• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 #include <linux/zswapd.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
swap_type_to_swap_info(int type)102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
swap_count(unsigned char ent)111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
first_se(struct swap_info_struct * sis)155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 	return rb_entry(rb, struct swap_extent, rb_node);
159 }
160 
next_se(struct swap_extent * se)161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 	struct rb_node *rb = rb_next(&se->rb_node);
164 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166 
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
discard_swap(struct swap_info_struct * si)171 static int discard_swap(struct swap_info_struct *si)
172 {
173 	struct swap_extent *se;
174 	sector_t start_block;
175 	sector_t nr_blocks;
176 	int err = 0;
177 
178 	/* Do not discard the swap header page! */
179 	se = first_se(si);
180 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 	if (nr_blocks) {
183 		err = blkdev_issue_discard(si->bdev, start_block,
184 				nr_blocks, GFP_KERNEL, 0);
185 		if (err)
186 			return err;
187 		cond_resched();
188 	}
189 
190 	for (se = next_se(se); se; se = next_se(se)) {
191 		start_block = se->start_block << (PAGE_SHIFT - 9);
192 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 
194 		err = blkdev_issue_discard(si->bdev, start_block,
195 				nr_blocks, GFP_KERNEL, 0);
196 		if (err)
197 			break;
198 
199 		cond_resched();
200 	}
201 	return err;		/* That will often be -EOPNOTSUPP */
202 }
203 
204 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 	struct swap_extent *se;
208 	struct rb_node *rb;
209 
210 	rb = sis->swap_extent_root.rb_node;
211 	while (rb) {
212 		se = rb_entry(rb, struct swap_extent, rb_node);
213 		if (offset < se->start_page)
214 			rb = rb->rb_left;
215 		else if (offset >= se->start_page + se->nr_pages)
216 			rb = rb->rb_right;
217 		else
218 			return se;
219 	}
220 	/* It *must* be present */
221 	BUG();
222 }
223 
swap_page_sector(struct page * page)224 sector_t swap_page_sector(struct page *page)
225 {
226 	struct swap_info_struct *sis = page_swap_info(page);
227 	struct swap_extent *se;
228 	sector_t sector;
229 	pgoff_t offset;
230 
231 	offset = __page_file_index(page);
232 	se = offset_to_swap_extent(sis, offset);
233 	sector = se->start_block + (offset - se->start_page);
234 	return sector << (PAGE_SHIFT - 9);
235 }
236 
237 /*
238  * swap allocation tell device that a cluster of swap can now be discarded,
239  * to allow the swap device to optimize its wear-levelling.
240  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)241 static void discard_swap_cluster(struct swap_info_struct *si,
242 				 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
245 
246 	while (nr_pages) {
247 		pgoff_t offset = start_page - se->start_page;
248 		sector_t start_block = se->start_block + offset;
249 		sector_t nr_blocks = se->nr_pages - offset;
250 
251 		if (nr_blocks > nr_pages)
252 			nr_blocks = nr_pages;
253 		start_page += nr_blocks;
254 		nr_pages -= nr_blocks;
255 
256 		start_block <<= PAGE_SHIFT - 9;
257 		nr_blocks <<= PAGE_SHIFT - 9;
258 		if (blkdev_issue_discard(si->bdev, start_block,
259 					nr_blocks, GFP_NOIO, 0))
260 			break;
261 
262 		se = next_se(se);
263 	}
264 }
265 
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
268 
269 #define swap_entry_size(size)	(size)
270 #else
271 #define SWAPFILE_CLUSTER	256
272 
273 /*
274  * Define swap_entry_size() as constant to let compiler to optimize
275  * out some code if !CONFIG_THP_SWAP
276  */
277 #define swap_entry_size(size)	1
278 #endif
279 #define LATENCY_LIMIT		256
280 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 	unsigned int flag)
283 {
284 	info->flags = flag;
285 }
286 
cluster_count(struct swap_cluster_info * info)287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 	return info->data;
290 }
291 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 				     unsigned int c)
294 {
295 	info->data = c;
296 }
297 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 					 unsigned int c, unsigned int f)
300 {
301 	info->flags = f;
302 	info->data = c;
303 }
304 
cluster_next(struct swap_cluster_info * info)305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 	return info->data;
308 }
309 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 				    unsigned int n)
312 {
313 	info->data = n;
314 }
315 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 					 unsigned int n, unsigned int f)
318 {
319 	info->flags = f;
320 	info->data = n;
321 }
322 
cluster_is_free(struct swap_cluster_info * info)323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 	return info->flags & CLUSTER_FLAG_FREE;
326 }
327 
cluster_is_null(struct swap_cluster_info * info)328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332 
cluster_set_null(struct swap_cluster_info * info)333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 	info->flags = CLUSTER_FLAG_NEXT_NULL;
336 	info->data = 0;
337 }
338 
cluster_is_huge(struct swap_cluster_info * info)339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 	if (IS_ENABLED(CONFIG_THP_SWAP))
342 		return info->flags & CLUSTER_FLAG_HUGE;
343 	return false;
344 }
345 
cluster_clear_huge(struct swap_cluster_info * info)346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 	info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350 
lock_cluster(struct swap_info_struct * si,unsigned long offset)351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 						     unsigned long offset)
353 {
354 	struct swap_cluster_info *ci;
355 
356 	ci = si->cluster_info;
357 	if (ci) {
358 		ci += offset / SWAPFILE_CLUSTER;
359 		spin_lock(&ci->lock);
360 	}
361 	return ci;
362 }
363 
unlock_cluster(struct swap_cluster_info * ci)364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 	if (ci)
367 		spin_unlock(&ci->lock);
368 }
369 
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 		struct swap_info_struct *si, unsigned long offset)
376 {
377 	struct swap_cluster_info *ci;
378 
379 	/* Try to use fine-grained SSD-style locking if available: */
380 	ci = lock_cluster(si, offset);
381 	/* Otherwise, fall back to traditional, coarse locking: */
382 	if (!ci)
383 		spin_lock(&si->lock);
384 
385 	return ci;
386 }
387 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 					       struct swap_cluster_info *ci)
390 {
391 	if (ci)
392 		unlock_cluster(ci);
393 	else
394 		spin_unlock(&si->lock);
395 }
396 
cluster_list_empty(struct swap_cluster_list * list)397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 	return cluster_is_null(&list->head);
400 }
401 
cluster_list_first(struct swap_cluster_list * list)402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 	return cluster_next(&list->head);
405 }
406 
cluster_list_init(struct swap_cluster_list * list)407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 	cluster_set_null(&list->head);
410 	cluster_set_null(&list->tail);
411 }
412 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 				  struct swap_cluster_info *ci,
415 				  unsigned int idx)
416 {
417 	if (cluster_list_empty(list)) {
418 		cluster_set_next_flag(&list->head, idx, 0);
419 		cluster_set_next_flag(&list->tail, idx, 0);
420 	} else {
421 		struct swap_cluster_info *ci_tail;
422 		unsigned int tail = cluster_next(&list->tail);
423 
424 		/*
425 		 * Nested cluster lock, but both cluster locks are
426 		 * only acquired when we held swap_info_struct->lock
427 		 */
428 		ci_tail = ci + tail;
429 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 		cluster_set_next(ci_tail, idx);
431 		spin_unlock(&ci_tail->lock);
432 		cluster_set_next_flag(&list->tail, idx, 0);
433 	}
434 }
435 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 					   struct swap_cluster_info *ci)
438 {
439 	unsigned int idx;
440 
441 	idx = cluster_next(&list->head);
442 	if (cluster_next(&list->tail) == idx) {
443 		cluster_set_null(&list->head);
444 		cluster_set_null(&list->tail);
445 	} else
446 		cluster_set_next_flag(&list->head,
447 				      cluster_next(&ci[idx]), 0);
448 
449 	return idx;
450 }
451 
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 		unsigned int idx)
455 {
456 	/*
457 	 * If scan_swap_map() can't find a free cluster, it will check
458 	 * si->swap_map directly. To make sure the discarding cluster isn't
459 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460 	 * will be cleared after discard
461 	 */
462 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464 
465 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466 
467 	schedule_work(&si->discard_work);
468 }
469 
__free_cluster(struct swap_info_struct * si,unsigned long idx)470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 	struct swap_cluster_info *ci = si->cluster_info;
473 
474 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 	cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477 
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
swap_do_scheduled_discard(struct swap_info_struct * si)482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 	struct swap_cluster_info *info, *ci;
485 	unsigned int idx;
486 
487 	info = si->cluster_info;
488 
489 	while (!cluster_list_empty(&si->discard_clusters)) {
490 		idx = cluster_list_del_first(&si->discard_clusters, info);
491 		spin_unlock(&si->lock);
492 
493 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 				SWAPFILE_CLUSTER);
495 
496 		spin_lock(&si->lock);
497 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 		__free_cluster(si, idx);
499 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 				0, SWAPFILE_CLUSTER);
501 		unlock_cluster(ci);
502 	}
503 }
504 
swap_discard_work(struct work_struct * work)505 static void swap_discard_work(struct work_struct *work)
506 {
507 	struct swap_info_struct *si;
508 
509 	si = container_of(work, struct swap_info_struct, discard_work);
510 
511 	spin_lock(&si->lock);
512 	swap_do_scheduled_discard(si);
513 	spin_unlock(&si->lock);
514 }
515 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518 	struct swap_cluster_info *ci = si->cluster_info;
519 
520 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521 	cluster_list_del_first(&si->free_clusters, ci);
522 	cluster_set_count_flag(ci + idx, 0, 0);
523 }
524 
free_cluster(struct swap_info_struct * si,unsigned long idx)525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527 	struct swap_cluster_info *ci = si->cluster_info + idx;
528 
529 	VM_BUG_ON(cluster_count(ci) != 0);
530 	/*
531 	 * If the swap is discardable, prepare discard the cluster
532 	 * instead of free it immediately. The cluster will be freed
533 	 * after discard.
534 	 */
535 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537 		swap_cluster_schedule_discard(si, idx);
538 		return;
539 	}
540 
541 	__free_cluster(si, idx);
542 }
543 
544 /*
545  * The cluster corresponding to page_nr will be used. The cluster will be
546  * removed from free cluster list and its usage counter will be increased.
547  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)548 static void inc_cluster_info_page(struct swap_info_struct *p,
549 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552 
553 	if (!cluster_info)
554 		return;
555 	if (cluster_is_free(&cluster_info[idx]))
556 		alloc_cluster(p, idx);
557 
558 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559 	cluster_set_count(&cluster_info[idx],
560 		cluster_count(&cluster_info[idx]) + 1);
561 }
562 
563 /*
564  * The cluster corresponding to page_nr decreases one usage. If the usage
565  * counter becomes 0, which means no page in the cluster is in using, we can
566  * optionally discard the cluster and add it to free cluster list.
567  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)568 static void dec_cluster_info_page(struct swap_info_struct *p,
569 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572 
573 	if (!cluster_info)
574 		return;
575 
576 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577 	cluster_set_count(&cluster_info[idx],
578 		cluster_count(&cluster_info[idx]) - 1);
579 
580 	if (cluster_count(&cluster_info[idx]) == 0)
581 		free_cluster(p, idx);
582 }
583 
584 /*
585  * It's possible scan_swap_map() uses a free cluster in the middle of free
586  * cluster list. Avoiding such abuse to avoid list corruption.
587  */
588 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590 	unsigned long offset)
591 {
592 	struct percpu_cluster *percpu_cluster;
593 	bool conflict;
594 
595 	offset /= SWAPFILE_CLUSTER;
596 	conflict = !cluster_list_empty(&si->free_clusters) &&
597 		offset != cluster_list_first(&si->free_clusters) &&
598 		cluster_is_free(&si->cluster_info[offset]);
599 
600 	if (!conflict)
601 		return false;
602 
603 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604 	cluster_set_null(&percpu_cluster->index);
605 	return true;
606 }
607 
608 /*
609  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610  * might involve allocating a new cluster for current CPU too.
611  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613 	unsigned long *offset, unsigned long *scan_base)
614 {
615 	struct percpu_cluster *cluster;
616 	struct swap_cluster_info *ci;
617 	unsigned long tmp, max;
618 
619 new_cluster:
620 	cluster = this_cpu_ptr(si->percpu_cluster);
621 	if (cluster_is_null(&cluster->index)) {
622 		if (!cluster_list_empty(&si->free_clusters)) {
623 			cluster->index = si->free_clusters.head;
624 			cluster->next = cluster_next(&cluster->index) *
625 					SWAPFILE_CLUSTER;
626 		} else if (!cluster_list_empty(&si->discard_clusters)) {
627 			/*
628 			 * we don't have free cluster but have some clusters in
629 			 * discarding, do discard now and reclaim them, then
630 			 * reread cluster_next_cpu since we dropped si->lock
631 			 */
632 			swap_do_scheduled_discard(si);
633 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
634 			*offset = *scan_base;
635 			goto new_cluster;
636 		} else
637 			return false;
638 	}
639 
640 	/*
641 	 * Other CPUs can use our cluster if they can't find a free cluster,
642 	 * check if there is still free entry in the cluster
643 	 */
644 	tmp = cluster->next;
645 	max = min_t(unsigned long, si->max,
646 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
647 	if (tmp < max) {
648 		ci = lock_cluster(si, tmp);
649 		while (tmp < max) {
650 			if (!si->swap_map[tmp])
651 				break;
652 			tmp++;
653 		}
654 		unlock_cluster(ci);
655 	}
656 	if (tmp >= max) {
657 		cluster_set_null(&cluster->index);
658 		goto new_cluster;
659 	}
660 	cluster->next = tmp + 1;
661 	*offset = tmp;
662 	*scan_base = tmp;
663 	return true;
664 }
665 
__del_from_avail_list(struct swap_info_struct * p)666 static void __del_from_avail_list(struct swap_info_struct *p)
667 {
668 	int nid;
669 
670 	for_each_node(nid)
671 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
672 }
673 
del_from_avail_list(struct swap_info_struct * p)674 static void del_from_avail_list(struct swap_info_struct *p)
675 {
676 	spin_lock(&swap_avail_lock);
677 	__del_from_avail_list(p);
678 	spin_unlock(&swap_avail_lock);
679 }
680 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)681 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
682 			     unsigned int nr_entries)
683 {
684 	unsigned int end = offset + nr_entries - 1;
685 
686 	if (offset == si->lowest_bit)
687 		si->lowest_bit += nr_entries;
688 	if (end == si->highest_bit)
689 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
690 	si->inuse_pages += nr_entries;
691 	if (si->inuse_pages == si->pages) {
692 		si->lowest_bit = si->max;
693 		si->highest_bit = 0;
694 		del_from_avail_list(si);
695 	}
696 }
697 
add_to_avail_list(struct swap_info_struct * p)698 static void add_to_avail_list(struct swap_info_struct *p)
699 {
700 	int nid;
701 
702 	spin_lock(&swap_avail_lock);
703 	for_each_node(nid) {
704 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
705 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
706 	}
707 	spin_unlock(&swap_avail_lock);
708 }
709 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)710 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
711 			    unsigned int nr_entries)
712 {
713 	unsigned long begin = offset;
714 	unsigned long end = offset + nr_entries - 1;
715 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
716 
717 	if (offset < si->lowest_bit)
718 		si->lowest_bit = offset;
719 	if (end > si->highest_bit) {
720 		bool was_full = !si->highest_bit;
721 
722 		WRITE_ONCE(si->highest_bit, end);
723 		if (was_full && (si->flags & SWP_WRITEOK))
724 			add_to_avail_list(si);
725 	}
726 	atomic_long_add(nr_entries, &nr_swap_pages);
727 	si->inuse_pages -= nr_entries;
728 	if (si->flags & SWP_BLKDEV)
729 		swap_slot_free_notify =
730 			si->bdev->bd_disk->fops->swap_slot_free_notify;
731 	else
732 		swap_slot_free_notify = NULL;
733 	while (offset <= end) {
734 		arch_swap_invalidate_page(si->type, offset);
735 		frontswap_invalidate_page(si->type, offset);
736 		if (swap_slot_free_notify)
737 			swap_slot_free_notify(si->bdev, offset);
738 		offset++;
739 	}
740 	clear_shadow_from_swap_cache(si->type, begin, end);
741 }
742 
set_cluster_next(struct swap_info_struct * si,unsigned long next)743 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
744 {
745 	unsigned long prev;
746 
747 	if (!(si->flags & SWP_SOLIDSTATE)) {
748 		si->cluster_next = next;
749 		return;
750 	}
751 
752 	prev = this_cpu_read(*si->cluster_next_cpu);
753 	/*
754 	 * Cross the swap address space size aligned trunk, choose
755 	 * another trunk randomly to avoid lock contention on swap
756 	 * address space if possible.
