" Hash mode: %s\n", hash_mode_name);
359 }
360
361 if (ctrl0 & SPU2_CIPH_PAD_EN) {
362 packet_log(" Cipher pad: %#2llx\n",
363 (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
364 }
365 }
366
367 /* Dump FMD ctrl1. The ctrl1 input is in host byte order */
spu2_dump_fmd_ctrl1(u64 ctrl1)368 static void spu2_dump_fmd_ctrl1(u64 ctrl1)
369 {
370 u8 hash_key_len;
371 u8 ciph_key_len;
372 u8 ret_iv_len;
373 u8 iv_offset;
374 u8 iv_len;
375 u8 hash_tag_len;
376 u8 ret_md;
377
378 packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
379 if (ctrl1 & SPU2_TAG_LOC)
380 packet_log(" Tag after payload\n");
381
382 packet_log(" Msg includes ");
383 if (ctrl1 & SPU2_HAS_FR_DATA)
384 packet_log("FD ");
385 if (ctrl1 & SPU2_HAS_AAD1)
386 packet_log("AAD1 ");
387 if (ctrl1 & SPU2_HAS_NAAD)
388 packet_log("NAAD ");
389 if (ctrl1 & SPU2_HAS_AAD2)
390 packet_log("AAD2 ");
391 if (ctrl1 & SPU2_HAS_ESN)
392 packet_log("ESN ");
393 packet_log("\n");
394
395 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
396 packet_log(" Hash key len %u\n", hash_key_len);
397
398 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
399 packet_log(" Cipher key len %u\n", ciph_key_len);
400
401 if (ctrl1 & SPU2_GENIV)
402 packet_log(" Generate IV\n");
403
404 if (ctrl1 & SPU2_HASH_IV)
405 packet_log(" IV included in hash\n");
406
407 if (ctrl1 & SPU2_RET_IV)
408 packet_log(" Return IV in output before payload\n");
409
410 ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
411 packet_log(" Length of returned IV %u bytes\n",
412 ret_iv_len ? ret_iv_len : 16);
413
414 iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
415 packet_log(" IV offset %u\n", iv_offset);
416
417 iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
418 packet_log(" Input IV len %u bytes\n", iv_len);
419
420 hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
421 packet_log(" Hash tag length %u bytes\n", hash_tag_len);
422
423 packet_log(" Return ");
424 ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
425 if (ret_md)
426 packet_log("FMD ");
427 if (ret_md == SPU2_RET_FMD_OMD)
428 packet_log("OMD ");
429 else if (ret_md == SPU2_RET_FMD_OMD_IV)
430 packet_log("OMD IV ");
431 if (ctrl1 & SPU2_RETURN_FD)
432 packet_log("FD ");
433 if (ctrl1 & SPU2_RETURN_AAD1)
434 packet_log("AAD1 ");
435 if (ctrl1 & SPU2_RETURN_NAAD)
436 packet_log("NAAD ");
437 if (ctrl1 & SPU2_RETURN_AAD2)
438 packet_log("AAD2 ");
439 if (ctrl1 & SPU2_RETURN_PAY)
440 packet_log("Payload");
441 packet_log("\n");
442 }
443
444 /* Dump FMD ctrl2. The ctrl2 input is in host byte order */
spu2_dump_fmd_ctrl2(u64 ctrl2)445 static void spu2_dump_fmd_ctrl2(u64 ctrl2)
446 {
447 packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
448
449 packet_log(" AAD1 offset %llu length %llu bytes\n",
450 ctrl2 & SPU2_AAD1_OFFSET,
451 (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
452 packet_log(" AAD2 offset %llu\n",
453 (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
454 packet_log(" Payload offset %llu\n",
455 (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
456 }
457
458 /* Dump FMD ctrl3. The ctrl3 input is in host byte order */
spu2_dump_fmd_ctrl3(u64 ctrl3)459 static void spu2_dump_fmd_ctrl3(u64 ctrl3)
460 {
461 packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
462
463 packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
464 packet_log(" TLS length %llu bytes\n",
465 (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
466 }
467
spu2_dump_fmd(struct SPU2_FMD * fmd)468 static void spu2_dump_fmd(struct SPU2_FMD *fmd)
469 {
470 spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
471 spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
472 spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
473 spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
474 }
475
spu2_dump_omd(u8 * omd,u16 hash_key_len,u16 ciph_key_len,u16 hash_iv_len,u16 ciph_iv_len)476 static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
477 u16 hash_iv_len, u16 ciph_iv_len)
478 {
479 u8 *ptr = omd;
480
481 packet_log(" OMD:\n");
482
483 if (hash_key_len) {
484 packet_log(" Hash Key Length %u bytes\n", hash_key_len);
485 packet_dump(" KEY: ", ptr, hash_key_len);
486 ptr += hash_key_len;
487 }
488
489 if (ciph_key_len) {
490 packet_log(" Cipher Key Length %u bytes\n", ciph_key_len);
491 packet_dump(" KEY: ", ptr, ciph_key_len);
492 ptr += ciph_key_len;
493 }
494
495 if (hash_iv_len) {
496 packet_log(" Hash IV Length %u bytes\n", hash_iv_len);
497 packet_dump(" hash IV: ", ptr, hash_iv_len);
498 ptr += ciph_key_len;
499 }
500
501 if (ciph_iv_len) {
