• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_INVALID,				.always = false },
112 };
113 
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120 
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *	count value. On VMRUN this value is loaded into an internal counter.
126  *	Each time a pause instruction is executed, this counter is decremented
127  *	until it reaches zero at which time a #VMEXIT is generated if pause
128  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *	Intercept Filtering for more details.
130  *	This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *	the amount of time a guest is allowed to execute in a pause loop.
135  *	In this mode, a 16-bit pause filter threshold field is added in the
136  *	VMCB. The threshold value is a cycle count that is used to reset the
137  *	pause counter. As with simple pause filtering, VMRUN loads the pause
138  *	count value from VMCB into an internal counter. Then, on each pause
139  *	instruction the hardware checks the elapsed number of cycles since
140  *	the most recent pause instruction against the pause filter threshold.
141  *	If the elapsed cycle count is greater than the pause filter threshold,
142  *	then the internal pause count is reloaded from the VMCB and execution
143  *	continues. If the elapsed cycle count is less than the pause filter
144  *	threshold, then the internal pause count is decremented. If the count
145  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *	triggered. If advanced pause filtering is supported and pause filter
147  *	threshold field is set to zero, the filter will operate in the simpler,
148  *	count only mode.
149  */
150 
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153 
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156 
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160 
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164 
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168 
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195 
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197 
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199 
200 static unsigned long iopm_base;
201 
202 struct kvm_ldttss_desc {
203 	u16 limit0;
204 	u16 base0;
205 	unsigned base1:8, type:5, dpl:2, p:1;
206 	unsigned limit1:4, zero0:3, g:1, base2:8;
207 	u32 base3;
208 	u32 zero1;
209 } __attribute__((packed));
210 
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212 
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214 
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 
svm_msrpm_offset(u32 msr)219 u32 svm_msrpm_offset(u32 msr)
220 {
221 	u32 offset;
222 	int i;
223 
224 	for (i = 0; i < NUM_MSR_MAPS; i++) {
225 		if (msr < msrpm_ranges[i] ||
226 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 			continue;
228 
229 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231 
232 		/* Now we have the u8 offset - but need the u32 offset */
233 		return offset / 4;
234 	}
235 
236 	/* MSR not in any range */
237 	return MSR_INVALID;
238 }
239 
240 #define MAX_INST_SIZE 15
241 
clgi(void)242 static inline void clgi(void)
243 {
244 	asm volatile (__ex("clgi"));
245 }
246 
stgi(void)247 static inline void stgi(void)
248 {
249 	asm volatile (__ex("stgi"));
250 }
251 
invlpga(unsigned long addr,u32 asid)252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256 
get_max_npt_level(void)257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 	return PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	u64 old_efer = vcpu->arch.efer;
270 	vcpu->arch.efer = efer;
271 
272 	if (!npt_enabled) {
273 		/* Shadow paging assumes NX to be available.  */
274 		efer |= EFER_NX;
275 
276 		if (!(efer & EFER_LMA))
277 			efer &= ~EFER_LME;
278 	}
279 
280 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 		if (!(efer & EFER_SVME)) {
282 			svm_leave_nested(vcpu);
283 			svm_set_gif(svm, true);
284 
285 			/*
286 			 * Free the nested guest state, unless we are in SMM.
287 			 * In this case we will return to the nested guest
288 			 * as soon as we leave SMM.
289 			 */
290 			if (!is_smm(&svm->vcpu))
291 				svm_free_nested(svm);
292 
293 		} else {
294 			int ret = svm_allocate_nested(svm);
295 
296 			if (ret) {
297 				vcpu->arch.efer = old_efer;
298 				return ret;
299 			}
300 		}
301 	}
302 
303 	svm->vmcb->save.efer = efer | EFER_SVME;
304 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305 	return 0;
306 }
307 
is_external_interrupt(u32 info)308 static int is_external_interrupt(u32 info)
309 {
310 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
311 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
312 }
313 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)314 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
315 {
316 	struct vcpu_svm *svm = to_svm(vcpu);
317 	u32 ret = 0;
318 
319 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
320 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
321 	return ret;
322 }
323 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)324 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
325 {
326 	struct vcpu_svm *svm = to_svm(vcpu);
327 
328 	if (mask == 0)
329 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
330 	else
331 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
332 
333 }
334 
skip_emulated_instruction(struct kvm_vcpu * vcpu)335 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
336 {
337 	struct vcpu_svm *svm = to_svm(vcpu);
338 
339 	if (nrips && svm->vmcb->control.next_rip != 0) {
340 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
341 		svm->next_rip = svm->vmcb->control.next_rip;
342 	}
343 
344 	if (!svm->next_rip) {
345 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
346 			return 0;
347 	} else {
348 		kvm_rip_write(vcpu, svm->next_rip);
349 	}
350 	svm_set_interrupt_shadow(vcpu, 0);
351 
352 	return 1;
353 }
354 
svm_queue_exception(struct kvm_vcpu * vcpu)355 static void svm_queue_exception(struct kvm_vcpu *vcpu)
356 {
357 	struct vcpu_svm *svm = to_svm(vcpu);
358 	unsigned nr = vcpu->arch.exception.nr;
359 	bool has_error_code = vcpu->arch.exception.has_error_code;
360 	u32 error_code = vcpu->arch.exception.error_code;
361 
362 	kvm_deliver_exception_payload(&svm->vcpu);
363 
364 	if (nr == BP_VECTOR && !nrips) {
365 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
366 
367 		/*
368 		 * For guest debugging where we have to reinject #BP if some
369 		 * INT3 is guest-owned:
370 		 * Emulate nRIP by moving RIP forward. Will fail if injection
371 		 * raises a fault that is not intercepted. Still better than
372 		 * failing in all cases.
373 		 */
374 		(void)skip_emulated_instruction(&svm->vcpu);
375 		rip = kvm_rip_read(&svm->vcpu);
376 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
377 		svm->int3_injected = rip - old_rip;
378 	}
379 
380 	svm->vmcb->control.event_inj = nr
381 		| SVM_EVTINJ_VALID
382 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
383 		| SVM_EVTINJ_TYPE_EXEPT;
384 	svm->vmcb->control.event_inj_err = error_code;
385 }
386 
svm_init_erratum_383(void)387 static void svm_init_erratum_383(void)
388 {
389 	u32 low, high;
390 	int err;
391 	u64 val;
392 
393 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
394 		return;
395 
396 	/* Use _safe variants to not break nested virtualization */
397 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
398 	if (err)
399 		return;
400 
401 	val |= (1ULL << 47);
402 
403 	low  = lower_32_bits(val);
404 	high = upper_32_bits(val);
405 
406 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
407 
408 	erratum_383_found = true;
409 }
410 
svm_init_osvw(struct kvm_vcpu * vcpu)411 static void svm_init_osvw(struct kvm_vcpu *vcpu)
412 {
413 	/*
414 	 * Guests should see errata 400 and 415 as fixed (assuming that
415 	 * HLT and IO instructions are intercepted).
416 	 */
417 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
418 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
419 
420 	/*
421 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
422 	 * all osvw.status bits inside that length, including bit 0 (which is
423 	 * reserved for erratum 298), are valid. However, if host processor's
424 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
425 	 * be conservative here and therefore we tell the guest that erratum 298
426 	 * is present (because we really don't know).
427 	 */
428 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
429 		vcpu->arch.osvw.status |= 1;
430 }
431 
has_svm(void)432 static int has_svm(void)
433 {
434 	const char *msg;
435 
436 	if (!cpu_has_svm(&msg)) {
437 		printk(KERN_INFO "has_svm: %s\n", msg);
438 		return 0;
439 	}
440 
441 	if (sev_active()) {
442 		pr_info("KVM is unsupported when running as an SEV guest\n");
443 		return 0;
444 	}
445 
446 	return 1;
447 }
448 
svm_hardware_disable(void)449 static void svm_hardware_disable(void)
450 {
451 	/* Make sure we clean up behind us */
452 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
453 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
454 
455 	cpu_svm_disable();
456 
457 	amd_pmu_disable_virt();
458 }
459 
svm_hardware_enable(void)460 static int svm_hardware_enable(void)
461 {
462 
463 	struct svm_cpu_data *sd;
464 	uint64_t efer;
465 	struct desc_struct *gdt;
466 	int me = raw_smp_processor_id();
467 
468 	rdmsrl(MSR_EFER, efer);
469 	if (efer & EFER_SVME)
470 		return -EBUSY;
471 
472 	if (!has_svm()) {
473 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
474 		return -EINVAL;
475 	}
476 	sd = per_cpu(svm_data, me);
477 	if (!sd) {
478 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
479 		return -EINVAL;
480 	}
481 
482 	sd->asid_generation = 1;
483 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
484 	sd->next_asid = sd->max_asid + 1;
485 	sd->min_asid = max_sev_asid + 1;
486 
487 	gdt = get_current_gdt_rw();
488 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
489 
490 	wrmsrl(MSR_EFER, efer | EFER_SVME);
491 
492 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
493 
494 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
495 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
496 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
497 	}
498 
499 
500 	/*
501 	 * Get OSVW bits.
502 	 *
503 	 * Note that it is possible to have a system with mixed processor
504 	 * revisions and therefore different OSVW bits. If bits are not the same
505 	 * on different processors then choose the worst case (i.e. if erratum
506 	 * is present on one processor and not on another then assume that the
507 	 * erratum is present everywhere).
508 	 */
509 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
510 		uint64_t len, status = 0;
511 		int err;
512 
513 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
514 		if (!err)
515 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
516 						      &err);
517 
518 		if (err)
519 			osvw_status = osvw_len = 0;
520 		else {
521 			if (len < osvw_len)
522 				osvw_len = len;
523 			osvw_status |= status;
524 			osvw_status &= (1ULL << osvw_len) - 1;
525 		}
526 	} else
527 		osvw_status = osvw_len = 0;
528 
529 	svm_init_erratum_383();
530 
531 	amd_pmu_enable_virt();
532 
533 	return 0;
534 }
535 
svm_cpu_uninit(int cpu)536 static void svm_cpu_uninit(int cpu)
537 {
538 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
539 
540 	if (!sd)
541 		return;
542 
543 	per_cpu(svm_data, cpu) = NULL;
544 	kfree(sd->sev_vmcbs);
545 	__free_page(sd->save_area);
546 	kfree(sd);
547 }
548 
svm_cpu_init(int cpu)549 static int svm_cpu_init(int cpu)
550 {
551 	struct svm_cpu_data *sd;
552 
553 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
554 	if (!sd)
555 		return -ENOMEM;
556 	sd->cpu = cpu;
557 	sd->save_area = alloc_page(GFP_KERNEL);
558 	if (!sd->save_area)
559 		goto free_cpu_data;
560 
561 	if (svm_sev_enabled()) {
562 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
563 					      sizeof(void *),
564 					      GFP_KERNEL);
565 		if (!sd->sev_vmcbs)
566 			goto free_save_area;
567 	}
568 
569 	per_cpu(svm_data, cpu) = sd;
570 
571 	return 0;
572 
573 free_save_area:
574 	__free_page(sd->save_area);
575 free_cpu_data:
576 	kfree(sd);
577 	return -ENOMEM;
578 
579 }
580 
direct_access_msr_slot(u32 msr)581 static int direct_access_msr_slot(u32 msr)
582 {
583 	u32 i;
584 
585 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
586 		if (direct_access_msrs[i].index == msr)
587 			return i;
588 
589 	return -ENOENT;
590 }
591 
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)592 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
593 				     int write)
594 {
595 	struct vcpu_svm *svm = to_svm(vcpu);
596 	int slot = direct_access_msr_slot(msr);
597 
598 	if (slot == -ENOENT)
599 		return;
600 
601 	/* Set the shadow bitmaps to the desired intercept states */
602 	if (read)
603 		set_bit(slot, svm->shadow_msr_intercept.read);
604 	else
605 		clear_bit(slot, svm->shadow_msr_intercept.read);
606 
607 	if (write)
608 		set_bit(slot, svm->shadow_msr_intercept.write);
609 	else
610 		clear_bit(slot, svm->shadow_msr_intercept.write);
611 }
612 
valid_msr_intercept(u32 index)613 static bool valid_msr_intercept(u32 index)
614 {
615 	return direct_access_msr_slot(index) != -ENOENT;
616 }
617 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)618 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
619 {
620 	u8 bit_write;
621 	unsigned long tmp;
622 	u32 offset;
623 	u32 *msrpm;
624 
625 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
626 				      to_svm(vcpu)->msrpm;
627 
628 	offset    = svm_msrpm_offset(msr);
629 	bit_write = 2 * (msr & 0x0f) + 1;
630 	tmp       = msrpm[offset];
631 
632 	BUG_ON(offset == MSR_INVALID);
633 
634 	return !!test_bit(bit_write,  &tmp);
635 }
636 
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)637 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
638 					u32 msr, int read, int write)
639 {
640 	u8 bit_read, bit_write;
641 	unsigned long tmp;
642 	u32 offset;
643 
644 	/*
645 	 * If this warning triggers extend the direct_access_msrs list at the
646 	 * beginning of the file
647 	 */
648 	WARN_ON(!valid_msr_intercept(msr));
649 
650 	/* Enforce non allowed MSRs to trap */
651 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
652 		read = 0;
653 
654 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
655 		write = 0;
656 
657 	offset    = svm_msrpm_offset(msr);
658 	bit_read  = 2 * (msr & 0x0f);
659 	bit_write = 2 * (msr & 0x0f) + 1;
660 	tmp       = msrpm[offset];
661 
662 	BUG_ON(offset == MSR_INVALID);
663 
664 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
665 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
666 
667 	msrpm[offset] = tmp;
668 }
669 
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)670 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
671 				 int read, int write)
672 {
673 	set_shadow_msr_intercept(vcpu, msr, read, write);
674 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
675 }
676 
svm_vcpu_alloc_msrpm(void)677 u32 *svm_vcpu_alloc_msrpm(void)
678 {
679 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
680 	u32 *msrpm;
681 
682 	if (!pages)
683 		return NULL;
684 
685 	msrpm = page_address(pages);
686 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
687 
688 	return msrpm;
689 }
690 
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)691 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
692 {
693 	int i;
694 
695 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
696 		if (!direct_access_msrs[i].always)
697 			continue;
698 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
699 	}
700 }
701 
702 
svm_vcpu_free_msrpm(u32 * msrpm)703 void svm_vcpu_free_msrpm(u32 *msrpm)
704 {
705 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
706 }
707 
svm_msr_filter_changed(struct kvm_vcpu * vcpu)708 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
709 {
710 	struct vcpu_svm *svm = to_svm(vcpu);
711 	u32 i;
712 
713 	/*
714 	 * Set intercept permissions for all direct access MSRs again. They
715 	 * will automatically get filtered through the MSR filter, so we are
716 	 * back in sync after this.
717 	 */
718 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
719 		u32 msr = direct_access_msrs[i].index;
720 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
721 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
722 
723 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
724 	}
725 }
726 
add_msr_offset(u32 offset)727 static void add_msr_offset(u32 offset)
728 {
729 	int i;
730 
731 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
732 
733 		/* Offset already in list? */
734 		if (msrpm_offsets[i] == offset)
735 			return;
736 
737 		/* Slot used by another offset? */
738 		if (msrpm_offsets[i] != MSR_INVALID)
739 			continue;
740 
741 		/* Add offset to list */
742 		msrpm_offsets[i] = offset;
743 
744 		return;
745 	}
746 
747 	/*
748 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
749 	 * increase MSRPM_OFFSETS in this case.