757 	 */
758 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
759 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
760 		/* No free swap slots available */
761 		if (si->highest_bit <= si->lowest_bit)
762 			return;
763 		next = si->lowest_bit +
764 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
765 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
766 		next = max_t(unsigned int, next, si->lowest_bit);
767 	}
768 	this_cpu_write(*si->cluster_next_cpu, next);
769 }
770 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])771 static int scan_swap_map_slots(struct swap_info_struct *si,
772 			       unsigned char usage, int nr,
773 			       swp_entry_t slots[])
774 {
775 	struct swap_cluster_info *ci;
776 	unsigned long offset;
777 	unsigned long scan_base;
778 	unsigned long last_in_cluster = 0;
779 	int latency_ration = LATENCY_LIMIT;
780 	int n_ret = 0;
781 	bool scanned_many = false;
782 
783 	/*
784 	 * We try to cluster swap pages by allocating them sequentially
785 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
786 	 * way, however, we resort to first-free allocation, starting
787 	 * a new cluster.  This prevents us from scattering swap pages
788 	 * all over the entire swap partition, so that we reduce
789 	 * overall disk seek times between swap pages.  -- sct
790 	 * But we do now try to find an empty cluster.  -Andrea
791 	 * And we let swap pages go all over an SSD partition.  Hugh
792 	 */
793 
794 	si->flags += SWP_SCANNING;
795 	/*
796 	 * Use percpu scan base for SSD to reduce lock contention on
797 	 * cluster and swap cache.  For HDD, sequential access is more
798 	 * important.
799 	 */
800 	if (si->flags & SWP_SOLIDSTATE)
801 		scan_base = this_cpu_read(*si->cluster_next_cpu);
802 	else
803 		scan_base = si->cluster_next;
804 	offset = scan_base;
805 
806 	/* SSD algorithm */
807 	if (si->cluster_info) {
808 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
809 			goto scan;
810 	} else if (unlikely(!si->cluster_nr--)) {
811 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
812 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
813 			goto checks;
814 		}
815 
816 		spin_unlock(&si->lock);
817 
818 		/*
819 		 * If seek is expensive, start searching for new cluster from
820 		 * start of partition, to minimize the span of allocated swap.
821 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
822 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
823 		 */
824 		scan_base = offset = si->lowest_bit;
825 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
826 
827 		/* Locate the first empty (unaligned) cluster */
828 		for (; last_in_cluster <= si->highest_bit; offset++) {
829 			if (si->swap_map[offset])
830 				last_in_cluster = offset + SWAPFILE_CLUSTER;
831 			else if (offset == last_in_cluster) {
832 				spin_lock(&si->lock);
833 				offset -= SWAPFILE_CLUSTER - 1;
834 				si->cluster_next = offset;
835 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
836 				goto checks;
837 			}
838 			if (unlikely(--latency_ration < 0)) {
839 				cond_resched();
840 				latency_ration = LATENCY_LIMIT;
841 			}
842 		}
843 
844 		offset = scan_base;
845 		spin_lock(&si->lock);
846 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
847 	}
848 
849 checks:
850 	if (si->cluster_info) {
851 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
852 		/* take a break if we already got some slots */
853 			if (n_ret)
854 				goto done;
855 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
856 							&scan_base))
857 				goto scan;
858 		}
859 	}
860 	if (!(si->flags & SWP_WRITEOK))
861 		goto no_page;
862 	if (!si->highest_bit)
863 		goto no_page;
864 	if (offset > si->highest_bit)
865 		scan_base = offset = si->lowest_bit;
866 
867 	ci = lock_cluster(si, offset);
868 	/* reuse swap entry of cache-only swap if not busy. */
869 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
870 		int swap_was_freed;
871 		unlock_cluster(ci);
872 		spin_unlock(&si->lock);
873 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
874 		spin_lock(&si->lock);
875 		/* entry was freed successfully, try to use this again */
876 		if (swap_was_freed)
877 			goto checks;
878 		goto scan; /* check next one */
879 	}
880 
881 	if (si->swap_map[offset]) {
882 		unlock_cluster(ci);
883 		if (!n_ret)
884 			goto scan;
885 		else
886 			goto done;
887 	}
888 	WRITE_ONCE(si->swap_map[offset], usage);
889 	inc_cluster_info_page(si, si->cluster_info, offset);
890 	unlock_cluster(ci);
891 
892 	swap_range_alloc(si, offset, 1);
893 	slots[n_ret++] = swp_entry(si->type, offset);
894 
895 	/* got enough slots or reach max slots? */
896 	if ((n_ret == nr) || (offset >= si->highest_bit))
897 		goto done;
898 
899 	/* search for next available slot */
900 
901 	/* time to take a break? */
902 	if (unlikely(--latency_ration < 0)) {
903 		if (n_ret)
904 			goto done;
905 		spin_unlock(&si->lock);
906 		cond_resched();
907 		spin_lock(&si->lock);
908 		latency_ration = LATENCY_LIMIT;
909 	}
910 
911 	/* try to get more slots in cluster */
912 	if (si->cluster_info) {
913 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
914 			goto checks;
915 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
916 		/* non-ssd case, still more slots in cluster? */
917 		--si->cluster_nr;
918 		goto checks;
919 	}
920 
921 	/*
922 	 * Even if there's no free clusters available (fragmented),
923 	 * try to scan a little more quickly with lock held unless we
924 	 * have scanned too many slots already.
925 	 */
926 	if (!scanned_many) {
927 		unsigned long scan_limit;
928 
929 		if (offset < scan_base)
930 			scan_limit = scan_base;
931 		else
932 			scan_limit = si->highest_bit;
933 		for (; offset <= scan_limit && --latency_ration > 0;
934 		     offset++) {
935 			if (!si->swap_map[offset])
936 				goto checks;
937 		}
938 	}
939 
940 done:
941 	set_cluster_next(si, offset + 1);
942 	si->flags -= SWP_SCANNING;
943 	return n_ret;
944 
945 scan:
946 	spin_unlock(&si->lock);
947 	while (++offset <= READ_ONCE(si->highest_bit)) {
948 		if (data_race(!si->swap_map[offset])) {
949 			spin_lock(&si->lock);
950 			goto checks;
951 		}
952 		if (vm_swap_full() &&
953 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
954 			spin_lock(&si->lock);
955 			goto checks;
956 		}
957 		if (unlikely(--latency_ration < 0)) {
958 			cond_resched();
959 			latency_ration = LATENCY_LIMIT;
960 			scanned_many = true;
961 		}
962 	}
963 	offset = si->lowest_bit;
964 	while (offset < scan_base) {
965 		if (data_race(!si->swap_map[offset])) {
966 			spin_lock(&si->lock);
967 			goto checks;
968 		}
969 		if (vm_swap_full() &&
970 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
971 			spin_lock(&si->lock);
972 			goto checks;
973 		}
974 		if (unlikely(--latency_ration < 0)) {
975 			cond_resched();
976 			latency_ration = LATENCY_LIMIT;
977 			scanned_many = true;
978 		}
979 		offset++;
980 	}
981 	spin_lock(&si->lock);
982 
983 no_page:
984 	si->flags -= SWP_SCANNING;
985 	return n_ret;
986 }
987 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)988 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
989 {
990 	unsigned long idx;
991 	struct swap_cluster_info *ci;
992 	unsigned long offset, i;
993 	unsigned char *map;
994 
995 	/*
996 	 * Should not even be attempting cluster allocations when huge
997 	 * page swap is disabled.  Warn and fail the allocation.
998 	 */
999 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1000 		VM_WARN_ON_ONCE(1);
1001 		return 0;
1002 	}
1003 
1004 	if (cluster_list_empty(&si->free_clusters))
1005 		return 0;
1006 
1007 	idx = cluster_list_first(&si->free_clusters);
1008 	offset = idx * SWAPFILE_CLUSTER;
1009 	ci = lock_cluster(si, offset);
1010 	alloc_cluster(si, idx);
1011 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1012 
1013 	map = si->swap_map + offset;
1014 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1015 		map[i] = SWAP_HAS_CACHE;
1016 	unlock_cluster(ci);
1017 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1018 	*slot = swp_entry(si->type, offset);
1019 
1020 	return 1;
1021 }
1022 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1023 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1024 {
1025 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1026 	struct swap_cluster_info *ci;
1027 
1028 	ci = lock_cluster(si, offset);
1029 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1030 	cluster_set_count_flag(ci, 0, 0);
1031 	free_cluster(si, idx);
1032 	unlock_cluster(ci);
1033 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1034 }
1035 
scan_swap_map(struct swap_info_struct * si,unsigned char usage)1036 static unsigned long scan_swap_map(struct swap_info_struct *si,
1037 				   unsigned char usage)
1038 {
1039 	swp_entry_t entry;
1040 	int n_ret;
1041 
1042 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1043 
1044 	if (n_ret)
1045 		return swp_offset(entry);
1046 	else
1047 		return 0;
1048 
1049 }
1050 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1051 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1052 {
1053 	unsigned long size = swap_entry_size(entry_size);
1054 	struct swap_info_struct *si, *next;
1055 	long avail_pgs;
1056 	int n_ret = 0;
1057 	int node;
1058 
1059 	/* Only single cluster request supported */
1060 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1061 
1062 	spin_lock(&swap_avail_lock);
1063 
1064 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1065 	if (avail_pgs <= 0) {
1066 		spin_unlock(&swap_avail_lock);
1067 		goto noswap;
1068 	}
1069 
1070 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1071 
1072 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1073 
1074 start_over:
1075 	node = numa_node_id();
1076 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1077 		/* requeue si to after same-priority siblings */
1078 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1079 		spin_unlock(&swap_avail_lock);
1080 		spin_lock(&si->lock);
1081 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1082 			spin_lock(&swap_avail_lock);
1083 			if (plist_node_empty(&si->avail_lists[node])) {
1084 				spin_unlock(&si->lock);
1085 				goto nextsi;
1086 			}
1087 			WARN(!si->highest_bit,
1088 			     "swap_info %d in list but !highest_bit\n",
1089 			     si->type);
1090 			WARN(!(si->flags & SWP_WRITEOK),
1091 			     "swap_info %d in list but !SWP_WRITEOK\n",
1092 			     si->type);
1093 			__del_from_avail_list(si);
1094 			spin_unlock(&si->lock);
1095 			goto nextsi;
1096 		}
1097 		if (size == SWAPFILE_CLUSTER) {
1098 			if (si->flags & SWP_BLKDEV)
1099 				n_ret = swap_alloc_cluster(si, swp_entries);
1100 		} else
1101 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1102 						    n_goal, swp_entries);
1103 		spin_unlock(&si->lock);
1104 		if (n_ret || size == SWAPFILE_CLUSTER)
1105 			goto check_out;
1106 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1107 			si->type);
1108 
1109 		spin_lock(&swap_avail_lock);
1110 nextsi:
1111 		/*
1112 		 * if we got here, it's likely that si was almost full before,
1113 		 * and since scan_swap_map() can drop the si->lock, multiple
1114 		 * callers probably all tried to get a page from the same si
1115 		 * and it filled up before we could get one; or, the si filled
1116 		 * up between us dropping swap_avail_lock and taking si->lock.
1117 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1118 		 * list may have been modified; so if next is still in the
1119 		 * swap_avail_head list then try it, otherwise start over
1120 		 * if we have not gotten any slots.