502 packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len);
503 packet_dump(" cipher IV: ", ptr, ciph_iv_len);
504 }
505 }
506
507 /* Dump a SPU2 header for debug */
spu2_dump_msg_hdr(u8 * buf,unsigned int buf_len)508 void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
509 {
510 struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
511 u8 *omd;
512 u64 ctrl1;
513 u16 hash_key_len;
514 u16 ciph_key_len;
515 u16 hash_iv_len;
516 u16 ciph_iv_len;
517 u16 omd_len;
518
519 packet_log("\n");
520 packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
521
522 spu2_dump_fmd(fmd);
523 omd = (u8 *)(fmd + 1);
524
525 ctrl1 = le64_to_cpu(fmd->ctrl1);
526 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
527 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
528 hash_iv_len = 0;
529 ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
530 spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
531 ciph_iv_len);
532
533 /* Double check sanity */
534 omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
535 if (FMD_SIZE + omd_len != buf_len) {
536 packet_log
537 (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
538 buf_len, FMD_SIZE + omd_len);
539 }
540 packet_log("\n");
541 }
542
543 /**
544 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
545 * subsequent skcipher requests for this context.
546 * @spu2_cipher_type: Cipher algorithm
547 * @spu2_mode: Cipher mode
548 * @cipher_key_len: Length of cipher key, in bytes
549 * @cipher_iv_len: Length of cipher initialization vector, in bytes
550 *
551 * Return: 0 (success)
552 */
spu2_fmd_init(struct SPU2_FMD * fmd,enum spu2_cipher_type spu2_type,enum spu2_cipher_mode spu2_mode,u32 cipher_key_len,u32 cipher_iv_len)553 static int spu2_fmd_init(struct SPU2_FMD *fmd,
554 enum spu2_cipher_type spu2_type,
555 enum spu2_cipher_mode spu2_mode,
556 u32 cipher_key_len, u32 cipher_iv_len)
557 {
558 u64 ctrl0;
559 u64 ctrl1;
560 u64 ctrl2;
561 u64 ctrl3;
562 u32 aad1_offset;
563 u32 aad2_offset;
564 u16 aad1_len = 0;
565 u64 payload_offset;
566
567 ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
568 (spu2_mode << SPU2_CIPH_MODE_SHIFT);
569
570 ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
571 ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
572 ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
573
574 /*
575 * AAD1 offset is from start of FD. FD length is always 0 for this
576 * driver. So AAD1_offset is always 0.
577 */
578 aad1_offset = 0;
579 aad2_offset = aad1_offset;
580 payload_offset = 0;
581 ctrl2 = aad1_offset |
582 (aad1_len << SPU2_AAD1_LEN_SHIFT) |
583 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
584 (payload_offset << SPU2_PL_OFFSET_SHIFT);
585
586 ctrl3 = 0;
587
588 fmd->ctrl0 = cpu_to_le64(ctrl0);
589 fmd->ctrl1 = cpu_to_le64(ctrl1);
590 fmd->ctrl2 = cpu_to_le64(ctrl2);
591 fmd->ctrl3 = cpu_to_le64(ctrl3);
592
593 return 0;
594 }
595
596 /**
597 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
598 * SPU request packet.
599 * @fmd: Start of FMD field to be written
600 * @is_inbound: true if decrypting. false if encrypting.
601 * @authFirst: true if alg authenticates before encrypting
602 * @protocol: protocol selector
603 * @cipher_type: cipher algorithm
604 * @cipher_mode: cipher mode
605 * @auth_type: authentication type
606 * @auth_mode: authentication mode
607 */
spu2_fmd_ctrl0_write(struct SPU2_FMD * fmd,bool is_inbound,bool auth_first,enum spu2_proto_sel protocol,enum spu2_cipher_type cipher_type,enum spu2_cipher_mode cipher_mode,enum spu2_hash_type auth_type,enum spu2_hash_mode auth_mode)608 static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
609 bool is_inbound, bool auth_first,
610 enum spu2_proto_sel protocol,
611 enum spu2_cipher_type cipher_type,
612 enum spu2_cipher_mode cipher_mode,
613 enum spu2_hash_type auth_type,
614 enum spu2_hash_mode auth_mode)
615 {
616 u64 ctrl0 = 0;
617
618 if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
619 ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
620
621 ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
622 ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
623
624 if (protocol)
625 ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
626
627 if (auth_first)
628 ctrl0 |= SPU2_HASH_FIRST;
629
630 if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
631 ctrl0 |= SPU2_CHK_TAG;
632
633 ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
634 ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
635
636 fmd->ctrl0 = cpu_to_le64(ctrl0);
637 }
638
639 /**
640 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
641 * SPU request packet.
