1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2021 Intel Corporation
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75
76 /* Caller must hold local->sta_mtx */
sta_info_hash_del(struct ieee80211_local * local,struct sta_info * sta)77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
79 {
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
82 }
83
__cleanup_single_sta(struct sta_info * sta)84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
91
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
102
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106
107 atomic_dec(&ps->num_sta_ps);
108 }
109
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
113
114 if (!sta->sta.txq[i])
115 continue;
116
117 txqi = to_txq_info(sta->sta.txq[i]);
118
119 ieee80211_txq_purge(local, txqi);
120 }
121 }
122
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 }
128
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
131
132 cancel_work_sync(&sta->drv_deliver_wk);
133
134 /*
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
139 */
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
147 }
148 }
149
cleanup_single_sta(struct sta_info * sta)150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
154
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
157 }
158
sta_info_hash_lookup(struct ieee80211_local * local,const u8 * addr)159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
161 {
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164
165 /* protected by RCU */
sta_info_get(struct ieee80211_sub_if_data * sdata,const u8 * addr)166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
168 {
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
172
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
179 */
180 return sta;
181 }
182 }
183 rcu_read_unlock();
184 return NULL;
185 }
186
187 /*
188 * Get sta info either from the specified interface
189 * or from one of its vlans
190 */
sta_info_get_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
193 {
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
197
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
205 */
206 return sta;
207 }
208 }
209 rcu_read_unlock();
210 return NULL;
211 }
212
sta_info_get_by_addrs(struct ieee80211_local * local,const u8 * sta_addr,const u8 * vif_addr)213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
215 {
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
218
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
222 }
223
224 return NULL;
225 }
226
sta_info_get_by_idx(struct ieee80211_sub_if_data * sdata,int idx)227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
229 {
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
233
234 list_for_each_entry_rcu(sta, &local->sta_list, list,
235 lockdep_is_held(&local->sta_mtx)) {
236 if (sdata != sta->sdata)
237 continue;
238 if (i < idx) {
239 ++i;
240 continue;
241 }
242 return sta;
243 }
244
245 return NULL;
246 }
247
248 /**
249 * sta_info_free - free STA
250 *
251 * @local: pointer to the global information
252 * @sta: STA info to free
253 *
254 * This function must undo everything done by sta_info_alloc()
255 * that may happen before sta_info_insert(). It may only be
256 * called when sta_info_insert() has not been attempted (and
257 * if that fails, the station is freed anyway.)
258 */
sta_info_free(struct ieee80211_local * local,struct sta_info * sta)259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 /*
262 * If we had used sta_info_pre_move_state() then we might not
263 * have gone through the state transitions down again, so do
264 * it here now (and warn if it's inserted).
265 *
266 * This will clear state such as fast TX/RX that may have been
267 * allocated during state transitions.
268 */
269 while (sta->sta_state > IEEE80211_STA_NONE) {
270 int ret;
271
272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273
274 ret = sta_info_move_state(sta, sta->sta_state - 1);
275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 break;
277 }
278
279 if (sta->rate_ctrl)
280 rate_control_free_sta(sta);
281
282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283
284 if (sta->sta.txq[0])
285 kfree(to_txq_info(sta->sta.txq[0]));
286 kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 kfree(sta->mesh);
289 #endif
290 free_percpu(sta->pcpu_rx_stats);
291 kfree(sta);
292 }
293
294 /* Caller must hold local->sta_mtx */
sta_info_hash_add(struct ieee80211_local * local,struct sta_info * sta)295 static int sta_info_hash_add(struct ieee80211_local *local,
296 struct sta_info *sta)
297 {
298 return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 sta_rht_params);
300 }
301
sta_deliver_ps_frames(struct work_struct * wk)302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 struct sta_info *sta;
305
306 sta = container_of(wk, struct sta_info, drv_deliver_wk);
307
308 if (sta->dead)
309 return;
310
311 local_bh_disable();
312 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 ieee80211_sta_ps_deliver_wakeup(sta);
314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 ieee80211_sta_ps_deliver_poll_response(sta);
316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 ieee80211_sta_ps_deliver_uapsd(sta);
318 local_bh_enable();
319 }
320
sta_prepare_rate_control(struct ieee80211_local * local,struct sta_info * sta,gfp_t gfp)321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 struct sta_info *sta, gfp_t gfp)
323 {
324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 return 0;
326
327 sta->rate_ctrl = local->rate_ctrl;
328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 sta, gfp);
330 if (!sta->rate_ctrl_priv)
331 return -ENOMEM;
332
333 return 0;
334 }
335
sta_info_alloc(struct ieee80211_sub_if_data * sdata,const u8 * addr,gfp_t gfp)336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 const u8 *addr, gfp_t gfp)
338 {
339 struct ieee80211_local *local = sdata->local;
340 struct ieee80211_hw *hw = &local->hw;
341 struct sta_info *sta;
342 int i;
343
344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 if (!sta)
346 return NULL;
347
348 if (ieee80211_hw_check(hw, USES_RSS)) {
349 sta->pcpu_rx_stats =
350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 if (!sta->pcpu_rx_stats)
352 goto free;
353 }
354
355 spin_lock_init(&sta->lock);
356 spin_lock_init(&sta->ps_lock);
357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 if (!sta->mesh)
364 goto free;
365 sta->mesh->plink_sta = sta;
366 spin_lock_init(&sta->mesh->plink_lock);
367 if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 !sdata->u.mesh.user_mpm)
369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 0);
371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 }
373 #endif
374
375 memcpy(sta->addr, addr, ETH_ALEN);
376 memcpy(sta->sta.addr, addr, ETH_ALEN);
377 sta->sta.max_rx_aggregation_subframes =
378 local->hw.max_rx_aggregation_subframes;
379
380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 * references to is not NULL. To not use the initial Rx-only key
383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 * which always will refer to a NULL key.
385 */
386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 sta->ptk_idx = INVALID_PTK_KEYIDX;
388
389 sta->local = local;
390 sta->sdata = sdata;
391 sta->rx_stats.last_rx = jiffies;
392
393 u64_stats_init(&sta->rx_stats.syncp);
394
395 ieee80211_init_frag_cache(&sta->frags);
396
397 sta->sta_state = IEEE80211_STA_NONE;
398
399 /* Mark TID as unreserved */
400 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401
402 sta->last_connected = ktime_get_seconds();
403 ewma_signal_init(&sta->rx_stats_avg.signal);
404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407
408 if (local->ops->wake_tx_queue) {
409 void *txq_data;
410 int size = sizeof(struct txq_info) +
411 ALIGN(hw->txq_data_size, sizeof(void *));
412
413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 if (!txq_data)
415 goto free;
416
417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 struct txq_info *txq = txq_data + i * size;
419
420 /* might not do anything for the bufferable MMPDU TXQ */
421 ieee80211_txq_init(sdata, sta, txq, i);
422 }
423 }
424
425 if (sta_prepare_rate_control(local, sta, gfp))
426 goto free_txq;
427
428 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
429
430 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
431 skb_queue_head_init(&sta->ps_tx_buf[i]);
432 skb_queue_head_init(&sta->tx_filtered[i]);
433 sta->airtime[i].deficit = sta->airtime_weight;
434 atomic_set(&sta->airtime[i].aql_tx_pending, 0);
435 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
436 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
437 }
438
439 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
440 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
441
442 for (i = 0; i < NUM_NL80211_BANDS; i++) {
443 u32 mandatory = 0;
444 int r;
445
446 if (!hw->wiphy->bands[i])
447 continue;
448
449 switch (i) {
450 case NL80211_BAND_2GHZ:
451 /*
452 * We use both here, even if we cannot really know for
453 * sure the station will support both, but the only use
454 * for this is when we don't know anything yet and send
455 * management frames, and then we'll pick the lowest
456 * possible rate anyway.