750 	 */
751 	BUG();
752 }
753 
init_msrpm_offsets(void)754 static void init_msrpm_offsets(void)
755 {
756 	int i;
757 
758 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
759 
760 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
761 		u32 offset;
762 
763 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
764 		BUG_ON(offset == MSR_INVALID);
765 
766 		add_msr_offset(offset);
767 	}
768 }
769 
svm_enable_lbrv(struct kvm_vcpu * vcpu)770 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
771 {
772 	struct vcpu_svm *svm = to_svm(vcpu);
773 
774 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
775 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
776 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
777 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
778 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
779 }
780 
svm_disable_lbrv(struct kvm_vcpu * vcpu)781 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
782 {
783 	struct vcpu_svm *svm = to_svm(vcpu);
784 
785 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
786 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
787 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
788 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
789 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
790 }
791 
disable_nmi_singlestep(struct vcpu_svm * svm)792 void disable_nmi_singlestep(struct vcpu_svm *svm)
793 {
794 	svm->nmi_singlestep = false;
795 
796 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
797 		/* Clear our flags if they were not set by the guest */
798 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
799 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
800 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
801 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
802 	}
803 }
804 
grow_ple_window(struct kvm_vcpu * vcpu)805 static void grow_ple_window(struct kvm_vcpu *vcpu)
806 {
807 	struct vcpu_svm *svm = to_svm(vcpu);
808 	struct vmcb_control_area *control = &svm->vmcb->control;
809 	int old = control->pause_filter_count;
810 
811 	control->pause_filter_count = __grow_ple_window(old,
812 							pause_filter_count,
813 							pause_filter_count_grow,
814 							pause_filter_count_max);
815 
816 	if (control->pause_filter_count != old) {
817 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
818 		trace_kvm_ple_window_update(vcpu->vcpu_id,
819 					    control->pause_filter_count, old);
820 	}
821 }
822 
shrink_ple_window(struct kvm_vcpu * vcpu)823 static void shrink_ple_window(struct kvm_vcpu *vcpu)
824 {
825 	struct vcpu_svm *svm = to_svm(vcpu);
826 	struct vmcb_control_area *control = &svm->vmcb->control;
827 	int old = control->pause_filter_count;
828 
829 	control->pause_filter_count =
830 				__shrink_ple_window(old,
831 						    pause_filter_count,
832 						    pause_filter_count_shrink,
833 						    pause_filter_count);
834 	if (control->pause_filter_count != old) {
835 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
836 		trace_kvm_ple_window_update(vcpu->vcpu_id,
837 					    control->pause_filter_count, old);
838 	}
839 }
840 
841 /*
842  * The default MMIO mask is a single bit (excluding the present bit),
843  * which could conflict with the memory encryption bit. Check for
844  * memory encryption support and override the default MMIO mask if
845  * memory encryption is enabled.
846  */
svm_adjust_mmio_mask(void)847 static __init void svm_adjust_mmio_mask(void)
848 {
849 	unsigned int enc_bit, mask_bit;
850 	u64 msr, mask;
851 
852 	/* If there is no memory encryption support, use existing mask */
853 	if (cpuid_eax(0x80000000) < 0x8000001f)
854 		return;
855 
856 	/* If memory encryption is not enabled, use existing mask */
857 	rdmsrl(MSR_K8_SYSCFG, msr);
858 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
859 		return;
860 
861 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
862 	mask_bit = boot_cpu_data.x86_phys_bits;
863 
864 	/* Increment the mask bit if it is the same as the encryption bit */
865 	if (enc_bit == mask_bit)
866 		mask_bit++;
867 
868 	/*
869 	 * If the mask bit location is below 52, then some bits above the
870 	 * physical addressing limit will always be reserved, so use the
871 	 * rsvd_bits() function to generate the mask. This mask, along with
872 	 * the present bit, will be used to generate a page fault with
873 	 * PFER.RSV = 1.
874 	 *
875 	 * If the mask bit location is 52 (or above), then clear the mask.
876 	 */
877 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
878 
879 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
880 }
881 
svm_hardware_teardown(void)882 static void svm_hardware_teardown(void)
883 {
884 	int cpu;
885 
886 	if (svm_sev_enabled())
887 		sev_hardware_teardown();
888 
889 	for_each_possible_cpu(cpu)
890 		svm_cpu_uninit(cpu);
891 
892 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
893 	iopm_base = 0;
894 }
895 
svm_set_cpu_caps(void)896 static __init void svm_set_cpu_caps(void)
897 {
898 	kvm_set_cpu_caps();
899 
900 	supported_xss = 0;
901 
902 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
903 	if (nested) {
904 		kvm_cpu_cap_set(X86_FEATURE_SVM);
905 
906 		if (nrips)
907 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
908 
909 		if (npt_enabled)
910 			kvm_cpu_cap_set(X86_FEATURE_NPT);
911 	}
912 
913 	/* CPUID 0x80000008 */
914 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
915 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
916 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
917 
918 	/* Enable INVPCID feature */
919 	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
920 }
921 
svm_hardware_setup(void)922 static __init int svm_hardware_setup(void)
923 {
924 	int cpu;
925 	struct page *iopm_pages;
926 	void *iopm_va;
927 	int r;
928 
929 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
930 
931 	if (!iopm_pages)
932 		return -ENOMEM;
933 
934 	iopm_va = page_address(iopm_pages);
935 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
936 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
937 
938 	init_msrpm_offsets();
939 
940 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
941 
942 	if (boot_cpu_has(X86_FEATURE_NX))
943 		kvm_enable_efer_bits(EFER_NX);
944 
945 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
946 		kvm_enable_efer_bits(EFER_FFXSR);
947 
948 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
949 		kvm_has_tsc_control = true;
950 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
951 		kvm_tsc_scaling_ratio_frac_bits = 32;
952 	}
953 
954 	/* Check for pause filtering support */
955 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
956 		pause_filter_count = 0;
957 		pause_filter_thresh = 0;
958 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
959 		pause_filter_thresh = 0;
960 	}
961 
962 	if (nested) {
963 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
964 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
965 	}
966 
967 	if (sev) {
968 		if (boot_cpu_has(X86_FEATURE_SEV) &&
969 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
970 			r = sev_hardware_setup();
971 			if (r)
972 				sev = false;
973 		} else {
974 			sev = false;
975 		}
976 	}
977 
978 	svm_adjust_mmio_mask();
979 
980 	for_each_possible_cpu(cpu) {
981 		r = svm_cpu_init(cpu);
982 		if (r)
983 			goto err;
984 	}
985 
986 	if (!boot_cpu_has(X86_FEATURE_NPT))
987 		npt_enabled = false;
988 
989 	if (npt_enabled && !npt)
990 		npt_enabled = false;
991 
992 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
993 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
994 
995 	if (nrips) {
996 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
997 			nrips = false;
998 	}
999 
1000 	if (avic) {
1001 		if (!npt_enabled ||
1002 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1003 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1004 			avic = false;
1005 		} else {
1006 			pr_info("AVIC enabled\n");
1007 
1008 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1009 		}
1010 	}
1011 
1012 	if (vls) {
1013 		if (!npt_enabled ||
1014 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1015 		    !IS_ENABLED(CONFIG_X86_64)) {
1016 			vls = false;
1017 		} else {
1018 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1019 		}
1020 	}
1021 
1022 	if (vgif) {
1023 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1024 			vgif = false;
1025 		else
1026 			pr_info("Virtual GIF supported\n");
1027 	}
1028 
1029 	svm_set_cpu_caps();
1030 
1031 	/*
1032 	 * It seems that on AMD processors PTE's accessed bit is
1033 	 * being set by the CPU hardware before the NPF vmexit.
1034 	 * This is not expected behaviour and our tests fail because
1035 	 * of it.
1036 	 * A workaround here is to disable support for
1037 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1038 	 * In this case userspace can know if there is support using
1039 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1040 	 * it
1041 	 * If future AMD CPU models change the behaviour described above,
1042 	 * this variable can be changed accordingly
1043 	 */
1044 	allow_smaller_maxphyaddr = !npt_enabled;
1045 
1046 	return 0;
1047 
1048 err:
1049 	svm_hardware_teardown();
1050 	return r;
1051 }
1052 
init_seg(struct vmcb_seg * seg)1053 static void init_seg(struct vmcb_seg *seg)
1054 {
1055 	seg->selector = 0;
1056 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1057 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1058 	seg->limit = 0xffff;
1059 	seg->base = 0;
1060 }
1061 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1062 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1063 {
1064 	seg->selector = 0;
1065 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1066 	seg->limit = 0xffff;
1067 	seg->base = 0;
1068 }
1069 
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1070 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1071 {
1072 	struct vcpu_svm *svm = to_svm(vcpu);
1073 	u64 g_tsc_offset = 0;
1074 
1075 	if (is_guest_mode(vcpu)) {
1076 		/* Write L1's TSC offset.  */
1077 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1078 			       svm->nested.hsave->control.tsc_offset;
1079 		svm->nested.hsave->control.tsc_offset = offset;
1080 	}
1081 
1082 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1083 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1084 				   offset);
1085 
1086 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1087 
1088 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1089 	return svm->vmcb->control.tsc_offset;
1090 }
1091 
svm_check_invpcid(struct vcpu_svm * svm)1092 static void svm_check_invpcid(struct vcpu_svm *svm)
1093 {
1094 	/*
1095 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1096 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1097 	 */
1098 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1099 		if (!npt_enabled ||
1100 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1101 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1102 		else
1103 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1104 	}
1105 }
1106 
init_vmcb(struct vcpu_svm * svm)1107 static void init_vmcb(struct vcpu_svm *svm)
1108 {
1109 	struct vmcb_control_area *control = &svm->vmcb->control;
1110 	struct vmcb_save_area *save = &svm->vmcb->save;
1111 
1112 	svm->vcpu.arch.hflags = 0;
1113 
1114 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1115 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1116 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1117 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1118 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1119 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1120 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1121 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1122 
1123 	set_dr_intercepts(svm);
1124 
1125 	set_exception_intercept(svm, PF_VECTOR);
1126 	set_exception_intercept(svm, UD_VECTOR);
1127 	set_exception_intercept(svm, MC_VECTOR);
1128 	set_exception_intercept(svm, AC_VECTOR);
1129 	set_exception_intercept(svm, DB_VECTOR);
1130 	/*
1131 	 * Guest access to VMware backdoor ports could legitimately
1132 	 * trigger #GP because of TSS I/O permission bitmap.
1133 	 * We intercept those #GP and allow access to them anyway
1134 	 * as VMware does.
1135 	 */
1136 	if (enable_vmware_backdoor)
1137 		set_exception_intercept(svm, GP_VECTOR);
1138 
1139 	svm_set_intercept(svm, INTERCEPT_INTR);
1140 	svm_set_intercept(svm, INTERCEPT_NMI);
1141 	svm_set_intercept(svm, INTERCEPT_SMI);
1142 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1143 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1144 	svm_set_intercept(svm, INTERCEPT_CPUID);
1145 	svm_set_intercept(svm, INTERCEPT_INVD);
1146 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1147 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1148 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1149 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1150 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1151 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1152 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1153 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1154 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1155 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1156 	svm_set_intercept(svm, INTERCEPT_STGI);
1157 	svm_set_intercept(svm, INTERCEPT_CLGI);
1158 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1159 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1160 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1161 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1162 	svm_set_intercept(svm, INTERCEPT_RSM);
1163 
1164 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1165 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1166 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1167 	}
1168 
1169 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1170 		svm_set_intercept(svm, INTERCEPT_HLT);
1171 
1172 	control->iopm_base_pa = __sme_set(iopm_base);
1173 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1174 	control->int_ctl = V_INTR_MASKING_MASK;
1175 
1176 	init_seg(&save->es);
1177 	init_seg(&save->ss);
1178 	init_seg(&save->ds);
1179 	init_seg(&save->fs);
1180 	init_seg(&save->gs);
1181 
1182 	save->cs.selector = 0xf000;
1183 	save->cs.base = 0xffff0000;
1184 	/* Executable/Readable Code Segment */
1185 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1186 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1187 	save->cs.limit = 0xffff;
1188 
1189 	save->gdtr.limit = 0xffff;
1190 	save->idtr.limit = 0xffff;
1191 
1192 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1193 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1194 
1195 	svm_set_cr4(&svm->vcpu, 0);
1196 	svm_set_efer(&svm->vcpu, 0);
1197 	save->dr6 = 0xffff0ff0;
1198 	kvm_set_rflags(&svm->vcpu, 2);
1199 	save->rip = 0x0000fff0;
1200 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1201 
1202 	/*
1203 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1204 	 * It also updates the guest-visible cr0 value.
1205 	 */
1206 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1207 	kvm_mmu_reset_context(&svm->vcpu);
1208 
1209 	save->cr4 = X86_CR4_PAE;
1210 	/* rdx = ?? */
1211 
1212 	if (npt_enabled) {
1213 		/* Setup VMCB for Nested Paging */
1214 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1215 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1216 		clr_exception_intercept(svm, PF_VECTOR);
1217 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1218 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1219 		save->g_pat = svm->vcpu.arch.pat;
1220 		save->cr3 = 0;
1221 		save->cr4 = 0;
1222 	}
1223 	svm->asid_generation = 0;
1224 
1225 	svm->nested.vmcb12_gpa = 0;
1226 	svm->vcpu.arch.hflags = 0;
1227 
1228 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1229 		control->pause_filter_count = pause_filter_count;
1230 		if (pause_filter_thresh)
1231 			control->pause_filter_thresh = pause_filter_thresh;
1232 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1233 	} else {
1234 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1235 	}
1236 
1237 	svm_check_invpcid(svm);
1238 
1239 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1240 		avic_init_vmcb(svm);
1241 
1242 	/*
1243 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1244 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1245 	 */
1246 	if (vls) {
1247 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1248 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1249 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1250 	}
1251 
1252 	if (vgif) {
1253 		svm_clr_intercept(svm, INTERCEPT_STGI);
1254 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1255 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1256 	}
1257 
1258 	if (sev_guest(svm->vcpu.kvm)) {
1259 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1260 		clr_exception_intercept(svm, UD_VECTOR);
1261 	}
1262 
1263 	vmcb_mark_all_dirty(svm->vmcb);
1264 
1265 	enable_gif(svm);
1266 
1267 }
1268 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1269 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1270 {
1271 	struct vcpu_svm *svm = to_svm(vcpu);
1272 	u32 dummy;
1273 	u32 eax = 1;
1274 
1275 	svm->spec_ctrl = 0;
1276 	svm->virt_spec_ctrl = 0;
1277 
1278 	if (!init_event) {
1279 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1280 					   MSR_IA32_APICBASE_ENABLE;
1281 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1282 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1283 	}
1284 	init_vmcb(svm);
1285 
1286 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1287 	kvm_rdx_write(vcpu, eax);
1288 
1289 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1290 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1291 }
1292 
svm_create_vcpu(struct kvm_vcpu * vcpu)1293 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1294 {
1295 	struct vcpu_svm *svm;
1296 	struct page *vmcb_page;
1297 	int err;
1298 
1299 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1300 	svm = to_svm(vcpu);
1301 
1302 	err = -ENOMEM;
1303 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1304 	if (!vmcb_page)
1305 		goto out;
1306 
1307 	err = avic_init_vcpu(svm);
1308 	if (err)
1309 		goto error_free_vmcb_page;
1310 
1311 	/* We initialize this flag to true to make sure that the is_running
1312 	 * bit would be set the first time the vcpu is loaded.