642 * @fmd: Start of FMD field to be written
643 * @assoc_size: Length of additional associated data, in bytes
644 * @auth_key_len: Length of authentication key, in bytes
645 * @cipher_key_len: Length of cipher key, in bytes
646 * @gen_iv: If true, hw generates IV and returns in response
647 * @hash_iv: IV participates in hash. Used for IPSEC and TLS.
648 * @return_iv: Return IV in output packet before payload
649 * @ret_iv_len: Length of IV returned from SPU, in bytes
650 * @ret_iv_offset: Offset into full IV of start of returned IV
651 * @cipher_iv_len: Length of input cipher IV, in bytes
652 * @digest_size: Length of digest (aka, hash tag or ICV), in bytes
653 * @return_payload: Return payload in SPU response
654 * @return_md : return metadata in SPU response
655 *
656 * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
657 * associated data goes in AAD2.
658 */
spu2_fmd_ctrl1_write(struct SPU2_FMD * fmd,bool is_inbound,u64 assoc_size,u64 auth_key_len,u64 cipher_key_len,bool gen_iv,bool hash_iv,bool return_iv,u64 ret_iv_len,u64 ret_iv_offset,u64 cipher_iv_len,u64 digest_size,bool return_payload,bool return_md)659 static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
660 u64 assoc_size,
661 u64 auth_key_len, u64 cipher_key_len,
662 bool gen_iv, bool hash_iv, bool return_iv,
663 u64 ret_iv_len, u64 ret_iv_offset,
664 u64 cipher_iv_len, u64 digest_size,
665 bool return_payload, bool return_md)
666 {
667 u64 ctrl1 = 0;
668
669 if (is_inbound && digest_size)
670 ctrl1 |= SPU2_TAG_LOC;
671
672 if (assoc_size) {
673 ctrl1 |= SPU2_HAS_AAD2;
674 ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */
675 }
676
677 if (auth_key_len)
678 ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
679 SPU2_HASH_KEY_LEN);
680
681 if (cipher_key_len)
682 ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
683 SPU2_CIPH_KEY_LEN);
684
685 if (gen_iv)
686 ctrl1 |= SPU2_GENIV;
687
688 if (hash_iv)
689 ctrl1 |= SPU2_HASH_IV;
690
691 if (return_iv) {
692 ctrl1 |= SPU2_RET_IV;
693 ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
694 ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
695 }
696
697 ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
698
699 if (digest_size)
700 ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
701 SPU2_HASH_TAG_LEN);
702
703 /* Let's ask for the output pkt to include FMD, but don't need to
704 * get keys and IVs back in OMD.
705 */
706 if (return_md)
707 ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
708 else
709 ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
710
711 /* Crypto API does not get assoc data back. So no need for AAD2. */
712
713 if (return_payload)
714 ctrl1 |= SPU2_RETURN_PAY;
715
716 fmd->ctrl1 = cpu_to_le64(ctrl1);
717 }
718
719 /**
720 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
721 * SPU2 header.
722 * @fmd: Start of FMD field to be written
723 * @cipher_offset: Number of bytes from Start of Packet (end of FD field) where
724 * data to be encrypted or decrypted begins
725 * @auth_key_len: Length of authentication key, in bytes
726 * @auth_iv_len: Length of authentication initialization vector, in bytes
727 * @cipher_key_len: Length of cipher key, in bytes
728 * @cipher_iv_len: Length of cipher IV, in bytes
729 */
spu2_fmd_ctrl2_write(struct SPU2_FMD * fmd,u64 cipher_offset,u64 auth_key_len,u64 auth_iv_len,u64 cipher_key_len,u64 cipher_iv_len)730 static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
731 u64 auth_key_len, u64 auth_iv_len,
732 u64 cipher_key_len, u64 cipher_iv_len)
733 {
734 u64 ctrl2;
735 u64 aad1_offset;
736 u64 aad2_offset;
737 u16 aad1_len = 0;
738 u64 payload_offset;
739
740 /* AAD1 offset is from start of FD. FD length always 0. */
741 aad1_offset = 0;
742
743 aad2_offset = aad1_offset;
744 payload_offset = cipher_offset;
745 ctrl2 = aad1_offset |
746 (aad1_len << SPU2_AAD1_LEN_SHIFT) |
747 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
748 (payload_offset << SPU2_PL_OFFSET_SHIFT);
749
750 fmd->ctrl2 = cpu_to_le64(ctrl2);
751 }
752
753 /**
754 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
755 * @fmd: Fixed meta data. First field in SPU2 msg header.