1121 		 */
1122 		if (plist_node_empty(&next->avail_lists[node]))
1123 			goto start_over;
1124 	}
1125 
1126 	spin_unlock(&swap_avail_lock);
1127 
1128 check_out:
1129 	if (n_ret < n_goal)
1130 		atomic_long_add((long)(n_goal - n_ret) * size,
1131 				&nr_swap_pages);
1132 noswap:
1133 	return n_ret;
1134 }
1135 
1136 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1137 swp_entry_t get_swap_page_of_type(int type)
1138 {
1139 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1140 	pgoff_t offset;
1141 
1142 	if (!si)
1143 		goto fail;
1144 
1145 	spin_lock(&si->lock);
1146 	if (si->flags & SWP_WRITEOK) {
1147 		/* This is called for allocating swap entry, not cache */
1148 		offset = scan_swap_map(si, 1);
1149 		if (offset) {
1150 			atomic_long_dec(&nr_swap_pages);
1151 			spin_unlock(&si->lock);
1152 			return swp_entry(type, offset);
1153 		}
1154 	}
1155 	spin_unlock(&si->lock);
1156 fail:
1157 	return (swp_entry_t) {0};
1158 }
1159 
__swap_info_get(swp_entry_t entry)1160 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1161 {
1162 	struct swap_info_struct *p;
1163 	unsigned long offset;
1164 
1165 	if (!entry.val)
1166 		goto out;
1167 	p = swp_swap_info(entry);
1168 	if (!p)
1169 		goto bad_nofile;
1170 	if (data_race(!(p->flags & SWP_USED)))
1171 		goto bad_device;
1172 	offset = swp_offset(entry);
1173 	if (offset >= p->max)
1174 		goto bad_offset;
1175 	return p;
1176 
1177 bad_offset:
1178 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1179 	goto out;
1180 bad_device:
1181 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1182 	goto out;
1183 bad_nofile:
1184 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1185 out:
1186 	return NULL;
1187 }
1188 
_swap_info_get(swp_entry_t entry)1189 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1190 {
1191 	struct swap_info_struct *p;
1192 
1193 	p = __swap_info_get(entry);
1194 	if (!p)
1195 		goto out;
1196 	if (data_race(!p->swap_map[swp_offset(entry)]))
1197 		goto bad_free;
1198 	return p;
1199 
1200 bad_free:
1201 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1202 out:
1203 	return NULL;
1204 }
1205 
swap_info_get(swp_entry_t entry)1206 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1207 {
1208 	struct swap_info_struct *p;
1209 
1210 	p = _swap_info_get(entry);
1211 	if (p)
1212 		spin_lock(&p->lock);
1213 	return p;
1214 }
1215 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1216 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1217 					struct swap_info_struct *q)
1218 {
1219 	struct swap_info_struct *p;
1220 
1221 	p = _swap_info_get(entry);
1222 
1223 	if (p != q) {
1224 		if (q != NULL)
1225 			spin_unlock(&q->lock);
1226 		if (p != NULL)
1227 			spin_lock(&p->lock);
1228 	}
1229 	return p;
1230 }
1231 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1232 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1233 					      unsigned long offset,
1234 					      unsigned char usage)
1235 {
1236 	unsigned char count;
1237 	unsigned char has_cache;
1238 
1239 	count = p->swap_map[offset];
1240 
1241 	has_cache = count & SWAP_HAS_CACHE;
1242 	count &= ~SWAP_HAS_CACHE;
1243 
1244 	if (usage == SWAP_HAS_CACHE) {
1245 		VM_BUG_ON(!has_cache);
1246 		has_cache = 0;
1247 	} else if (count == SWAP_MAP_SHMEM) {
1248 		/*
1249 		 * Or we could insist on shmem.c using a special
1250 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1251 		 */
1252 		count = 0;
1253 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1254 		if (count == COUNT_CONTINUED) {
1255 			if (swap_count_continued(p, offset, count))
1256 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1257 			else
1258 				count = SWAP_MAP_MAX;
1259 		} else
1260 			count--;
1261 	}
1262 
1263 	usage = count | has_cache;
1264 	if (usage)
1265 		WRITE_ONCE(p->swap_map[offset], usage);
1266 	else
1267 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1268 
1269 	return usage;
1270 }
1271 
1272 /*
1273  * Check whether swap entry is valid in the swap device.  If so,
1274  * return pointer to swap_info_struct, and keep the swap entry valid
1275  * via preventing the swap device from being swapoff, until
1276  * put_swap_device() is called.  Otherwise return NULL.
1277  *
1278  * The entirety of the RCU read critical section must come before the
1279  * return from or after the call to synchronize_rcu() in
1280  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1281  * true, the si->map, si->cluster_info, etc. must be valid in the
1282  * critical section.
1283  *
1284  * Notice that swapoff or swapoff+swapon can still happen before the
1285  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1286  * in put_swap_device() if there isn't any other way to prevent
1287  * swapoff, such as page lock, page table lock, etc.  The caller must
1288  * be prepared for that.  For example, the following situation is
1289  * possible.
1290  *
1291  *   CPU1				CPU2
1292  *   do_swap_page()
1293  *     ...				swapoff+swapon
1294  *     __read_swap_cache_async()
1295  *       swapcache_prepare()
1296  *         __swap_duplicate()
1297  *           // check swap_map
1298  *     // verify PTE not changed
1299  *
1300  * In __swap_duplicate(), the swap_map need to be checked before
1301  * changing partly because the specified swap entry may be for another
1302  * swap device which has been swapoff.  And in do_swap_page(), after
1303  * the page is read from the swap device, the PTE is verified not
1304  * changed with the page table locked to check whether the swap device
1305  * has been swapoff or swapoff+swapon.
1306  */
get_swap_device(swp_entry_t entry)1307 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1308 {
1309 	struct swap_info_struct *si;
1310 	unsigned long offset;
1311 
1312 	if (!entry.val)
1313 		goto out;
1314 	si = swp_swap_info(entry);
1315 	if (!si)
1316 		goto bad_nofile;
1317 
1318 	rcu_read_lock();
1319 	if (data_race(!(si->flags & SWP_VALID)))
1320 		goto unlock_out;
1321 	offset = swp_offset(entry);
1322 	if (offset >= si->max)
1323 		goto unlock_out;
1324 
1325 	return si;
1326 bad_nofile:
1327 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1328 out:
1329 	return NULL;
1330 unlock_out:
1331 	rcu_read_unlock();
1332 	return NULL;
1333 }
1334 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1335 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1336 				       swp_entry_t entry)
1337 {
1338 	struct swap_cluster_info *ci;
1339 	unsigned long offset = swp_offset(entry);
1340 	unsigned char usage;
1341 
1342 	ci = lock_cluster_or_swap_info(p, offset);
1343 	usage = __swap_entry_free_locked(p, offset, 1);
1344 	unlock_cluster_or_swap_info(p, ci);
1345 	if (!usage)
1346 		free_swap_slot(entry);
1347 
1348 	return usage;
1349 }
1350 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1351 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1352 {
1353 	struct swap_cluster_info *ci;
1354 	unsigned long offset = swp_offset(entry);
1355 	unsigned char count;
1356 
1357 	ci = lock_cluster(p, offset);
1358 	count = p->swap_map[offset];
1359 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1360 	p->swap_map[offset] = 0;
1361 	dec_cluster_info_page(p, p->cluster_info, offset);
1362 	unlock_cluster(ci);
1363 
1364 	mem_cgroup_uncharge_swap(entry, 1);
1365 	swap_range_free(p, offset, 1);
1366 }
1367 
1368 /*
1369  * Caller has made sure that the swap device corresponding to entry
1370  * is still around or has not been recycled.
1371  */
swap_free(swp_entry_t entry)1372 void swap_free(swp_entry_t entry)
1373 {
1374 	struct swap_info_struct *p;
1375 
1376 	p = _swap_info_get(entry);
1377 	if (p)
1378 		__swap_entry_free(p, entry);
1379 }
1380 
1381 /*
1382  * Called after dropping swapcache to decrease refcnt to swap entries.
1383  */
put_swap_page(struct page * page,swp_entry_t entry)1384 void put_swap_page(struct page *page, swp_entry_t entry)
1385 {
1386 	unsigned long offset = swp_offset(entry);
1387 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1388 	struct swap_cluster_info *ci;
1389 	struct swap_info_struct *si;
1390 	unsigned char *map;
1391 	unsigned int i, free_entries = 0;
1392 	unsigned char val;
1393 	int size = swap_entry_size(thp_nr_pages(page));
1394 
1395 	si = _swap_info_get(entry);
1396 	if (!si)
1397 		return;
1398 
1399 	ci = lock_cluster_or_swap_info(si, offset);
1400 	if (size == SWAPFILE_CLUSTER) {
1401 		VM_BUG_ON(!cluster_is_huge(ci));
1402 		map = si->swap_map + offset;
1403 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1404 			val = map[i];
1405 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1406 			if (val == SWAP_HAS_CACHE)
1407 				free_entries++;
1408 		}
1409 		cluster_clear_huge(ci);
1410 		if (free_entries == SWAPFILE_CLUSTER) {
1411 			unlock_cluster_or_swap_info(si, ci);
1412 			spin_lock(&si->lock);
1413 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1414 			swap_free_cluster(si, idx);
1415 			spin_unlock(&si->lock);
1416 			return;
1417 		}
1418 	}
1419 	for (i = 0; i < size; i++, entry.val++) {
1420 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1421 			unlock_cluster_or_swap_info(si, ci);
1422 			free_swap_slot(entry);
1423 			if (i == size - 1)
1424 				return;
1425 			lock_cluster_or_swap_info(si, offset);
1426 		}
1427 	}
1428 	unlock_cluster_or_swap_info(si, ci);
1429 }
1430 
1431 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1432 int split_swap_cluster(swp_entry_t entry)
1433 {
1434 	struct swap_info_struct *si;
1435 	struct swap_cluster_info *ci;
1436 	unsigned long offset = swp_offset(entry);
1437 
1438 	si = _swap_info_get(entry);
1439 	if (!si)
1440 		return -EBUSY;
1441 	ci = lock_cluster(si, offset);
1442 	cluster_clear_huge(ci);
1443 	unlock_cluster(ci);
1444 	return 0;
1445 }
1446 #endif
1447 
swp_entry_cmp(const void * ent1,const void * ent2)1448 static int swp_entry_cmp(const void *ent1, const void *ent2)
1449 {
1450 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1451 
1452 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1453 }
1454 
swapcache_free_entries(swp_entry_t * entries,int n)1455 void swapcache_free_entries(swp_entry_t *entries, int n)
1456 {
1457 	struct swap_info_struct *p, *prev;
1458 	int i;
1459 
1460 	if (n <= 0)
1461 		return;
1462 
1463 	prev = NULL;
1464 	p = NULL;
1465 
1466 	/*
1467 	 * Sort swap entries by swap device, so each lock is only taken once.
1468 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1469 	 * so low that it isn't necessary to optimize further.
1470 	 */
1471 	if (nr_swapfiles > 1)
1472 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1473 	for (i = 0; i < n; ++i) {
1474 		p = swap_info_get_cont(entries[i], prev);
1475 		if (p)
1476 			swap_entry_free(p, entries[i]);
1477 		prev = p;
1478 	}
1479 	if (p)
1480 		spin_unlock(&p->lock);
1481 }
1482 
1483 /*
1484  * How many references to page are currently swapped out?
1485  * This does not give an exact answer when swap count is continued,
1486  * but does include the high COUNT_CONTINUED flag to allow for that.
1487  */
page_swapcount(struct page * page)1488 int page_swapcount(struct page *page)
1489 {
1490 	int count = 0;
1491 	struct swap_info_struct *p;
1492 	struct swap_cluster_info *ci;
1493 	swp_entry_t entry;
1494 	unsigned long offset;
1495 
1496 	entry.val = page_private(page);
1497 	p = _swap_info_get(entry);
1498 	if (p) {
1499 		offset = swp_offset(entry);
1500 		ci = lock_cluster_or_swap_info(p, offset);
1501 		count = swap_count(p->swap_map[offset]);
1502 		unlock_cluster_or_swap_info(p, ci);
1503 	}
1504 	return count;
1505 }
1506 
__swap_count(swp_entry_t entry)1507 int __swap_count(swp_entry_t entry)
1508 {
1509 	struct swap_info_struct *si;
1510 	pgoff_t offset = swp_offset(entry);
1511 	int count = 0;
1512 
1513 	si = get_swap_device(entry);
1514 	if (si) {
1515 		count = swap_count(si->swap_map[offset]);
1516 		put_swap_device(si);
1517 	}
1518 	return count;
1519 }
1520 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1521 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1522 {
1523 	int count = 0;
1524 	pgoff_t offset = swp_offset(entry);
1525 	struct swap_cluster_info *ci;
1526 
1527 	ci = lock_cluster_or_swap_info(si, offset);
1528 	count = swap_count(si->swap_map[offset]);
1529 	unlock_cluster_or_swap_info(si, ci);
1530 	return count;
1531 }
1532 
1533 /*
1534  * How many references to @entry are currently swapped out?
1535  * This does not give an exact answer when swap count is continued,
1536  * but does include the high COUNT_CONTINUED flag to allow for that.
1537  */
__swp_swapcount(swp_entry_t entry)1538 int __swp_swapcount(swp_entry_t entry)
1539 {
1540 	int count = 0;
1541 	struct swap_info_struct *si;
1542 
1543 	si = get_swap_device(entry);
1544 	if (si) {
1545 		count = swap_swapcount(si, entry);
1546 		put_swap_device(si);
1547 	}
1548 	return count;
1549 }
1550 
1551 /*
1552  * How many references to @entry are currently swapped out?
1553  * This considers COUNT_CONTINUED so it returns exact answer.