1313 	 */
1314 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1315 		svm->avic_is_running = true;
1316 
1317 	svm->msrpm = svm_vcpu_alloc_msrpm();
1318 	if (!svm->msrpm) {
1319 		err = -ENOMEM;
1320 		goto error_free_vmcb_page;
1321 	}
1322 
1323 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1324 
1325 	svm->vmcb = page_address(vmcb_page);
1326 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1327 	svm->asid_generation = 0;
1328 	init_vmcb(svm);
1329 
1330 	svm_init_osvw(vcpu);
1331 	vcpu->arch.microcode_version = 0x01000065;
1332 
1333 	return 0;
1334 
1335 error_free_vmcb_page:
1336 	__free_page(vmcb_page);
1337 out:
1338 	return err;
1339 }
1340 
svm_clear_current_vmcb(struct vmcb * vmcb)1341 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1342 {
1343 	int i;
1344 
1345 	for_each_online_cpu(i)
1346 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1347 }
1348 
svm_free_vcpu(struct kvm_vcpu * vcpu)1349 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1350 {
1351 	struct vcpu_svm *svm = to_svm(vcpu);
1352 
1353 	/*
1354 	 * The vmcb page can be recycled, causing a false negative in
1355 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1356 	 * vmcb page recorded as its current vmcb.
1357 	 */
1358 	svm_clear_current_vmcb(svm->vmcb);
1359 
1360 	svm_free_nested(svm);
1361 
1362 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1363 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1364 }
1365 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1366 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1367 {
1368 	struct vcpu_svm *svm = to_svm(vcpu);
1369 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1370 	int i;
1371 
1372 	if (unlikely(cpu != vcpu->cpu)) {
1373 		svm->asid_generation = 0;
1374 		vmcb_mark_all_dirty(svm->vmcb);
1375 	}
1376 
1377 #ifdef CONFIG_X86_64
1378 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1379 #endif
1380 	savesegment(fs, svm->host.fs);
1381 	savesegment(gs, svm->host.gs);
1382 	svm->host.ldt = kvm_read_ldt();
1383 
1384 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1385 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1386 
1387 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1388 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1389 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1390 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1391 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1392 		}
1393 	}
1394 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1395 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1396 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1397 
1398 	if (sd->current_vmcb != svm->vmcb) {
1399 		sd->current_vmcb = svm->vmcb;
1400 		indirect_branch_prediction_barrier();
1401 	}
1402 	avic_vcpu_load(vcpu, cpu);
1403 }
1404 
svm_vcpu_put(struct kvm_vcpu * vcpu)1405 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407 	struct vcpu_svm *svm = to_svm(vcpu);
1408 	int i;
1409 
1410 	avic_vcpu_put(vcpu);
1411 
1412 	++vcpu->stat.host_state_reload;
1413 	kvm_load_ldt(svm->host.ldt);
1414 #ifdef CONFIG_X86_64
1415 	loadsegment(fs, svm->host.fs);
1416 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1417 	load_gs_index(svm->host.gs);
1418 #else
1419 #ifdef CONFIG_X86_32_LAZY_GS
1420 	loadsegment(gs, svm->host.gs);
1421 #endif
1422 #endif
1423 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1424 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1425 }
1426 
svm_get_rflags(struct kvm_vcpu * vcpu)1427 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1428 {
1429 	struct vcpu_svm *svm = to_svm(vcpu);
1430 	unsigned long rflags = svm->vmcb->save.rflags;
1431 
1432 	if (svm->nmi_singlestep) {
1433 		/* Hide our flags if they were not set by the guest */
1434 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1435 			rflags &= ~X86_EFLAGS_TF;
1436 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1437 			rflags &= ~X86_EFLAGS_RF;
1438 	}
1439 	return rflags;
1440 }
1441 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1442 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1443 {
1444 	if (to_svm(vcpu)->nmi_singlestep)
1445 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1446 
1447        /*
1448         * Any change of EFLAGS.VM is accompanied by a reload of SS
1449         * (caused by either a task switch or an inter-privilege IRET),
1450         * so we do not need to update the CPL here.
1451         */
1452 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1453 }
1454 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1455 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1456 {
1457 	switch (reg) {
1458 	case VCPU_EXREG_PDPTR:
1459 		BUG_ON(!npt_enabled);
1460 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1461 		break;
1462 	default:
1463 		WARN_ON_ONCE(1);
1464 	}
1465 }
1466 
svm_set_vintr(struct vcpu_svm * svm)1467 static void svm_set_vintr(struct vcpu_svm *svm)
1468 {
1469 	struct vmcb_control_area *control;
1470 
1471 	/* The following fields are ignored when AVIC is enabled */
1472 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1473 	svm_set_intercept(svm, INTERCEPT_VINTR);
1474 
1475 	/*
1476 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1477 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1478 	 */
1479 	control = &svm->vmcb->control;
1480 	control->int_vector = 0x0;
1481 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1482 	control->int_ctl |= V_IRQ_MASK |
1483 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1484 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1485 }
1486 
svm_clear_vintr(struct vcpu_svm * svm)1487 static void svm_clear_vintr(struct vcpu_svm *svm)
1488 {
1489 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1490 
1491 	/* Drop int_ctl fields related to VINTR injection.  */
1492 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1493 	if (is_guest_mode(&svm->vcpu)) {
1494 		svm->nested.hsave->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1495 
1496 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1497 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1498 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1499 			V_IRQ_INJECTION_BITS_MASK;
1500 
1501 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1502 	}
1503 
1504 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1505 }
1506 
svm_seg(struct kvm_vcpu * vcpu,int seg)1507 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1508 {
1509 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1510 
1511 	switch (seg) {
1512 	case VCPU_SREG_CS: return &save->cs;
1513 	case VCPU_SREG_DS: return &save->ds;
1514 	case VCPU_SREG_ES: return &save->es;
1515 	case VCPU_SREG_FS: return &save->fs;
1516 	case VCPU_SREG_GS: return &save->gs;
1517 	case VCPU_SREG_SS: return &save->ss;
1518 	case VCPU_SREG_TR: return &save->tr;
1519 	case VCPU_SREG_LDTR: return &save->ldtr;
1520 	}
1521 	BUG();
1522 	return NULL;
1523 }
1524 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1525 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1526 {
1527 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1528 
1529 	return s->base;
1530 }
1531 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1532 static void svm_get_segment(struct kvm_vcpu *vcpu,
1533 			    struct kvm_segment *var, int seg)
1534 {
1535 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1536 
1537 	var->base = s->base;
1538 	var->limit = s->limit;
1539 	var->selector = s->selector;
1540 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1541 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1542 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1543 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1544 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1545 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1546 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1547 
1548 	/*
1549 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1550 	 * However, the SVM spec states that the G bit is not observed by the
1551 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1552 	 * So let's synthesize a legal G bit for all segments, this helps
1553 	 * running KVM nested. It also helps cross-vendor migration, because
1554 	 * Intel's vmentry has a check on the 'G' bit.
1555 	 */
1556 	var->g = s->limit > 0xfffff;
1557 
1558 	/*
1559 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1560 	 * for cross vendor migration purposes by "not present"
1561 	 */
1562 	var->unusable = !var->present;
1563 
1564 	switch (seg) {
1565 	case VCPU_SREG_TR:
1566 		/*
1567 		 * Work around a bug where the busy flag in the tr selector
1568 		 * isn't exposed
1569 		 */
1570 		var->type |= 0x2;
1571 		break;
1572 	case VCPU_SREG_DS:
1573 	case VCPU_SREG_ES:
1574 	case VCPU_SREG_FS:
1575 	case VCPU_SREG_GS:
1576 		/*
1577 		 * The accessed bit must always be set in the segment
1578 		 * descriptor cache, although it can be cleared in the
1579 		 * descriptor, the cached bit always remains at 1. Since
1580 		 * Intel has a check on this, set it here to support
1581 		 * cross-vendor migration.
1582 		 */
1583 		if (!var->unusable)
1584 			var->type |= 0x1;
1585 		break;
1586 	case VCPU_SREG_SS:
1587 		/*
1588 		 * On AMD CPUs sometimes the DB bit in the segment
1589 		 * descriptor is left as 1, although the whole segment has
1590 		 * been made unusable. Clear it here to pass an Intel VMX
1591 		 * entry check when cross vendor migrating.
1592 		 */
1593 		if (var->unusable)
1594 			var->db = 0;
1595 		/* This is symmetric with svm_set_segment() */
1596 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1597 		break;
1598 	}
1599 }
1600 
svm_get_cpl(struct kvm_vcpu * vcpu)1601 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1602 {
1603 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1604 
1605 	return save->cpl;
1606 }
1607 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1608 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1609 {
1610 	struct vcpu_svm *svm = to_svm(vcpu);
1611 
1612 	dt->size = svm->vmcb->save.idtr.limit;
1613 	dt->address = svm->vmcb->save.idtr.base;
1614 }
1615 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1616 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1617 {
1618 	struct vcpu_svm *svm = to_svm(vcpu);
1619 
1620 	svm->vmcb->save.idtr.limit = dt->size;
1621 	svm->vmcb->save.idtr.base = dt->address ;
1622 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1623 }
1624 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1625 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1626 {
1627 	struct vcpu_svm *svm = to_svm(vcpu);
1628 
1629 	dt->size = svm->vmcb->save.gdtr.limit;
1630 	dt->address = svm->vmcb->save.gdtr.base;
1631 }
1632 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1633 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1634 {
1635 	struct vcpu_svm *svm = to_svm(vcpu);
1636 
1637 	svm->vmcb->save.gdtr.limit = dt->size;
1638 	svm->vmcb->save.gdtr.base = dt->address ;
1639 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1640 }
1641 
update_cr0_intercept(struct vcpu_svm * svm)1642 static void update_cr0_intercept(struct vcpu_svm *svm)
1643 {
1644 	ulong gcr0 = svm->vcpu.arch.cr0;
1645 	u64 *hcr0 = &svm->vmcb->save.cr0;
1646 
1647 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1648 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1649 
1650 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1651 
1652 	if (gcr0 == *hcr0) {
1653 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1654 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1655 	} else {
1656 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1657 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1658 	}
1659 }
1660 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1661 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1662 {
1663 	struct vcpu_svm *svm = to_svm(vcpu);
1664 
1665 #ifdef CONFIG_X86_64
1666 	if (vcpu->arch.efer & EFER_LME) {
1667 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1668 			vcpu->arch.efer |= EFER_LMA;
1669 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1670 		}
1671 
1672 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1673 			vcpu->arch.efer &= ~EFER_LMA;
1674 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1675 		}
1676 	}
1677 #endif
1678 	vcpu->arch.cr0 = cr0;
1679 
1680 	if (!npt_enabled)
1681 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1682 
1683 	/*
1684 	 * re-enable caching here because the QEMU bios
1685 	 * does not do it - this results in some delay at
1686 	 * reboot
1687 	 */
1688 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1689 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1690 	svm->vmcb->save.cr0 = cr0;
1691 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1692 	update_cr0_intercept(svm);
1693 }
1694 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1695 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1696 {
1697 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1698 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1699 
1700 	if (cr4 & X86_CR4_VMXE)
1701 		return 1;
1702 
1703 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1704 		svm_flush_tlb(vcpu);
1705 
1706 	vcpu->arch.cr4 = cr4;
1707 	if (!npt_enabled)
1708 		cr4 |= X86_CR4_PAE;
1709 	cr4 |= host_cr4_mce;
1710 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1711 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1712 	return 0;
1713 }
1714 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1715 static void svm_set_segment(struct kvm_vcpu *vcpu,
1716 			    struct kvm_segment *var, int seg)
1717 {
1718 	struct vcpu_svm *svm = to_svm(vcpu);
1719 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1720 
1721 	s->base = var->base;
1722 	s->limit = var->limit;
1723 	s->selector = var->selector;
1724 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1725 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1726 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1727 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1728 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1729 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1730 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1731 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1732 
1733 	/*
1734 	 * This is always accurate, except if SYSRET returned to a segment
1735 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1736 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1737 	 * would entail passing the CPL to userspace and back.
1738 	 */
1739 	if (seg == VCPU_SREG_SS)
1740 		/* This is symmetric with svm_get_segment() */
1741 		svm->vmcb->save.cpl = (var->dpl & 3);
1742 
1743 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1744 }
1745 
update_exception_bitmap(struct kvm_vcpu * vcpu)1746 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1747 {
1748 	struct vcpu_svm *svm = to_svm(vcpu);
1749 
1750 	clr_exception_intercept(svm, BP_VECTOR);
1751 
1752 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1753 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1754 			set_exception_intercept(svm, BP_VECTOR);
1755 	}
1756 }
1757 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1758 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1759 {
1760 	if (sd->next_asid > sd->max_asid) {
1761 		++sd->asid_generation;
1762 		sd->next_asid = sd->min_asid;
1763 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1764 	}
1765 
1766 	svm->asid_generation = sd->asid_generation;
1767 	svm->vmcb->control.asid = sd->next_asid++;
1768 
1769 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1770 }
1771 
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)1772 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1773 {
1774 	struct vmcb *vmcb = svm->vmcb;
1775 
1776 	if (unlikely(value != vmcb->save.dr6)) {
1777 		vmcb->save.dr6 = value;
1778 		vmcb_mark_dirty(vmcb, VMCB_DR);
1779 	}
1780 }
1781 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1782 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1783 {
1784 	struct vcpu_svm *svm = to_svm(vcpu);
1785 
1786 	get_debugreg(vcpu->arch.db[0], 0);
1787 	get_debugreg(vcpu->arch.db[1], 1);
1788 	get_debugreg(vcpu->arch.db[2], 2);
1789 	get_debugreg(vcpu->arch.db[3], 3);
1790 	/*
1791 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1792 	 * because db_interception might need it.  We can do it before vmentry.
1793 	 */
1794 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1795 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1796 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1797 	set_dr_intercepts(svm);
1798 }
1799 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1800 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1801 {
1802 	struct vcpu_svm *svm = to_svm(vcpu);
1803 
1804 	svm->vmcb->save.dr7 = value;
1805 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1806 }
1807 
pf_interception(struct vcpu_svm * svm)1808 static int pf_interception(struct vcpu_svm *svm)
1809 {
1810 	u64 fault_address = svm->vmcb->control.exit_info_2;
1811 	u64 error_code = svm->vmcb->control.exit_info_1;
1812 
1813 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1814 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1815 			svm->vmcb->control.insn_bytes : NULL,
1816 			svm->vmcb->control.insn_len);
1817 }
1818 
npf_interception(struct vcpu_svm * svm)1819 static int npf_interception(struct vcpu_svm *svm)
1820 {
1821 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1822 	u64 error_code = svm->vmcb->control.exit_info_1;
1823 
1824 	trace_kvm_page_fault(fault_address, error_code);
1825 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1826 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1827 			svm->vmcb->control.insn_bytes : NULL,
1828 			svm->vmcb->control.insn_len);
1829 }
1830 
db_interception(struct vcpu_svm * svm)1831 static int db_interception(struct vcpu_svm *svm)
1832 {
1833 	struct kvm_run *kvm_run = svm->vcpu.run;
1834 	struct kvm_vcpu *vcpu = &svm->vcpu;
1835 
1836 	if (!(svm->vcpu.guest_debug &
1837 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1838 		!svm->nmi_singlestep) {
1839 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1840 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1841 		return 1;
1842 	}
1843 
1844 	if (svm->nmi_singlestep) {
1845 		disable_nmi_singlestep(svm);
1846 		/* Make sure we check for pending NMIs upon entry */
1847 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1848 	}
1849 
1850 	if (svm->vcpu.guest_debug &
1851 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1852 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1853 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1854 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1855 		kvm_run->debug.arch.pc =
1856 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1857 		kvm_run->debug.arch.exception = DB_VECTOR;
1858 		return 0;
1859 	}
1860 
1861 	return 1;
1862 }
1863 
bp_interception(struct vcpu_svm * svm)1864 static int bp_interception(struct vcpu_svm *svm)
1865 {
1866 	struct kvm_run *kvm_run = svm->vcpu.run;
1867 
1868 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1869 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1870 	kvm_run->debug.arch.exception = BP_VECTOR;
1871 	return 0;
1872 }
1873 
ud_interception(struct vcpu_svm * svm)1874 static int ud_interception(struct vcpu_svm *svm)
1875 {
1876 	return handle_ud(&svm->vcpu);
1877 }
1878 
ac_interception(struct vcpu_svm * svm)1879 static int ac_interception(struct vcpu_svm *svm)
1880 {
1881 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1882 	return 1;
1883 }
1884 
gp_interception(struct vcpu_svm * svm)1885 static int gp_interception(struct vcpu_svm *svm)
1886 {
1887 	struct kvm_vcpu *vcpu = &svm->vcpu;
1888 	u32 error_code = svm->vmcb->control.exit_info_1;
1889 
1890 	WARN_ON_ONCE(!enable_vmware_backdoor);
1891 
1892 	/*
1893 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1894 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1895 	 */
1896 	if (error_code) {
1897 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1898 		return 1;
1899 	}
1900 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1901 }
1902 
is_erratum_383(void)1903 static bool is_erratum_383(void)
1904 {
1905 	int err, i;
1906 	u64 value;
1907 
1908 	if (!erratum_383_found)
1909 		return false;
1910 
1911 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1912 	if (err)
1913 		return false;
1914 
1915 	/* Bit 62 may or may not be set for this mce */
1916 	value &= ~(1ULL << 62);
1917 
1918 	if (value != 0xb600000000010015ULL)
1919 		return false;
1920 
1921 	/* Clear MCi_STATUS registers */
1922 	for (i = 0; i < 6; ++i)
1923 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1924 
1925 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1926 	if (!err) {
1927 		u32 low, high;
1928 
1929 		value &= ~(1ULL << 2);
1930 		low    = lower_32_bits(value);
1931 		high   = upper_32_bits(value);
1932 
1933 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1934 	}
1935 
1936 	/* Flush tlb to evict multi-match entries */
1937 	__flush_tlb_all();
1938 
1939 	return true;
1940 }
1941 
1942 /*
1943  * Trigger machine check on the host. We assume all the MSRs are already set up
1944  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1945  * We pass a fake environment to the machine check handler because we want
1946  * the guest to be always treated like user space, no matter what context
1947  * it used internally.