756 * @payload_len: Length of payload, in bytes
757 */
spu2_fmd_ctrl3_write(struct SPU2_FMD * fmd,u64 payload_len)758 static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
759 {
760 u64 ctrl3;
761
762 ctrl3 = payload_len & SPU2_PL_LEN;
763
764 fmd->ctrl3 = cpu_to_le64(ctrl3);
765 }
766
767 /**
768 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
769 * SPU message for a given cipher and hash alg context.
770 * @cipher_alg: The cipher algorithm
771 * @cipher_mode: The cipher mode
772 * @blocksize: The size of a block of data for this algo
773 *
774 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
775 * FMD and just keeps computing until it receives a DMA descriptor with the EOF
776 * flag set. So we consider the max payload to be infinite. AES CCM is an
777 * exception.
778 *
779 * Return: Max payload length in bytes
780 */
spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,enum spu_cipher_mode cipher_mode,unsigned int blocksize)781 u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
782 enum spu_cipher_mode cipher_mode,
783 unsigned int blocksize)
784 {
785 if ((cipher_alg == CIPHER_ALG_AES) &&
786 (cipher_mode == CIPHER_MODE_CCM)) {
787 u32 excess = SPU2_MAX_PAYLOAD % blocksize;
788
789 return SPU2_MAX_PAYLOAD - excess;
790 } else {
791 return SPU_MAX_PAYLOAD_INF;
792 }
793 }
794
795 /**
796 * spu_payload_length() - Given a SPU2 message header, extract the payload
797 * length.
798 * @spu_hdr: Start of SPU message header (FMD)
799 *
800 * Return: payload length, in bytes
801 */
spu2_payload_length(u8 * spu_hdr)802 u32 spu2_payload_length(u8 *spu_hdr)
803 {
804 struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
805 u32 pl_len;
806 u64 ctrl3;
807
808 ctrl3 = le64_to_cpu(fmd->ctrl3);
809 pl_len = ctrl3 & SPU2_PL_LEN;
810
811 return pl_len;
812 }
813
814 /**
815 * spu_response_hdr_len() - Determine the expected length of a SPU response
816 * header.
817 * @auth_key_len: Length of authentication key, in bytes
818 * @enc_key_len: Length of encryption key, in bytes
819 *
820 * For SPU2, includes just FMD. OMD is never requested.
821 *
822 * Return: Length of FMD, in bytes
823 */
spu2_response_hdr_len(u16 auth_key_len,u16 enc_key_len,bool is_hash)824 u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
825 {
826 return FMD_SIZE;
827 }
828
829 /**
830 * spu_hash_pad_len() - Calculate the length of hash padding required to extend
831 * data to a full block size.
832 * @hash_alg: hash algorithm
833 * @hash_mode: hash mode
834 * @chunksize: length of data, in bytes
835 * @hash_block_size: size of a hash block, in bytes
836 *
837 * SPU2 hardware does all hash padding
838 *
839 * Return: length of hash pad in bytes
840 */
spu2_hash_pad_len(enum hash_alg hash_alg,enum hash_mode hash_mode,u32 chunksize,u16 hash_block_size)841 u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
842 u32 chunksize, u16 hash_block_size)
843 {
844 return 0;
845 }
846
847 /**
848 * spu2_gcm_ccm_padlen() - Determine the length of GCM/CCM padding for either
849 * the AAD field or the data.
850 *
851 * Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
852 */
spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,unsigned int data_size)853 u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
854 unsigned int data_size)
855 {
856 return 0;
857 }
858
859 /**
860 * spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
861 * associated data in a SPU2 output packet.
862 * @cipher_mode: cipher mode
863 * @assoc_len: length of additional associated data, in bytes
864 * @iv_len: length of initialization vector, in bytes
865 * @is_encrypt: true if encrypting. false if decrypt.
866 *
867 * Return: Length of buffer to catch associated data in response
868 */
spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,unsigned int assoc_len,unsigned int iv_len,bool is_encrypt)869 u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
870 unsigned int assoc_len, unsigned int iv_len,
871 bool is_encrypt)
872 {
873 u32 resp_len = assoc_len;
874
875 if (is_encrypt)
876 /* gcm aes esp has to write 8-byte IV in response */
877 resp_len += iv_len;
878 return resp_len;
879 }
880
881 /*
882 * spu_aead_ivlen() - Calculate the length of the AEAD IV to be included
883 * in a SPU request after the AAD and before the payload.
884 * @cipher_mode: cipher mode
885 * @iv_ctr_len: initialization vector length in bytes
886 *
887 * For SPU2, AEAD IV is included in OMD and does not need to be repeated
888 * prior to the payload.