1554  */
swp_swapcount(swp_entry_t entry)1555 int swp_swapcount(swp_entry_t entry)
1556 {
1557 	int count, tmp_count, n;
1558 	struct swap_info_struct *p;
1559 	struct swap_cluster_info *ci;
1560 	struct page *page;
1561 	pgoff_t offset;
1562 	unsigned char *map;
1563 
1564 	p = _swap_info_get(entry);
1565 	if (!p)
1566 		return 0;
1567 
1568 	offset = swp_offset(entry);
1569 
1570 	ci = lock_cluster_or_swap_info(p, offset);
1571 
1572 	count = swap_count(p->swap_map[offset]);
1573 	if (!(count & COUNT_CONTINUED))
1574 		goto out;
1575 
1576 	count &= ~COUNT_CONTINUED;
1577 	n = SWAP_MAP_MAX + 1;
1578 
1579 	page = vmalloc_to_page(p->swap_map + offset);
1580 	offset &= ~PAGE_MASK;
1581 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1582 
1583 	do {
1584 		page = list_next_entry(page, lru);
1585 		map = kmap_atomic(page);
1586 		tmp_count = map[offset];
1587 		kunmap_atomic(map);
1588 
1589 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1590 		n *= (SWAP_CONT_MAX + 1);
1591 	} while (tmp_count & COUNT_CONTINUED);
1592 out:
1593 	unlock_cluster_or_swap_info(p, ci);
1594 	return count;
1595 }
1596 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1597 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1598 					 swp_entry_t entry)
1599 {
1600 	struct swap_cluster_info *ci;
1601 	unsigned char *map = si->swap_map;
1602 	unsigned long roffset = swp_offset(entry);
1603 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1604 	int i;
1605 	bool ret = false;
1606 
1607 	ci = lock_cluster_or_swap_info(si, offset);
1608 	if (!ci || !cluster_is_huge(ci)) {
1609 		if (swap_count(map[roffset]))
1610 			ret = true;
1611 		goto unlock_out;
1612 	}
1613 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1614 		if (swap_count(map[offset + i])) {
1615 			ret = true;
1616 			break;
1617 		}
1618 	}
1619 unlock_out:
1620 	unlock_cluster_or_swap_info(si, ci);
1621 	return ret;
1622 }
1623 
page_swapped(struct page * page)1624 static bool page_swapped(struct page *page)
1625 {
1626 	swp_entry_t entry;
1627 	struct swap_info_struct *si;
1628 
1629 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1630 		return page_swapcount(page) != 0;
1631 
1632 	page = compound_head(page);
1633 	entry.val = page_private(page);
1634 	si = _swap_info_get(entry);
1635 	if (si)
1636 		return swap_page_trans_huge_swapped(si, entry);
1637 	return false;
1638 }
1639 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1640 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1641 					 int *total_swapcount)
1642 {
1643 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1644 	unsigned long offset = 0;
1645 	struct swap_info_struct *si;
1646 	struct swap_cluster_info *ci = NULL;
1647 	unsigned char *map = NULL;
1648 	int mapcount, swapcount = 0;
1649 
1650 	/* hugetlbfs shouldn't call it */
1651 	VM_BUG_ON_PAGE(PageHuge(page), page);
1652 
1653 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1654 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1655 		if (PageSwapCache(page))
1656 			swapcount = page_swapcount(page);
1657 		if (total_swapcount)
1658 			*total_swapcount = swapcount;
1659 		return mapcount + swapcount;
1660 	}
1661 
1662 	page = compound_head(page);
1663 
1664 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1665 	if (PageSwapCache(page)) {
1666 		swp_entry_t entry;
1667 
1668 		entry.val = page_private(page);
1669 		si = _swap_info_get(entry);
1670 		if (si) {
1671 			map = si->swap_map;
1672 			offset = swp_offset(entry);
1673 		}
1674 	}
1675 	if (map)
1676 		ci = lock_cluster(si, offset);
1677 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1678 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1679 		_total_mapcount += mapcount;
1680 		if (map) {
1681 			swapcount = swap_count(map[offset + i]);
1682 			_total_swapcount += swapcount;
1683 		}
1684 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1685 	}
1686 	unlock_cluster(ci);
1687 	if (PageDoubleMap(page)) {
1688 		map_swapcount -= 1;
1689 		_total_mapcount -= HPAGE_PMD_NR;
1690 	}
1691 	mapcount = compound_mapcount(page);
1692 	map_swapcount += mapcount;
1693 	_total_mapcount += mapcount;
1694 	if (total_mapcount)
1695 		*total_mapcount = _total_mapcount;
1696 	if (total_swapcount)
1697 		*total_swapcount = _total_swapcount;
1698 
1699 	return map_swapcount;
1700 }
1701 
1702 /*
1703  * We can write to an anon page without COW if there are no other references
1704  * to it.  And as a side-effect, free up its swap: because the old content
1705  * on disk will never be read, and seeking back there to write new content
1706  * later would only waste time away from clustering.
1707  *
1708  * NOTE: total_map_swapcount should not be relied upon by the caller if
1709  * reuse_swap_page() returns false, but it may be always overwritten
1710  * (see the other implementation for CONFIG_SWAP=n).
1711  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1712 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1713 {
1714 	int count, total_mapcount, total_swapcount;
1715 
1716 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1717 	if (unlikely(PageKsm(page)))
1718 		return false;
1719 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1720 					      &total_swapcount);
1721 	if (total_map_swapcount)
1722 		*total_map_swapcount = total_mapcount + total_swapcount;
1723 	if (count == 1 && PageSwapCache(page) &&
1724 	    (likely(!PageTransCompound(page)) ||
1725 	     /* The remaining swap count will be freed soon */
1726 	     total_swapcount == page_swapcount(page))) {
1727 		if (!PageWriteback(page)) {
1728 			page = compound_head(page);
1729 			delete_from_swap_cache(page);
1730 			SetPageDirty(page);
1731 		} else {
1732 			swp_entry_t entry;
1733 			struct swap_info_struct *p;
1734 
1735 			entry.val = page_private(page);
1736 			p = swap_info_get(entry);
1737 			if (p->flags & SWP_STABLE_WRITES) {
1738 				spin_unlock(&p->lock);
1739 				return false;
1740 			}
1741 			spin_unlock(&p->lock);
1742 		}
1743 	}
1744 
1745 	return count <= 1;
1746 }
1747 
1748 /*
1749  * If swap is getting full, or if there are no more mappings of this page,
1750  * then try_to_free_swap is called to free its swap space.
1751  */
try_to_free_swap(struct page * page)1752 int try_to_free_swap(struct page *page)
1753 {
1754 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1755 
1756 	if (!PageSwapCache(page))
1757 		return 0;
1758 	if (PageWriteback(page))
1759 		return 0;
1760 	if (page_swapped(page))
1761 		return 0;
1762 
1763 	/*
1764 	 * Once hibernation has begun to create its image of memory,
1765 	 * there's a danger that one of the calls to try_to_free_swap()
1766 	 * - most probably a call from __try_to_reclaim_swap() while
1767 	 * hibernation is allocating its own swap pages for the image,
1768 	 * but conceivably even a call from memory reclaim - will free
1769 	 * the swap from a page which has already been recorded in the
1770 	 * image as a clean swapcache page, and then reuse its swap for
1771 	 * another page of the image.  On waking from hibernation, the
1772 	 * original page might be freed under memory pressure, then
1773 	 * later read back in from swap, now with the wrong data.
1774 	 *
1775 	 * Hibernation suspends storage while it is writing the image
1776 	 * to disk so check that here.
1777 	 */
1778 	if (pm_suspended_storage())
1779 		return 0;
1780 
1781 	page = compound_head(page);
1782 	delete_from_swap_cache(page);
1783 	SetPageDirty(page);
1784 	return 1;
1785 }
1786 
1787 /*
1788  * Free the swap entry like above, but also try to
1789  * free the page cache entry if it is the last user.
1790  */
free_swap_and_cache(swp_entry_t entry)1791 int free_swap_and_cache(swp_entry_t entry)
1792 {
1793 	struct swap_info_struct *p;
1794 	unsigned char count;
1795 
1796 	if (non_swap_entry(entry))
1797 		return 1;
1798 
1799 	p = _swap_info_get(entry);
1800 	if (p) {
1801 		count = __swap_entry_free(p, entry);
1802 		if (count == SWAP_HAS_CACHE &&
1803 		    !swap_page_trans_huge_swapped(p, entry))
1804 			__try_to_reclaim_swap(p, swp_offset(entry),
1805 					      TTRS_UNMAPPED | TTRS_FULL);
1806 	}
1807 	return p != NULL;
1808 }
1809 
1810 #ifdef CONFIG_HIBERNATION
1811 /*
1812  * Find the swap type that corresponds to given device (if any).
1813  *
1814  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1815  * from 0, in which the swap header is expected to be located.
1816  *
1817  * This is needed for the suspend to disk (aka swsusp).
1818  */
swap_type_of(dev_t device,sector_t offset)1819 int swap_type_of(dev_t device, sector_t offset)
1820 {
1821 	int type;
1822 
1823 	if (!device)
1824 		return -1;
1825 
1826 	spin_lock(&swap_lock);
1827 	for (type = 0; type < nr_swapfiles; type++) {
1828 		struct swap_info_struct *sis = swap_info[type];
1829 
1830 		if (!(sis->flags & SWP_WRITEOK))
1831 			continue;
1832 
1833 		if (device == sis->bdev->bd_dev) {
1834 			struct swap_extent *se = first_se(sis);
1835 
1836 			if (se->start_block == offset) {
1837 				spin_unlock(&swap_lock);
1838 				return type;
1839 			}
1840 		}
1841 	}
1842 	spin_unlock(&swap_lock);
1843 	return -ENODEV;
1844 }
1845 
find_first_swap(dev_t * device)1846 int find_first_swap(dev_t *device)
1847 {
1848 	int type;
1849 
1850 	spin_lock(&swap_lock);
1851 	for (type = 0; type < nr_swapfiles; type++) {
1852 		struct swap_info_struct *sis = swap_info[type];
1853 
1854 		if (!(sis->flags & SWP_WRITEOK))
1855 			continue;
1856 		*device = sis->bdev->bd_dev;
1857 		spin_unlock(&swap_lock);
1858 		return type;
1859 	}
1860 	spin_unlock(&swap_lock);
1861 	return -ENODEV;
1862 }
1863 
1864 /*
1865  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1866  * corresponding to given index in swap_info (swap type).
1867  */
swapdev_block(int type,pgoff_t offset)1868 sector_t swapdev_block(int type, pgoff_t offset)
1869 {
1870 	struct block_device *bdev;
1871 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1872 
1873 	if (!si || !(si->flags & SWP_WRITEOK))
1874 		return 0;
1875 	return map_swap_entry(swp_entry(type, offset), &bdev);
1876 }
1877 
1878 /*
1879  * Return either the total number of swap pages of given type, or the number
1880  * of free pages of that type (depending on @free)
1881  *
1882  * This is needed for software suspend
1883  */
count_swap_pages(int type,int free)1884 unsigned int count_swap_pages(int type, int free)
1885 {
1886 	unsigned int n = 0;
1887 
1888 	spin_lock(&swap_lock);
1889 	if ((unsigned int)type < nr_swapfiles) {
1890 		struct swap_info_struct *sis = swap_info[type];
1891 
1892 		spin_lock(&sis->lock);
1893 		if (sis->flags & SWP_WRITEOK) {
1894 			n = sis->pages;
1895 			if (free)
1896 				n -= sis->inuse_pages;
1897 		}
1898 		spin_unlock(&sis->lock);
1899 	}
1900 	spin_unlock(&swap_lock);
1901 	return n;
1902 }
1903 #endif /* CONFIG_HIBERNATION */
1904 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1905 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1906 {
1907 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1908 }
1909 
1910 /*
1911  * No need to decide whether this PTE shares the swap entry with others,
1912  * just let do_wp_page work it out if a write is requested later - to
1913  * force COW, vm_page_prot omits write permission from any private vma.
1914  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1915 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1916 		unsigned long addr, swp_entry_t entry, struct page *page)
1917 {
1918 	struct page *swapcache;
1919 	spinlock_t *ptl;
1920 	pte_t *pte;
1921 	int ret = 1;
1922 
1923 	swapcache = page;
1924 	page = ksm_might_need_to_copy(page, vma, addr);
1925 	if (unlikely(!page))
1926 		return -ENOMEM;
1927 
1928 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1929 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1930 		ret = 0;
1931 		goto out;
1932 	}
1933 
1934 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1935 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1936 	get_page(page);
1937 	set_pte_at(vma->vm_mm, addr, pte,
1938 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1939 	if (page == swapcache) {
1940 		page_add_anon_rmap(page, vma, addr, false);
1941 	} else { /* ksm created a completely new copy */
1942 		page_add_new_anon_rmap(page, vma, addr, false);
1943 		lru_cache_add_inactive_or_unevictable(page, vma);
1944 	}
1945 	swap_free(entry);
1946 out:
1947 	pte_unmap_unlock(pte, ptl);
1948 	if (page != swapcache) {
1949 		unlock_page(page);
1950 		put_page(page);
1951 	}
1952 	return ret;
1953 }
1954 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1955 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1956 			unsigned long addr, unsigned long end,
1957 			unsigned int type, bool frontswap,
1958 			unsigned long *fs_pages_to_unuse)
1959 {
1960 	struct page *page;
1961 	swp_entry_t entry;
1962 	pte_t *pte;
1963 	struct swap_info_struct *si;
1964 	unsigned long offset;
1965 	int ret = 0;
1966 	volatile unsigned char *swap_map;
1967 
1968 	si = swap_info[type];
1969 	pte = pte_offset_map(pmd, addr);
1970 	do {
1971 		struct vm_fault vmf;
1972 
1973 		if (!is_swap_pte(*pte))
1974 			continue;
1975 
1976 		entry = pte_to_swp_entry(*pte);
1977 		if (swp_type(entry) != type)
1978 			continue;
1979 
1980 		offset = swp_offset(entry);
1981 		if (frontswap && !frontswap_test(si, offset))
1982 			continue;
1983 
1984 		pte_unmap(pte);
1985 		swap_map = &si->swap_map[offset];
1986 		page = lookup_swap_cache(entry, vma, addr);
1987 		if (!page) {
1988 			vmf.vma = vma;
1989 			vmf.address = addr;
1990 			vmf.pmd = pmd;
1991 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1992 						&vmf);
1993 		}
1994 		if (!page) {
1995 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1996 				goto try_next;
1997 			return -ENOMEM;
1998 		}
1999 
2000 		lock_page(page);
2001 		wait_on_page_writeback(page);
2002 		ret = unuse_pte(vma, pmd, addr, entry, page);
2003 		if (ret < 0) {
2004 			unlock_page(page);
2005 			put_page(page);
2006 			goto out;
2007 		}
2008 
2009 		try_to_free_swap(page);
2010 		unlock_page(page);
2011 		put_page(page);
2012 
2013 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2014 			ret = FRONTSWAP_PAGES_UNUSED;
2015 			goto out;
2016 		}
2017 try_next:
2018 		pte = pte_offset_map(pmd, addr);
2019 	} while (pte++, addr += PAGE_SIZE, addr != end);
2020 	pte_unmap(pte - 1);
2021 
2022 	ret = 0;
2023 out:
2024 	return ret;
2025 }
2026 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2027 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2028 				unsigned long addr, unsigned long end,
2029 				unsigned int type, bool frontswap,
2030 				unsigned long *fs_pages_to_unuse)
2031 {
2032 	pmd_t *pmd;
2033 	unsigned long next;
2034 	int ret;
2035 
2036 	pmd = pmd_offset(pud, addr);
2037 	do {
2038 		cond_resched();
2039 		next = pmd_addr_end(addr, end);
2040 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2041 			continue;
2042 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2043 				      frontswap, fs_pages_to_unuse);
2044 		if (ret)
2045 			return ret;
2046 	} while (pmd++, addr = next, addr != end);
2047 	return 0;
2048 }
2049 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2050 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2051 				unsigned long addr, unsigned long end,
2052 				unsigned int type, bool frontswap,
2053 				unsigned long *fs_pages_to_unuse)
2054 {
2055 	pud_t *pud;
2056 	unsigned long next;
2057 	int ret;
2058 
2059 	pud = pud_offset(p4d, addr);
2060 	do {
2061 		next = pud_addr_end(addr, end);
2062 		if (pud_none_or_clear_bad(pud))
2063 			continue;
2064 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2065 				      frontswap, fs_pages_to_unuse);
2066 		if (ret)
2067 			return ret;
2068 	} while (pud++, addr = next, addr != end);
2069 	return 0;
2070 }
2071 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2072 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2073 				unsigned long addr, unsigned long end,
2074 				unsigned int type, bool frontswap,
2075 				unsigned long *fs_pages_to_unuse)
2076 {
2077 	p4d_t *p4d;
2078 	unsigned long next;
2079 	int ret;
2080 
2081 	p4d = p4d_offset(pgd, addr);
2082 	do {
2083 		next = p4d_addr_end(addr, end);
2084 		if (p4d_none_or_clear_bad(p4d))
2085 			continue;
2086 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2087 				      frontswap, fs_pages_to_unuse);
2088 		if (ret)
2089 			return ret;
2090 	} while (p4d++, addr = next, addr != end);
2091 	return 0;
2092 }
2093 
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2094 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2095 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2096 {
2097 	pgd_t *pgd;
2098 	unsigned long addr, end, next;
2099 	int ret;
2100 
2101 	addr = vma->vm_start;
2102 	end = vma->vm_end;
2103 
2104 	pgd = pgd_offset(vma->vm_mm, addr);
2105 	do {
2106 		next = pgd_addr_end(addr, end);
2107 		if (pgd_none_or_clear_bad(pgd))
2108 			continue;
2109 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2110 				      frontswap, fs_pages_to_unuse);
2111 		if (ret)
2112 			return ret;
2113 	} while (pgd++, addr = next, addr != end);
2114 	return 0;
2115 }
2116 
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2117 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2118 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2119 {
2120 	struct vm_area_struct *vma;
2121 	int ret = 0;
2122 
2123 	mmap_read_lock(mm);
2124 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2125 		if (vma->anon_vma) {
2126 			ret = unuse_vma(vma, type, frontswap,
2127 					fs_pages_to_unuse);
2128 			if (ret)
2129 				break;
2130 		}
2131 		cond_resched();
2132 	}
2133 	mmap_read_unlock(mm);
2134 	return ret;
2135 }
2136 
2137 /*
2138  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2139  * from current position to next entry still in use. Return 0
2140  * if there are no inuse entries after prev till end of the map.