457 * If we don't include _G here, we cannot find a rate
458 * in P2P, and thus trigger the WARN_ONCE() in rate.c
459 */
460 mandatory = IEEE80211_RATE_MANDATORY_B |
461 IEEE80211_RATE_MANDATORY_G;
462 break;
463 case NL80211_BAND_5GHZ:
464 mandatory = IEEE80211_RATE_MANDATORY_A;
465 break;
466 case NL80211_BAND_60GHZ:
467 WARN_ON(1);
468 mandatory = 0;
469 break;
470 }
471
472 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
473 struct ieee80211_rate *rate;
474
475 rate = &hw->wiphy->bands[i]->bitrates[r];
476
477 if (!(rate->flags & mandatory))
478 continue;
479 sta->sta.supp_rates[i] |= BIT(r);
480 }
481 }
482
483 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
484 if (sdata->vif.type == NL80211_IFTYPE_AP ||
485 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
486 struct ieee80211_supported_band *sband;
487 u8 smps;
488
489 sband = ieee80211_get_sband(sdata);
490 if (!sband)
491 goto free_txq;
492
493 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
494 IEEE80211_HT_CAP_SM_PS_SHIFT;
495 /*
496 * Assume that hostapd advertises our caps in the beacon and
497 * this is the known_smps_mode for a station that just assciated
498 */
499 switch (smps) {
500 case WLAN_HT_SMPS_CONTROL_DISABLED:
501 sta->known_smps_mode = IEEE80211_SMPS_OFF;
502 break;
503 case WLAN_HT_SMPS_CONTROL_STATIC:
504 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
505 break;
506 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
507 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
508 break;
509 default:
510 WARN_ON(1);
511 }
512 }
513
514 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
515
516 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
517 sta->cparams.target = MS2TIME(20);
518 sta->cparams.interval = MS2TIME(100);
519 sta->cparams.ecn = true;
520
521 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
522
523 return sta;
524
525 free_txq:
526 if (sta->sta.txq[0])
527 kfree(to_txq_info(sta->sta.txq[0]));
528 free:
529 free_percpu(sta->pcpu_rx_stats);
530 #ifdef CONFIG_MAC80211_MESH
531 kfree(sta->mesh);
532 #endif
533 kfree(sta);
534 return NULL;
535 }
536
sta_info_insert_check(struct sta_info * sta)537 static int sta_info_insert_check(struct sta_info *sta)
538 {
539 struct ieee80211_sub_if_data *sdata = sta->sdata;
540
541 /*
542 * Can't be a WARN_ON because it can be triggered through a race:
543 * something inserts a STA (on one CPU) without holding the RTNL
544 * and another CPU turns off the net device.
545 */
546 if (unlikely(!ieee80211_sdata_running(sdata)))
547 return -ENETDOWN;
548
549 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
550 is_multicast_ether_addr(sta->sta.addr)))
551 return -EINVAL;
552
553 /* The RCU read lock is required by rhashtable due to
554 * asynchronous resize/rehash. We also require the mutex
555 * for correctness.
556 */
557 rcu_read_lock();
558 lockdep_assert_held(&sdata->local->sta_mtx);
559 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
560 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
561 rcu_read_unlock();
562 return -ENOTUNIQ;
563 }
564 rcu_read_unlock();
565
566 return 0;
567 }
568
sta_info_insert_drv_state(struct ieee80211_local * local,struct ieee80211_sub_if_data * sdata,struct sta_info * sta)569 static int sta_info_insert_drv_state(struct ieee80211_local *local,
570 struct ieee80211_sub_if_data *sdata,
571 struct sta_info *sta)
572 {
573 enum ieee80211_sta_state state;
574 int err = 0;
575
576 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
577 err = drv_sta_state(local, sdata, sta, state, state + 1);
578 if (err)
579 break;
580 }
581
582 if (!err) {
583 /*
584 * Drivers using legacy sta_add/sta_remove callbacks only
585 * get uploaded set to true after sta_add is called.
586 */
587 if (!local->ops->sta_add)
588 sta->uploaded = true;
589 return 0;
590 }
591
592 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
593 sdata_info(sdata,
594 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
595 sta->sta.addr, state + 1, err);
596 err = 0;
597 }
598
599 /* unwind on error */
600 for (; state > IEEE80211_STA_NOTEXIST; state--)
601 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
602
603 return err;
604 }
605
606 static void
ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data * sdata)607 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
608 {
609 struct ieee80211_local *local = sdata->local;
610 bool allow_p2p_go_ps = sdata->vif.p2p;
611 struct sta_info *sta;
612
613 rcu_read_lock();
614 list_for_each_entry_rcu(sta, &local->sta_list, list) {
615 if (sdata != sta->sdata ||
616 !test_sta_flag(sta, WLAN_STA_ASSOC))
617 continue;
618 if (!sta->sta.support_p2p_ps) {
619 allow_p2p_go_ps = false;
620 break;
621 }
622 }
623 rcu_read_unlock();
624
625 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
626 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
627 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
628 }
629 }
630
631 /*
632 * should be called with sta_mtx locked
633 * this function replaces the mutex lock
634 * with a RCU lock
635 */
sta_info_insert_finish(struct sta_info * sta)636 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
637 {
638 struct ieee80211_local *local = sta->local;
639 struct ieee80211_sub_if_data *sdata = sta->sdata;
640 struct station_info *sinfo = NULL;
641 int err = 0;
642
643 lockdep_assert_held(&local->sta_mtx);
644
645 /* check if STA exists already */
646 if (sta_info_get_bss(sdata, sta->sta.addr)) {
647 err = -EEXIST;
648 goto out_err;
649 }
650
651 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
652 if (!sinfo) {
653 err = -ENOMEM;
654 goto out_err;
655 }
656
657 local->num_sta++;
658 local->sta_generation++;
659 smp_mb();
660
661 /* simplify things and don't accept BA sessions yet */
662 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
663
664 /* make the station visible */
665 err = sta_info_hash_add(local, sta);
666 if (err)
667 goto out_drop_sta;
668
669 list_add_tail_rcu(&sta->list, &local->sta_list);
670
671 /* notify driver */
672 err = sta_info_insert_drv_state(local, sdata, sta);
673 if (err)
674 goto out_remove;
675
676 set_sta_flag(sta, WLAN_STA_INSERTED);
677
678 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
679 ieee80211_recalc_min_chandef(sta->sdata);
680 if (!sta->sta.support_p2p_ps)
681 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
682 }
683
684 /* accept BA sessions now */
685 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
686
687 ieee80211_sta_debugfs_add(sta);
688 rate_control_add_sta_debugfs(sta);
689
690 sinfo->generation = local->sta_generation;
691 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
692 kfree(sinfo);
693
694 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
695
696 /* move reference to rcu-protected */
697 rcu_read_lock();
698 mutex_unlock(&local->sta_mtx);
699
700 if (ieee80211_vif_is_mesh(&sdata->vif))
701 mesh_accept_plinks_update(sdata);
702
703 return 0;
704 out_remove:
705 sta_info_hash_del(local, sta);
706 list_del_rcu(&sta->list);
707 out_drop_sta:
708 local->num_sta--;
709 synchronize_net();
710 cleanup_single_sta(sta);
711 out_err:
712 mutex_unlock(&local->sta_mtx);
713 kfree(sinfo);
714 rcu_read_lock();
715 return err;
716 }
717
sta_info_insert_rcu(struct sta_info * sta)718 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
719 {
720 struct ieee80211_local *local = sta->local;
721 int err;
722
723 might_sleep();
724
725 mutex_lock(&local->sta_mtx);
726
727 err = sta_info_insert_check(sta);
728 if (err) {
729 sta_info_free(local, sta);
730 mutex_unlock(&local->sta_mtx);
731 rcu_read_lock();
732 return err;
733 }
734
735 return sta_info_insert_finish(sta);
736 }
737
sta_info_insert(struct sta_info * sta)738 int sta_info_insert(struct sta_info *sta)
739 {
740 int err = sta_info_insert_rcu(sta);
741
742 rcu_read_unlock();
743
744 return err;
745 }
746
__bss_tim_set(u8 * tim,u16 id)747 static inline void __bss_tim_set(u8 *tim, u16 id)
748 {
749 /*
750 * This format has been mandated by the IEEE specifications,
751 * so this line may not be changed to use the __set_bit() format.
752 */
753 tim[id / 8] |= (1 << (id % 8));
754 }
755
__bss_tim_clear(u8 * tim,u16 id)756 static inline void __bss_tim_clear(u8 *tim, u16 id)
757 {
758 /*
759 * This format has been mandated by the IEEE specifications,
760 * so this line may not be changed to use the __clear_bit() format.
761 */
762 tim[id / 8] &= ~(1 << (id % 8));
763 }
764
__bss_tim_get(u8 * tim,u16 id)765 static inline bool __bss_tim_get(u8 *tim, u16 id)
766 {
767 /*
768 * This format has been mandated by the IEEE specifications,
769 * so this line may not be changed to use the test_bit() format.
