• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
fw_asrt(struct adapter * adap,u32 mbox_addr)218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
t4_record_mbox(struct adapter * adapter,const __be64 * cmd,unsigned int size,int access,int execute)237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
t4_edc_err_read(struct adapter * adap,int idx)449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
t4_memory_rw_init(struct adapter * adap,int win,int mtype,u32 * mem_off,u32 * mem_base,u32 * mem_aperture)497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
t4_memory_update_win(struct adapter * adap,int win,u32 addr)551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
t4_memory_rw_residual(struct adapter * adap,u32 off,u32 addr,u8 * buf,int dir)573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
t4_read_pcie_cfg4(struct adapter * adap,int reg)731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
t4_get_regs_len(struct adapter * adapter)828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 #define CHELSIO_VPD_UNIQUE_ID 0x82
2694 
2695 /**
2696  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2697  * @phys_addr: the physical EEPROM address
2698  * @fn: the PCI function number
2699  * @sz: size of function-specific area
2700  *
2701  * Translate a physical EEPROM address to virtual.  The first 1K is
2702  * accessed through virtual addresses starting at 31K, the rest is
2703  * accessed through virtual addresses starting at 0.
2704  *
2705  * The mapping is as follows:
2706  * [0..1K) -> [31K..32K)
2707  * [1K..1K+A) -> [31K-A..31K)
2708  * [1K+A..ES) -> [0..ES-A-1K)
2709  *
2710  * where A = @fn * @sz, and ES = EEPROM size.
2711  */
t4_eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)2712 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2713 {
2714 	fn *= sz;
2715 	if (phys_addr < 1024)
2716 		return phys_addr + (31 << 10);
2717 	if (phys_addr < 1024 + fn)
2718 		return 31744 - fn + phys_addr - 1024;
2719 	if (phys_addr < EEPROMSIZE)
2720 		return phys_addr - 1024 - fn;
2721 	return -EINVAL;
2722 }
2723 
2724 /**
2725  *	t4_seeprom_wp - enable/disable EEPROM write protection
2726  *	@adapter: the adapter
2727  *	@enable: whether to enable or disable write protection
2728  *
2729  *	Enables or disables write protection on the serial EEPROM.
2730  */
t4_seeprom_wp(struct adapter * adapter,bool enable)2731 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2732 {
2733 	unsigned int v = enable ? 0xc : 0;
2734 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2735 	return ret < 0 ? ret : 0;
2736 }
2737 
2738 /**
2739  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2740  *	@adapter: adapter to read
2741  *	@p: where to store the parameters
2742  *
2743  *	Reads card parameters stored in VPD EEPROM.
2744  */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2745 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2746 {
2747 	int i, ret = 0, addr;
2748 	int ec, sn, pn, na;
2749 	u8 *vpd, csum;
2750 	unsigned int vpdr_len, kw_offset, id_len;
2751 
2752 	vpd = vmalloc(VPD_LEN);
2753 	if (!vpd)
2754 		return -ENOMEM;
2755 
2756 	/* Card information normally starts at VPD_BASE but early cards had
2757 	 * it at 0.
2758 	 */
2759 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2760 	if (ret < 0)
2761 		goto out;
2762 
2763 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2764 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2765 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2766 	 * is expected to automatically put this entry at the
2767 	 * beginning of the VPD.