2141  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2142 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2143 					unsigned int prev, bool frontswap)
2144 {
2145 	unsigned int i;
2146 	unsigned char count;
2147 
2148 	/*
2149 	 * No need for swap_lock here: we're just looking
2150 	 * for whether an entry is in use, not modifying it; false
2151 	 * hits are okay, and sys_swapoff() has already prevented new
2152 	 * allocations from this area (while holding swap_lock).
2153 	 */
2154 	for (i = prev + 1; i < si->max; i++) {
2155 		count = READ_ONCE(si->swap_map[i]);
2156 		if (count && swap_count(count) != SWAP_MAP_BAD)
2157 			if (!frontswap || frontswap_test(si, i))
2158 				break;
2159 		if ((i % LATENCY_LIMIT) == 0)
2160 			cond_resched();
2161 	}
2162 
2163 	if (i == si->max)
2164 		i = 0;
2165 
2166 	return i;
2167 }
2168 
2169 /*
2170  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2171  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2172  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2173 int try_to_unuse(unsigned int type, bool frontswap,
2174 		 unsigned long pages_to_unuse)
2175 {
2176 	struct mm_struct *prev_mm;
2177 	struct mm_struct *mm;
2178 	struct list_head *p;
2179 	int retval = 0;
2180 	struct swap_info_struct *si = swap_info[type];
2181 	struct page *page;
2182 	swp_entry_t entry;
2183 	unsigned int i;
2184 
2185 	if (!READ_ONCE(si->inuse_pages))
2186 		return 0;
2187 
2188 	if (!frontswap)
2189 		pages_to_unuse = 0;
2190 
2191 retry:
2192 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2193 	if (retval)
2194 		goto out;
2195 
2196 	prev_mm = &init_mm;
2197 	mmget(prev_mm);
2198 
2199 	spin_lock(&mmlist_lock);
2200 	p = &init_mm.mmlist;
2201 	while (READ_ONCE(si->inuse_pages) &&
2202 	       !signal_pending(current) &&
2203 	       (p = p->next) != &init_mm.mmlist) {
2204 
2205 		mm = list_entry(p, struct mm_struct, mmlist);
2206 		if (!mmget_not_zero(mm))
2207 			continue;
2208 		spin_unlock(&mmlist_lock);
2209 		mmput(prev_mm);
2210 		prev_mm = mm;
2211 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2212 
2213 		if (retval) {
2214 			mmput(prev_mm);
2215 			goto out;
2216 		}
2217 
2218 		/*
2219 		 * Make sure that we aren't completely killing
2220 		 * interactive performance.
2221 		 */
2222 		cond_resched();
2223 		spin_lock(&mmlist_lock);
2224 	}
2225 	spin_unlock(&mmlist_lock);
2226 
2227 	mmput(prev_mm);
2228 
2229 	i = 0;
2230 	while (READ_ONCE(si->inuse_pages) &&
2231 	       !signal_pending(current) &&
2232 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2233 
2234 		entry = swp_entry(type, i);
2235 		page = find_get_page(swap_address_space(entry), i);
2236 		if (!page)
2237 			continue;
2238 
2239 		/*
2240 		 * It is conceivable that a racing task removed this page from
2241 		 * swap cache just before we acquired the page lock. The page
2242 		 * might even be back in swap cache on another swap area. But
2243 		 * that is okay, try_to_free_swap() only removes stale pages.
2244 		 */
2245 		lock_page(page);
2246 		wait_on_page_writeback(page);
2247 		try_to_free_swap(page);
2248 		unlock_page(page);
2249 		put_page(page);
2250 
2251 		/*
2252 		 * For frontswap, we just need to unuse pages_to_unuse, if
2253 		 * it was specified. Need not check frontswap again here as
2254 		 * we already zeroed out pages_to_unuse if not frontswap.
2255 		 */
2256 		if (pages_to_unuse && --pages_to_unuse == 0)
2257 			goto out;
2258 	}
2259 
2260 	/*
2261 	 * Lets check again to see if there are still swap entries in the map.
2262 	 * If yes, we would need to do retry the unuse logic again.
2263 	 * Under global memory pressure, swap entries can be reinserted back
2264 	 * into process space after the mmlist loop above passes over them.
2265 	 *
2266 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2267 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2268 	 * at its own independent pace; and even shmem_writepage() could have
2269 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2270 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2271 	 */
2272 	if (READ_ONCE(si->inuse_pages)) {
2273 		if (!signal_pending(current))
2274 			goto retry;
2275 		retval = -EINTR;
2276 	}
2277 out:
2278 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2279 }
2280 
2281 /*
2282  * After a successful try_to_unuse, if no swap is now in use, we know
2283  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2284  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2285  * added to the mmlist just after page_duplicate - before would be racy.
2286  */
drain_mmlist(void)2287 static void drain_mmlist(void)
2288 {
2289 	struct list_head *p, *next;
2290 	unsigned int type;
2291 
2292 	for (type = 0; type < nr_swapfiles; type++)
2293 		if (swap_info[type]->inuse_pages)
2294 			return;
2295 	spin_lock(&mmlist_lock);
2296 	list_for_each_safe(p, next, &init_mm.mmlist)
2297 		list_del_init(p);
2298 	spin_unlock(&mmlist_lock);
2299 }
2300 
2301 /*
2302  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2303  * corresponds to page offset for the specified swap entry.
2304  * Note that the type of this function is sector_t, but it returns page offset
2305  * into the bdev, not sector offset.
2306  */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2307 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2308 {
2309 	struct swap_info_struct *sis;
2310 	struct swap_extent *se;
2311 	pgoff_t offset;
2312 
2313 	sis = swp_swap_info(entry);
2314 	*bdev = sis->bdev;
2315 
2316 	offset = swp_offset(entry);
2317 	se = offset_to_swap_extent(sis, offset);
2318 	return se->start_block + (offset - se->start_page);
2319 }
2320 
2321 /*
2322  * Returns the page offset into bdev for the specified page's swap entry.
2323  */
map_swap_page(struct page * page,struct block_device ** bdev)2324 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2325 {
2326 	swp_entry_t entry;
2327 	entry.val = page_private(page);
2328 	return map_swap_entry(entry, bdev);
2329 }
2330 
2331 /*
2332  * Free all of a swapdev's extent information
2333  */
destroy_swap_extents(struct swap_info_struct * sis)2334 static void destroy_swap_extents(struct swap_info_struct *sis)
2335 {
2336 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2337 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2338 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2339 
2340 		rb_erase(rb, &sis->swap_extent_root);
2341 		kfree(se);
2342 	}
2343 
2344 	if (sis->flags & SWP_ACTIVATED) {
2345 		struct file *swap_file = sis->swap_file;
2346 		struct address_space *mapping = swap_file->f_mapping;
2347 
2348 		sis->flags &= ~SWP_ACTIVATED;
2349 		if (mapping->a_ops->swap_deactivate)
2350 			mapping->a_ops->swap_deactivate(swap_file);
2351 	}
2352 }
2353 
2354 /*
2355  * Add a block range (and the corresponding page range) into this swapdev's
2356  * extent tree.
2357  *
2358  * This function rather assumes that it is called in ascending page order.
2359  */
2360 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2361 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2362 		unsigned long nr_pages, sector_t start_block)
2363 {
2364 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2365 	struct swap_extent *se;
2366 	struct swap_extent *new_se;
2367 
2368 	/*
2369 	 * place the new node at the right most since the
2370 	 * function is called in ascending page order.
2371 	 */
2372 	while (*link) {
2373 		parent = *link;
2374 		link = &parent->rb_right;
2375 	}
2376 
2377 	if (parent) {
2378 		se = rb_entry(parent, struct swap_extent, rb_node);
2379 		BUG_ON(se->start_page + se->nr_pages != start_page);
2380 		if (se->start_block + se->nr_pages == start_block) {
2381 			/* Merge it */
2382 			se->nr_pages += nr_pages;
2383 			return 0;
2384 		}
2385 	}
2386 
2387 	/* No merge, insert a new extent. */
2388 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2389 	if (new_se == NULL)
2390 		return -ENOMEM;
2391 	new_se->start_page = start_page;
2392 	new_se->nr_pages = nr_pages;
2393 	new_se->start_block = start_block;
2394 
2395 	rb_link_node(&new_se->rb_node, parent, link);
2396 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2397 	return 1;
2398 }
2399 EXPORT_SYMBOL_GPL(add_swap_extent);
2400 
2401 /*
2402  * A `swap extent' is a simple thing which maps a contiguous range of pages
2403  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2404  * is built at swapon time and is then used at swap_writepage/swap_readpage
2405  * time for locating where on disk a page belongs.
2406  *
2407  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2408  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2409  * swap files identically.
2410  *
2411  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2412  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2413  * swapfiles are handled *identically* after swapon time.
2414  *
2415  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2416  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2417  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2418  * requirements, they are simply tossed out - we will never use those blocks
2419  * for swapping.
2420  *
2421  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2422  * prevents users from writing to the swap device, which will corrupt memory.
2423  *
2424  * The amount of disk space which a single swap extent represents varies.
2425  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2426  * extents in the list.  To avoid much list walking, we cache the previous
2427  * search location in `curr_swap_extent', and start new searches from there.
2428  * This is extremely effective.  The average number of iterations in
2429  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2430  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2431 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2432 {
2433 	struct file *swap_file = sis->swap_file;
2434 	struct address_space *mapping = swap_file->f_mapping;
2435 	struct inode *inode = mapping->host;
2436 	int ret;
2437 
2438 	if (S_ISBLK(inode->i_mode)) {
2439 		ret = add_swap_extent(sis, 0, sis->max, 0);
2440 		*span = sis->pages;
2441 		return ret;
2442 	}
2443 
2444 	if (mapping->a_ops->swap_activate) {
2445 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2446 		if (ret >= 0)
2447 			sis->flags |= SWP_ACTIVATED;
2448 		if (!ret) {
2449 			sis->flags |= SWP_FS_OPS;
2450 			ret = add_swap_extent(sis, 0, sis->max, 0);
2451 			*span = sis->pages;
2452 		}
2453 		return ret;
2454 	}
2455 
2456 	return generic_swapfile_activate(sis, swap_file, span);
2457 }
2458 
swap_node(struct swap_info_struct * p)2459 static int swap_node(struct swap_info_struct *p)
2460 {
2461 	struct block_device *bdev;
2462 
2463 	if (p->bdev)
2464 		bdev = p->bdev;
2465 	else
2466 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2467 
2468 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2469 }
2470 
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2471 static void setup_swap_info(struct swap_info_struct *p, int prio,
2472 			    unsigned char *swap_map,
2473 			    struct swap_cluster_info *cluster_info)
2474 {
2475 	int i;
2476 
2477 	if (prio >= 0)
2478 		p->prio = prio;
2479 	else
2480 		p->prio = --least_priority;
2481 	/*
2482 	 * the plist prio is negated because plist ordering is
2483 	 * low-to-high, while swap ordering is high-to-low
2484 	 */
2485 	p->list.prio = -p->prio;
2486 	for_each_node(i) {
2487 		if (p->prio >= 0)
2488 			p->avail_lists[i].prio = -p->prio;
2489 		else {
2490 			if (swap_node(p) == i)
2491 				p->avail_lists[i].prio = 1;
2492 			else
2493 				p->avail_lists[i].prio = -p->prio;
2494 		}
2495 	}
2496 	p->swap_map = swap_map;
2497 	p->cluster_info = cluster_info;
2498 }
2499 
_enable_swap_info(struct swap_info_struct * p)2500 static void _enable_swap_info(struct swap_info_struct *p)
2501 {
2502 	p->flags |= SWP_WRITEOK | SWP_VALID;
2503 	atomic_long_add(p->pages, &nr_swap_pages);
2504 	total_swap_pages += p->pages;
2505 
2506 	assert_spin_locked(&swap_lock);
2507 	/*
2508 	 * both lists are plists, and thus priority ordered.
2509 	 * swap_active_head needs to be priority ordered for swapoff(),
2510 	 * which on removal of any swap_info_struct with an auto-assigned
2511 	 * (i.e. negative) priority increments the auto-assigned priority
2512 	 * of any lower-priority swap_info_structs.
2513 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2514 	 * which allocates swap pages from the highest available priority
2515 	 * swap_info_struct.