1948  */
kvm_machine_check(void)1949 static void kvm_machine_check(void)
1950 {
1951 #if defined(CONFIG_X86_MCE)
1952 	struct pt_regs regs = {
1953 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
1954 		.flags = X86_EFLAGS_IF,
1955 	};
1956 
1957 	do_machine_check(&regs);
1958 #endif
1959 }
1960 
svm_handle_mce(struct vcpu_svm * svm)1961 static void svm_handle_mce(struct vcpu_svm *svm)
1962 {
1963 	if (is_erratum_383()) {
1964 		/*
1965 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1966 		 * guest.
1967 		 */
1968 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1969 
1970 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1971 
1972 		return;
1973 	}
1974 
1975 	/*
1976 	 * On an #MC intercept the MCE handler is not called automatically in
1977 	 * the host. So do it by hand here.
1978 	 */
1979 	kvm_machine_check();
1980 }
1981 
mc_interception(struct vcpu_svm * svm)1982 static int mc_interception(struct vcpu_svm *svm)
1983 {
1984 	return 1;
1985 }
1986 
shutdown_interception(struct vcpu_svm * svm)1987 static int shutdown_interception(struct vcpu_svm *svm)
1988 {
1989 	struct kvm_run *kvm_run = svm->vcpu.run;
1990 
1991 	/*
1992 	 * VMCB is undefined after a SHUTDOWN intercept
1993 	 * so reinitialize it.
1994 	 */
1995 	clear_page(svm->vmcb);
1996 	init_vmcb(svm);
1997 
1998 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1999 	return 0;
2000 }
2001 
io_interception(struct vcpu_svm * svm)2002 static int io_interception(struct vcpu_svm *svm)
2003 {
2004 	struct kvm_vcpu *vcpu = &svm->vcpu;
2005 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2006 	int size, in, string;
2007 	unsigned port;
2008 
2009 	++svm->vcpu.stat.io_exits;
2010 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2011 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2012 	if (string)
2013 		return kvm_emulate_instruction(vcpu, 0);
2014 
2015 	port = io_info >> 16;
2016 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2017 	svm->next_rip = svm->vmcb->control.exit_info_2;
2018 
2019 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2020 }
2021 
nmi_interception(struct vcpu_svm * svm)2022 static int nmi_interception(struct vcpu_svm *svm)
2023 {
2024 	return 1;
2025 }
2026 
intr_interception(struct vcpu_svm * svm)2027 static int intr_interception(struct vcpu_svm *svm)
2028 {
2029 	++svm->vcpu.stat.irq_exits;
2030 	return 1;
2031 }
2032 
nop_on_interception(struct vcpu_svm * svm)2033 static int nop_on_interception(struct vcpu_svm *svm)
2034 {
2035 	return 1;
2036 }
2037 
halt_interception(struct vcpu_svm * svm)2038 static int halt_interception(struct vcpu_svm *svm)
2039 {
2040 	return kvm_emulate_halt(&svm->vcpu);
2041 }
2042 
vmmcall_interception(struct vcpu_svm * svm)2043 static int vmmcall_interception(struct vcpu_svm *svm)
2044 {
2045 	return kvm_emulate_hypercall(&svm->vcpu);
2046 }
2047 
vmload_interception(struct vcpu_svm * svm)2048 static int vmload_interception(struct vcpu_svm *svm)
2049 {
2050 	struct vmcb *nested_vmcb;
2051 	struct kvm_host_map map;
2052 	int ret;
2053 
2054 	if (nested_svm_check_permissions(svm))
2055 		return 1;
2056 
2057 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2058 	if (ret) {
2059 		if (ret == -EINVAL)
2060 			kvm_inject_gp(&svm->vcpu, 0);
2061 		return 1;
2062 	}
2063 
2064 	nested_vmcb = map.hva;
2065 
2066 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2067 
2068 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2069 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2070 
2071 	return ret;
2072 }
2073 
vmsave_interception(struct vcpu_svm * svm)2074 static int vmsave_interception(struct vcpu_svm *svm)
2075 {
2076 	struct vmcb *nested_vmcb;
2077 	struct kvm_host_map map;
2078 	int ret;
2079 
2080 	if (nested_svm_check_permissions(svm))
2081 		return 1;
2082 
2083 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2084 	if (ret) {
2085 		if (ret == -EINVAL)
2086 			kvm_inject_gp(&svm->vcpu, 0);
2087 		return 1;
2088 	}
2089 
2090 	nested_vmcb = map.hva;
2091 
2092 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2093 
2094 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2095 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2096 
2097 	return ret;
2098 }
2099 
vmrun_interception(struct vcpu_svm * svm)2100 static int vmrun_interception(struct vcpu_svm *svm)
2101 {
2102 	if (nested_svm_check_permissions(svm))
2103 		return 1;
2104 
2105 	return nested_svm_vmrun(svm);
2106 }
2107 
svm_set_gif(struct vcpu_svm * svm,bool value)2108 void svm_set_gif(struct vcpu_svm *svm, bool value)
2109 {
2110 	if (value) {
2111 		/*
2112 		 * If VGIF is enabled, the STGI intercept is only added to
2113 		 * detect the opening of the SMI/NMI window; remove it now.
2114 		 * Likewise, clear the VINTR intercept, we will set it
2115 		 * again while processing KVM_REQ_EVENT if needed.
2116 		 */
2117 		if (vgif_enabled(svm))
2118 			svm_clr_intercept(svm, INTERCEPT_STGI);
2119 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2120 			svm_clear_vintr(svm);
2121 
2122 		enable_gif(svm);
2123 		if (svm->vcpu.arch.smi_pending ||
2124 		    svm->vcpu.arch.nmi_pending ||
2125 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2126 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2127 	} else {
2128 		disable_gif(svm);
2129 
2130 		/*
2131 		 * After a CLGI no interrupts should come.  But if vGIF is
2132 		 * in use, we still rely on the VINTR intercept (rather than
2133 		 * STGI) to detect an open interrupt window.
2134 		*/
2135 		if (!vgif_enabled(svm))
2136 			svm_clear_vintr(svm);
2137 	}
2138 }
2139 
stgi_interception(struct vcpu_svm * svm)2140 static int stgi_interception(struct vcpu_svm *svm)
2141 {
2142 	int ret;
2143 
2144 	if (nested_svm_check_permissions(svm))
2145 		return 1;
2146 
2147 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2148 	svm_set_gif(svm, true);
2149 	return ret;
2150 }
2151 
clgi_interception(struct vcpu_svm * svm)2152 static int clgi_interception(struct vcpu_svm *svm)
2153 {
2154 	int ret;
2155 
2156 	if (nested_svm_check_permissions(svm))
2157 		return 1;
2158 
2159 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2160 	svm_set_gif(svm, false);
2161 	return ret;
2162 }
2163 
invlpga_interception(struct vcpu_svm * svm)2164 static int invlpga_interception(struct vcpu_svm *svm)
2165 {
2166 	struct kvm_vcpu *vcpu = &svm->vcpu;
2167 
2168 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2169 			  kvm_rax_read(&svm->vcpu));
2170 
2171 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2172 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2173 
2174 	return kvm_skip_emulated_instruction(&svm->vcpu);
2175 }
2176 
skinit_interception(struct vcpu_svm * svm)2177 static int skinit_interception(struct vcpu_svm *svm)
2178 {
2179 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2180 
2181 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2182 	return 1;
2183 }
2184 
wbinvd_interception(struct vcpu_svm * svm)2185 static int wbinvd_interception(struct vcpu_svm *svm)
2186 {
2187 	return kvm_emulate_wbinvd(&svm->vcpu);
2188 }
2189 
xsetbv_interception(struct vcpu_svm * svm)2190 static int xsetbv_interception(struct vcpu_svm *svm)
2191 {
2192 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2193 	u32 index = kvm_rcx_read(&svm->vcpu);
2194 
2195 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2196 		return kvm_skip_emulated_instruction(&svm->vcpu);
2197 	}
2198 
2199 	return 1;
2200 }
2201 
rdpru_interception(struct vcpu_svm * svm)2202 static int rdpru_interception(struct vcpu_svm *svm)
2203 {
2204 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2205 	return 1;
2206 }
2207 
task_switch_interception(struct vcpu_svm * svm)2208 static int task_switch_interception(struct vcpu_svm *svm)
2209 {
2210 	u16 tss_selector;
2211 	int reason;
2212 	int int_type = svm->vmcb->control.exit_int_info &
2213 		SVM_EXITINTINFO_TYPE_MASK;
2214 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2215 	uint32_t type =
2216 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2217 	uint32_t idt_v =
2218 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2219 	bool has_error_code = false;
2220 	u32 error_code = 0;
2221 
2222 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2223 
2224 	if (svm->vmcb->control.exit_info_2 &
2225 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2226 		reason = TASK_SWITCH_IRET;
2227 	else if (svm->vmcb->control.exit_info_2 &
2228 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2229 		reason = TASK_SWITCH_JMP;
2230 	else if (idt_v)
2231 		reason = TASK_SWITCH_GATE;
2232 	else
2233 		reason = TASK_SWITCH_CALL;
2234 
2235 	if (reason == TASK_SWITCH_GATE) {
2236 		switch (type) {
2237 		case SVM_EXITINTINFO_TYPE_NMI:
2238 			svm->vcpu.arch.nmi_injected = false;
2239 			break;
2240 		case SVM_EXITINTINFO_TYPE_EXEPT:
2241 			if (svm->vmcb->control.exit_info_2 &
2242 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2243 				has_error_code = true;
2244 				error_code =
2245 					(u32)svm->vmcb->control.exit_info_2;
2246 			}
2247 			kvm_clear_exception_queue(&svm->vcpu);
2248 			break;
2249 		case SVM_EXITINTINFO_TYPE_INTR:
2250 			kvm_clear_interrupt_queue(&svm->vcpu);
2251 			break;
2252 		default:
2253 			break;
2254 		}
2255 	}
2256 
2257 	if (reason != TASK_SWITCH_GATE ||
2258 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2259 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2260 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2261 		if (!skip_emulated_instruction(&svm->vcpu))
2262 			return 0;
2263 	}
2264 
2265 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2266 		int_vec = -1;
2267 
2268 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2269 			       has_error_code, error_code);
2270 }
2271 
cpuid_interception(struct vcpu_svm * svm)2272 static int cpuid_interception(struct vcpu_svm *svm)
2273 {
2274 	return kvm_emulate_cpuid(&svm->vcpu);
2275 }
2276 
iret_interception(struct vcpu_svm * svm)2277 static int iret_interception(struct vcpu_svm *svm)
2278 {
2279 	++svm->vcpu.stat.nmi_window_exits;
2280 	svm_clr_intercept(svm, INTERCEPT_IRET);
2281 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2282 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2283 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2284 	return 1;
2285 }
2286 
invd_interception(struct vcpu_svm * svm)2287 static int invd_interception(struct vcpu_svm *svm)
2288 {
2289 	/* Treat an INVD instruction as a NOP and just skip it. */
2290 	return kvm_skip_emulated_instruction(&svm->vcpu);
2291 }
2292 
invlpg_interception(struct vcpu_svm * svm)2293 static int invlpg_interception(struct vcpu_svm *svm)
2294 {
2295 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2296 		return kvm_emulate_instruction(&svm->vcpu, 0);
2297 
2298 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2299 	return kvm_skip_emulated_instruction(&svm->vcpu);
2300 }
2301 
emulate_on_interception(struct vcpu_svm * svm)2302 static int emulate_on_interception(struct vcpu_svm *svm)
2303 {
2304 	return kvm_emulate_instruction(&svm->vcpu, 0);
2305 }
2306 
rsm_interception(struct vcpu_svm * svm)2307 static int rsm_interception(struct vcpu_svm *svm)
2308 {
2309 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2310 }
2311 
rdpmc_interception(struct vcpu_svm * svm)2312 static int rdpmc_interception(struct vcpu_svm *svm)
2313 {
2314 	int err;
2315 
2316 	if (!nrips)
2317 		return emulate_on_interception(svm);
2318 
2319 	err = kvm_rdpmc(&svm->vcpu);
2320 	return kvm_complete_insn_gp(&svm->vcpu, err);
2321 }
2322 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2323 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2324 					    unsigned long val)
2325 {
2326 	unsigned long cr0 = svm->vcpu.arch.cr0;
2327 	bool ret = false;
2328 
2329 	if (!is_guest_mode(&svm->vcpu) ||
2330 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2331 		return false;
2332 
2333 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2334 	val &= ~SVM_CR0_SELECTIVE_MASK;
2335 
2336 	if (cr0 ^ val) {
2337 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2338 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2339 	}
2340 
2341 	return ret;
2342 }
2343 
2344 #define CR_VALID (1ULL << 63)
2345 
cr_interception(struct vcpu_svm * svm)2346 static int cr_interception(struct vcpu_svm *svm)
2347 {
2348 	int reg, cr;
2349 	unsigned long val;
2350 	int err;
2351 
2352 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2353 		return emulate_on_interception(svm);
2354 
2355 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2356 		return emulate_on_interception(svm);
2357 
2358 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2359 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2360 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2361 	else
2362 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2363 
2364 	err = 0;
2365 	if (cr >= 16) { /* mov to cr */
2366 		cr -= 16;
2367 		val = kvm_register_readl(&svm->vcpu, reg);
2368 		trace_kvm_cr_write(cr, val);
2369 		switch (cr) {
2370 		case 0:
2371 			if (!check_selective_cr0_intercepted(svm, val))
2372 				err = kvm_set_cr0(&svm->vcpu, val);
2373 			else
2374 				return 1;
2375 
2376 			break;
2377 		case 3:
2378 			err = kvm_set_cr3(&svm->vcpu, val);
2379 			break;
2380 		case 4:
2381 			err = kvm_set_cr4(&svm->vcpu, val);
2382 			break;
2383 		case 8:
2384 			err = kvm_set_cr8(&svm->vcpu, val);
2385 			break;
2386 		default:
2387 			WARN(1, "unhandled write to CR%d", cr);
2388 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2389 			return 1;
2390 		}
2391 	} else { /* mov from cr */
2392 		switch (cr) {
2393 		case 0:
2394 			val = kvm_read_cr0(&svm->vcpu);
2395 			break;
2396 		case 2:
2397 			val = svm->vcpu.arch.cr2;
2398 			break;
2399 		case 3:
2400 			val = kvm_read_cr3(&svm->vcpu);
2401 			break;
2402 		case 4:
2403 			val = kvm_read_cr4(&svm->vcpu);
2404 			break;
2405 		case 8:
2406 			val = kvm_get_cr8(&svm->vcpu);
2407 			break;
2408 		default:
2409 			WARN(1, "unhandled read from CR%d", cr);
2410 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2411 			return 1;
2412 		}
2413 		kvm_register_writel(&svm->vcpu, reg, val);
2414 		trace_kvm_cr_read(cr, val);
2415 	}
2416 	return kvm_complete_insn_gp(&svm->vcpu, err);
2417 }
2418 
dr_interception(struct vcpu_svm * svm)2419 static int dr_interception(struct vcpu_svm *svm)
2420 {
2421 	int reg, dr;
2422 	unsigned long val;
2423 
2424 	if (svm->vcpu.guest_debug == 0) {
2425 		/*
2426 		 * No more DR vmexits; force a reload of the debug registers
2427 		 * and reenter on this instruction.  The next vmexit will
2428 		 * retrieve the full state of the debug registers.