770 */
771 return tim[id / 8] & (1 << (id % 8));
772 }
773
ieee80211_tids_for_ac(int ac)774 static unsigned long ieee80211_tids_for_ac(int ac)
775 {
776 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
777 switch (ac) {
778 case IEEE80211_AC_VO:
779 return BIT(6) | BIT(7);
780 case IEEE80211_AC_VI:
781 return BIT(4) | BIT(5);
782 case IEEE80211_AC_BE:
783 return BIT(0) | BIT(3);
784 case IEEE80211_AC_BK:
785 return BIT(1) | BIT(2);
786 default:
787 WARN_ON(1);
788 return 0;
789 }
790 }
791
__sta_info_recalc_tim(struct sta_info * sta,bool ignore_pending)792 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
793 {
794 struct ieee80211_local *local = sta->local;
795 struct ps_data *ps;
796 bool indicate_tim = false;
797 u8 ignore_for_tim = sta->sta.uapsd_queues;
798 int ac;
799 u16 id = sta->sta.aid;
800
801 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
802 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
803 if (WARN_ON_ONCE(!sta->sdata->bss))
804 return;
805
806 ps = &sta->sdata->bss->ps;
807 #ifdef CONFIG_MAC80211_MESH
808 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
809 ps = &sta->sdata->u.mesh.ps;
810 #endif
811 } else {
812 return;
813 }
814
815 /* No need to do anything if the driver does all */
816 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
817 return;
818
819 if (sta->dead)
820 goto done;
821
822 /*
823 * If all ACs are delivery-enabled then we should build
824 * the TIM bit for all ACs anyway; if only some are then
825 * we ignore those and build the TIM bit using only the
826 * non-enabled ones.
827 */
828 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
829 ignore_for_tim = 0;
830
831 if (ignore_pending)
832 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
833
834 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
835 unsigned long tids;
836
837 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
838 continue;
839
840 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
841 !skb_queue_empty(&sta->ps_tx_buf[ac]);
842 if (indicate_tim)
843 break;
844
845 tids = ieee80211_tids_for_ac(ac);
846
847 indicate_tim |=
848 sta->driver_buffered_tids & tids;
849 indicate_tim |=
850 sta->txq_buffered_tids & tids;
851 }
852
853 done:
854 spin_lock_bh(&local->tim_lock);
855
856 if (indicate_tim == __bss_tim_get(ps->tim, id))
857 goto out_unlock;
858
859 if (indicate_tim)
860 __bss_tim_set(ps->tim, id);
861 else
862 __bss_tim_clear(ps->tim, id);
863
864 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
865 local->tim_in_locked_section = true;
866 drv_set_tim(local, &sta->sta, indicate_tim);
867 local->tim_in_locked_section = false;
868 }
869
870 out_unlock:
871 spin_unlock_bh(&local->tim_lock);
872 }
873
sta_info_recalc_tim(struct sta_info * sta)874 void sta_info_recalc_tim(struct sta_info *sta)
875 {
876 __sta_info_recalc_tim(sta, false);
877 }
878
sta_info_buffer_expired(struct sta_info * sta,struct sk_buff * skb)879 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
880 {
881 struct ieee80211_tx_info *info;
882 int timeout;
883
884 if (!skb)
885 return false;
886
887 info = IEEE80211_SKB_CB(skb);
888
889 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
890 timeout = (sta->listen_interval *
891 sta->sdata->vif.bss_conf.beacon_int *
892 32 / 15625) * HZ;
893 if (timeout < STA_TX_BUFFER_EXPIRE)
894 timeout = STA_TX_BUFFER_EXPIRE;
895 return time_after(jiffies, info->control.jiffies + timeout);
896 }
897
898
sta_info_cleanup_expire_buffered_ac(struct ieee80211_local * local,struct sta_info * sta,int ac)899 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
900 struct sta_info *sta, int ac)
901 {
902 unsigned long flags;
903 struct sk_buff *skb;
904
905 /*
906 * First check for frames that should expire on the filtered
907 * queue. Frames here were rejected by the driver and are on
908 * a separate queue to avoid reordering with normal PS-buffered
909 * frames. They also aren't accounted for right now in the
910 * total_ps_buffered counter.
911 */
912 for (;;) {
913 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
914 skb = skb_peek(&sta->tx_filtered[ac]);
915 if (sta_info_buffer_expired(sta, skb))
916 skb = __skb_dequeue(&sta->tx_filtered[ac]);
917 else
918 skb = NULL;
919 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
920
921 /*
922 * Frames are queued in order, so if this one
923 * hasn't expired yet we can stop testing. If
924 * we actually reached the end of the queue we
925 * also need to stop, of course.
926 */
927 if (!skb)
928 break;
929 ieee80211_free_txskb(&local->hw, skb);
930 }
931
932 /*
933 * Now also check the normal PS-buffered queue, this will
934 * only find something if the filtered queue was emptied
935 * since the filtered frames are all before the normal PS
936 * buffered frames.
937 */
938 for (;;) {
939 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
940 skb = skb_peek(&sta->ps_tx_buf[ac]);
941 if (sta_info_buffer_expired(sta, skb))
942 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
943 else
944 skb = NULL;
945 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
946
947 /*
948 * frames are queued in order, so if this one
949 * hasn't expired yet (or we reached the end of
950 * the queue) we can stop testing
951 */
952 if (!skb)
953 break;
954
955 local->total_ps_buffered--;
956 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
957 sta->sta.addr);
958 ieee80211_free_txskb(&local->hw, skb);
959 }
960
961 /*
962 * Finally, recalculate the TIM bit for this station -- it might
963 * now be clear because the station was too slow to retrieve its
964 * frames.
965 */
966 sta_info_recalc_tim(sta);
967
968 /*
969 * Return whether there are any frames still buffered, this is
970 * used to check whether the cleanup timer still needs to run,
971 * if there are no frames we don't need to rearm the timer.
972 */
973 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
974 skb_queue_empty(&sta->tx_filtered[ac]));
975 }
976
sta_info_cleanup_expire_buffered(struct ieee80211_local * local,struct sta_info * sta)977 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
978 struct sta_info *sta)
979 {
980 bool have_buffered = false;
981 int ac;
982
983 /* This is only necessary for stations on BSS/MBSS interfaces */
984 if (!sta->sdata->bss &&
985 !ieee80211_vif_is_mesh(&sta->sdata->vif))
986 return false;
987
988 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
989 have_buffered |=
990 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
991
992 return have_buffered;
993 }
994
__sta_info_destroy_part1(struct sta_info * sta)995 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
996 {
997 struct ieee80211_local *local;
998 struct ieee80211_sub_if_data *sdata;
999 int ret;
1000
1001 might_sleep();
1002
1003 if (!sta)
1004 return -ENOENT;
1005
1006 local = sta->local;
1007 sdata = sta->sdata;
1008
1009 lockdep_assert_held(&local->sta_mtx);
1010
1011 /*
1012 * Before removing the station from the driver and
1013 * rate control, it might still start new aggregation
1014 * sessions -- block that to make sure the tear-down
1015 * will be sufficient.
1016 */
1017 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1018 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1019
1020 /*
1021 * Before removing the station from the driver there might be pending
1022 * rx frames on RSS queues sent prior to the disassociation - wait for
1023 * all such frames to be processed.
1024 */
1025 drv_sync_rx_queues(local, sta);
1026
1027 ret = sta_info_hash_del(local, sta);
1028 if (WARN_ON(ret))
1029 return ret;
1030
1031 /*
1032 * for TDLS peers, make sure to return to the base channel before
1033 * removal.
1034 */
1035 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1036 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1037 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1038 }
1039
1040 list_del_rcu(&sta->list);
1041 sta->removed = true;
1042
1043 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1044
1045 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1046 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1047 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1048
1049 return 0;
1050 }
1051
__sta_info_destroy_part2(struct sta_info * sta)1052 static void __sta_info_destroy_part2(struct sta_info *sta)
1053 {
1054 struct ieee80211_local *local = sta->local;
1055 struct ieee80211_sub_if_data *sdata = sta->sdata;
1056 struct station_info *sinfo;
1057 int ret;
1058
1059 /*
1060 * NOTE: This assumes at least synchronize_net() was done
1061 * after _part1 and before _part2!