889 *
890 * Return: Length of AEAD IV in bytes
891 */
spu2_aead_ivlen(enum spu_cipher_mode cipher_mode,u16 iv_len)892 u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
893 {
894 return 0;
895 }
896
897 /**
898 * spu2_hash_type() - Determine the type of hash operation.
899 * @src_sent: The number of bytes in the current request that have already
900 * been sent to the SPU to be hashed.
901 *
902 * SPU2 always does a FULL hash operation
903 */
spu2_hash_type(u32 src_sent)904 enum hash_type spu2_hash_type(u32 src_sent)
905 {
906 return HASH_TYPE_FULL;
907 }
908
909 /**
910 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
911 * return.
912 * alg_digest_size: Number of bytes in the final digest for the given algo
913 * alg: The hash algorithm
914 * htype: Type of hash operation (init, update, full, etc)
915 *
916 */
spu2_digest_size(u32 alg_digest_size,enum hash_alg alg,enum hash_type htype)917 u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
918 enum hash_type htype)
919 {
920 return alg_digest_size;
921 }
922
923 /**
924 * spu_create_request() - Build a SPU2 request message header, includint FMD and
925 * OMD.
926 * @spu_hdr: Start of buffer where SPU request header is to be written
927 * @req_opts: SPU request message options
928 * @cipher_parms: Parameters related to cipher algorithm
929 * @hash_parms: Parameters related to hash algorithm
930 * @aead_parms: Parameters related to AEAD operation
931 * @data_size: Length of data to be encrypted or authenticated. If AEAD, does
932 * not include length of AAD.
933 *
934 * Construct the message starting at spu_hdr. Caller should allocate this buffer
935 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
936 *
937 * Return: the length of the SPU header in bytes. 0 if an error occurs.
938 */
spu2_create_request(u8 * spu_hdr,struct spu_request_opts * req_opts,struct spu_cipher_parms * cipher_parms,struct spu_hash_parms * hash_parms,struct spu_aead_parms * aead_parms,unsigned int data_size)939 u32 spu2_create_request(u8 *spu_hdr,
940 struct spu_request_opts *req_opts,
941 struct spu_cipher_parms *cipher_parms,
942 struct spu_hash_parms *hash_parms,
943 struct spu_aead_parms *aead_parms,
944 unsigned int data_size)
945 {
946 struct SPU2_FMD *fmd;
947 u8 *ptr;
948 unsigned int buf_len;
949 int err;
950 enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
951 enum spu2_cipher_mode spu2_ciph_mode;
952 enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
953 enum spu2_hash_mode spu2_auth_mode;
954 bool return_md = true;
955 enum spu2_proto_sel proto = SPU2_PROTO_RESV;
956
957 /* size of the payload */
958 unsigned int payload_len =
959 hash_parms->prebuf_len + data_size + hash_parms->pad_len -
960 ((req_opts->is_aead && req_opts->is_inbound) ?
961 hash_parms->digestsize : 0);
962
963 /* offset of prebuf or data from start of AAD2 */
964 unsigned int cipher_offset = aead_parms->assoc_size +
965 aead_parms->aad_pad_len + aead_parms->iv_len;
966
967 #ifdef DEBUG
968 /* total size of the data following OMD (without STAT word padding) */
969 unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
970 aead_parms->iv_len,
971 hash_parms->prebuf_len,
972 data_size,
973 aead_parms->aad_pad_len,
974 aead_parms->data_pad_len,
975 hash_parms->pad_len);
976 #endif
977 unsigned int assoc_size = aead_parms->assoc_size;
978
979 if (req_opts->is_aead &&
980 (cipher_parms->alg == CIPHER_ALG_AES) &&
981 (cipher_parms->mode == CIPHER_MODE_GCM))
982 /*
983 * On SPU 2, aes gcm cipher first on encrypt, auth first on
984 * decrypt
985 */
986 req_opts->auth_first = req_opts->is_inbound;
987
988 /* and do opposite for ccm (auth 1st on encrypt) */
989 if (req_opts->is_aead &&
990 (cipher_parms->alg == CIPHER_ALG_AES) &&
991 (cipher_parms->mode == CIPHER_MODE_CCM))
992 req_opts->auth_first = !req_opts->is_inbound;
993
994 flow_log("%s()\n", __func__);
995 flow_log(" in:%u authFirst:%u\n",
996 req_opts->is_inbound, req_opts->auth_first);
997 flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
998 cipher_parms->mode, cipher_parms->type);
999 flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
1000 flow_log(" key: %d\n", cipher_parms->key_len);
1001 flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
1002 flow_log(" iv: %d\n", cipher_parms->iv_len);
1003 flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1004 flow_log(" auth alg:%u mode:%u type %u\n",
1005 hash_parms->alg, hash_parms->mode, hash_parms->type);
1006 flow_log(" digestsize: %u\n", hash_parms->digestsize);
1007 flow_log(" authkey: %d\n", hash_parms->key_len);
1008 flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len);
1009 flow_log(" assoc_size:%u\n", assoc_size);
1010 flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len);
1011 flow_log(" data_size:%u\n", data_size);
1012 flow_log(" hash_pad_len:%u\n", hash_parms->pad_len);
1013 flow_log(" real_db_size:%u\n", real_db_size);
1014 flow_log(" cipher_offset:%u payload_len:%u\n",
1015 cipher_offset, payload_len);
1016 flow_log(" aead_iv: %u\n", aead_parms->iv_len);
1017
1018 /* Convert to spu2 values for cipher alg, hash alg */
1019 err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1020 cipher_parms->type,
1021 &spu2_ciph_type, &spu2_ciph_mode);
1022
1023 /* If we are doing GCM hashing only - either via rfc4543 transform
1024 * or because we happen to do GCM with AAD only and no payload - we
1025 * need to configure hardware to use hash key rather than cipher key
1026 * and put data into payload. This is because unlike SPU-M, running
1027 * GCM cipher with 0 size payload is not permitted.