2429 		 */
2430 		clr_dr_intercepts(svm);
2431 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2432 		return 1;
2433 	}
2434 
2435 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2436 		return emulate_on_interception(svm);
2437 
2438 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2439 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2440 
2441 	if (dr >= 16) { /* mov to DRn */
2442 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2443 			return 1;
2444 		val = kvm_register_readl(&svm->vcpu, reg);
2445 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2446 	} else {
2447 		if (!kvm_require_dr(&svm->vcpu, dr))
2448 			return 1;
2449 		kvm_get_dr(&svm->vcpu, dr, &val);
2450 		kvm_register_writel(&svm->vcpu, reg, val);
2451 	}
2452 
2453 	return kvm_skip_emulated_instruction(&svm->vcpu);
2454 }
2455 
cr8_write_interception(struct vcpu_svm * svm)2456 static int cr8_write_interception(struct vcpu_svm *svm)
2457 {
2458 	struct kvm_run *kvm_run = svm->vcpu.run;
2459 	int r;
2460 
2461 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2462 	/* instruction emulation calls kvm_set_cr8() */
2463 	r = cr_interception(svm);
2464 	if (lapic_in_kernel(&svm->vcpu))
2465 		return r;
2466 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2467 		return r;
2468 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2469 	return 0;
2470 }
2471 
svm_get_msr_feature(struct kvm_msr_entry * msr)2472 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2473 {
2474 	msr->data = 0;
2475 
2476 	switch (msr->index) {
2477 	case MSR_F10H_DECFG:
2478 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2479 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2480 		break;
2481 	case MSR_IA32_PERF_CAPABILITIES:
2482 		return 0;
2483 	default:
2484 		return KVM_MSR_RET_INVALID;
2485 	}
2486 
2487 	return 0;
2488 }
2489 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2490 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2491 {
2492 	struct vcpu_svm *svm = to_svm(vcpu);
2493 
2494 	switch (msr_info->index) {
2495 	case MSR_STAR:
2496 		msr_info->data = svm->vmcb->save.star;
2497 		break;
2498 #ifdef CONFIG_X86_64
2499 	case MSR_LSTAR:
2500 		msr_info->data = svm->vmcb->save.lstar;
2501 		break;
2502 	case MSR_CSTAR:
2503 		msr_info->data = svm->vmcb->save.cstar;
2504 		break;
2505 	case MSR_KERNEL_GS_BASE:
2506 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2507 		break;
2508 	case MSR_SYSCALL_MASK:
2509 		msr_info->data = svm->vmcb->save.sfmask;
2510 		break;
2511 #endif
2512 	case MSR_IA32_SYSENTER_CS:
2513 		msr_info->data = svm->vmcb->save.sysenter_cs;
2514 		break;
2515 	case MSR_IA32_SYSENTER_EIP:
2516 		msr_info->data = svm->sysenter_eip;
2517 		break;
2518 	case MSR_IA32_SYSENTER_ESP:
2519 		msr_info->data = svm->sysenter_esp;
2520 		break;
2521 	case MSR_TSC_AUX:
2522 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2523 			return 1;
2524 		if (!msr_info->host_initiated &&
2525 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2526 			return 1;
2527 		msr_info->data = svm->tsc_aux;
2528 		break;
2529 	/*
2530 	 * Nobody will change the following 5 values in the VMCB so we can
2531 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2532 	 * implemented.
2533 	 */
2534 	case MSR_IA32_DEBUGCTLMSR:
2535 		msr_info->data = svm->vmcb->save.dbgctl;
2536 		break;
2537 	case MSR_IA32_LASTBRANCHFROMIP:
2538 		msr_info->data = svm->vmcb->save.br_from;
2539 		break;
2540 	case MSR_IA32_LASTBRANCHTOIP:
2541 		msr_info->data = svm->vmcb->save.br_to;
2542 		break;
2543 	case MSR_IA32_LASTINTFROMIP:
2544 		msr_info->data = svm->vmcb->save.last_excp_from;
2545 		break;
2546 	case MSR_IA32_LASTINTTOIP:
2547 		msr_info->data = svm->vmcb->save.last_excp_to;
2548 		break;
2549 	case MSR_VM_HSAVE_PA:
2550 		msr_info->data = svm->nested.hsave_msr;
2551 		break;
2552 	case MSR_VM_CR:
2553 		msr_info->data = svm->nested.vm_cr_msr;
2554 		break;
2555 	case MSR_IA32_SPEC_CTRL:
2556 		if (!msr_info->host_initiated &&
2557 		    !guest_has_spec_ctrl_msr(vcpu))
2558 			return 1;
2559 
2560 		msr_info->data = svm->spec_ctrl;
2561 		break;
2562 	case MSR_AMD64_VIRT_SPEC_CTRL:
2563 		if (!msr_info->host_initiated &&
2564 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2565 			return 1;
2566 
2567 		msr_info->data = svm->virt_spec_ctrl;
2568 		break;
2569 	case MSR_F15H_IC_CFG: {
2570 
2571 		int family, model;
2572 
2573 		family = guest_cpuid_family(vcpu);
2574 		model  = guest_cpuid_model(vcpu);
2575 
2576 		if (family < 0 || model < 0)
2577 			return kvm_get_msr_common(vcpu, msr_info);
2578 
2579 		msr_info->data = 0;
2580 
2581 		if (family == 0x15 &&
2582 		    (model >= 0x2 && model < 0x20))
2583 			msr_info->data = 0x1E;
2584 		}
2585 		break;
2586 	case MSR_F10H_DECFG:
2587 		msr_info->data = svm->msr_decfg;
2588 		break;
2589 	default:
2590 		return kvm_get_msr_common(vcpu, msr_info);
2591 	}
2592 	return 0;
2593 }
2594 
rdmsr_interception(struct vcpu_svm * svm)2595 static int rdmsr_interception(struct vcpu_svm *svm)
2596 {
2597 	return kvm_emulate_rdmsr(&svm->vcpu);
2598 }
2599 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2600 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2601 {
2602 	struct vcpu_svm *svm = to_svm(vcpu);
2603 	int svm_dis, chg_mask;
2604 
2605 	if (data & ~SVM_VM_CR_VALID_MASK)
2606 		return 1;
2607 
2608 	chg_mask = SVM_VM_CR_VALID_MASK;
2609 
2610 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2611 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2612 
2613 	svm->nested.vm_cr_msr &= ~chg_mask;
2614 	svm->nested.vm_cr_msr |= (data & chg_mask);
2615 
2616 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2617 
2618 	/* check for svm_disable while efer.svme is set */
2619 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2620 		return 1;
2621 
2622 	return 0;
2623 }
2624 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2625 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2626 {
2627 	struct vcpu_svm *svm = to_svm(vcpu);
2628 
2629 	u32 ecx = msr->index;
2630 	u64 data = msr->data;
2631 	switch (ecx) {
2632 	case MSR_IA32_CR_PAT:
2633 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2634 			return 1;
2635 		vcpu->arch.pat = data;
2636 		svm->vmcb->save.g_pat = data;
2637 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2638 		break;
2639 	case MSR_IA32_SPEC_CTRL:
2640 		if (!msr->host_initiated &&
2641 		    !guest_has_spec_ctrl_msr(vcpu))
2642 			return 1;
2643 
2644 		if (kvm_spec_ctrl_test_value(data))
2645 			return 1;
2646 
2647 		svm->spec_ctrl = data;
2648 		if (!data)
2649 			break;
2650 
2651 		/*
2652 		 * For non-nested:
2653 		 * When it's written (to non-zero) for the first time, pass
2654 		 * it through.
2655 		 *
2656 		 * For nested:
2657 		 * The handling of the MSR bitmap for L2 guests is done in
2658 		 * nested_svm_vmrun_msrpm.
2659 		 * We update the L1 MSR bit as well since it will end up
2660 		 * touching the MSR anyway now.
2661 		 */
2662 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2663 		break;
2664 	case MSR_IA32_PRED_CMD:
2665 		if (!msr->host_initiated &&
2666 		    !guest_has_pred_cmd_msr(vcpu))
2667 			return 1;
2668 
2669 		if (data & ~PRED_CMD_IBPB)
2670 			return 1;
2671 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2672 			return 1;
2673 		if (!data)
2674 			break;
2675 
2676 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2677 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2678 		break;
2679 	case MSR_AMD64_VIRT_SPEC_CTRL:
2680 		if (!msr->host_initiated &&
2681 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2682 			return 1;
2683 
2684 		if (data & ~SPEC_CTRL_SSBD)
2685 			return 1;
2686 
2687 		svm->virt_spec_ctrl = data;
2688 		break;
2689 	case MSR_STAR:
2690 		svm->vmcb->save.star = data;
2691 		break;
2692 #ifdef CONFIG_X86_64
2693 	case MSR_LSTAR:
2694 		svm->vmcb->save.lstar = data;
2695 		break;
2696 	case MSR_CSTAR:
2697 		svm->vmcb->save.cstar = data;
2698 		break;
2699 	case MSR_KERNEL_GS_BASE:
2700 		svm->vmcb->save.kernel_gs_base = data;
2701 		break;
2702 	case MSR_SYSCALL_MASK:
2703 		svm->vmcb->save.sfmask = data;
2704 		break;
2705 #endif
2706 	case MSR_IA32_SYSENTER_CS:
2707 		svm->vmcb->save.sysenter_cs = data;
2708 		break;
2709 	case MSR_IA32_SYSENTER_EIP:
2710 		svm->sysenter_eip = data;
2711 		svm->vmcb->save.sysenter_eip = data;
2712 		break;
2713 	case MSR_IA32_SYSENTER_ESP:
2714 		svm->sysenter_esp = data;
2715 		svm->vmcb->save.sysenter_esp = data;
2716 		break;
2717 	case MSR_TSC_AUX:
2718 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2719 			return 1;
2720 
2721 		if (!msr->host_initiated &&
2722 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2723 			return 1;
2724 
2725 		/*
2726 		 * This is rare, so we update the MSR here instead of using
2727 		 * direct_access_msrs.  Doing that would require a rdmsr in
2728 		 * svm_vcpu_put.
2729 		 */
2730 		svm->tsc_aux = data;
2731 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2732 		break;
2733 	case MSR_IA32_DEBUGCTLMSR:
2734 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2735 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2736 				    __func__, data);
2737 			break;
2738 		}
2739 		if (data & DEBUGCTL_RESERVED_BITS)
2740 			return 1;
2741 
2742 		svm->vmcb->save.dbgctl = data;
2743 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2744 		if (data & (1ULL<<0))
2745 			svm_enable_lbrv(vcpu);
2746 		else
2747 			svm_disable_lbrv(vcpu);
2748 		break;
2749 	case MSR_VM_HSAVE_PA:
2750 		/*
2751 		 * Old kernels did not validate the value written to
2752 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2753 		 * value to allow live migrating buggy or malicious guests
2754 		 * originating from those kernels.
2755 		 */
2756 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
2757 			return 1;
2758 
2759 		svm->nested.hsave_msr = data & PAGE_MASK;
2760 		break;
2761 	case MSR_VM_CR:
2762 		return svm_set_vm_cr(vcpu, data);
2763 	case MSR_VM_IGNNE:
2764 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2765 		break;
2766 	case MSR_F10H_DECFG: {
2767 		struct kvm_msr_entry msr_entry;
2768 
2769 		msr_entry.index = msr->index;
2770 		if (svm_get_msr_feature(&msr_entry))
2771 			return 1;
2772 
2773 		/* Check the supported bits */
2774 		if (data & ~msr_entry.data)
2775 			return 1;
2776 
2777 		/* Don't allow the guest to change a bit, #GP */
2778 		if (!msr->host_initiated && (data ^ msr_entry.data))
2779 			return 1;
2780 
2781 		svm->msr_decfg = data;
2782 		break;
2783 	}
2784 	case MSR_IA32_APICBASE:
2785 		if (kvm_vcpu_apicv_active(vcpu))
2786 			avic_update_vapic_bar(to_svm(vcpu), data);
2787 		fallthrough;
2788 	default:
2789 		return kvm_set_msr_common(vcpu, msr);
2790 	}
2791 	return 0;
2792 }
2793 
wrmsr_interception(struct vcpu_svm * svm)2794 static int wrmsr_interception(struct vcpu_svm *svm)
2795 {
2796 	return kvm_emulate_wrmsr(&svm->vcpu);
2797 }
2798 
msr_interception(struct vcpu_svm * svm)2799 static int msr_interception(struct vcpu_svm *svm)
2800 {
2801 	if (svm->vmcb->control.exit_info_1)
2802 		return wrmsr_interception(svm);
2803 	else
2804 		return rdmsr_interception(svm);
2805 }
2806 
interrupt_window_interception(struct vcpu_svm * svm)2807 static int interrupt_window_interception(struct vcpu_svm *svm)
2808 {
2809 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2810 	svm_clear_vintr(svm);
2811 
2812 	/*
2813 	 * For AVIC, the only reason to end up here is ExtINTs.
2814 	 * In this case AVIC was temporarily disabled for
2815 	 * requesting the IRQ window and we have to re-enable it.