2516 	 */
2517 	plist_add(&p->list, &swap_active_head);
2518 	add_to_avail_list(p);
2519 }
2520 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2521 static void enable_swap_info(struct swap_info_struct *p, int prio,
2522 				unsigned char *swap_map,
2523 				struct swap_cluster_info *cluster_info,
2524 				unsigned long *frontswap_map)
2525 {
2526 	frontswap_init(p->type, frontswap_map);
2527 	spin_lock(&swap_lock);
2528 	spin_lock(&p->lock);
2529 	setup_swap_info(p, prio, swap_map, cluster_info);
2530 	spin_unlock(&p->lock);
2531 	spin_unlock(&swap_lock);
2532 	/*
2533 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2534 	 * between get/put_swap_device() if SWP_VALID bit is set
2535 	 */
2536 	synchronize_rcu();
2537 	spin_lock(&swap_lock);
2538 	spin_lock(&p->lock);
2539 	_enable_swap_info(p);
2540 	spin_unlock(&p->lock);
2541 	spin_unlock(&swap_lock);
2542 }
2543 
reinsert_swap_info(struct swap_info_struct * p)2544 static void reinsert_swap_info(struct swap_info_struct *p)
2545 {
2546 	spin_lock(&swap_lock);
2547 	spin_lock(&p->lock);
2548 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2549 	_enable_swap_info(p);
2550 	spin_unlock(&p->lock);
2551 	spin_unlock(&swap_lock);
2552 }
2553 
has_usable_swap(void)2554 bool has_usable_swap(void)
2555 {
2556 	bool ret = true;
2557 
2558 	spin_lock(&swap_lock);
2559 	if (plist_head_empty(&swap_active_head))
2560 		ret = false;
2561 	spin_unlock(&swap_lock);
2562 	return ret;
2563 }
2564 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2565 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2566 {
2567 	struct swap_info_struct *p = NULL;
2568 	unsigned char *swap_map;
2569 	struct swap_cluster_info *cluster_info;
2570 	unsigned long *frontswap_map;
2571 	struct file *swap_file, *victim;
2572 	struct address_space *mapping;
2573 	struct inode *inode;
2574 	struct filename *pathname;
2575 	int err, found = 0;
2576 	unsigned int old_block_size;
2577 
2578 	if (!capable(CAP_SYS_ADMIN))
2579 		return -EPERM;
2580 
2581 	BUG_ON(!current->mm);
2582 
2583 	pathname = getname(specialfile);
2584 	if (IS_ERR(pathname))
2585 		return PTR_ERR(pathname);
2586 
2587 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2588 	err = PTR_ERR(victim);
2589 	if (IS_ERR(victim))
2590 		goto out;
2591 
2592 	mapping = victim->f_mapping;
2593 	spin_lock(&swap_lock);
2594 	plist_for_each_entry(p, &swap_active_head, list) {
2595 		if (p->flags & SWP_WRITEOK) {
2596 			if (p->swap_file->f_mapping == mapping) {
2597 				found = 1;
2598 				break;
2599 			}
2600 		}
2601 	}
2602 	if (!found) {
2603 		err = -EINVAL;
2604 		spin_unlock(&swap_lock);
2605 		goto out_dput;
2606 	}
2607 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2608 		vm_unacct_memory(p->pages);
2609 	else {
2610 		err = -ENOMEM;
2611 		spin_unlock(&swap_lock);
2612 		goto out_dput;
2613 	}
2614 	del_from_avail_list(p);
2615 	spin_lock(&p->lock);
2616 	if (p->prio < 0) {
2617 		struct swap_info_struct *si = p;
2618 		int nid;
2619 
2620 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2621 			si->prio++;
2622 			si->list.prio--;
2623 			for_each_node(nid) {
2624 				if (si->avail_lists[nid].prio != 1)
2625 					si->avail_lists[nid].prio--;
2626 			}
2627 		}
2628 		least_priority++;
2629 	}
2630 	plist_del(&p->list, &swap_active_head);
2631 	atomic_long_sub(p->pages, &nr_swap_pages);
2632 	total_swap_pages -= p->pages;
2633 	p->flags &= ~SWP_WRITEOK;
2634 	spin_unlock(&p->lock);
2635 	spin_unlock(&swap_lock);
2636 
2637 	disable_swap_slots_cache_lock();
2638 
2639 	set_current_oom_origin();
2640 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2641 	clear_current_oom_origin();
2642 
2643 	if (err) {
2644 		/* re-insert swap space back into swap_list */
2645 		reinsert_swap_info(p);
2646 		reenable_swap_slots_cache_unlock();
2647 		goto out_dput;
2648 	}
2649 
2650 	reenable_swap_slots_cache_unlock();
2651 
2652 	spin_lock(&swap_lock);
2653 	spin_lock(&p->lock);
2654 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2655 	spin_unlock(&p->lock);
2656 	spin_unlock(&swap_lock);
2657 	/*
2658 	 * wait for swap operations protected by get/put_swap_device()
2659 	 * to complete
2660 	 */
2661 	synchronize_rcu();
2662 
2663 	flush_work(&p->discard_work);
2664 
2665 	destroy_swap_extents(p);
2666 	if (p->flags & SWP_CONTINUED)
2667 		free_swap_count_continuations(p);
2668 
2669 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2670 		atomic_dec(&nr_rotate_swap);
2671 
2672 	mutex_lock(&swapon_mutex);
2673 	spin_lock(&swap_lock);
2674 	spin_lock(&p->lock);
2675 	drain_mmlist();
2676 
2677 	/* wait for anyone still in scan_swap_map */
2678 	p->highest_bit = 0;		/* cuts scans short */
2679 	while (p->flags >= SWP_SCANNING) {
2680 		spin_unlock(&p->lock);
2681 		spin_unlock(&swap_lock);
2682 		schedule_timeout_uninterruptible(1);
2683 		spin_lock(&swap_lock);
2684 		spin_lock(&p->lock);
2685 	}
2686 
2687 	swap_file = p->swap_file;
2688 	old_block_size = p->old_block_size;
2689 	p->swap_file = NULL;
2690 	p->max = 0;
2691 	swap_map = p->swap_map;
2692 	p->swap_map = NULL;
2693 	cluster_info = p->cluster_info;
2694 	p->cluster_info = NULL;
2695 	frontswap_map = frontswap_map_get(p);
2696 	spin_unlock(&p->lock);
2697 	spin_unlock(&swap_lock);
2698 	arch_swap_invalidate_area(p->type);
2699 	frontswap_invalidate_area(p->type);
2700 	frontswap_map_set(p, NULL);
2701 	mutex_unlock(&swapon_mutex);
2702 	free_percpu(p->percpu_cluster);
2703 	p->percpu_cluster = NULL;
2704 	free_percpu(p->cluster_next_cpu);
2705 	p->cluster_next_cpu = NULL;
2706 	vfree(swap_map);
2707 	kvfree(cluster_info);
2708 	kvfree(frontswap_map);
2709 	/* Destroy swap account information */
2710 	swap_cgroup_swapoff(p->type);
2711 	exit_swap_address_space(p->type);
2712 
2713 	inode = mapping->host;
2714 	if (S_ISBLK(inode->i_mode)) {
2715 		struct block_device *bdev = I_BDEV(inode);
2716 
2717 		set_blocksize(bdev, old_block_size);
2718 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2719 	}
2720 
2721 	inode_lock(inode);
2722 	inode->i_flags &= ~S_SWAPFILE;
2723 	inode_unlock(inode);
2724 	filp_close(swap_file, NULL);
2725 
2726 	/*
2727 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2728 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2729 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2730 	 */
2731 	spin_lock(&swap_lock);
2732 	p->flags = 0;
2733 	spin_unlock(&swap_lock);
2734 
2735 	err = 0;
2736 	atomic_inc(&proc_poll_event);
2737 	wake_up_interruptible(&proc_poll_wait);
2738 
2739 out_dput:
2740 	filp_close(victim, NULL);
2741 out:
2742 	putname(pathname);
2743 	return err;
2744 }
2745 
2746 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2747 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2748 {
2749 	struct seq_file *seq = file->private_data;
2750 
2751 	poll_wait(file, &proc_poll_wait, wait);
2752 
2753 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2754 		seq->poll_event = atomic_read(&proc_poll_event);
2755 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2756 	}
2757 
2758 	return EPOLLIN | EPOLLRDNORM;
2759 }
2760 
2761 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2762 static void *swap_start(struct seq_file *swap, loff_t *pos)
2763 {
2764 	struct swap_info_struct *si;
2765 	int type;
2766 	loff_t l = *pos;
2767 
2768 	mutex_lock(&swapon_mutex);
2769 
2770 	if (!l)
2771 		return SEQ_START_TOKEN;
2772 
2773 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2774 		if (!(si->flags & SWP_USED) || !si->swap_map)
2775 			continue;
2776 		if (!--l)
2777 			return si;
2778 	}
2779 
2780 	return NULL;
2781 }
2782 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2783 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2784 {
2785 	struct swap_info_struct *si = v;
2786 	int type;
2787 
2788 	if (v == SEQ_START_TOKEN)
2789 		type = 0;
2790 	else
2791 		type = si->type + 1;
2792 
2793 	++(*pos);
2794 	for (; (si = swap_type_to_swap_info(type)); type++) {
2795 		if (!(si->flags & SWP_USED) || !si->swap_map)
2796 			continue;
2797 		return si;
2798 	}
2799 
2800 	return NULL;
2801 }
2802 
swap_stop(struct seq_file * swap,void * v)2803 static void swap_stop(struct seq_file *swap, void *v)
2804 {
2805 	mutex_unlock(&swapon_mutex);
2806 }
2807 
swap_show(struct seq_file * swap,void * v)2808 static int swap_show(struct seq_file *swap, void *v)
2809 {
2810 	struct swap_info_struct *si = v;
2811 	struct file *file;
2812 	int len;
2813 	unsigned int bytes, inuse;
2814 
2815 	if (si == SEQ_START_TOKEN) {
2816 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2817 		return 0;
2818 	}
2819 
2820 	bytes = si->pages << (PAGE_SHIFT - 10);
2821 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2822 
2823 	file = si->swap_file;
2824 	len = seq_file_path(swap, file, " \t\n\\");
2825 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2826 			len < 40 ? 40 - len : 1, " ",
2827 			S_ISBLK(file_inode(file)->i_mode) ?
2828 				"partition" : "file\t",
2829 			bytes, bytes < 10000000 ? "\t" : "",
2830 			inuse, inuse < 10000000 ? "\t" : "",
2831 			si->prio);
2832 	return 0;
2833 }
2834 
2835 static const struct seq_operations swaps_op = {
2836 	.start =	swap_start,
2837 	.next =		swap_next,
2838 	.stop =		swap_stop,
2839 	.show =		swap_show
2840 };
2841 
swaps_open(struct inode * inode,struct file * file)2842 static int swaps_open(struct inode *inode, struct file *file)
2843 {
2844 	struct seq_file *seq;
2845 	int ret;
2846 
2847 	ret = seq_open(file, &swaps_op);
2848 	if (ret)
2849 		return ret;
2850 
2851 	seq = file->private_data;
2852 	seq->poll_event = atomic_read(&proc_poll_event);
2853 	return 0;
2854 }
2855 
2856 static const struct proc_ops swaps_proc_ops = {
2857 	.proc_flags	= PROC_ENTRY_PERMANENT,
2858 	.proc_open	= swaps_open,
2859 	.proc_read	= seq_read,
2860 	.proc_lseek	= seq_lseek,
2861 	.proc_release	= seq_release,
2862 	.proc_poll	= swaps_poll,
2863 };
2864 
procswaps_init(void)2865 static int __init procswaps_init(void)
2866 {
2867 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2868 	return 0;
2869 }
2870 __initcall(procswaps_init);
2871 #endif /* CONFIG_PROC_FS */
2872 
2873 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2874 static int __init max_swapfiles_check(void)
2875 {
2876 	MAX_SWAPFILES_CHECK();
2877 	return 0;
2878 }
2879 late_initcall(max_swapfiles_check);
2880 #endif
2881 
alloc_swap_info(void)2882 static struct swap_info_struct *alloc_swap_info(void)
2883 {
2884 	struct swap_info_struct *p;
2885 	struct swap_info_struct *defer = NULL;
2886 	unsigned int type;
2887 	int i;
2888 
2889 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2890 	if (!p)
2891 		return ERR_PTR(-ENOMEM);
2892 
2893 	spin_lock(&swap_lock);
2894 	for (type = 0; type < nr_swapfiles; type++) {
2895 		if (!(swap_info[type]->flags & SWP_USED))
2896 			break;
2897 	}
2898 	if (type >= MAX_SWAPFILES) {
2899 		spin_unlock(&swap_lock);
2900 		kvfree(p);
2901 		return ERR_PTR(-EPERM);
2902 	}
2903 	if (type >= nr_swapfiles) {
2904 		p->type = type;
2905 		WRITE_ONCE(swap_info[type], p);
2906 		/*
2907 		 * Write swap_info[type] before nr_swapfiles, in case a
2908 		 * racing procfs swap_start() or swap_next() is reading them.
2909 		 * (We never shrink nr_swapfiles, we never free this entry.)
2910 		 */
2911 		smp_wmb();
2912 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2913 	} else {
2914 		defer = p;
2915 		p = swap_info[type];
2916 		/*
2917 		 * Do not memset this entry: a racing procfs swap_next()
2918 		 * would be relying on p->type to remain valid.
2919 		 */
2920 	}
2921 	p->swap_extent_root = RB_ROOT;
2922 	plist_node_init(&p->list, 0);
2923 	for_each_node(i)
2924 		plist_node_init(&p->avail_lists[i], 0);
2925 	p->flags = SWP_USED;
2926 	spin_unlock(&swap_lock);
2927 	kvfree(defer);
2928 	spin_lock_init(&p->lock);
2929 	spin_lock_init(&p->cont_lock);
2930 
2931 	return p;
2932 }
2933 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2934 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2935 {
2936 	int error;
2937 
2938 	if (S_ISBLK(inode->i_mode)) {
2939 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2940 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2941 		if (IS_ERR(p->bdev)) {
2942 			error = PTR_ERR(p->bdev);
2943 			p->bdev = NULL;
2944 			return error;
2945 		}
2946 		p->old_block_size = block_size(p->bdev);
2947 		error = set_blocksize(p->bdev, PAGE_SIZE);
2948 		if (error < 0)
2949 			return error;
2950 		/*
2951 		 * Zoned block devices contain zones that have a sequential
2952 		 * write only restriction.  Hence zoned block devices are not
2953 		 * suitable for swapping.  Disallow them here.
2954 		 */
2955 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2956 			return -EINVAL;
2957 		p->flags |= SWP_BLKDEV;
2958 	} else if (S_ISREG(inode->i_mode)) {
2959 		p->bdev = inode->i_sb->s_bdev;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 
2966 /*
2967  * Find out how many pages are allowed for a single swap device. There
2968  * are two limiting factors:
2969  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2970  * 2) the number of bits in the swap pte, as defined by the different
2971  * architectures.