1062 */
1063
1064 might_sleep();
1065 lockdep_assert_held(&local->sta_mtx);
1066
1067 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1068 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1069 WARN_ON_ONCE(ret);
1070 }
1071
1072 /* now keys can no longer be reached */
1073 ieee80211_free_sta_keys(local, sta);
1074
1075 /* disable TIM bit - last chance to tell driver */
1076 __sta_info_recalc_tim(sta, true);
1077
1078 sta->dead = true;
1079
1080 local->num_sta--;
1081 local->sta_generation++;
1082
1083 while (sta->sta_state > IEEE80211_STA_NONE) {
1084 ret = sta_info_move_state(sta, sta->sta_state - 1);
1085 if (ret) {
1086 WARN_ON_ONCE(1);
1087 break;
1088 }
1089 }
1090
1091 if (sta->uploaded) {
1092 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1093 IEEE80211_STA_NOTEXIST);
1094 WARN_ON_ONCE(ret != 0);
1095 }
1096
1097 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1098
1099 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1100 if (sinfo)
1101 sta_set_sinfo(sta, sinfo, true);
1102 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1103 kfree(sinfo);
1104
1105 ieee80211_sta_debugfs_remove(sta);
1106
1107 ieee80211_destroy_frag_cache(&sta->frags);
1108
1109 cleanup_single_sta(sta);
1110 }
1111
__sta_info_destroy(struct sta_info * sta)1112 int __must_check __sta_info_destroy(struct sta_info *sta)
1113 {
1114 int err = __sta_info_destroy_part1(sta);
1115
1116 if (err)
1117 return err;
1118
1119 synchronize_net();
1120
1121 __sta_info_destroy_part2(sta);
1122
1123 return 0;
1124 }
1125
sta_info_destroy_addr(struct ieee80211_sub_if_data * sdata,const u8 * addr)1126 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1127 {
1128 struct sta_info *sta;
1129 int ret;
1130
1131 mutex_lock(&sdata->local->sta_mtx);
1132 sta = sta_info_get(sdata, addr);
1133 ret = __sta_info_destroy(sta);
1134 mutex_unlock(&sdata->local->sta_mtx);
1135
1136 return ret;
1137 }
1138
sta_info_destroy_addr_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)1139 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1140 const u8 *addr)
1141 {
1142 struct sta_info *sta;
1143 int ret;
1144
1145 mutex_lock(&sdata->local->sta_mtx);
1146 sta = sta_info_get_bss(sdata, addr);
1147 ret = __sta_info_destroy(sta);
1148 mutex_unlock(&sdata->local->sta_mtx);
1149
1150 return ret;
1151 }
1152
sta_info_cleanup(struct timer_list * t)1153 static void sta_info_cleanup(struct timer_list *t)
1154 {
1155 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1156 struct sta_info *sta;
1157 bool timer_needed = false;
1158
1159 rcu_read_lock();
1160 list_for_each_entry_rcu(sta, &local->sta_list, list)
1161 if (sta_info_cleanup_expire_buffered(local, sta))
1162 timer_needed = true;
1163 rcu_read_unlock();
1164
1165 if (local->quiescing)
1166 return;
1167
1168 if (!timer_needed)
1169 return;
1170
1171 mod_timer(&local->sta_cleanup,
1172 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1173 }
1174
sta_info_init(struct ieee80211_local * local)1175 int sta_info_init(struct ieee80211_local *local)
1176 {
1177 int err;
1178
1179 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1180 if (err)
1181 return err;
1182
1183 spin_lock_init(&local->tim_lock);
1184 mutex_init(&local->sta_mtx);
1185 INIT_LIST_HEAD(&local->sta_list);
1186
1187 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1188 return 0;
1189 }
1190
sta_info_stop(struct ieee80211_local * local)1191 void sta_info_stop(struct ieee80211_local *local)
1192 {
1193 del_timer_sync(&local->sta_cleanup);
1194 rhltable_destroy(&local->sta_hash);
1195 }
1196
1197
__sta_info_flush(struct ieee80211_sub_if_data * sdata,bool vlans)1198 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1199 {
1200 struct ieee80211_local *local = sdata->local;
1201 struct sta_info *sta, *tmp;
1202 LIST_HEAD(free_list);
1203 int ret = 0;
1204
1205 might_sleep();
1206
1207 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1208 WARN_ON(vlans && !sdata->bss);
1209
1210 mutex_lock(&local->sta_mtx);
1211 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1212 if (sdata == sta->sdata ||
1213 (vlans && sdata->bss == sta->sdata->bss)) {
1214 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1215 list_add(&sta->free_list, &free_list);
1216 ret++;
1217 }
1218 }
1219
1220 if (!list_empty(&free_list)) {
1221 synchronize_net();
1222 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1223 __sta_info_destroy_part2(sta);
1224 }
1225 mutex_unlock(&local->sta_mtx);
1226
1227 return ret;
1228 }
1229
ieee80211_sta_expire(struct ieee80211_sub_if_data * sdata,unsigned long exp_time)1230 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1231 unsigned long exp_time)
1232 {
1233 struct ieee80211_local *local = sdata->local;
1234 struct sta_info *sta, *tmp;
1235
1236 mutex_lock(&local->sta_mtx);
1237
1238 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1239 unsigned long last_active = ieee80211_sta_last_active(sta);
1240
1241 if (sdata != sta->sdata)
1242 continue;
1243
1244 if (time_is_before_jiffies(last_active + exp_time)) {
1245 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1246 sta->sta.addr);
1247
1248 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1249 test_sta_flag(sta, WLAN_STA_PS_STA))
1250 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1251
1252 WARN_ON(__sta_info_destroy(sta));
1253 }
1254 }
1255
1256 mutex_unlock(&local->sta_mtx);
1257 }
1258
ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * hw,const u8 * addr,const u8 * localaddr)1259 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1260 const u8 *addr,
1261 const u8 *localaddr)
1262 {
1263 struct ieee80211_local *local = hw_to_local(hw);
1264 struct rhlist_head *tmp;
1265 struct sta_info *sta;
1266
1267 /*
1268 * Just return a random station if localaddr is NULL
1269 * ... first in list.
1270 */
1271 for_each_sta_info(local, addr, sta, tmp) {
1272 if (localaddr &&
1273 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1274 continue;
1275 if (!sta->uploaded)
1276 return NULL;
1277 return &sta->sta;
1278 }
1279
1280 return NULL;
1281 }
1282 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1283
ieee80211_find_sta(struct ieee80211_vif * vif,const u8 * addr)1284 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1285 const u8 *addr)
1286 {
1287 struct sta_info *sta;
1288
1289 if (!vif)
1290 return NULL;
1291
1292 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1293 if (!sta)
1294 return NULL;
1295
1296 if (!sta->uploaded)
1297 return NULL;
1298
1299 return &sta->sta;
1300 }
1301 EXPORT_SYMBOL(ieee80211_find_sta);
1302
1303 /* powersave support code */
ieee80211_sta_ps_deliver_wakeup(struct sta_info * sta)1304 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1305 {
1306 struct ieee80211_sub_if_data *sdata = sta->sdata;
1307 struct ieee80211_local *local = sdata->local;
1308 struct sk_buff_head pending;
1309 int filtered = 0, buffered = 0, ac, i;
1310 unsigned long flags;
1311 struct ps_data *ps;
1312
1313 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1314 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1315 u.ap);
1316
1317 if (sdata->vif.type == NL80211_IFTYPE_AP)
1318 ps = &sdata->bss->ps;
1319 else if (ieee80211_vif_is_mesh(&sdata->vif))
1320 ps = &sdata->u.mesh.ps;
1321 else
1322 return;
1323
1324 clear_sta_flag(sta, WLAN_STA_SP);
1325
1326 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1327 sta->driver_buffered_tids = 0;
1328 sta->txq_buffered_tids = 0;
1329
1330 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1331 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1332
1333 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1334 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1335 continue;
1336
1337 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1338 }
1339
1340 skb_queue_head_init(&pending);
1341
1342 /* sync with ieee80211_tx_h_unicast_ps_buf */
1343 spin_lock(&sta->ps_lock);
1344 /* Send all buffered frames to the station */
1345 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1346 int count = skb_queue_len(&pending), tmp;
1347
1348 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1349 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1350 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1351 tmp = skb_queue_len(&pending);
1352 filtered += tmp - count;
1353 count = tmp;
1354
1355 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1356 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1357 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1358 tmp = skb_queue_len(&pending);
1359 buffered += tmp - count;
1360 }
1361
1362 ieee80211_add_pending_skbs(local, &pending);
1363
1364 /* now we're no longer in the deliver code */
1365 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1366
1367 /* The station might have polled and then woken up before we responded,
1368 * so clear these flags now to avoid them sticking around.