2768 	 */
2769 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2770 
2771 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2772 	if (ret < 0)
2773 		goto out;
2774 
2775 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2776 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2777 		ret = -EINVAL;
2778 		goto out;
2779 	}
2780 
2781 	id_len = pci_vpd_lrdt_size(vpd);
2782 	if (id_len > ID_LEN)
2783 		id_len = ID_LEN;
2784 
2785 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2786 	if (i < 0) {
2787 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2788 		ret = -EINVAL;
2789 		goto out;
2790 	}
2791 
2792 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2793 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2794 	if (vpdr_len + kw_offset > VPD_LEN) {
2795 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2796 		ret = -EINVAL;
2797 		goto out;
2798 	}
2799 
2800 #define FIND_VPD_KW(var, name) do { \
2801 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2802 	if (var < 0) { \
2803 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2804 		ret = -EINVAL; \
2805 		goto out; \
2806 	} \
2807 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2808 } while (0)
2809 
2810 	FIND_VPD_KW(i, "RV");
2811 	for (csum = 0; i >= 0; i--)
2812 		csum += vpd[i];
2813 
2814 	if (csum) {
2815 		dev_err(adapter->pdev_dev,
2816 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2817 		ret = -EINVAL;
2818 		goto out;
2819 	}
2820 
2821 	FIND_VPD_KW(ec, "EC");
2822 	FIND_VPD_KW(sn, "SN");
2823 	FIND_VPD_KW(pn, "PN");
2824 	FIND_VPD_KW(na, "NA");
2825 #undef FIND_VPD_KW
2826 
2827 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2828 	strim(p->id);
2829 	memcpy(p->ec, vpd + ec, EC_LEN);
2830 	strim(p->ec);
2831 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2832 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2833 	strim(p->sn);
2834 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2835 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2836 	strim(p->pn);
2837 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2838 	strim((char *)p->na);
2839 
2840 out:
2841 	vfree(vpd);
2842 	return ret < 0 ? ret : 0;
2843 }
2844 
2845 /**
2846  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2847  *	@adapter: adapter to read
2848  *	@p: where to store the parameters
2849  *
2850  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2851  *	Clock.  This can only be called after a connection to the firmware
2852  *	is established.
2853  */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2854 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2855 {
2856 	u32 cclk_param, cclk_val;
2857 	int ret;
2858 
2859 	/* Grab the raw VPD parameters.
2860 	 */
2861 	ret = t4_get_raw_vpd_params(adapter, p);
2862 	if (ret)
2863 		return ret;
2864 
2865 	/* Ask firmware for the Core Clock since it knows how to translate the
2866 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2867 	 */
2868 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2869 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2870 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2871 			      1, &cclk_param, &cclk_val);
2872 
2873 	if (ret)
2874 		return ret;
2875 	p->cclk = cclk_val;
2876 
2877 	return 0;
2878 }
2879 
2880 /**
2881  *	t4_get_pfres - retrieve VF resource limits
2882  *	@adapter: the adapter
2883  *
2884  *	Retrieves configured resource limits and capabilities for a physical
2885  *	function.  The results are stored in @adapter->pfres.
2886  */
t4_get_pfres(struct adapter * adapter)2887 int t4_get_pfres(struct adapter *adapter)
2888 {
2889 	struct pf_resources *pfres = &adapter->params.pfres;
2890 	struct fw_pfvf_cmd cmd, rpl;
2891 	int v;
2892 	u32 word;
2893 
2894 	/* Execute PFVF Read command to get VF resource limits; bail out early
2895 	 * with error on command failure.
2896 	 */
2897 	memset(&cmd, 0, sizeof(cmd));
2898 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2899 				    FW_CMD_REQUEST_F |
2900 				    FW_CMD_READ_F |
2901 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2902 				    FW_PFVF_CMD_VFN_V(0));
2903 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2904 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2905 	if (v != FW_SUCCESS)
2906 		return v;
2907 
2908 	/* Extract PF resource limits and return success.