2816 	 */
2817 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2818 
2819 	++svm->vcpu.stat.irq_window_exits;
2820 	return 1;
2821 }
2822 
pause_interception(struct vcpu_svm * svm)2823 static int pause_interception(struct vcpu_svm *svm)
2824 {
2825 	struct kvm_vcpu *vcpu = &svm->vcpu;
2826 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2827 
2828 	if (!kvm_pause_in_guest(vcpu->kvm))
2829 		grow_ple_window(vcpu);
2830 
2831 	kvm_vcpu_on_spin(vcpu, in_kernel);
2832 	return 1;
2833 }
2834 
nop_interception(struct vcpu_svm * svm)2835 static int nop_interception(struct vcpu_svm *svm)
2836 {
2837 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2838 }
2839 
monitor_interception(struct vcpu_svm * svm)2840 static int monitor_interception(struct vcpu_svm *svm)
2841 {
2842 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2843 	return nop_interception(svm);
2844 }
2845 
mwait_interception(struct vcpu_svm * svm)2846 static int mwait_interception(struct vcpu_svm *svm)
2847 {
2848 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2849 	return nop_interception(svm);
2850 }
2851 
invpcid_interception(struct vcpu_svm * svm)2852 static int invpcid_interception(struct vcpu_svm *svm)
2853 {
2854 	struct kvm_vcpu *vcpu = &svm->vcpu;
2855 	unsigned long type;
2856 	gva_t gva;
2857 
2858 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2859 		kvm_queue_exception(vcpu, UD_VECTOR);
2860 		return 1;
2861 	}
2862 
2863 	/*
2864 	 * For an INVPCID intercept:
2865 	 * EXITINFO1 provides the linear address of the memory operand.
2866 	 * EXITINFO2 provides the contents of the register operand.
2867 	 */
2868 	type = svm->vmcb->control.exit_info_2;
2869 	gva = svm->vmcb->control.exit_info_1;
2870 
2871 	if (type > 3) {
2872 		kvm_inject_gp(vcpu, 0);
2873 		return 1;
2874 	}
2875 
2876 	return kvm_handle_invpcid(vcpu, type, gva);
2877 }
2878 
2879 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2880 	[SVM_EXIT_READ_CR0]			= cr_interception,
2881 	[SVM_EXIT_READ_CR3]			= cr_interception,
2882 	[SVM_EXIT_READ_CR4]			= cr_interception,
2883 	[SVM_EXIT_READ_CR8]			= cr_interception,
2884 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2885 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2886 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2887 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2888 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2889 	[SVM_EXIT_READ_DR0]			= dr_interception,
2890 	[SVM_EXIT_READ_DR1]			= dr_interception,
2891 	[SVM_EXIT_READ_DR2]			= dr_interception,
2892 	[SVM_EXIT_READ_DR3]			= dr_interception,
2893 	[SVM_EXIT_READ_DR4]			= dr_interception,
2894 	[SVM_EXIT_READ_DR5]			= dr_interception,
2895 	[SVM_EXIT_READ_DR6]			= dr_interception,
2896 	[SVM_EXIT_READ_DR7]			= dr_interception,
2897 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2898 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2899 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2900 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2901 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2902 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2903 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2904 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2905 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2906 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2907 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2908 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2909 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2910 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2911 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2912 	[SVM_EXIT_INTR]				= intr_interception,
2913 	[SVM_EXIT_NMI]				= nmi_interception,
2914 	[SVM_EXIT_SMI]				= nop_on_interception,
2915 	[SVM_EXIT_INIT]				= nop_on_interception,
2916 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2917 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2918 	[SVM_EXIT_CPUID]			= cpuid_interception,
2919 	[SVM_EXIT_IRET]                         = iret_interception,
2920 	[SVM_EXIT_INVD]                         = invd_interception,
2921 	[SVM_EXIT_PAUSE]			= pause_interception,
2922 	[SVM_EXIT_HLT]				= halt_interception,
2923 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2924 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2925 	[SVM_EXIT_IOIO]				= io_interception,
2926 	[SVM_EXIT_MSR]				= msr_interception,
2927 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2928 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2929 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2930 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2931 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2932 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2933 	[SVM_EXIT_STGI]				= stgi_interception,
2934 	[SVM_EXIT_CLGI]				= clgi_interception,
2935 	[SVM_EXIT_SKINIT]			= skinit_interception,
2936 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2937 	[SVM_EXIT_MONITOR]			= monitor_interception,
2938 	[SVM_EXIT_MWAIT]			= mwait_interception,
2939 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2940 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2941 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
2942 	[SVM_EXIT_NPF]				= npf_interception,
2943 	[SVM_EXIT_RSM]                          = rsm_interception,
2944 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2945 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2946 };
2947 
dump_vmcb(struct kvm_vcpu * vcpu)2948 static void dump_vmcb(struct kvm_vcpu *vcpu)
2949 {
2950 	struct vcpu_svm *svm = to_svm(vcpu);
2951 	struct vmcb_control_area *control = &svm->vmcb->control;
2952 	struct vmcb_save_area *save = &svm->vmcb->save;
2953 
2954 	if (!dump_invalid_vmcb) {
2955 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2956 		return;
2957 	}
2958 
2959 	pr_err("VMCB Control Area:\n");
2960 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2961 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2962 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2963 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2964 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2965 	pr_err("%-20s%08x %08x\n", "intercepts:",
2966               control->intercepts[INTERCEPT_WORD3],
2967 	       control->intercepts[INTERCEPT_WORD4]);
2968 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2969 	pr_err("%-20s%d\n", "pause filter threshold:",
2970 	       control->pause_filter_thresh);
2971 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2972 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2973 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2974 	pr_err("%-20s%d\n", "asid:", control->asid);
2975 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2976 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2977 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2978 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2979 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2980 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2981 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2982 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2983 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2984 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2985 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2986 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2987 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2988 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2989 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2990 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2991 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2992 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2993 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2994 	pr_err("VMCB State Save Area:\n");
2995 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2996 	       "es:",
2997 	       save->es.selector, save->es.attrib,
2998 	       save->es.limit, save->es.base);
2999 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3000 	       "cs:",
3001 	       save->cs.selector, save->cs.attrib,
3002 	       save->cs.limit, save->cs.base);
3003 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3004 	       "ss:",
3005 	       save->ss.selector, save->ss.attrib,
3006 	       save->ss.limit, save->ss.base);
3007 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3008 	       "ds:",
3009 	       save->ds.selector, save->ds.attrib,
3010 	       save->ds.limit, save->ds.base);
3011 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3012 	       "fs:",
3013 	       save->fs.selector, save->fs.attrib,
3014 	       save->fs.limit, save->fs.base);
3015 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3016 	       "gs:",
3017 	       save->gs.selector, save->gs.attrib,
3018 	       save->gs.limit, save->gs.base);
3019 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3020 	       "gdtr:",
3021 	       save->gdtr.selector, save->gdtr.attrib,
3022 	       save->gdtr.limit, save->gdtr.base);
3023 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3024 	       "ldtr:",
3025 	       save->ldtr.selector, save->ldtr.attrib,
3026 	       save->ldtr.limit, save->ldtr.base);
3027 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3028 	       "idtr:",
3029 	       save->idtr.selector, save->idtr.attrib,
3030 	       save->idtr.limit, save->idtr.base);
3031 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3032 	       "tr:",
3033 	       save->tr.selector, save->tr.attrib,
3034 	       save->tr.limit, save->tr.base);
3035 	pr_err("cpl:            %d                efer:         %016llx\n",
3036 		save->cpl, save->efer);
3037 	pr_err("%-15s %016llx %-13s %016llx\n",
3038 	       "cr0:", save->cr0, "cr2:", save->cr2);
3039 	pr_err("%-15s %016llx %-13s %016llx\n",
3040 	       "cr3:", save->cr3, "cr4:", save->cr4);
3041 	pr_err("%-15s %016llx %-13s %016llx\n",
3042 	       "dr6:", save->dr6, "dr7:", save->dr7);
3043 	pr_err("%-15s %016llx %-13s %016llx\n",
3044 	       "rip:", save->rip, "rflags:", save->rflags);
3045 	pr_err("%-15s %016llx %-13s %016llx\n",
3046 	       "rsp:", save->rsp, "rax:", save->rax);
3047 	pr_err("%-15s %016llx %-13s %016llx\n",
3048 	       "star:", save->star, "lstar:", save->lstar);
3049 	pr_err("%-15s %016llx %-13s %016llx\n",
3050 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3051 	pr_err("%-15s %016llx %-13s %016llx\n",
3052 	       "kernel_gs_base:", save->kernel_gs_base,
3053 	       "sysenter_cs:", save->sysenter_cs);
3054 	pr_err("%-15s %016llx %-13s %016llx\n",
3055 	       "sysenter_esp:", save->sysenter_esp,
3056 	       "sysenter_eip:", save->sysenter_eip);
3057 	pr_err("%-15s %016llx %-13s %016llx\n",
3058 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3059 	pr_err("%-15s %016llx %-13s %016llx\n",
3060 	       "br_from:", save->br_from, "br_to:", save->br_to);
3061 	pr_err("%-15s %016llx %-13s %016llx\n",
3062 	       "excp_from:", save->last_excp_from,
3063 	       "excp_to:", save->last_excp_to);
3064 }
3065 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3066 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3067 			      u32 *intr_info, u32 *error_code)
3068 {
3069 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3070 
3071 	*info1 = control->exit_info_1;
3072 	*info2 = control->exit_info_2;
3073 	*intr_info = control->exit_int_info;
3074 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3075 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3076 		*error_code = control->exit_int_info_err;
3077 	else
3078 		*error_code = 0;
3079 }
3080 
handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3081 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3082 {
3083 	struct vcpu_svm *svm = to_svm(vcpu);
3084 	struct kvm_run *kvm_run = vcpu->run;
3085 	u32 exit_code = svm->vmcb->control.exit_code;
3086 
3087 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3088 
3089 	if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3090 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3091 	if (npt_enabled)
3092 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3093 
3094 	if (is_guest_mode(vcpu)) {
3095 		int vmexit;
3096 
3097 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3098 
3099 		vmexit = nested_svm_exit_special(svm);
3100 
3101 		if (vmexit == NESTED_EXIT_CONTINUE)
3102 			vmexit = nested_svm_exit_handled(svm);
3103 
3104 		if (vmexit == NESTED_EXIT_DONE)
3105 			return 1;
3106 	}
3107 
3108 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3109 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3110 		kvm_run->fail_entry.hardware_entry_failure_reason
3111 			= svm->vmcb->control.exit_code;
3112 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3113 		dump_vmcb(vcpu);
3114 		return 0;
3115 	}
3116 
3117 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3118 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3119 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3120 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3121 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3122 		       "exit_code 0x%x\n",
3123 		       __func__, svm->vmcb->control.exit_int_info,
3124 		       exit_code);
3125 
3126 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3127 		return 1;
3128 
3129 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3130 	    || !svm_exit_handlers[exit_code]) {
3131 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3132 		dump_vmcb(vcpu);
3133 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3134 		vcpu->run->internal.suberror =
3135 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3136 		vcpu->run->internal.ndata = 2;
3137 		vcpu->run->internal.data[0] = exit_code;
3138 		vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3139 		return 0;
3140 	}
3141 
3142 #ifdef CONFIG_RETPOLINE
3143 	if (exit_code == SVM_EXIT_MSR)
3144 		return msr_interception(svm);
3145 	else if (exit_code == SVM_EXIT_VINTR)
3146 		return interrupt_window_interception(svm);
3147 	else if (exit_code == SVM_EXIT_INTR)
3148 		return intr_interception(svm);
3149 	else if (exit_code == SVM_EXIT_HLT)
3150 		return halt_interception(svm);
3151 	else if (exit_code == SVM_EXIT_NPF)
3152 		return npf_interception(svm);
3153 #endif
3154 	return svm_exit_handlers[exit_code](svm);
3155 }
3156 
reload_tss(struct kvm_vcpu * vcpu)3157 static void reload_tss(struct kvm_vcpu *vcpu)
3158 {
3159 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3160 
3161 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3162 	load_TR_desc();
3163 }
3164 
pre_svm_run(struct vcpu_svm * svm)3165 static void pre_svm_run(struct vcpu_svm *svm)
3166 {
3167 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3168 
3169 	if (sev_guest(svm->vcpu.kvm))
3170 		return pre_sev_run(svm, svm->vcpu.cpu);
3171 
3172 	/* FIXME: handle wraparound of asid_generation */
3173 	if (svm->asid_generation != sd->asid_generation)
3174 		new_asid(svm, sd);
3175 }
3176 
svm_inject_nmi(struct kvm_vcpu * vcpu)3177 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3178 {
3179 	struct vcpu_svm *svm = to_svm(vcpu);
3180 
3181 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3182 	vcpu->arch.hflags |= HF_NMI_MASK;
3183 	svm_set_intercept(svm, INTERCEPT_IRET);
3184 	++vcpu->stat.nmi_injections;
3185 }
3186 
svm_set_irq(struct kvm_vcpu * vcpu)3187 static void svm_set_irq(struct kvm_vcpu *vcpu)
3188 {
3189 	struct vcpu_svm *svm = to_svm(vcpu);
3190 
3191 	BUG_ON(!(gif_set(svm)));
3192 
3193 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3194 	++vcpu->stat.irq_injections;
3195 
3196 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3197 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3198 }
3199 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3200 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3201 {
3202 	struct vcpu_svm *svm = to_svm(vcpu);
3203 
3204 	if (nested_svm_virtualize_tpr(vcpu))
3205 		return;
3206 
3207 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3208 
3209 	if (irr == -1)
3210 		return;
3211 
3212 	if (tpr >= irr)
3213 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3214 }
3215 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3216 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3217 {
3218 	struct vcpu_svm *svm = to_svm(vcpu);
3219 	struct vmcb *vmcb = svm->vmcb;
3220 	bool ret;
3221 
3222 	if (!gif_set(svm))
3223 		return true;
3224 
3225 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3226 		return false;
3227 
3228 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3229 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3230 
3231 	return ret;
3232 }
3233 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3234 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3235 {
3236 	struct vcpu_svm *svm = to_svm(vcpu);
3237 	if (svm->nested.nested_run_pending)
3238 		return -EBUSY;
3239 
3240 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3241 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3242 		return -EBUSY;
3243 
3244 	return !svm_nmi_blocked(vcpu);
3245 }
3246 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3247 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3248 {
3249 	struct vcpu_svm *svm = to_svm(vcpu);
3250 
3251 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3252 }
3253 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3254 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3255 {
3256 	struct vcpu_svm *svm = to_svm(vcpu);
3257 
3258 	if (masked) {
3259 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3260 		svm_set_intercept(svm, INTERCEPT_IRET);
3261 	} else {
3262 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3263 		svm_clr_intercept(svm, INTERCEPT_IRET);
3264 	}
3265 }
3266 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3267 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3268 {
3269 	struct vcpu_svm *svm = to_svm(vcpu);
3270 	struct vmcb *vmcb = svm->vmcb;
3271 
3272 	if (!gif_set(svm))
3273 		return true;
3274 
3275 	if (is_guest_mode(vcpu)) {
3276 		/* As long as interrupts are being delivered...  */
3277 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3278 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3279 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3280 			return true;
3281 
3282 		/* ... vmexits aren't blocked by the interrupt shadow  */
3283 		if (nested_exit_on_intr(svm))
3284 			return false;
3285 	} else {
3286 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3287 			return true;
3288 	}
3289 
3290 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3291 }
3292 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3293 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3294 {
3295 	struct vcpu_svm *svm = to_svm(vcpu);
3296 	if (svm->nested.nested_run_pending)
3297 		return -EBUSY;
3298 
3299 	/*
3300 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3301 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3302 	 */
3303 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3304 		return -EBUSY;
3305 
3306 	return !svm_interrupt_blocked(vcpu);
3307 }
3308 
enable_irq_window(struct kvm_vcpu * vcpu)3309 static void enable_irq_window(struct kvm_vcpu *vcpu)
3310 {
3311 	struct vcpu_svm *svm = to_svm(vcpu);
3312 
3313 	/*
3314 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3315 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3316 	 * get that intercept, this function will be called again though and
3317 	 * we'll get the vintr intercept. However, if the vGIF feature is
3318 	 * enabled, the STGI interception will not occur. Enable the irq
3319 	 * window under the assumption that the hardware will set the GIF.