1369 */
1370 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1371 clear_sta_flag(sta, WLAN_STA_UAPSD);
1372 spin_unlock(&sta->ps_lock);
1373
1374 atomic_dec(&ps->num_sta_ps);
1375
1376 local->total_ps_buffered -= buffered;
1377
1378 sta_info_recalc_tim(sta);
1379
1380 ps_dbg(sdata,
1381 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1382 sta->sta.addr, sta->sta.aid, filtered, buffered);
1383
1384 ieee80211_check_fast_xmit(sta);
1385 }
1386
ieee80211_send_null_response(struct sta_info * sta,int tid,enum ieee80211_frame_release_type reason,bool call_driver,bool more_data)1387 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1388 enum ieee80211_frame_release_type reason,
1389 bool call_driver, bool more_data)
1390 {
1391 struct ieee80211_sub_if_data *sdata = sta->sdata;
1392 struct ieee80211_local *local = sdata->local;
1393 struct ieee80211_qos_hdr *nullfunc;
1394 struct sk_buff *skb;
1395 int size = sizeof(*nullfunc);
1396 __le16 fc;
1397 bool qos = sta->sta.wme;
1398 struct ieee80211_tx_info *info;
1399 struct ieee80211_chanctx_conf *chanctx_conf;
1400
1401 if (qos) {
1402 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1403 IEEE80211_STYPE_QOS_NULLFUNC |
1404 IEEE80211_FCTL_FROMDS);
1405 } else {
1406 size -= 2;
1407 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1408 IEEE80211_STYPE_NULLFUNC |
1409 IEEE80211_FCTL_FROMDS);
1410 }
1411
1412 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1413 if (!skb)
1414 return;
1415
1416 skb_reserve(skb, local->hw.extra_tx_headroom);
1417
1418 nullfunc = skb_put(skb, size);
1419 nullfunc->frame_control = fc;
1420 nullfunc->duration_id = 0;
1421 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1422 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1423 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1424 nullfunc->seq_ctrl = 0;
1425
1426 skb->priority = tid;
1427 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1428 if (qos) {
1429 nullfunc->qos_ctrl = cpu_to_le16(tid);
1430
1431 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1432 nullfunc->qos_ctrl |=
1433 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1434 if (more_data)
1435 nullfunc->frame_control |=
1436 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1437 }
1438 }
1439
1440 info = IEEE80211_SKB_CB(skb);
1441
1442 /*
1443 * Tell TX path to send this frame even though the
1444 * STA may still remain is PS mode after this frame
1445 * exchange. Also set EOSP to indicate this packet
1446 * ends the poll/service period.
1447 */
1448 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1449 IEEE80211_TX_STATUS_EOSP |
1450 IEEE80211_TX_CTL_REQ_TX_STATUS;
1451
1452 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1453
1454 if (call_driver)
1455 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1456 reason, false);
1457
1458 skb->dev = sdata->dev;
1459
1460 rcu_read_lock();
1461 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1462 if (WARN_ON(!chanctx_conf)) {
1463 rcu_read_unlock();
1464 kfree_skb(skb);
1465 return;
1466 }
1467
1468 info->band = chanctx_conf->def.chan->band;
1469 ieee80211_xmit(sdata, sta, skb);
1470 rcu_read_unlock();
1471 }
1472
find_highest_prio_tid(unsigned long tids)1473 static int find_highest_prio_tid(unsigned long tids)
1474 {
1475 /* lower 3 TIDs aren't ordered perfectly */
1476 if (tids & 0xF8)
1477 return fls(tids) - 1;
1478 /* TID 0 is BE just like TID 3 */
1479 if (tids & BIT(0))
1480 return 0;
1481 return fls(tids) - 1;
1482 }
1483
1484 /* Indicates if the MORE_DATA bit should be set in the last
1485 * frame obtained by ieee80211_sta_ps_get_frames.
1486 * Note that driver_release_tids is relevant only if
1487 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1488 */
1489 static bool
ieee80211_sta_ps_more_data(struct sta_info * sta,u8 ignored_acs,enum ieee80211_frame_release_type reason,unsigned long driver_release_tids)1490 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1491 enum ieee80211_frame_release_type reason,
1492 unsigned long driver_release_tids)
1493 {
1494 int ac;
1495
1496 /* If the driver has data on more than one TID then
1497 * certainly there's more data if we release just a
1498 * single frame now (from a single TID). This will
1499 * only happen for PS-Poll.
1500 */
1501 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1502 hweight16(driver_release_tids) > 1)
1503 return true;
1504
1505 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1506 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1507 continue;
1508
1509 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1510 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1511 return true;
1512 }
1513
1514 return false;
1515 }
1516
1517 static void
ieee80211_sta_ps_get_frames(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason,struct sk_buff_head * frames,unsigned long * driver_release_tids)1518 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1519 enum ieee80211_frame_release_type reason,
1520 struct sk_buff_head *frames,
1521 unsigned long *driver_release_tids)
1522 {
1523 struct ieee80211_sub_if_data *sdata = sta->sdata;
1524 struct ieee80211_local *local = sdata->local;
1525 int ac;
1526
1527 /* Get response frame(s) and more data bit for the last one. */
1528 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1529 unsigned long tids;
1530
1531 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1532 continue;
1533
1534 tids = ieee80211_tids_for_ac(ac);
1535
1536 /* if we already have frames from software, then we can't also
1537 * release from hardware queues
1538 */
1539 if (skb_queue_empty(frames)) {
1540 *driver_release_tids |=
1541 sta->driver_buffered_tids & tids;
1542 *driver_release_tids |= sta->txq_buffered_tids & tids;
1543 }
1544
1545 if (!*driver_release_tids) {
1546 struct sk_buff *skb;
1547
1548 while (n_frames > 0) {
1549 skb = skb_dequeue(&sta->tx_filtered[ac]);
1550 if (!skb) {
1551 skb = skb_dequeue(
1552 &sta->ps_tx_buf[ac]);
1553 if (skb)
1554 local->total_ps_buffered--;
1555 }
1556 if (!skb)
1557 break;
1558 n_frames--;
1559 __skb_queue_tail(frames, skb);
1560 }
1561 }
1562
1563 /* If we have more frames buffered on this AC, then abort the
1564 * loop since we can't send more data from other ACs before
1565 * the buffered frames from this.
1566 */
1567 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1568 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1569 break;
1570 }
1571 }
1572
1573 static void
ieee80211_sta_ps_deliver_response(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason)1574 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1575 int n_frames, u8 ignored_acs,
1576 enum ieee80211_frame_release_type reason)
1577 {
1578 struct ieee80211_sub_if_data *sdata = sta->sdata;
1579 struct ieee80211_local *local = sdata->local;
1580 unsigned long driver_release_tids = 0;
1581 struct sk_buff_head frames;
1582 bool more_data;
1583
1584 /* Service or PS-Poll period starts */
1585 set_sta_flag(sta, WLAN_STA_SP);
1586
1587 __skb_queue_head_init(&frames);
1588
1589 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1590 &frames, &driver_release_tids);
1591
1592 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1593
1594 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1595 driver_release_tids =
1596 BIT(find_highest_prio_tid(driver_release_tids));
1597
1598 if (skb_queue_empty(&frames) && !driver_release_tids) {
1599 int tid, ac;
1600
1601 /*
1602 * For PS-Poll, this can only happen due to a race condition
1603 * when we set the TIM bit and the station notices it, but
1604 * before it can poll for the frame we expire it.
1605 *
1606 * For uAPSD, this is said in the standard (11.2.1.5 h):
1607 * At each unscheduled SP for a non-AP STA, the AP shall
1608 * attempt to transmit at least one MSDU or MMPDU, but no
1609 * more than the value specified in the Max SP Length field
1610 * in the QoS Capability element from delivery-enabled ACs,
1611 * that are destined for the non-AP STA.
1612 *
1613 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1614 */
1615
1616 /* This will evaluate to 1, 3, 5 or 7. */
1617 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1618 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1619 break;
1620 tid = 7 - 2 * ac;
1621
1622 ieee80211_send_null_response(sta, tid, reason, true, false);
1623 } else if (!driver_release_tids) {
1624 struct sk_buff_head pending;
1625 struct sk_buff *skb;
1626 int num = 0;
1627 u16 tids = 0;
1628 bool need_null = false;
1629
1630 skb_queue_head_init(&pending);
1631
1632 while ((skb = __skb_dequeue(&frames))) {
1633 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1634 struct ieee80211_hdr *hdr = (void *) skb->data;
1635 u8 *qoshdr = NULL;
1636
1637 num++;
1638
1639 /*
1640 * Tell TX path to send this frame even though the
1641 * STA may still remain is PS mode after this frame
1642 * exchange.
1643 */
1644 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1645 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1646
1647 /*
1648 * Use MoreData flag to indicate whether there are
1649 * more buffered frames for this STA
1650 */
1651 if (more_data || !skb_queue_empty(&frames))
1652 hdr->frame_control |=
1653 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1654 else
1655 hdr->frame_control &=
1656 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1657
1658 if (ieee80211_is_data_qos(hdr->frame_control) ||
1659 ieee80211_is_qos_nullfunc(hdr->frame_control))
1660 qoshdr = ieee80211_get_qos_ctl(hdr);
1661
1662 tids |= BIT(skb->priority);
1663
1664 __skb_queue_tail(&pending, skb);
1665
1666 /* end service period after last frame or add one */
1667 if (!skb_queue_empty(&frames))
1668 continue;
1669
1670 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1671 /* for PS-Poll, there's only one frame */
1672 info->flags |= IEEE80211_TX_STATUS_EOSP |
1673 IEEE80211_TX_CTL_REQ_TX_STATUS;
1674 break;
1675 }
1676
1677 /* For uAPSD, things are a bit more complicated. If the
1678 * last frame has a QoS header (i.e. is a QoS-data or
1679 * QoS-nulldata frame) then just set the EOSP bit there
1680 * and be done.