2909 	 */
2910 	word = be32_to_cpu(rpl.niqflint_niq);
2911 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2912 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2913 
2914 	word = be32_to_cpu(rpl.type_to_neq);
2915 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2916 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2917 
2918 	word = be32_to_cpu(rpl.tc_to_nexactf);
2919 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2920 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2921 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2922 
2923 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2924 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2925 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2926 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2927 
2928 	return 0;
2929 }
2930 
2931 /* serial flash and firmware constants */
2932 enum {
2933 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2934 
2935 	/* flash command opcodes */
2936 	SF_PROG_PAGE    = 2,          /* program page */
2937 	SF_WR_DISABLE   = 4,          /* disable writes */
2938 	SF_RD_STATUS    = 5,          /* read status register */
2939 	SF_WR_ENABLE    = 6,          /* enable writes */
2940 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2941 	SF_RD_ID        = 0x9f,       /* read ID */
2942 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2943 };
2944 
2945 /**
2946  *	sf1_read - read data from the serial flash
2947  *	@adapter: the adapter
2948  *	@byte_cnt: number of bytes to read
2949  *	@cont: whether another operation will be chained
2950  *	@lock: whether to lock SF for PL access only
2951  *	@valp: where to store the read data
2952  *
2953  *	Reads up to 4 bytes of data from the serial flash.  The location of
2954  *	the read needs to be specified prior to calling this by issuing the
2955  *	appropriate commands to the serial flash.
2956  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2957 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2958 		    int lock, u32 *valp)
2959 {
2960 	int ret;
2961 
2962 	if (!byte_cnt || byte_cnt > 4)
2963 		return -EINVAL;
2964 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2965 		return -EBUSY;
2966 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2967 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2968 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2969 	if (!ret)
2970 		*valp = t4_read_reg(adapter, SF_DATA_A);
2971 	return ret;
2972 }
2973 
2974 /**
2975  *	sf1_write - write data to the serial flash
2976  *	@adapter: the adapter
2977  *	@byte_cnt: number of bytes to write
2978  *	@cont: whether another operation will be chained
2979  *	@lock: whether to lock SF for PL access only
2980  *	@val: value to write
2981  *
2982  *	Writes up to 4 bytes of data to the serial flash.  The location of
2983  *	the write needs to be specified prior to calling this by issuing the
2984  *	appropriate commands to the serial flash.
2985  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2986 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2987 		     int lock, u32 val)
2988 {
2989 	if (!byte_cnt || byte_cnt > 4)
2990 		return -EINVAL;
2991 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2992 		return -EBUSY;
2993 	t4_write_reg(adapter, SF_DATA_A, val);
2994 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2995 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2996 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2997 }
2998 
2999 /**
3000  *	flash_wait_op - wait for a flash operation to complete
3001  *	@adapter: the adapter
3002  *	@attempts: max number of polls of the status register
3003  *	@delay: delay between polls in ms
3004  *
3005  *	Wait for a flash operation to complete by polling the status register.
3006  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)3007 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3008 {
3009 	int ret;
3010 	u32 status;
3011 
3012 	while (1) {
3013 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3014 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3015 			return ret;
3016 		if (!(status & 1))
3017 			return 0;
3018 		if (--attempts == 0)
3019 			return -EAGAIN;
3020 		if (delay)
3021 			msleep(delay);
3022 	}
3023 }
3024 
3025 /**
3026  *	t4_read_flash - read words from serial flash
3027  *	@adapter: the adapter
3028  *	@addr: the start address for the read
3029  *	@nwords: how many 32-bit words to read
3030  *	@data: where to store the read data
3031  *	@byte_oriented: whether to store data as bytes or as words
3032  *
3033  *	Read the specified number of 32-bit words from the serial flash.
3034  *	If @byte_oriented is set the read data is stored as a byte array
3035  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3036  *	natural endianness.
3037  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)3038 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3039 		  unsigned int nwords, u32 *data, int byte_oriented)
3040 {
3041 	int ret;
3042 
3043 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3044 		return -EINVAL;
3045 
3046 	addr = swab32(addr) | SF_RD_DATA_FAST;
3047 
3048 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3049 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3050 		return ret;
3051 
3052 	for ( ; nwords; nwords--, data++) {
3053 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3054 		if (nwords == 1)
3055 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3056 		if (ret)
3057 			return ret;
3058 		if (byte_oriented)
3059 			*data = (__force __u32)(cpu_to_be32(*data));
3060 	}
3061 	return 0;
3062 }
3063 
3064 /**
3065  *	t4_write_flash - write up to a page of data to the serial flash
3066  *	@adapter: the adapter
3067  *	@addr: the start address to write
3068  *	@n: length of data to write in bytes
3069  *	@data: the data to write
3070  *	@byte_oriented: whether to store data as bytes or as words
3071  *
3072  *	Writes up to a page of data (256 bytes) to the serial flash starting
3073  *	at the given address.  All the data must be written to the same page.