2972  *
2973  * In order to find the largest possible bit mask, a swap entry with
2974  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2975  * decoded to a swp_entry_t again, and finally the swap offset is
2976  * extracted.
2977  *
2978  * This will mask all the bits from the initial ~0UL mask that can't
2979  * be encoded in either the swp_entry_t or the architecture definition
2980  * of a swap pte.
2981  */
generic_max_swapfile_size(void)2982 unsigned long generic_max_swapfile_size(void)
2983 {
2984 	return swp_offset(pte_to_swp_entry(
2985 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2986 }
2987 
2988 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2989 __weak unsigned long max_swapfile_size(void)
2990 {
2991 	return generic_max_swapfile_size();
2992 }
2993 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2994 static unsigned long read_swap_header(struct swap_info_struct *p,
2995 					union swap_header *swap_header,
2996 					struct inode *inode)
2997 {
2998 	int i;
2999 	unsigned long maxpages;
3000 	unsigned long swapfilepages;
3001 	unsigned long last_page;
3002 
3003 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3004 		pr_err("Unable to find swap-space signature\n");
3005 		return 0;
3006 	}
3007 
3008 	/* swap partition endianess hack... */
3009 	if (swab32(swap_header->info.version) == 1) {
3010 		swab32s(&swap_header->info.version);
3011 		swab32s(&swap_header->info.last_page);
3012 		swab32s(&swap_header->info.nr_badpages);
3013 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3014 			return 0;
3015 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3016 			swab32s(&swap_header->info.badpages[i]);
3017 	}
3018 	/* Check the swap header's sub-version */
3019 	if (swap_header->info.version != 1) {
3020 		pr_warn("Unable to handle swap header version %d\n",
3021 			swap_header->info.version);
3022 		return 0;
3023 	}
3024 
3025 	p->lowest_bit  = 1;
3026 	p->cluster_next = 1;
3027 	p->cluster_nr = 0;
3028 
3029 	maxpages = max_swapfile_size();
3030 	last_page = swap_header->info.last_page;
3031 	if (!last_page) {
3032 		pr_warn("Empty swap-file\n");
3033 		return 0;
3034 	}
3035 	if (last_page > maxpages) {
3036 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3037 			maxpages << (PAGE_SHIFT - 10),
3038 			last_page << (PAGE_SHIFT - 10));
3039 	}
3040 	if (maxpages > last_page) {
3041 		maxpages = last_page + 1;
3042 		/* p->max is an unsigned int: don't overflow it */
3043 		if ((unsigned int)maxpages == 0)
3044 			maxpages = UINT_MAX;
3045 	}
3046 	p->highest_bit = maxpages - 1;
3047 
3048 	if (!maxpages)
3049 		return 0;
3050 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3051 	if (swapfilepages && maxpages > swapfilepages) {
3052 		pr_warn("Swap area shorter than signature indicates\n");
3053 		return 0;
3054 	}
3055 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3056 		return 0;
3057 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3058 		return 0;
3059 
3060 	return maxpages;
3061 }
3062 
3063 #define SWAP_CLUSTER_INFO_COLS						\
3064 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3065 #define SWAP_CLUSTER_SPACE_COLS						\
3066 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3067 #define SWAP_CLUSTER_COLS						\
3068 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3069 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3070 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3071 					union swap_header *swap_header,
3072 					unsigned char *swap_map,
3073 					struct swap_cluster_info *cluster_info,
3074 					unsigned long maxpages,
3075 					sector_t *span)
3076 {
3077 	unsigned int j, k;
3078 	unsigned int nr_good_pages;
3079 	int nr_extents;
3080 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3081 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3082 	unsigned long i, idx;
3083 
3084 	nr_good_pages = maxpages - 1;	/* omit header page */
3085 
3086 	cluster_list_init(&p->free_clusters);
3087 	cluster_list_init(&p->discard_clusters);
3088 
3089 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3090 		unsigned int page_nr = swap_header->info.badpages[i];
3091 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3092 			return -EINVAL;
3093 		if (page_nr < maxpages) {
3094 			swap_map[page_nr] = SWAP_MAP_BAD;
3095 			nr_good_pages--;
3096 			/*
3097 			 * Haven't marked the cluster free yet, no list
3098 			 * operation involved
3099 			 */
3100 			inc_cluster_info_page(p, cluster_info, page_nr);
3101 		}
3102 	}
3103 
3104 	/* Haven't marked the cluster free yet, no list operation involved */
3105 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3106 		inc_cluster_info_page(p, cluster_info, i);
3107 
3108 	if (nr_good_pages) {
3109 		swap_map[0] = SWAP_MAP_BAD;
3110 		/*
3111 		 * Not mark the cluster free yet, no list
3112 		 * operation involved
3113 		 */
3114 		inc_cluster_info_page(p, cluster_info, 0);
3115 		p->max = maxpages;
3116 		p->pages = nr_good_pages;
3117 		nr_extents = setup_swap_extents(p, span);
3118 		if (nr_extents < 0)
3119 			return nr_extents;
3120 		nr_good_pages = p->pages;
3121 	}
3122 	if (!nr_good_pages) {
3123 		pr_warn("Empty swap-file\n");
3124 		return -EINVAL;
3125 	}
3126 
3127 	if (!cluster_info)
3128 		return nr_extents;
3129 
3130 
3131 	/*
3132 	 * Reduce false cache line sharing between cluster_info and
3133 	 * sharing same address space.
3134 	 */
3135 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3136 		j = (k + col) % SWAP_CLUSTER_COLS;
3137 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3138 			idx = i * SWAP_CLUSTER_COLS + j;
3139 			if (idx >= nr_clusters)
3140 				continue;
3141 			if (cluster_count(&cluster_info[idx]))
3142 				continue;
3143 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3144 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3145 					      idx);
3146 		}
3147 	}
3148 	return nr_extents;
3149 }
3150 
3151 /*
3152  * Helper to sys_swapon determining if a given swap
3153  * backing device queue supports DISCARD operations.
3154  */
swap_discardable(struct swap_info_struct * si)3155 static bool swap_discardable(struct swap_info_struct *si)
3156 {
3157 	struct request_queue *q = bdev_get_queue(si->bdev);
3158 
3159 	if (!q || !blk_queue_discard(q))
3160 		return false;
3161 
3162 	return true;
3163 }
3164 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3165 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3166 {
3167 	struct swap_info_struct *p;
3168 	struct filename *name;
3169 	struct file *swap_file = NULL;
3170 	struct address_space *mapping;
3171 	int prio;
3172 	int error;
3173 	union swap_header *swap_header;
3174 	int nr_extents;
3175 	sector_t span;
3176 	unsigned long maxpages;
3177 	unsigned char *swap_map = NULL;
3178 	struct swap_cluster_info *cluster_info = NULL;
3179 	unsigned long *frontswap_map = NULL;
3180 	struct page *page = NULL;
3181 	struct inode *inode = NULL;
3182 	bool inced_nr_rotate_swap = false;
3183 
3184 	if (swap_flags & ~SWAP_FLAGS_VALID)
3185 		return -EINVAL;
3186 
3187 	if (!capable(CAP_SYS_ADMIN))
3188 		return -EPERM;
3189 
3190 	if (!swap_avail_heads)
3191 		return -ENOMEM;
3192 
3193 	p = alloc_swap_info();
3194 	if (IS_ERR(p))
3195 		return PTR_ERR(p);
3196 
3197 	INIT_WORK(&p->discard_work, swap_discard_work);
3198 
3199 	name = getname(specialfile);
3200 	if (IS_ERR(name)) {
3201 		error = PTR_ERR(name);
3202 		name = NULL;
3203 		goto bad_swap;
3204 	}
3205 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3206 	if (IS_ERR(swap_file)) {
3207 		error = PTR_ERR(swap_file);
3208 		swap_file = NULL;
3209 		goto bad_swap;
3210 	}
3211 
3212 	p->swap_file = swap_file;
3213 	mapping = swap_file->f_mapping;
3214 	inode = mapping->host;
3215 
3216 	error = claim_swapfile(p, inode);
3217 	if (unlikely(error))
3218 		goto bad_swap;
3219 
3220 	inode_lock(inode);
3221 	if (IS_SWAPFILE(inode)) {
3222 		error = -EBUSY;
3223 		goto bad_swap_unlock_inode;
3224 	}
3225 
3226 	/*
3227 	 * Read the swap header.
3228 	 */
3229 	if (!mapping->a_ops->readpage) {
3230 		error = -EINVAL;
3231 		goto bad_swap_unlock_inode;
3232 	}
3233 	page = read_mapping_page(mapping, 0, swap_file);
3234 	if (IS_ERR(page)) {
3235 		error = PTR_ERR(page);
3236 		goto bad_swap_unlock_inode;
3237 	}
3238 	swap_header = kmap(page);
3239 
3240 	maxpages = read_swap_header(p, swap_header, inode);
3241 	if (unlikely(!maxpages)) {
3242 		error = -EINVAL;
3243 		goto bad_swap_unlock_inode;
3244 	}
3245 
3246 	/* OK, set up the swap map and apply the bad block list */
3247 	swap_map = vzalloc(maxpages);
3248 	if (!swap_map) {
3249 		error = -ENOMEM;
3250 		goto bad_swap_unlock_inode;
3251 	}
3252 
3253 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3254 		p->flags |= SWP_STABLE_WRITES;
3255 
3256 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3257 		p->flags |= SWP_SYNCHRONOUS_IO;
3258 
3259 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3260 		int cpu;
3261 		unsigned long ci, nr_cluster;
3262 
3263 		p->flags |= SWP_SOLIDSTATE;
3264 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3265 		if (!p->cluster_next_cpu) {
3266 			error = -ENOMEM;
3267 			goto bad_swap_unlock_inode;
3268 		}
3269 		/*
3270 		 * select a random position to start with to help wear leveling
3271 		 * SSD
3272 		 */
3273 		for_each_possible_cpu(cpu) {
3274 			per_cpu(*p->cluster_next_cpu, cpu) =
3275 				1 + prandom_u32_max(p->highest_bit);
3276 		}
3277 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3278 
3279 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3280 					GFP_KERNEL);
3281 		if (!cluster_info) {
3282 			error = -ENOMEM;
3283 			goto bad_swap_unlock_inode;
3284 		}
3285 
3286 		for (ci = 0; ci < nr_cluster; ci++)
3287 			spin_lock_init(&((cluster_info + ci)->lock));
3288 
3289 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3290 		if (!p->percpu_cluster) {
3291 			error = -ENOMEM;
3292 			goto bad_swap_unlock_inode;
3293 		}
3294 		for_each_possible_cpu(cpu) {
3295 			struct percpu_cluster *cluster;
3296 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3297 			cluster_set_null(&cluster->index);
3298 		}
3299 	} else {
3300 		atomic_inc(&nr_rotate_swap);
3301 		inced_nr_rotate_swap = true;
3302 	}
3303 
3304 	error = swap_cgroup_swapon(p->type, maxpages);
3305 	if (error)
3306 		goto bad_swap_unlock_inode;
3307 
3308 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3309 		cluster_info, maxpages, &span);
3310 	if (unlikely(nr_extents < 0)) {
3311 		error = nr_extents;
3312 		goto bad_swap_unlock_inode;
3313 	}
3314 	/* frontswap enabled? set up bit-per-page map for frontswap */
3315 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3316 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3317 					 sizeof(long),
3318 					 GFP_KERNEL);
3319 
3320 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3321 		/*
3322 		 * When discard is enabled for swap with no particular
3323 		 * policy flagged, we set all swap discard flags here in
3324 		 * order to sustain backward compatibility with older
3325 		 * swapon(8) releases.
3326 		 */
3327 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3328 			     SWP_PAGE_DISCARD);
3329 
3330 		/*
3331 		 * By flagging sys_swapon, a sysadmin can tell us to
3332 		 * either do single-time area discards only, or to just
3333 		 * perform discards for released swap page-clusters.
3334 		 * Now it's time to adjust the p->flags accordingly.
3335 		 */
3336 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3337 			p->flags &= ~SWP_PAGE_DISCARD;
3338 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3339 			p->flags &= ~SWP_AREA_DISCARD;
3340 
3341 		/* issue a swapon-time discard if it's still required */
3342 		if (p->flags & SWP_AREA_DISCARD) {
3343 			int err = discard_swap(p);
3344 			if (unlikely(err))
3345 				pr_err("swapon: discard_swap(%p): %d\n",
3346 					p, err);
3347 		}
3348 	}
3349 
3350 	error = init_swap_address_space(p->type, maxpages);
3351 	if (error)
3352 		goto bad_swap_unlock_inode;
3353 
3354 	/*
3355 	 * Flush any pending IO and dirty mappings before we start using this
3356 	 * swap device.