1681 * If the frame doesn't have a QoS header (which means
1682 * it should be a bufferable MMPDU) then we can't set
1683 * the EOSP bit in the QoS header; add a QoS-nulldata
1684 * frame to the list to send it after the MMPDU.
1685 *
1686 * Note that this code is only in the mac80211-release
1687 * code path, we assume that the driver will not buffer
1688 * anything but QoS-data frames, or if it does, will
1689 * create the QoS-nulldata frame by itself if needed.
1690 *
1691 * Cf. 802.11-2012 10.2.1.10 (c).
1692 */
1693 if (qoshdr) {
1694 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1695
1696 info->flags |= IEEE80211_TX_STATUS_EOSP |
1697 IEEE80211_TX_CTL_REQ_TX_STATUS;
1698 } else {
1699 /* The standard isn't completely clear on this
1700 * as it says the more-data bit should be set
1701 * if there are more BUs. The QoS-Null frame
1702 * we're about to send isn't buffered yet, we
1703 * only create it below, but let's pretend it
1704 * was buffered just in case some clients only
1705 * expect more-data=0 when eosp=1.
1706 */
1707 hdr->frame_control |=
1708 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1709 need_null = true;
1710 num++;
1711 }
1712 break;
1713 }
1714
1715 drv_allow_buffered_frames(local, sta, tids, num,
1716 reason, more_data);
1717
1718 ieee80211_add_pending_skbs(local, &pending);
1719
1720 if (need_null)
1721 ieee80211_send_null_response(
1722 sta, find_highest_prio_tid(tids),
1723 reason, false, false);
1724
1725 sta_info_recalc_tim(sta);
1726 } else {
1727 int tid;
1728
1729 /*
1730 * We need to release a frame that is buffered somewhere in the
1731 * driver ... it'll have to handle that.
1732 * Note that the driver also has to check the number of frames
1733 * on the TIDs we're releasing from - if there are more than
1734 * n_frames it has to set the more-data bit (if we didn't ask
1735 * it to set it anyway due to other buffered frames); if there
1736 * are fewer than n_frames it has to make sure to adjust that
1737 * to allow the service period to end properly.
1738 */
1739 drv_release_buffered_frames(local, sta, driver_release_tids,
1740 n_frames, reason, more_data);
1741
1742 /*
1743 * Note that we don't recalculate the TIM bit here as it would
1744 * most likely have no effect at all unless the driver told us
1745 * that the TID(s) became empty before returning here from the
1746 * release function.
1747 * Either way, however, when the driver tells us that the TID(s)
1748 * became empty or we find that a txq became empty, we'll do the
1749 * TIM recalculation.
1750 */
1751
1752 if (!sta->sta.txq[0])
1753 return;
1754
1755 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1756 if (!sta->sta.txq[tid] ||
1757 !(driver_release_tids & BIT(tid)) ||
1758 txq_has_queue(sta->sta.txq[tid]))
1759 continue;
1760
1761 sta_info_recalc_tim(sta);
1762 break;
1763 }
1764 }
1765 }
1766
ieee80211_sta_ps_deliver_poll_response(struct sta_info * sta)1767 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1768 {
1769 u8 ignore_for_response = sta->sta.uapsd_queues;
1770
1771 /*
1772 * If all ACs are delivery-enabled then we should reply
1773 * from any of them, if only some are enabled we reply
1774 * only from the non-enabled ones.
1775 */
1776 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1777 ignore_for_response = 0;
1778
1779 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1780 IEEE80211_FRAME_RELEASE_PSPOLL);
1781 }
1782
ieee80211_sta_ps_deliver_uapsd(struct sta_info * sta)1783 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1784 {
1785 int n_frames = sta->sta.max_sp;
1786 u8 delivery_enabled = sta->sta.uapsd_queues;
1787
1788 /*
1789 * If we ever grow support for TSPEC this might happen if
1790 * the TSPEC update from hostapd comes in between a trigger
1791 * frame setting WLAN_STA_UAPSD in the RX path and this
1792 * actually getting called.
1793 */
1794 if (!delivery_enabled)
1795 return;
1796
1797 switch (sta->sta.max_sp) {
1798 case 1:
1799 n_frames = 2;
1800 break;
1801 case 2:
1802 n_frames = 4;
1803 break;
1804 case 3:
1805 n_frames = 6;
1806 break;
1807 case 0:
1808 /* XXX: what is a good value? */
1809 n_frames = 128;
1810 break;
1811 }
1812
1813 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1814 IEEE80211_FRAME_RELEASE_UAPSD);
1815 }
1816
ieee80211_sta_block_awake(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,bool block)1817 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1818 struct ieee80211_sta *pubsta, bool block)
1819 {
1820 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1821
1822 trace_api_sta_block_awake(sta->local, pubsta, block);
1823
1824 if (block) {
1825 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1826 ieee80211_clear_fast_xmit(sta);
1827 return;
1828 }
1829
1830 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1831 return;
1832
1833 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1834 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1835 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1836 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1837 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1838 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1839 /* must be asleep in this case */
1840 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1841 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1842 } else {
1843 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1844 ieee80211_check_fast_xmit(sta);
1845 }
1846 }
1847 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1848
ieee80211_sta_eosp(struct ieee80211_sta * pubsta)1849 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1850 {
1851 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1852 struct ieee80211_local *local = sta->local;
1853
1854 trace_api_eosp(local, pubsta);
1855
1856 clear_sta_flag(sta, WLAN_STA_SP);
1857 }
1858 EXPORT_SYMBOL(ieee80211_sta_eosp);
1859
ieee80211_send_eosp_nullfunc(struct ieee80211_sta * pubsta,int tid)1860 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1861 {
1862 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1863 enum ieee80211_frame_release_type reason;
1864 bool more_data;
1865
1866 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1867
1868 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1869 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1870 reason, 0);
1871
1872 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1873 }
1874 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1875
ieee80211_sta_set_buffered(struct ieee80211_sta * pubsta,u8 tid,bool buffered)1876 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1877 u8 tid, bool buffered)
1878 {
1879 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1880
1881 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1882 return;
1883
1884 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1885
1886 if (buffered)
1887 set_bit(tid, &sta->driver_buffered_tids);
1888 else
1889 clear_bit(tid, &sta->driver_buffered_tids);
1890
1891 sta_info_recalc_tim(sta);
1892 }
1893 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1894
ieee80211_sta_register_airtime(struct ieee80211_sta * pubsta,u8 tid,u32 tx_airtime,u32 rx_airtime)1895 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1896 u32 tx_airtime, u32 rx_airtime)
1897 {
1898 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1899 struct ieee80211_local *local = sta->sdata->local;
1900 u8 ac = ieee80211_ac_from_tid(tid);
1901 u32 airtime = 0;
1902
1903 if (sta->local->airtime_flags & AIRTIME_USE_TX)
1904 airtime += tx_airtime;
1905 if (sta->local->airtime_flags & AIRTIME_USE_RX)
1906 airtime += rx_airtime;
1907
1908 spin_lock_bh(&local->active_txq_lock[ac]);
1909 sta->airtime[ac].tx_airtime += tx_airtime;
1910 sta->airtime[ac].rx_airtime += rx_airtime;
1911 sta->airtime[ac].deficit -= airtime;
1912 spin_unlock_bh(&local->active_txq_lock[ac]);
1913 }
1914 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1915
ieee80211_sta_update_pending_airtime(struct ieee80211_local * local,struct sta_info * sta,u8 ac,u16 tx_airtime,bool tx_completed)1916 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1917 struct sta_info *sta, u8 ac,
1918 u16 tx_airtime, bool tx_completed)
1919 {
1920 int tx_pending;
1921
1922 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1923 return;
1924
1925 if (!tx_completed) {
1926 if (sta)
1927 atomic_add(tx_airtime,
1928 &sta->airtime[ac].aql_tx_pending);
1929
1930 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1931 return;
1932 }
1933
1934 if (sta) {
1935 tx_pending = atomic_sub_return(tx_airtime,
1936 &sta->airtime[ac].aql_tx_pending);
1937 if (tx_pending < 0)
1938 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1939 tx_pending, 0);
1940 }
1941
1942 tx_pending = atomic_sub_return(tx_airtime,
1943 &local->aql_total_pending_airtime);
1944 if (WARN_ONCE(tx_pending < 0,
1945 "Device %s AC %d pending airtime underflow: %u, %u",
1946 wiphy_name(local->hw.wiphy), ac, tx_pending,
1947 tx_airtime))
1948 atomic_cmpxchg(&local->aql_total_pending_airtime,
1949 tx_pending, 0);
1950 }
1951
sta_info_move_state(struct sta_info * sta,enum ieee80211_sta_state new_state)1952 int sta_info_move_state(struct sta_info *sta,
1953 enum ieee80211_sta_state new_state)
1954 {
1955 might_sleep();
1956
1957 if (sta->sta_state == new_state)
1958 return 0;
1959
1960 /* check allowed transitions first */
1961
1962 switch (new_state) {
1963 case IEEE80211_STA_NONE:
1964 if (sta->sta_state != IEEE80211_STA_AUTH)
1965 return -EINVAL;
1966 break;
1967 case IEEE80211_STA_AUTH:
1968 if (sta->sta_state != IEEE80211_STA_NONE &&
1969 sta->sta_state != IEEE80211_STA_ASSOC)
1970 return -EINVAL;
1971 break;
1972 case IEEE80211_STA_ASSOC:
1973 if (sta->sta_state != IEEE80211_STA_AUTH &&
1974 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1975 return -EINVAL;
1976 break;
1977 case IEEE80211_STA_AUTHORIZED:
1978 if (sta->sta_state != IEEE80211_STA_ASSOC)
1979 return -EINVAL;
1980 break;
1981 default:
1982 WARN(1, "invalid state %d", new_state);
1983 return -EINVAL;
1984 }
1985
1986 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1987 sta->sta.addr, new_state);
1988