3320 	 */
3321 	if (vgif_enabled(svm) || gif_set(svm)) {
3322 		/*
3323 		 * IRQ window is not needed when AVIC is enabled,
3324 		 * unless we have pending ExtINT since it cannot be injected
3325 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3326 		 * and fallback to injecting IRQ via V_IRQ.
3327 		 */
3328 		svm_toggle_avic_for_irq_window(vcpu, false);
3329 		svm_set_vintr(svm);
3330 	}
3331 }
3332 
enable_nmi_window(struct kvm_vcpu * vcpu)3333 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3334 {
3335 	struct vcpu_svm *svm = to_svm(vcpu);
3336 
3337 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3338 	    == HF_NMI_MASK)
3339 		return; /* IRET will cause a vm exit */
3340 
3341 	if (!gif_set(svm)) {
3342 		if (vgif_enabled(svm))
3343 			svm_set_intercept(svm, INTERCEPT_STGI);
3344 		return; /* STGI will cause a vm exit */
3345 	}
3346 
3347 	/*
3348 	 * Something prevents NMI from been injected. Single step over possible
3349 	 * problem (IRET or exception injection or interrupt shadow)
3350 	 */
3351 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3352 	svm->nmi_singlestep = true;
3353 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3354 }
3355 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3356 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3357 {
3358 	return 0;
3359 }
3360 
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3361 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3362 {
3363 	return 0;
3364 }
3365 
svm_flush_tlb(struct kvm_vcpu * vcpu)3366 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3367 {
3368 	struct vcpu_svm *svm = to_svm(vcpu);
3369 
3370 	/*
3371 	 * Flush only the current ASID even if the TLB flush was invoked via
3372 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3373 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3374 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3375 	 * VM-Exit (via kvm_mmu_reset_context()).
3376 	 */
3377 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3378 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3379 	else
3380 		svm->asid_generation--;
3381 }
3382 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3383 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3384 {
3385 	struct vcpu_svm *svm = to_svm(vcpu);
3386 
3387 	invlpga(gva, svm->vmcb->control.asid);
3388 }
3389 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3390 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3391 {
3392 }
3393 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3394 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3395 {
3396 	struct vcpu_svm *svm = to_svm(vcpu);
3397 
3398 	if (nested_svm_virtualize_tpr(vcpu))
3399 		return;
3400 
3401 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3402 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3403 		kvm_set_cr8(vcpu, cr8);
3404 	}
3405 }
3406 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3407 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3408 {
3409 	struct vcpu_svm *svm = to_svm(vcpu);
3410 	u64 cr8;
3411 
3412 	if (nested_svm_virtualize_tpr(vcpu) ||
3413 	    kvm_vcpu_apicv_active(vcpu))
3414 		return;
3415 
3416 	cr8 = kvm_get_cr8(vcpu);
3417 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3418 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3419 }
3420 
svm_complete_interrupts(struct vcpu_svm * svm)3421 static void svm_complete_interrupts(struct vcpu_svm *svm)
3422 {
3423 	u8 vector;
3424 	int type;
3425 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3426 	unsigned int3_injected = svm->int3_injected;
3427 
3428 	svm->int3_injected = 0;
3429 
3430 	/*
3431 	 * If we've made progress since setting HF_IRET_MASK, we've
3432 	 * executed an IRET and can allow NMI injection.
3433 	 */
3434 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3435 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3436 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3437 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3438 	}
3439 
3440 	svm->vcpu.arch.nmi_injected = false;
3441 	kvm_clear_exception_queue(&svm->vcpu);
3442 	kvm_clear_interrupt_queue(&svm->vcpu);
3443 
3444 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3445 		return;
3446 
3447 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3448 
3449 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3450 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3451 
3452 	switch (type) {
3453 	case SVM_EXITINTINFO_TYPE_NMI:
3454 		svm->vcpu.arch.nmi_injected = true;
3455 		break;
3456 	case SVM_EXITINTINFO_TYPE_EXEPT:
3457 		/*
3458 		 * In case of software exceptions, do not reinject the vector,
3459 		 * but re-execute the instruction instead. Rewind RIP first
3460 		 * if we emulated INT3 before.
3461 		 */
3462 		if (kvm_exception_is_soft(vector)) {
3463 			if (vector == BP_VECTOR && int3_injected &&
3464 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3465 				kvm_rip_write(&svm->vcpu,
3466 					      kvm_rip_read(&svm->vcpu) -
3467 					      int3_injected);
3468 			break;
3469 		}
3470 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3471 			u32 err = svm->vmcb->control.exit_int_info_err;
3472 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3473 
3474 		} else
3475 			kvm_requeue_exception(&svm->vcpu, vector);
3476 		break;
3477 	case SVM_EXITINTINFO_TYPE_INTR:
3478 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3479 		break;
3480 	default:
3481 		break;
3482 	}
3483 }
3484 
svm_cancel_injection(struct kvm_vcpu * vcpu)3485 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3486 {
3487 	struct vcpu_svm *svm = to_svm(vcpu);
3488 	struct vmcb_control_area *control = &svm->vmcb->control;
3489 
3490 	control->exit_int_info = control->event_inj;
3491 	control->exit_int_info_err = control->event_inj_err;
3492 	control->event_inj = 0;
3493 	svm_complete_interrupts(svm);
3494 }
3495 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)3496 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3497 {
3498 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3499 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3500 		return handle_fastpath_set_msr_irqoff(vcpu);
3501 
3502 	return EXIT_FASTPATH_NONE;
3503 }
3504 
3505 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3506 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)3507 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3508 					struct vcpu_svm *svm)
3509 {
3510 	/*
3511 	 * VMENTER enables interrupts (host state), but the kernel state is
3512 	 * interrupts disabled when this is invoked. Also tell RCU about
3513 	 * it. This is the same logic as for exit_to_user_mode().
3514 	 *
3515 	 * This ensures that e.g. latency analysis on the host observes
3516 	 * guest mode as interrupt enabled.
3517 	 *
3518 	 * guest_enter_irqoff() informs context tracking about the
3519 	 * transition to guest mode and if enabled adjusts RCU state
3520 	 * accordingly.
3521 	 */
3522 	instrumentation_begin();
3523 	trace_hardirqs_on_prepare();
3524 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3525 	instrumentation_end();
3526 
3527 	guest_enter_irqoff();
3528 	lockdep_hardirqs_on(CALLER_ADDR0);
3529 
3530 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3531 
3532 #ifdef CONFIG_X86_64
3533 	native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3534 #else
3535 	loadsegment(fs, svm->host.fs);
3536 #ifndef CONFIG_X86_32_LAZY_GS
3537 	loadsegment(gs, svm->host.gs);
3538 #endif
3539 #endif
3540 
3541 	/*
3542 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3543 	 * have them in state 'on' as recorded before entering guest mode.
3544 	 * Same as enter_from_user_mode().
3545 	 *
3546 	 * context_tracking_guest_exit() restores host context and reinstates
3547 	 * RCU if enabled and required.
3548 	 *
3549 	 * This needs to be done before the below as native_read_msr()
3550 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3551 	 * into world and some more.
3552 	 */
3553 	lockdep_hardirqs_off(CALLER_ADDR0);
3554 	context_tracking_guest_exit();
3555 
3556 	instrumentation_begin();
3557 	trace_hardirqs_off_finish();
3558 	instrumentation_end();
3559 }
3560 
svm_vcpu_run(struct kvm_vcpu * vcpu)3561 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3562 {
3563 	struct vcpu_svm *svm = to_svm(vcpu);
3564 
3565 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3566 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3567 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3568 
3569 	/*
3570 	 * Disable singlestep if we're injecting an interrupt/exception.
3571 	 * We don't want our modified rflags to be pushed on the stack where
3572 	 * we might not be able to easily reset them if we disabled NMI
3573 	 * singlestep later.
3574 	 */
3575 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3576 		/*
3577 		 * Event injection happens before external interrupts cause a
3578 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3579 		 * is enough to force an immediate vmexit.
3580 		 */
3581 		disable_nmi_singlestep(svm);
3582 		smp_send_reschedule(vcpu->cpu);
3583 	}
3584 
3585 	pre_svm_run(svm);
3586 
3587 	sync_lapic_to_cr8(vcpu);
3588 
3589 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3590 
3591 	/*
3592 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3593 	 * of a #DB.
3594 	 */
3595 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3596 		svm_set_dr6(svm, vcpu->arch.dr6);
3597 	else
3598 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3599 
3600 	clgi();
3601 	kvm_load_guest_xsave_state(vcpu);
3602 
3603 	kvm_wait_lapic_expire(vcpu);
3604 
3605 	/*
3606 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3607 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3608 	 * is no need to worry about the conditional branch over the wrmsr
3609 	 * being speculatively taken.
3610 	 */
3611 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3612 
3613 	svm_vcpu_enter_exit(vcpu, svm);
3614 
3615 	/*
3616 	 * We do not use IBRS in the kernel. If this vCPU has used the
3617 	 * SPEC_CTRL MSR it may have left it on; save the value and
3618 	 * turn it off. This is much more efficient than blindly adding
3619 	 * it to the atomic save/restore list. Especially as the former
3620 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3621 	 *
3622 	 * For non-nested case:
3623 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3624 	 * save it.
3625 	 *
3626 	 * For nested case:
3627 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3628 	 * save it.
3629 	 */
3630 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3631 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3632 
3633 	reload_tss(vcpu);
3634 
3635 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3636 
3637 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3638 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3639 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3640 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3641 
3642 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3643 		kvm_before_interrupt(&svm->vcpu);
3644 
3645 	kvm_load_host_xsave_state(vcpu);
3646 	stgi();
3647 
3648 	/* Any pending NMI will happen here */
3649 
3650 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3651 		kvm_after_interrupt(&svm->vcpu);
3652 
3653 	sync_cr8_to_lapic(vcpu);
3654 
3655 	svm->next_rip = 0;
3656 	if (is_guest_mode(&svm->vcpu)) {
3657 		sync_nested_vmcb_control(svm);
3658 		svm->nested.nested_run_pending = 0;
3659 	}
3660 
3661 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3662 	vmcb_mark_all_clean(svm->vmcb);
3663 
3664 	/* if exit due to PF check for async PF */
3665 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3666 		svm->vcpu.arch.apf.host_apf_flags =
3667 			kvm_read_and_reset_apf_flags();
3668 
3669 	if (npt_enabled) {
3670 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3671 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3672 	}
3673 
3674 	/*
3675 	 * We need to handle MC intercepts here before the vcpu has a chance to
3676 	 * change the physical cpu
3677 	 */
3678 	if (unlikely(svm->vmcb->control.exit_code ==
3679 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3680 		svm_handle_mce(svm);
3681 
3682 	svm_complete_interrupts(svm);
3683 
3684 	if (is_guest_mode(vcpu))
3685 		return EXIT_FASTPATH_NONE;
3686 
3687 	return svm_exit_handlers_fastpath(vcpu);
3688 }
3689 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long root,int root_level)3690 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3691 			     int root_level)
3692 {
3693 	struct vcpu_svm *svm = to_svm(vcpu);
3694 	unsigned long cr3;
3695 
3696 	cr3 = __sme_set(root);
3697 	if (npt_enabled) {
3698 		svm->vmcb->control.nested_cr3 = cr3;
3699 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3700 
3701 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3702 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3703 			return;
3704 		cr3 = vcpu->arch.cr3;
3705 	}
3706 
3707 	svm->vmcb->save.cr3 = cr3;
3708 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3709 }
3710 
is_disabled(void)3711 static int is_disabled(void)
3712 {
3713 	u64 vm_cr;
3714 
3715 	rdmsrl(MSR_VM_CR, vm_cr);
3716 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3717 		return 1;
3718 
3719 	return 0;
3720 }
3721 
3722 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)3723 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3724 {
3725 	/*
3726 	 * Patch in the VMMCALL instruction:
3727 	 */
3728 	hypercall[0] = 0x0f;
3729 	hypercall[1] = 0x01;
3730 	hypercall[2] = 0xd9;
3731 }
3732 
svm_check_processor_compat(void)3733 static int __init svm_check_processor_compat(void)
3734 {
3735 	return 0;
3736 }
3737 
svm_cpu_has_accelerated_tpr(void)3738 static bool svm_cpu_has_accelerated_tpr(void)
3739 {
3740 	return false;
3741 }
3742 
svm_has_emulated_msr(u32 index)3743 static bool svm_has_emulated_msr(u32 index)
3744 {
3745 	switch (index) {
3746 	case MSR_IA32_MCG_EXT_CTL:
3747 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3748 		return false;
3749 	default:
3750 		break;
3751 	}
3752 
3753 	return true;
3754 }
3755 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)3756 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3757 {
3758 	return 0;
3759 }
3760 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)3761 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3762 {
3763 	struct vcpu_svm *svm = to_svm(vcpu);
3764 	struct kvm_cpuid_entry2 *best;
3765 
3766 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3767 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3768 				    boot_cpu_has(X86_FEATURE_XSAVES);
3769 
3770 	/* Update nrips enabled cache */
3771 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3772 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3773 
3774 	/* Check again if INVPCID interception if required */
3775 	svm_check_invpcid(svm);
3776 
3777 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3778 	if (sev_guest(vcpu->kvm)) {
3779 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3780 		if (best)
3781 			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3782 	}
3783 
3784 	if (!kvm_vcpu_apicv_active(vcpu))
3785 		return;
3786 
3787 	/*
3788 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3789 	 * is exposed to the guest, disable AVIC.
3790 	 */
3791 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3792 		kvm_request_apicv_update(vcpu->kvm, false,
3793 					 APICV_INHIBIT_REASON_X2APIC);
3794 
3795 	/*
3796 	 * Currently, AVIC does not work with nested virtualization.