3357 	 */
3358 	inode->i_flags |= S_SWAPFILE;
3359 	error = inode_drain_writes(inode);
3360 	if (error) {
3361 		inode->i_flags &= ~S_SWAPFILE;
3362 		goto free_swap_address_space;
3363 	}
3364 
3365 	mutex_lock(&swapon_mutex);
3366 	prio = -1;
3367 	if (swap_flags & SWAP_FLAG_PREFER)
3368 		prio =
3369 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3370 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3371 
3372 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3373 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3374 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3375 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3376 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3377 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3378 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3379 		(frontswap_map) ? "FS" : "");
3380 
3381 	mutex_unlock(&swapon_mutex);
3382 	atomic_inc(&proc_poll_event);
3383 	wake_up_interruptible(&proc_poll_wait);
3384 
3385 	error = 0;
3386 	goto out;
3387 free_swap_address_space:
3388 	exit_swap_address_space(p->type);
3389 bad_swap_unlock_inode:
3390 	inode_unlock(inode);
3391 bad_swap:
3392 	free_percpu(p->percpu_cluster);
3393 	p->percpu_cluster = NULL;
3394 	free_percpu(p->cluster_next_cpu);
3395 	p->cluster_next_cpu = NULL;
3396 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3397 		set_blocksize(p->bdev, p->old_block_size);
3398 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3399 	}
3400 	inode = NULL;
3401 	destroy_swap_extents(p);
3402 	swap_cgroup_swapoff(p->type);
3403 	spin_lock(&swap_lock);
3404 	p->swap_file = NULL;
3405 	p->flags = 0;
3406 	spin_unlock(&swap_lock);
3407 	vfree(swap_map);
3408 	kvfree(cluster_info);
3409 	kvfree(frontswap_map);
3410 	if (inced_nr_rotate_swap)
3411 		atomic_dec(&nr_rotate_swap);
3412 	if (swap_file)
3413 		filp_close(swap_file, NULL);
3414 out:
3415 	if (page && !IS_ERR(page)) {
3416 		kunmap(page);
3417 		put_page(page);
3418 	}
3419 	if (name)
3420 		putname(name);
3421 	if (inode)
3422 		inode_unlock(inode);
3423 	if (!error)
3424 		enable_swap_slots_cache();
3425 	return error;
3426 }
3427 
si_swapinfo(struct sysinfo * val)3428 void si_swapinfo(struct sysinfo *val)
3429 {
3430 	unsigned int type;
3431 	unsigned long nr_to_be_unused = 0;
3432 
3433 	spin_lock(&swap_lock);
3434 	for (type = 0; type < nr_swapfiles; type++) {
3435 		struct swap_info_struct *si = swap_info[type];
3436 
3437 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3438 			nr_to_be_unused += si->inuse_pages;
3439 	}
3440 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3441 	val->totalswap = total_swap_pages + nr_to_be_unused;
3442 	spin_unlock(&swap_lock);
3443 }
3444 
3445 #ifdef CONFIG_HYPERHOLD_ZSWAPD
free_swap_is_low(void)3446 bool free_swap_is_low(void)
3447 {
3448 	unsigned int type;
3449 	unsigned long long freeswap = 0;
3450 	unsigned long nr_to_be_unused = 0;
3451 
3452 	spin_lock(&swap_lock);
3453 	for (type = 0; type < nr_swapfiles; type++) {
3454 		struct swap_info_struct *si = swap_info[type];
3455 
3456 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3457 			nr_to_be_unused += si->inuse_pages;
3458 	}
3459 	freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3460 	spin_unlock(&swap_lock);
3461 
3462 	return (freeswap < get_free_swap_threshold());
3463 }
3464 EXPORT_SYMBOL(free_swap_is_low);
3465 #endif
3466 
3467 /*
3468  * Verify that a swap entry is valid and increment its swap map count.
3469  *
3470  * Returns error code in following case.
3471  * - success -> 0
3472  * - swp_entry is invalid -> EINVAL
3473  * - swp_entry is migration entry -> EINVAL
3474  * - swap-cache reference is requested but there is already one. -> EEXIST
3475  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3476  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3477  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3478 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3479 {
3480 	struct swap_info_struct *p;
3481 	struct swap_cluster_info *ci;
3482 	unsigned long offset;
3483 	unsigned char count;
3484 	unsigned char has_cache;
3485 	int err = -EINVAL;
3486 
3487 	p = get_swap_device(entry);
3488 	if (!p)
3489 		goto out;
3490 
3491 	offset = swp_offset(entry);
3492 	ci = lock_cluster_or_swap_info(p, offset);
3493 
3494 	count = p->swap_map[offset];
3495 
3496 	/*
3497 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3498 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3499 	 */
3500 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3501 		err = -ENOENT;
3502 		goto unlock_out;
3503 	}
3504 
3505 	has_cache = count & SWAP_HAS_CACHE;
3506 	count &= ~SWAP_HAS_CACHE;
3507 	err = 0;
3508 
3509 	if (usage == SWAP_HAS_CACHE) {
3510 
3511 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3512 		if (!has_cache && count)
3513 			has_cache = SWAP_HAS_CACHE;
3514 		else if (has_cache)		/* someone else added cache */
3515 			err = -EEXIST;
3516 		else				/* no users remaining */
3517 			err = -ENOENT;
3518 
3519 	} else if (count || has_cache) {
3520 
3521 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3522 			count += usage;
3523 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3524 			err = -EINVAL;
3525 		else if (swap_count_continued(p, offset, count))
3526 			count = COUNT_CONTINUED;
3527 		else
3528 			err = -ENOMEM;
3529 	} else
3530 		err = -ENOENT;			/* unused swap entry */
3531 
3532 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3533 
3534 unlock_out:
3535 	unlock_cluster_or_swap_info(p, ci);
3536 out:
3537 	if (p)
3538 		put_swap_device(p);
3539 	return err;
3540 }
3541 
3542 /*
3543  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3544  * (in which case its reference count is never incremented).
3545  */
swap_shmem_alloc(swp_entry_t entry)3546 void swap_shmem_alloc(swp_entry_t entry)
3547 {
3548 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3549 }
3550 
3551 /*
3552  * Increase reference count of swap entry by 1.
3553  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3554  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3555  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3556  * might occur if a page table entry has got corrupted.
3557  */
swap_duplicate(swp_entry_t entry)3558 int swap_duplicate(swp_entry_t entry)
3559 {
3560 	int err = 0;
3561 
3562 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3563 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3564 	return err;
3565 }
3566 
3567 /*
3568  * @entry: swap entry for which we allocate swap cache.
3569  *
3570  * Called when allocating swap cache for existing swap entry,
3571  * This can return error codes. Returns 0 at success.
3572  * -EEXIST means there is a swap cache.
3573  * Note: return code is different from swap_duplicate().
3574  */
swapcache_prepare(swp_entry_t entry)3575 int swapcache_prepare(swp_entry_t entry)
3576 {
3577 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3578 }
3579 
swp_swap_info(swp_entry_t entry)3580 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3581 {
3582 	return swap_type_to_swap_info(swp_type(entry));
3583 }
3584 
page_swap_info(struct page * page)3585 struct swap_info_struct *page_swap_info(struct page *page)
3586 {
3587 	swp_entry_t entry = { .val = page_private(page) };
3588 	return swp_swap_info(entry);
3589 }
3590 
3591 /*
3592  * out-of-line __page_file_ methods to avoid include hell.
3593  */
__page_file_mapping(struct page * page)3594 struct address_space *__page_file_mapping(struct page *page)
3595 {
3596 	return page_swap_info(page)->swap_file->f_mapping;
3597 }
3598 EXPORT_SYMBOL_GPL(__page_file_mapping);
3599 
__page_file_index(struct page * page)3600 pgoff_t __page_file_index(struct page *page)
3601 {
3602 	swp_entry_t swap = { .val = page_private(page) };
3603 	return swp_offset(swap);
3604 }
3605 EXPORT_SYMBOL_GPL(__page_file_index);
3606 
3607 /*
3608  * add_swap_count_continuation - called when a swap count is duplicated
3609  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3610  * page of the original vmalloc'ed swap_map, to hold the continuation count
3611  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3612  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3613  *
3614  * These continuation pages are seldom referenced: the common paths all work
3615  * on the original swap_map, only referring to a continuation page when the
3616  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3617  *
3618  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3619  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3620  * can be called after dropping locks.
3621  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3622 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3623 {
3624 	struct swap_info_struct *si;
3625 	struct swap_cluster_info *ci;
3626 	struct page *head;
3627 	struct page *page;
3628 	struct page *list_page;
3629 	pgoff_t offset;
3630 	unsigned char count;
3631 	int ret = 0;
3632 
3633 	/*
3634 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3635 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3636 	 */
3637 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3638 
3639 	si = get_swap_device(entry);
3640 	if (!si) {
3641 		/*
3642 		 * An acceptable race has occurred since the failing
3643 		 * __swap_duplicate(): the swap device may be swapoff
3644 		 */
3645 		goto outer;
3646 	}
3647 	spin_lock(&si->lock);
3648 
3649 	offset = swp_offset(entry);
3650 
3651 	ci = lock_cluster(si, offset);
3652 
3653 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3654 
3655 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3656 		/*
3657 		 * The higher the swap count, the more likely it is that tasks
3658 		 * will race to add swap count continuation: we need to avoid
3659 		 * over-provisioning.
3660 		 */
3661 		goto out;
3662 	}
3663 
3664 	if (!page) {
3665 		ret = -ENOMEM;
3666 		goto out;
3667 	}
3668 
3669 	/*
3670 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3671 	 * no architecture is using highmem pages for kernel page tables: so it
3672 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3673 	 */
3674 	head = vmalloc_to_page(si->swap_map + offset);
3675 	offset &= ~PAGE_MASK;
3676 
3677 	spin_lock(&si->cont_lock);
3678 	/*
3679 	 * Page allocation does not initialize the page's lru field,
3680 	 * but it does always reset its private field.
3681 	 */
3682 	if (!page_private(head)) {
3683 		BUG_ON(count & COUNT_CONTINUED);
3684 		INIT_LIST_HEAD(&head->lru);
3685 		set_page_private(head, SWP_CONTINUED);
3686 		si->flags |= SWP_CONTINUED;
3687 	}
3688 
3689 	list_for_each_entry(list_page, &head->lru, lru) {
3690 		unsigned char *map;
3691 
3692 		/*
3693 		 * If the previous map said no continuation, but we've found
3694 		 * a continuation page, free our allocation and use this one.
3695 		 */
3696 		if (!(count & COUNT_CONTINUED))
3697 			goto out_unlock_cont;
3698 
3699 		map = kmap_atomic(list_page) + offset;
3700 		count = *map;
3701 		kunmap_atomic(map);
3702 
3703 		/*
3704 		 * If this continuation count now has some space in it,
3705 		 * free our allocation and use this one.
3706 		 */
3707 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3708 			goto out_unlock_cont;
3709 	}
3710 
3711 	list_add_tail(&page->lru, &head->lru);
3712 	page = NULL;			/* now it's attached, don't free it */
3713 out_unlock_cont:
3714 	spin_unlock(&si->cont_lock);
3715 out:
3716 	unlock_cluster(ci);
3717 	spin_unlock(&si->lock);
3718 	put_swap_device(si);
3719 outer:
3720 	if (page)
3721 		__free_page(page);
3722 	return ret;
3723 }
3724 
3725 /*
3726  * swap_count_continued - when the original swap_map count is incremented
3727  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3728  * into, carry if so, or else fail until a new continuation page is allocated;
3729  * when the original swap_map count is decremented from 0 with continuation,
3730  * borrow from the continuation and report whether it still holds more.
3731  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3732  * lock.
3733  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3734 static bool swap_count_continued(struct swap_info_struct *si,
3735 				 pgoff_t offset, unsigned char count)
3736 {
3737 	struct page *head;
3738 	struct page *page;
3739 	unsigned char *map;
3740 	bool ret;
3741 
3742 	head = vmalloc_to_page(si->swap_map + offset);
3743 	if (page_private(head) != SWP_CONTINUED) {
3744 		BUG_ON(count & COUNT_CONTINUED);
3745 		return false;		/* need to add count continuation */
3746 	}
3747 
3748 	spin_lock(&si->cont_lock);
3749 	offset &= ~PAGE_MASK;
3750 	page = list_next_entry(head, lru);
3751 	map = kmap_atomic(page) + offset;
3752 
3753 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3754 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3755 
3756 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3757 		/*
3758 		 * Think of how you add 1 to 999
3759 		 */
3760 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3761 			kunmap_atomic(map);
3762 			page = list_next_entry(page, lru);
3763 			BUG_ON(page == head);
3764 			map = kmap_atomic(page) + offset;
3765 		}
3766 		if (*map == SWAP_CONT_MAX) {
3767 			kunmap_atomic(map);
3768 			page = list_next_entry(page, lru);
3769 			if (page == head) {
3770 				ret = false;	/* add count continuation */
3771 				goto out;
3772 			}
3773 			map = kmap_atomic(page) + offset;
3774 init_map:		*map = 0;		/* we didn't zero the page */
3775 		}
3776 		*map += 1;
3777 		kunmap_atomic(map);
3778 		while ((page = list_prev_entry(page, lru)) != head) {
3779 			map = kmap_atomic(page) + offset;
3780 			*map = COUNT_CONTINUED;
3781 			kunmap_atomic(map);
3782 		}
3783 		ret = true;			/* incremented */
3784 
3785 	} else {				/* decrementing */
3786 		/*
3787 		 * Think of how you subtract 1 from 1000
3788 		 */
3789 		BUG_ON(count != COUNT_CONTINUED);
3790 		while (*map == COUNT_CONTINUED) {
3791 			kunmap_atomic(map);
3792 			page = list_next_entry(page, lru);
3793 			BUG_ON(page == head);
3794 			map = kmap_atomic(page) + offset;
3795 		}
3796 		BUG_ON(*map == 0);
3797 		*map -= 1;
3798 		if (*map == 0)
3799 			count = 0;
3800 		kunmap_atomic(map);
3801 		while ((page = list_prev_entry(page, lru)) != head) {
3802 			map = kmap_atomic(page) + offset;
3803 			*map = SWAP_CONT_MAX | count;
3804 			count = COUNT_CONTINUED;
3805 			kunmap_atomic(map);
3806 		}
3807 		ret = count == COUNT_CONTINUED;
3808 	}
3809 out:
3810 	spin_unlock(&si->cont_lock);
3811 	return ret;
3812 }
3813 
3814 /*
3815  * free_swap_count_continuations - swapoff free all the continuation pages
3816  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3817  */
free_swap_count_continuations(struct swap_info_struct * si)3818 static void free_swap_count_continuations(struct swap_info_struct *si)
3819 {
3820 	pgoff_t offset;
3821 
3822 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3823 		struct page *head;
3824 		head = vmalloc_to_page(si->swap_map + offset);
3825 		if (page_private(head)) {
3826 			struct page *page, *next;
3827 
3828 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3829 				list_del(&page->lru);
3830 				__free_page(page);
3831 			}
3832 		}
3833 	}
3834 }
3835 
3836 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3837 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3838 {
3839 	struct swap_info_struct *si, *next;
3840 	int nid = page_to_nid(page);
3841 
3842 	if (!(gfp_mask & __GFP_IO))
3843 		return;
3844 
3845 	if (!blk_cgroup_congested())
3846 		return;
3847 
3848 	/*
3849 	 * We've already scheduled a throttle, avoid taking the global swap
3850 	 * lock.
3851 	 */
3852 	if (current->throttle_queue)
3853 		return;
3854 
3855 	spin_lock(&swap_avail_lock);
3856 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3857 				  avail_lists[nid]) {
3858 		if (si->bdev) {
3859 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3860 			break;
3861 		}
3862 	}
3863 	spin_unlock(&swap_avail_lock);
3864 }
3865 #endif
3866 
swapfile_init(void)3867 static int __init swapfile_init(void)
3868 {
3869 	int nid;
3870 
3871 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3872 					 GFP_KERNEL);
3873 	if (!swap_avail_heads) {
3874 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3875 		return -ENOMEM;
3876 	}
3877 
3878 	for_each_node(nid)
3879 		plist_head_init(&swap_avail_heads[nid]);
3880 
3881 	return 0;
3882 }
3883 subsys_initcall(swapfile_init);
3884