1989 /*
1990 * notify the driver before the actual changes so it can
1991 * fail the transition
1992 */
1993 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1994 int err = drv_sta_state(sta->local, sta->sdata, sta,
1995 sta->sta_state, new_state);
1996 if (err)
1997 return err;
1998 }
1999
2000 /* reflect the change in all state variables */
2001
2002 switch (new_state) {
2003 case IEEE80211_STA_NONE:
2004 if (sta->sta_state == IEEE80211_STA_AUTH)
2005 clear_bit(WLAN_STA_AUTH, &sta->_flags);
2006 break;
2007 case IEEE80211_STA_AUTH:
2008 if (sta->sta_state == IEEE80211_STA_NONE) {
2009 set_bit(WLAN_STA_AUTH, &sta->_flags);
2010 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2011 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2012 ieee80211_recalc_min_chandef(sta->sdata);
2013 if (!sta->sta.support_p2p_ps)
2014 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2015 }
2016 break;
2017 case IEEE80211_STA_ASSOC:
2018 if (sta->sta_state == IEEE80211_STA_AUTH) {
2019 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2020 sta->assoc_at = ktime_get_boottime_ns();
2021 ieee80211_recalc_min_chandef(sta->sdata);
2022 if (!sta->sta.support_p2p_ps)
2023 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2024 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2025 ieee80211_vif_dec_num_mcast(sta->sdata);
2026 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2027 ieee80211_clear_fast_xmit(sta);
2028 ieee80211_clear_fast_rx(sta);
2029 }
2030 break;
2031 case IEEE80211_STA_AUTHORIZED:
2032 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2033 ieee80211_vif_inc_num_mcast(sta->sdata);
2034 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2035 ieee80211_check_fast_xmit(sta);
2036 ieee80211_check_fast_rx(sta);
2037 }
2038 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2039 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2040 cfg80211_send_layer2_update(sta->sdata->dev,
2041 sta->sta.addr);
2042 break;
2043 default:
2044 break;
2045 }
2046
2047 sta->sta_state = new_state;
2048
2049 return 0;
2050 }
2051
sta_info_tx_streams(struct sta_info * sta)2052 u8 sta_info_tx_streams(struct sta_info *sta)
2053 {
2054 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2055 u8 rx_streams;
2056
2057 if (!sta->sta.ht_cap.ht_supported)
2058 return 1;
2059
2060 if (sta->sta.vht_cap.vht_supported) {
2061 int i;
2062 u16 tx_mcs_map =
2063 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2064
2065 for (i = 7; i >= 0; i--)
2066 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2067 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2068 return i + 1;
2069 }
2070
2071 if (ht_cap->mcs.rx_mask[3])
2072 rx_streams = 4;
2073 else if (ht_cap->mcs.rx_mask[2])
2074 rx_streams = 3;
2075 else if (ht_cap->mcs.rx_mask[1])
2076 rx_streams = 2;
2077 else
2078 rx_streams = 1;
2079
2080 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2081 return rx_streams;
2082
2083 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2084 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2085 }
2086
2087 static struct ieee80211_sta_rx_stats *
sta_get_last_rx_stats(struct sta_info * sta)2088 sta_get_last_rx_stats(struct sta_info *sta)
2089 {
2090 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2091 int cpu;
2092
2093 if (!sta->pcpu_rx_stats)
2094 return stats;
2095
2096 for_each_possible_cpu(cpu) {
2097 struct ieee80211_sta_rx_stats *cpustats;
2098
2099 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2100
2101 if (time_after(cpustats->last_rx, stats->last_rx))
2102 stats = cpustats;
2103 }
2104
2105 return stats;
2106 }
2107
sta_stats_decode_rate(struct ieee80211_local * local,u32 rate,struct rate_info * rinfo)2108 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2109 struct rate_info *rinfo)
2110 {
2111 rinfo->bw = STA_STATS_GET(BW, rate);
2112
2113 switch (STA_STATS_GET(TYPE, rate)) {
2114 case STA_STATS_RATE_TYPE_VHT:
2115 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2116 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2117 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2118 if (STA_STATS_GET(SGI, rate))
2119 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2120 break;
2121 case STA_STATS_RATE_TYPE_HT:
2122 rinfo->flags = RATE_INFO_FLAGS_MCS;
2123 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2124 if (STA_STATS_GET(SGI, rate))
2125 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2126 break;
2127 case STA_STATS_RATE_TYPE_LEGACY: {
2128 struct ieee80211_supported_band *sband;
2129 u16 brate;
2130 unsigned int shift;
2131 int band = STA_STATS_GET(LEGACY_BAND, rate);
2132 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2133
2134 sband = local->hw.wiphy->bands[band];
2135
2136 if (WARN_ON_ONCE(!sband->bitrates))
2137 break;
2138
2139 brate = sband->bitrates[rate_idx].bitrate;
2140 if (rinfo->bw == RATE_INFO_BW_5)
2141 shift = 2;
2142 else if (rinfo->bw == RATE_INFO_BW_10)
2143 shift = 1;
2144 else
2145 shift = 0;
2146 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2147 break;
2148 }
2149 case STA_STATS_RATE_TYPE_HE:
2150 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2151 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2152 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2153 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2154 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2155 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2156 break;
2157 }
2158 }
2159
sta_set_rate_info_rx(struct sta_info * sta,struct rate_info * rinfo)2160 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2161 {
2162 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2163
2164 if (rate == STA_STATS_RATE_INVALID)
2165 return -EINVAL;
2166
2167 sta_stats_decode_rate(sta->local, rate, rinfo);
2168 return 0;
2169 }
2170
sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats * rxstats,int tid)2171 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2172 int tid)
2173 {
2174 unsigned int start;
2175 u64 value;
2176
2177 do {
2178 start = u64_stats_fetch_begin(&rxstats->syncp);
2179 value = rxstats->msdu[tid];
2180 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2181
2182 return value;
2183 }
2184
sta_set_tidstats(struct sta_info * sta,struct cfg80211_tid_stats * tidstats,int tid)2185 static void sta_set_tidstats(struct sta_info *sta,
2186 struct cfg80211_tid_stats *tidstats,
2187 int tid)
2188 {
2189 struct ieee80211_local *local = sta->local;
2190 int cpu;
2191
2192 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2193 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2194
2195 if (sta->pcpu_rx_stats) {
2196 for_each_possible_cpu(cpu) {
2197 struct ieee80211_sta_rx_stats *cpurxs;
2198
2199 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2200 tidstats->rx_msdu +=
2201 sta_get_tidstats_msdu(cpurxs, tid);
2202 }
2203 }
2204
2205 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2206 }
2207
2208 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2209 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2210 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2211 }
2212
2213 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2214 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2215 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2216 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2217 }
2218
2219 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2220 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2221 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2222 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2223 }
2224
2225 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2226 spin_lock_bh(&local->fq.lock);
2227 rcu_read_lock();
2228
2229 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2230 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2231 to_txq_info(sta->sta.txq[tid]));
2232
2233 rcu_read_unlock();
2234 spin_unlock_bh(&local->fq.lock);
2235 }
2236 }
2237
sta_get_stats_bytes(struct ieee80211_sta_rx_stats * rxstats)2238 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2239 {
2240 unsigned int start;
2241 u64 value;
2242
2243 do {
2244 start = u64_stats_fetch_begin(&rxstats->syncp);
2245 value = rxstats->bytes;
2246 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2247
2248 return value;
2249 }
2250
sta_set_sinfo(struct sta_info * sta,struct station_info * sinfo,bool tidstats)2251 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2252 bool tidstats)
2253 {
2254 struct ieee80211_sub_if_data *sdata = sta->sdata;
2255 struct ieee80211_local *local = sdata->local;
2256 u32 thr = 0;
2257 int i, ac, cpu;
2258 struct ieee80211_sta_rx_stats *last_rxstats;
2259
2260 last_rxstats = sta_get_last_rx_stats(sta);
2261
2262 sinfo->generation = sdata->local->sta_generation;
2263
2264 /* do before driver, so beacon filtering drivers have a
2265 * chance to e.g. just add the number of filtered beacons
2266 * (or just modify the value entirely, of course)
2267 */
2268 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2269 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2270
2271 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2272 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2273 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2274 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2275 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2276 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2277 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2278
2279 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2280 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2281 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2282 }
2283
2284 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2285 sinfo->assoc_at = sta->assoc_at;
2286 sinfo->inactive_time =
2287 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2288
2289 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2290 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2291 sinfo->tx_bytes = 0;
2292 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2293 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2294 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2295 }