3797 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3798 	 */
3799 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3800 		kvm_request_apicv_update(vcpu->kvm, false,
3801 					 APICV_INHIBIT_REASON_NESTED);
3802 }
3803 
svm_has_wbinvd_exit(void)3804 static bool svm_has_wbinvd_exit(void)
3805 {
3806 	return true;
3807 }
3808 
3809 #define PRE_EX(exit)  { .exit_code = (exit), \
3810 			.stage = X86_ICPT_PRE_EXCEPT, }
3811 #define POST_EX(exit) { .exit_code = (exit), \
3812 			.stage = X86_ICPT_POST_EXCEPT, }
3813 #define POST_MEM(exit) { .exit_code = (exit), \
3814 			.stage = X86_ICPT_POST_MEMACCESS, }
3815 
3816 static const struct __x86_intercept {
3817 	u32 exit_code;
3818 	enum x86_intercept_stage stage;
3819 } x86_intercept_map[] = {
3820 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3821 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3822 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3823 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3824 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3825 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3826 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3827 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3828 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3829 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3830 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3831 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3832 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3833 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3834 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3835 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3836 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3837 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3838 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3839 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3840 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3841 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3842 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3843 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3844 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3845 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3846 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3847 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3848 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3849 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3850 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3851 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3852 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3853 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3854 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3855 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3856 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3857 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3858 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3859 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3860 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3861 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3862 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3863 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3864 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3865 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3866 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3867 };
3868 
3869 #undef PRE_EX
3870 #undef POST_EX
3871 #undef POST_MEM
3872 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)3873 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3874 			       struct x86_instruction_info *info,
3875 			       enum x86_intercept_stage stage,
3876 			       struct x86_exception *exception)
3877 {
3878 	struct vcpu_svm *svm = to_svm(vcpu);
3879 	int vmexit, ret = X86EMUL_CONTINUE;
3880 	struct __x86_intercept icpt_info;
3881 	struct vmcb *vmcb = svm->vmcb;
3882 
3883 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3884 		goto out;
3885 
3886 	icpt_info = x86_intercept_map[info->intercept];
3887 
3888 	if (stage != icpt_info.stage)
3889 		goto out;
3890 
3891 	switch (icpt_info.exit_code) {
3892 	case SVM_EXIT_READ_CR0:
3893 		if (info->intercept == x86_intercept_cr_read)
3894 			icpt_info.exit_code += info->modrm_reg;
3895 		break;
3896 	case SVM_EXIT_WRITE_CR0: {
3897 		unsigned long cr0, val;
3898 
3899 		if (info->intercept == x86_intercept_cr_write)
3900 			icpt_info.exit_code += info->modrm_reg;
3901 
3902 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3903 		    info->intercept == x86_intercept_clts)
3904 			break;
3905 
3906 		if (!(vmcb_is_intercept(&svm->nested.ctl,
3907 					INTERCEPT_SELECTIVE_CR0)))
3908 			break;
3909 
3910 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3911 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3912 
3913 		if (info->intercept == x86_intercept_lmsw) {
3914 			cr0 &= 0xfUL;
3915 			val &= 0xfUL;
3916 			/* lmsw can't clear PE - catch this here */
3917 			if (cr0 & X86_CR0_PE)
3918 				val |= X86_CR0_PE;
3919 		}
3920 
3921 		if (cr0 ^ val)
3922 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3923 
3924 		break;
3925 	}
3926 	case SVM_EXIT_READ_DR0:
3927 	case SVM_EXIT_WRITE_DR0:
3928 		icpt_info.exit_code += info->modrm_reg;
3929 		break;
3930 	case SVM_EXIT_MSR:
3931 		if (info->intercept == x86_intercept_wrmsr)
3932 			vmcb->control.exit_info_1 = 1;
3933 		else
3934 			vmcb->control.exit_info_1 = 0;
3935 		break;
3936 	case SVM_EXIT_PAUSE:
3937 		/*
3938 		 * We get this for NOP only, but pause
3939 		 * is rep not, check this here
3940 		 */
3941 		if (info->rep_prefix != REPE_PREFIX)
3942 			goto out;
3943 		break;
3944 	case SVM_EXIT_IOIO: {
3945 		u64 exit_info;
3946 		u32 bytes;
3947 
3948 		if (info->intercept == x86_intercept_in ||
3949 		    info->intercept == x86_intercept_ins) {
3950 			exit_info = ((info->src_val & 0xffff) << 16) |
3951 				SVM_IOIO_TYPE_MASK;
3952 			bytes = info->dst_bytes;
3953 		} else {
3954 			exit_info = (info->dst_val & 0xffff) << 16;
3955 			bytes = info->src_bytes;
3956 		}
3957 
3958 		if (info->intercept == x86_intercept_outs ||
3959 		    info->intercept == x86_intercept_ins)
3960 			exit_info |= SVM_IOIO_STR_MASK;
3961 
3962 		if (info->rep_prefix)
3963 			exit_info |= SVM_IOIO_REP_MASK;
3964 
3965 		bytes = min(bytes, 4u);
3966 
3967 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3968 
3969 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3970 
3971 		vmcb->control.exit_info_1 = exit_info;
3972 		vmcb->control.exit_info_2 = info->next_rip;
3973 
3974 		break;
3975 	}
3976 	default:
3977 		break;
3978 	}
3979 
3980 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3981 	if (static_cpu_has(X86_FEATURE_NRIPS))
3982 		vmcb->control.next_rip  = info->next_rip;
3983 	vmcb->control.exit_code = icpt_info.exit_code;
3984 	vmexit = nested_svm_exit_handled(svm);
3985 
3986 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3987 					   : X86EMUL_CONTINUE;
3988 
3989 out:
3990 	return ret;
3991 }
3992 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)3993 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3994 {
3995 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
3996 		vcpu->arch.at_instruction_boundary = true;
3997 }
3998 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)3999 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4000 {
4001 	if (!kvm_pause_in_guest(vcpu->kvm))
4002 		shrink_ple_window(vcpu);
4003 }
4004 
svm_setup_mce(struct kvm_vcpu * vcpu)4005 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4006 {
4007 	/* [63:9] are reserved. */
4008 	vcpu->arch.mcg_cap &= 0x1ff;
4009 }
4010 
svm_smi_blocked(struct kvm_vcpu * vcpu)4011 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4012 {
4013 	struct vcpu_svm *svm = to_svm(vcpu);
4014 
4015 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4016 	if (!gif_set(svm))
4017 		return true;
4018 
4019 	return is_smm(vcpu);
4020 }
4021 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4022 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4023 {
4024 	struct vcpu_svm *svm = to_svm(vcpu);
4025 	if (svm->nested.nested_run_pending)
4026 		return -EBUSY;
4027 
4028 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4029 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4030 		return -EBUSY;
4031 
4032 	return !svm_smi_blocked(vcpu);
4033 }
4034 
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)4035 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4036 {
4037 	struct vcpu_svm *svm = to_svm(vcpu);
4038 	int ret;
4039 
4040 	if (is_guest_mode(vcpu)) {
4041 		/* FED8h - SVM Guest */
4042 		put_smstate(u64, smstate, 0x7ed8, 1);
4043 		/* FEE0h - SVM Guest VMCB Physical Address */
4044 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4045 
4046 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4047 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4048 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4049 
4050 		ret = nested_svm_vmexit(svm);
4051 		if (ret)
4052 			return ret;
4053 	}
4054 	return 0;
4055 }
4056 
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)4057 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4058 {
4059 	struct vcpu_svm *svm = to_svm(vcpu);
4060 	struct kvm_host_map map;
4061 	int ret = 0;
4062 
4063 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4064 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4065 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4066 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4067 
4068 		if (guest) {
4069 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4070 				return 1;
4071 
4072 			if (!(saved_efer & EFER_SVME))
4073 				return 1;
4074 
4075 			if (kvm_vcpu_map(&svm->vcpu,
4076 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4077 				return 1;
4078 
4079 			if (svm_allocate_nested(svm))
4080 				return 1;
4081 
4082 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4083 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4084 		}
4085 	}
4086 
4087 	return ret;
4088 }
4089 
enable_smi_window(struct kvm_vcpu * vcpu)4090 static void enable_smi_window(struct kvm_vcpu *vcpu)
4091 {
4092 	struct vcpu_svm *svm = to_svm(vcpu);
4093 
4094 	if (!gif_set(svm)) {
4095 		if (vgif_enabled(svm))
4096 			svm_set_intercept(svm, INTERCEPT_STGI);
4097 		/* STGI will cause a vm exit */
4098 	} else {
4099 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4100 	}
4101 }
4102 
svm_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)4103 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4104 {
4105 	bool smep, smap, is_user;
4106 	unsigned long cr4;
4107 
4108 	/*
4109 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4110 	 *
4111 	 * Errata:
4112 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4113 	 * possible that CPU microcode implementing DecodeAssist will fail
4114 	 * to read bytes of instruction which caused #NPF. In this case,
4115 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4116 	 * return 0 instead of the correct guest instruction bytes.
4117 	 *
4118 	 * This happens because CPU microcode reading instruction bytes
4119 	 * uses a special opcode which attempts to read data using CPL=0
4120 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4121 	 * fault, it gives up and returns no instruction bytes.
4122 	 *
4123 	 * Detection:
4124 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4125 	 * returned 0 in GuestIntrBytes field of the VMCB.
4126 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4127 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4128 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4129 	 * a SMEP fault instead of #NPF).
4130 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4131 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4132 	 * logic in order to attempt minimize false-positive of detecting errata
4133 	 * while still preserving all cases semantic correctness.
4134 	 *
4135 	 * Workaround:
4136 	 * To determine what instruction the guest was executing, the hypervisor
4137 	 * will have to decode the instruction at the instruction pointer.
4138 	 *
4139 	 * In non SEV guest, hypervisor will be able to read the guest
4140 	 * memory to decode the instruction pointer when insn_len is zero
4141 	 * so we return true to indicate that decoding is possible.
4142 	 *
4143 	 * But in the SEV guest, the guest memory is encrypted with the
4144 	 * guest specific key and hypervisor will not be able to decode the
4145 	 * instruction pointer so we will not able to workaround it. Lets
4146 	 * print the error and request to kill the guest.
4147 	 */
4148 	if (likely(!insn || insn_len))
4149 		return true;
4150 
4151 	cr4 = kvm_read_cr4(vcpu);
4152 	smep = cr4 & X86_CR4_SMEP;
4153 	smap = cr4 & X86_CR4_SMAP;
4154 	is_user = svm_get_cpl(vcpu) == 3;
4155 	if (smap && (!smep || is_user)) {
4156 		if (!sev_guest(vcpu->kvm))
4157 			return true;
4158 
4159 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4160 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4161 	}
4162 
4163 	return false;
4164 }
4165 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4166 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4167 {
4168 	struct vcpu_svm *svm = to_svm(vcpu);
4169 
4170 	/*
4171 	 * TODO: Last condition latch INIT signals on vCPU when
4172 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4173 	 * To properly emulate the INIT intercept,
4174 	 * svm_check_nested_events() should call nested_svm_vmexit()
4175 	 * if an INIT signal is pending.
4176 	 */
4177 	return !gif_set(svm) ||
4178 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4179 }
4180 
svm_vm_destroy(struct kvm * kvm)4181 static void svm_vm_destroy(struct kvm *kvm)
4182 {
4183 	avic_vm_destroy(kvm);
4184 	sev_vm_destroy(kvm);
4185 }
4186 
svm_vm_init(struct kvm * kvm)4187 static int svm_vm_init(struct kvm *kvm)
4188 {
4189 	if (!pause_filter_count || !pause_filter_thresh)
4190 		kvm->arch.pause_in_guest = true;
4191 
4192 	if (avic) {
4193 		int ret = avic_vm_init(kvm);
4194 		if (ret)
4195 			return ret;
4196 	}
4197 
4198 	kvm_apicv_init(kvm, avic);
4199 	return 0;
4200 }
4201 
4202 static struct kvm_x86_ops svm_x86_ops __initdata = {
4203 	.hardware_unsetup = svm_hardware_teardown,
4204 	.hardware_enable = svm_hardware_enable,
4205 	.hardware_disable = svm_hardware_disable,
4206 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4207 	.has_emulated_msr = svm_has_emulated_msr,
4208 
4209 	.vcpu_create = svm_create_vcpu,
4210 	.vcpu_free = svm_free_vcpu,
4211 	.vcpu_reset = svm_vcpu_reset,
4212 
4213 	.vm_size = sizeof(struct kvm_svm),
4214 	.vm_init = svm_vm_init,
4215 	.vm_destroy = svm_vm_destroy,
4216 
4217 	.prepare_guest_switch = svm_prepare_guest_switch,
4218 	.vcpu_load = svm_vcpu_load,
4219 	.vcpu_put = svm_vcpu_put,
4220 	.vcpu_blocking = svm_vcpu_blocking,
4221 	.vcpu_unblocking = svm_vcpu_unblocking,
4222 
4223 	.update_exception_bitmap = update_exception_bitmap,
4224 	.get_msr_feature = svm_get_msr_feature,
4225 	.get_msr = svm_get_msr,
4226 	.set_msr = svm_set_msr,
4227 	.get_segment_base = svm_get_segment_base,
4228 	.get_segment = svm_get_segment,
4229 	.set_segment = svm_set_segment,
4230 	.get_cpl = svm_get_cpl,
4231 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4232 	.set_cr0 = svm_set_cr0,
4233 	.set_cr4 = svm_set_cr4,
4234 	.set_efer = svm_set_efer,
4235 	.get_idt = svm_get_idt,
4236 	.set_idt = svm_set_idt,
4237 	.get_gdt = svm_get_gdt,
4238 	.set_gdt = svm_set_gdt,
4239 	.set_dr7 = svm_set_dr7,
4240 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4241 	.cache_reg = svm_cache_reg,
4242 	.get_rflags = svm_get_rflags,
4243 	.set_rflags = svm_set_rflags,
4244 
4245 	.tlb_flush_all = svm_flush_tlb,
4246 	.tlb_flush_current = svm_flush_tlb,
4247 	.tlb_flush_gva = svm_flush_tlb_gva,
4248 	.tlb_flush_guest = svm_flush_tlb,
4249 
4250 	.run = svm_vcpu_run,
4251 	.handle_exit = handle_exit,
4252 	.skip_emulated_instruction = skip_emulated_instruction,
4253 	.update_emulated_instruction = NULL,
4254 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4255 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4256 	.patch_hypercall = svm_patch_hypercall,
4257 	.set_irq = svm_set_irq,
4258 	.set_nmi = svm_inject_nmi,
4259 	.queue_exception = svm_queue_exception,
4260 	.cancel_injection = svm_cancel_injection,
4261 	.interrupt_allowed = svm_interrupt_allowed,
4262 	.nmi_allowed = svm_nmi_allowed,
4263 	.get_nmi_mask = svm_get_nmi_mask,
4264 	.set_nmi_mask = svm_set_nmi_mask,
4265 	.enable_nmi_window = enable_nmi_window,
4266 	.enable_irq_window = enable_irq_window,
4267 	.update_cr8_intercept = update_cr8_intercept,
4268 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4269 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4270 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4271 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4272 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4273 	.hwapic_irr_update = svm_hwapic_irr_update,
4274 	.hwapic_isr_update = svm_hwapic_isr_update,
4275 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4276 	.apicv_post_state_restore = avic_post_state_restore,
4277 
4278 	.set_tss_addr = svm_set_tss_addr,
4279 	.set_identity_map_addr = svm_set_identity_map_addr,
4280 	.get_mt_mask = svm_get_mt_mask,
4281 
4282 	.get_exit_info = svm_get_exit_info,
4283 
4284 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4285 
4286 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4287 
4288 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4289 
4290 	.load_mmu_pgd = svm_load_mmu_pgd,
4291 
4292 	.check_intercept = svm_check_intercept,
4293 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4294 
4295 	.request_immediate_exit = __kvm_request_immediate_exit,
4296 
4297 	.sched_in = svm_sched_in,
4298 
4299 	.pmu_ops = &amd_pmu_ops,
4300 	.nested_ops = &svm_nested_ops,
4301 
4302 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4303 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4304 	.update_pi_irte = svm_update_pi_irte,
4305 	.setup_mce = svm_setup_mce,
4306 
4307 	.smi_allowed = svm_smi_allowed,
4308 	.pre_enter_smm = svm_pre_enter_smm,
4309 	.pre_leave_smm = svm_pre_leave_smm,
4310 	.enable_smi_window = enable_smi_window,
4311 
4312 	.mem_enc_op = svm_mem_enc_op,
4313 	.mem_enc_reg_region = svm_register_enc_region,
4314 	.mem_enc_unreg_region = svm_unregister_enc_region,
4315 
4316 	.can_emulate_instruction = svm_can_emulate_instruction,
4317 
4318 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4319 
4320 	.msr_filter_changed = svm_msr_filter_changed,
4321 };
4322 
4323 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4324 	.cpu_has_kvm_support = has_svm,
4325 	.disabled_by_bios = is_disabled,
4326 	.hardware_setup = svm_hardware_setup,
4327 	.check_processor_compatibility = svm_check_processor_compat,
4328 
4329 	.runtime_ops = &svm_x86_ops,
4330 };
4331 
svm_init(void)4332 static int __init svm_init(void)
4333 {
4334 	__unused_size_checks();
4335 
4336 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4337 			__alignof__(struct vcpu_svm), THIS_MODULE);
4338 }
4339 
svm_exit(void)4340 static void __exit svm_exit(void)
4341 {
4342 	kvm_exit();
4343 }
4344 
4345 module_init(svm_init)
4346 module_exit(svm_exit)
4347