1028 */
1029 if ((req_opts->is_rfc4543) ||
1030 ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
1031 (payload_len == 0))) {
1032 /* Use hashing (only) and set up hash key */
1033 spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
1034 hash_parms->key_len = cipher_parms->key_len;
1035 memcpy(hash_parms->key_buf, cipher_parms->key_buf,
1036 cipher_parms->key_len);
1037 cipher_parms->key_len = 0;
1038
1039 if (req_opts->is_rfc4543)
1040 payload_len += assoc_size;
1041 else
1042 payload_len = assoc_size;
1043 cipher_offset = 0;
1044 assoc_size = 0;
1045 }
1046
1047 if (err)
1048 return 0;
1049
1050 flow_log("spu2 cipher type %s, cipher mode %s\n",
1051 spu2_ciph_type_name(spu2_ciph_type),
1052 spu2_ciph_mode_name(spu2_ciph_mode));
1053
1054 err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
1055 hash_parms->type,
1056 cipher_parms->type,
1057 &spu2_auth_type, &spu2_auth_mode);
1058 if (err)
1059 return 0;
1060
1061 flow_log("spu2 hash type %s, hash mode %s\n",
1062 spu2_hash_type_name(spu2_auth_type),
1063 spu2_hash_mode_name(spu2_auth_mode));
1064
1065 fmd = (struct SPU2_FMD *)spu_hdr;
1066
1067 spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
1068 proto, spu2_ciph_type, spu2_ciph_mode,
1069 spu2_auth_type, spu2_auth_mode);
1070
1071 spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
1072 hash_parms->key_len, cipher_parms->key_len,
1073 false, false,
1074 aead_parms->return_iv, aead_parms->ret_iv_len,
1075 aead_parms->ret_iv_off,
1076 cipher_parms->iv_len, hash_parms->digestsize,
1077 !req_opts->bd_suppress, return_md);
1078
1079 spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
1080 cipher_parms->key_len, cipher_parms->iv_len);
1081
1082 spu2_fmd_ctrl3_write(fmd, payload_len);
1083
1084 ptr = (u8 *)(fmd + 1);
1085 buf_len = sizeof(struct SPU2_FMD);
1086
1087 /* Write OMD */
1088 if (hash_parms->key_len) {
1089 memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
1090 ptr += hash_parms->key_len;
1091 buf_len += hash_parms->key_len;
1092 }
1093 if (cipher_parms->key_len) {
1094 memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
1095 ptr += cipher_parms->key_len;
1096 buf_len += cipher_parms->key_len;
1097 }
1098 if (cipher_parms->iv_len) {
1099 memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
1100 ptr += cipher_parms->iv_len;
1101 buf_len += cipher_parms->iv_len;
1102 }
1103
1104 packet_dump(" SPU request header: ", spu_hdr, buf_len);
1105
1106 return buf_len;
1107 }
1108
1109 /**
1110 * spu_cipher_req_init() - Build an skcipher SPU2 request message header,
1111 * including FMD and OMD.
1112 * @spu_hdr: Location of start of SPU request (FMD field)
1113 * @cipher_parms: Parameters describing cipher request
1114 *
1115 * Called at setkey time to initialize a msg header that can be reused for all
1116 * subsequent skcipher requests. Construct the message starting at spu_hdr.
1117 * Caller should allocate this buffer in DMA-able memory at least
1118 * SPU_HEADER_ALLOC_LEN bytes long.
1119 *
1120 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
1121 * error occurs.