2296
2297 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2298 sinfo->tx_packets = 0;
2299 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2300 sinfo->tx_packets += sta->tx_stats.packets[ac];
2301 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2302 }
2303
2304 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2305 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2306 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2307
2308 if (sta->pcpu_rx_stats) {
2309 for_each_possible_cpu(cpu) {
2310 struct ieee80211_sta_rx_stats *cpurxs;
2311
2312 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2313 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2314 }
2315 }
2316
2317 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2318 }
2319
2320 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2321 sinfo->rx_packets = sta->rx_stats.packets;
2322 if (sta->pcpu_rx_stats) {
2323 for_each_possible_cpu(cpu) {
2324 struct ieee80211_sta_rx_stats *cpurxs;
2325
2326 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2327 sinfo->rx_packets += cpurxs->packets;
2328 }
2329 }
2330 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2331 }
2332
2333 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2334 sinfo->tx_retries = sta->status_stats.retry_count;
2335 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2336 }
2337
2338 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2339 sinfo->tx_failed = sta->status_stats.retry_failed;
2340 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2341 }
2342
2343 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2344 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2345 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2346 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2347 }
2348
2349 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2350 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2351 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2352 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2353 }
2354
2355 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2356 sinfo->airtime_weight = sta->airtime_weight;
2357 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2358 }
2359
2360 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2361 if (sta->pcpu_rx_stats) {
2362 for_each_possible_cpu(cpu) {
2363 struct ieee80211_sta_rx_stats *cpurxs;
2364
2365 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2366 sinfo->rx_dropped_misc += cpurxs->dropped;
2367 }
2368 }
2369
2370 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2371 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2372 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2373 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2374 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2375 }
2376
2377 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2378 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2379 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2380 sinfo->signal = (s8)last_rxstats->last_signal;
2381 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2382 }
2383
2384 if (!sta->pcpu_rx_stats &&
2385 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2386 sinfo->signal_avg =
2387 -ewma_signal_read(&sta->rx_stats_avg.signal);
2388 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2389 }
2390 }
2391
2392 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2393 * the sta->rx_stats struct, so the check here is fine with and without
2394 * pcpu statistics
2395 */
2396 if (last_rxstats->chains &&
2397 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2398 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2399 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2400 if (!sta->pcpu_rx_stats)
2401 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2402
2403 sinfo->chains = last_rxstats->chains;
2404
2405 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2406 sinfo->chain_signal[i] =
2407 last_rxstats->chain_signal_last[i];
2408 sinfo->chain_signal_avg[i] =
2409 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2410 }
2411 }
2412
2413 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2414 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2415 &sinfo->txrate);
2416 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2417 }
2418
2419 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2420 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2421 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2422 }
2423
2424 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2425 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2426 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2427 }
2428
2429 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2430 #ifdef CONFIG_MAC80211_MESH
2431 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2432 BIT_ULL(NL80211_STA_INFO_PLID) |
2433 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2434 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2435 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2436 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2437 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2438 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2439
2440 sinfo->llid = sta->mesh->llid;
2441 sinfo->plid = sta->mesh->plid;
2442 sinfo->plink_state = sta->mesh->plink_state;
2443 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2444 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2445 sinfo->t_offset = sta->mesh->t_offset;
2446 }
2447 sinfo->local_pm = sta->mesh->local_pm;
2448 sinfo->peer_pm = sta->mesh->peer_pm;
2449 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2450 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2451 sinfo->connected_to_as = sta->mesh->connected_to_as;
2452 #endif
2453 }
2454
2455 sinfo->bss_param.flags = 0;
2456 if (sdata->vif.bss_conf.use_cts_prot)
2457 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2458 if (sdata->vif.bss_conf.use_short_preamble)
2459 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2460 if (sdata->vif.bss_conf.use_short_slot)
2461 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2462 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2463 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2464
2465 sinfo->sta_flags.set = 0;
2466 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2467 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2468 BIT(NL80211_STA_FLAG_WME) |
2469 BIT(NL80211_STA_FLAG_MFP) |
2470 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2471 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2472 BIT(NL80211_STA_FLAG_TDLS_PEER);
2473 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2474 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2475 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2476 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2477 if (sta->sta.wme)
2478 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2479 if (test_sta_flag(sta, WLAN_STA_MFP))
2480 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2481 if (test_sta_flag(sta, WLAN_STA_AUTH))
2482 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2483 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2484 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2485 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2486 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2487
2488 thr = sta_get_expected_throughput(sta);
2489
2490 if (thr != 0) {
2491 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2492 sinfo->expected_throughput = thr;
2493 }
2494
2495 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2496 sta->status_stats.ack_signal_filled) {
2497 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2498 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2499 }
2500
2501 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2502 sta->status_stats.ack_signal_filled) {
2503 sinfo->avg_ack_signal =
2504 -(s8)ewma_avg_signal_read(
2505 &sta->status_stats.avg_ack_signal);
2506 sinfo->filled |=
2507 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2508 }
2509
2510 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2511 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2512 sinfo->airtime_link_metric =
2513 airtime_link_metric_get(local, sta);
2514 }
2515 }
2516
sta_get_expected_throughput(struct sta_info * sta)2517 u32 sta_get_expected_throughput(struct sta_info *sta)
2518 {
2519 struct ieee80211_sub_if_data *sdata = sta->sdata;
2520 struct ieee80211_local *local = sdata->local;
2521 struct rate_control_ref *ref = NULL;
2522 u32 thr = 0;
2523
2524 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2525 ref = local->rate_ctrl;
2526
2527 /* check if the driver has a SW RC implementation */
2528 if (ref && ref->ops->get_expected_throughput)
2529 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2530 else
2531 thr = drv_get_expected_throughput(local, sta);
2532
2533 return thr;
2534 }
2535
ieee80211_sta_last_active(struct sta_info * sta)2536 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2537 {
2538 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2539
2540 if (!sta->status_stats.last_ack ||
2541 time_after(stats->last_rx, sta->status_stats.last_ack))
2542 return stats->last_rx;
2543 return sta->status_stats.last_ack;
2544 }
2545
sta_update_codel_params(struct sta_info * sta,u32 thr)2546 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2547 {
2548 if (!sta->sdata->local->ops->wake_tx_queue)
2549 return;
2550
2551 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2552 sta->cparams.target = MS2TIME(50);
2553 sta->cparams.interval = MS2TIME(300);
2554 sta->cparams.ecn = false;
2555 } else {
2556 sta->cparams.target = MS2TIME(20);
2557 sta->cparams.interval = MS2TIME(100);
2558 sta->cparams.ecn = true;
2559 }
2560 }
2561
ieee80211_sta_set_expected_throughput(struct ieee80211_sta * pubsta,u32 thr)2562 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2563 u32 thr)
2564 {
2565 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2566
2567 sta_update_codel_params(sta, thr);
2568 }
2569