1122 */
spu2_cipher_req_init(u8 * spu_hdr,struct spu_cipher_parms * cipher_parms)1123 u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
1124 {
1125 struct SPU2_FMD *fmd;
1126 u8 *omd;
1127 enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
1128 enum spu2_cipher_mode spu2_mode;
1129 int err;
1130
1131 flow_log("%s()\n", __func__);
1132 flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1133 cipher_parms->mode, cipher_parms->type);
1134 flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len);
1135 flow_log(" key: %d\n", cipher_parms->key_len);
1136 flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
1137
1138 /* Convert to spu2 values */
1139 err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1140 cipher_parms->type, &spu2_type, &spu2_mode);
1141 if (err)
1142 return 0;
1143
1144 flow_log("spu2 cipher type %s, cipher mode %s\n",
1145 spu2_ciph_type_name(spu2_type),
1146 spu2_ciph_mode_name(spu2_mode));
1147
1148 /* Construct the FMD header */
1149 fmd = (struct SPU2_FMD *)spu_hdr;
1150 err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
1151 cipher_parms->iv_len);
1152 if (err)
1153 return 0;
1154
1155 /* Write cipher key to OMD */
1156 omd = (u8 *)(fmd + 1);
1157 if (cipher_parms->key_buf && cipher_parms->key_len)
1158 memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
1159
1160 packet_dump(" SPU request header: ", spu_hdr,
1161 FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
1162
1163 return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
1164 }
1165
1166 /**
1167 * spu_cipher_req_finish() - Finish building a SPU request message header for a
1168 * block cipher request.
1169 * @spu_hdr: Start of the request message header (MH field)
1170 * @spu_req_hdr_len: Length in bytes of the SPU request header
1171 * @isInbound: 0 encrypt, 1 decrypt
1172 * @cipher_parms: Parameters describing cipher operation to be performed
1173 * @data_size: Length of the data in the BD field
1174 *
1175 * Assumes much of the header was already filled in at setkey() time in
1176 * spu_cipher_req_init().
1177 * spu_cipher_req_init() fills in the encryption key.
1178 */
spu2_cipher_req_finish(u8 * spu_hdr,u16 spu_req_hdr_len,unsigned int is_inbound,struct spu_cipher_parms * cipher_parms,unsigned int data_size)1179 void spu2_cipher_req_finish(u8 *spu_hdr,
1180 u16 spu_req_hdr_len,
1181 unsigned int is_inbound,
1182 struct spu_cipher_parms *cipher_parms,
1183 unsigned int data_size)
1184 {
1185 struct SPU2_FMD *fmd;
1186 u8 *omd; /* start of optional metadata */
1187 u64 ctrl0;
1188 u64 ctrl3;
1189
1190 flow_log("%s()\n", __func__);
1191 flow_log(" in: %u\n", is_inbound);
1192 flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
1193 cipher_parms->type);
1194 flow_log(" iv len: %d\n", cipher_parms->iv_len);
1195 flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1196 flow_log(" data_size: %u\n", data_size);
1197
1198 fmd = (struct SPU2_FMD *)spu_hdr;
1199 omd = (u8 *)(fmd + 1);
1200
1201 /*
1202 * FMD ctrl0 was initialized at setkey time. update it to indicate
1203 * whether we are encrypting or decrypting.
1204 */
1205 ctrl0 = le64_to_cpu(fmd->ctrl0);
1206 if (is_inbound)
1207 ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */
1208 else
1209 ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */
1210 fmd->ctrl0 = cpu_to_le64(ctrl0);
1211
1212 if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
1213 /* cipher iv provided so put it in here */
1214 memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
1215 cipher_parms->iv_len);
1216 }
1217
1218 ctrl3 = le64_to_cpu(fmd->ctrl3);
1219 data_size &= SPU2_PL_LEN;
1220 ctrl3 |= data_size;
1221 fmd->ctrl3 = cpu_to_le64(ctrl3);
1222
1223 packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len);
1224 }
1225
1226 /**
1227 * spu_request_pad() - Create pad bytes at the end of the data.
1228 * @pad_start: Start of buffer where pad bytes are to be written
1229 * @gcm_padding: Length of GCM padding, in bytes
1230 * @hash_pad_len: Number of bytes of padding extend data to full block
1231 * @auth_alg: Authentication algorithm
1232 * @auth_mode: Authentication mode
1233 * @total_sent: Length inserted at end of hash pad
1234 * @status_padding: Number of bytes of padding to align STATUS word
1235 *
1236 * There may be three forms of pad:
1237 * 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
1238 * 2. hash pad - pad to a block length, with 0x80 data terminator and
1239 * size at the end
1240 * 3. STAT pad - to ensure the STAT field is 4-byte aligned
1241 */
spu2_request_pad(u8 * pad_start,u32 gcm_padding,u32 hash_pad_len,enum hash_alg auth_alg,enum hash_mode auth_mode,unsigned int total_sent,u32 status_padding)1242 void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
1243 enum hash_alg auth_alg, enum hash_mode auth_mode,
1244 unsigned int total_sent, u32 status_padding)
1245 {
1246 u8 *ptr = pad_start;
1247
1248 /* fix data alignent for GCM */
1249 if (gcm_padding > 0) {
1250 flow_log(" GCM: padding to 16 byte alignment: %u bytes\n",
1251 gcm_padding);
1252 memset(ptr, 0, gcm_padding);
1253 ptr += gcm_padding;
1254 }
1255
1256 if (hash_pad_len > 0) {
1257 /* clear the padding section */
1258 memset(ptr, 0, hash_pad_len);
1259
1260 /* terminate the data */
1261 *ptr = 0x80;
1262 ptr += (hash_pad_len - sizeof(u64));
1263
1264 /* add the size at the end as required per alg */
1265 if (auth_alg == HASH_ALG_MD5)
1266 *(u64 *)ptr = cpu_to_le64((u64)total_sent * 8);
1267 else /* SHA1, SHA2-224, SHA2-256 */
1268 *(u64 *)ptr = cpu_to_be64((u64)total_sent * 8);
1269 ptr += sizeof(u64);
1270 }
1271
1272 /* pad to a 4byte alignment for STAT */
1273 if (status_padding > 0) {
1274 flow_log(" STAT: padding to 4 byte alignment: %u bytes\n",
1275 status_padding);
1276
1277 memset(ptr, 0, status_padding);
1278 ptr += status_padding;
1279 }
1280 }
1281
1282 /**
1283 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
1284 * tweak field in the packet payload (it uses IV instead)
1285 *
1286 * Return: 0
1287 */
spu2_xts_tweak_in_payload(void)1288 u8 spu2_xts_tweak_in_payload(void)
1289 {
1290 return 0;
1291 }
1292
1293 /**
1294 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
1295 * response message.
1296 *
1297 * Return: Length of STATUS field in bytes.
1298 */
spu2_tx_status_len(void)1299 u8 spu2_tx_status_len(void)
1300 {
1301 return SPU2_TX_STATUS_LEN;
1302 }
1303
1304 /**
1305 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
1306 * response message.
1307 *
1308 * Return: Length of STATUS field in bytes.
1309 */
spu2_rx_status_len(void)1310 u8 spu2_rx_status_len(void)
1311 {
1312 return SPU2_RX_STATUS_LEN;
1313 }
1314
1315 /**
1316 * spu_status_process() - Process the status from a SPU response message.
1317 * @statp: start of STATUS word
1318 *
1319 * Return: 0 - if status is good and response should be processed
1320 * !0 - status indicates an error and response is invalid
1321 */
spu2_status_process(u8 * statp)1322 int spu2_status_process(u8 *statp)
1323 {
1324 /* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
1325 u16 status = le16_to_cpu(*(__le16 *)statp);
1326
1327 if (status == 0)
1328 return 0;
1329
1330 flow_log("rx status is %#x\n", status);
1331 if (status == SPU2_INVALID_ICV)
1332 return SPU_INVALID_ICV;
1333
1334 return -EBADMSG;
1335 }
1336
1337 /**
1338 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
1339 *
1340 * @digestsize: Digest size of this request
1341 * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len
1342 * @assoclen: Length of AAD data
1343 * @chunksize: length of input data to be sent in this req
1344 * @is_encrypt: true if this is an output/encrypt operation
1345 * @is_esp: true if this is an ESP / RFC4309 operation
1346 *
1347 */
spu2_ccm_update_iv(unsigned int digestsize,struct spu_cipher_parms * cipher_parms,unsigned int assoclen,unsigned int chunksize,bool is_encrypt,bool is_esp)1348 void spu2_ccm_update_iv(unsigned int digestsize,
1349 struct spu_cipher_parms *cipher_parms,
1350 unsigned int assoclen, unsigned int chunksize,
1351 bool is_encrypt, bool is_esp)
1352 {
1353 int L; /* size of length field, in bytes */
1354
1355 /*
1356 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
1357 * testmgr contains (L-1) in bottom 3 bits of first byte,
1358 * per RFC 3610.
1359 */
1360 if (is_esp)
1361 L = CCM_ESP_L_VALUE;
1362 else
1363 L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
1364 CCM_B0_L_PRIME_SHIFT) + 1;
1365
1366 /* SPU2 doesn't want these length bytes nor the first byte... */
1367 cipher_parms->iv_len -= (1 + L);
1368 memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
1369 cipher_parms->iv_len);
1370 }
1371
1372 /**
1373 * spu2_wordalign_padlen() - SPU2 does not require padding.
1374 * @data_size: length of data field in bytes
1375 *
1376 * Return: length of status field padding, in bytes (always 0 on SPU2)
1377 */
spu2_wordalign_padlen(u32 data_size)1378 u32 spu2_wordalign_padlen(u32 data_size)
1379 {
1380 return 0;
1381 }
1382