3074  *	If @byte_oriented is set the write data is stored as byte stream
3075  *	(i.e. matches what on disk), otherwise in big-endian.
3076  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data,bool byte_oriented)3077 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3078 			  unsigned int n, const u8 *data, bool byte_oriented)
3079 {
3080 	unsigned int i, c, left, val, offset = addr & 0xff;
3081 	u32 buf[64];
3082 	int ret;
3083 
3084 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3085 		return -EINVAL;
3086 
3087 	val = swab32(addr) | SF_PROG_PAGE;
3088 
3089 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3090 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3091 		goto unlock;
3092 
3093 	for (left = n; left; left -= c, data += c) {
3094 		c = min(left, 4U);
3095 		for (val = 0, i = 0; i < c; ++i) {
3096 			if (byte_oriented)
3097 				val = (val << 8) + data[i];
3098 			else
3099 				val = (val << 8) + data[c - i - 1];
3100 		}
3101 
3102 		ret = sf1_write(adapter, c, c != left, 1, val);
3103 		if (ret)
3104 			goto unlock;
3105 	}
3106 	ret = flash_wait_op(adapter, 8, 1);
3107 	if (ret)
3108 		goto unlock;
3109 
3110 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3111 
3112 	/* Read the page to verify the write succeeded */
3113 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3114 			    byte_oriented);
3115 	if (ret)
3116 		return ret;
3117 
3118 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3119 		dev_err(adapter->pdev_dev,
3120 			"failed to correctly write the flash page at %#x\n",
3121 			addr);
3122 		return -EIO;
3123 	}
3124 	return 0;
3125 
3126 unlock:
3127 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3128 	return ret;
3129 }
3130 
3131 /**
3132  *	t4_get_fw_version - read the firmware version
3133  *	@adapter: the adapter
3134  *	@vers: where to place the version
3135  *
3136  *	Reads the FW version from flash.
3137  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)3138 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3139 {
3140 	return t4_read_flash(adapter, FLASH_FW_START +
3141 			     offsetof(struct fw_hdr, fw_ver), 1,
3142 			     vers, 0);
3143 }
3144 
3145 /**
3146  *	t4_get_bs_version - read the firmware bootstrap version
3147  *	@adapter: the adapter
3148  *	@vers: where to place the version
3149  *
3150  *	Reads the FW Bootstrap version from flash.
3151  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)3152 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3153 {
3154 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3155 			     offsetof(struct fw_hdr, fw_ver), 1,
3156 			     vers, 0);
3157 }
3158 
3159 /**
3160  *	t4_get_tp_version - read the TP microcode version
3161  *	@adapter: the adapter
3162  *	@vers: where to place the version
3163  *
3164  *	Reads the TP microcode version from flash.
3165  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)3166 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3167 {
3168 	return t4_read_flash(adapter, FLASH_FW_START +
3169 			     offsetof(struct fw_hdr, tp_microcode_ver),
3170 			     1, vers, 0);
3171 }
3172 
3173 /**
3174  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3175  *	@adap: the adapter
3176  *	@vers: where to place the version
3177  *
3178  *	Reads the Expansion ROM header from FLASH and returns the version
3179  *	number (if present) through the @vers return value pointer.  We return
3180  *	this in the Firmware Version Format since it's convenient.  Return
3181  *	0 on success, -ENOENT if no Expansion ROM is present.
3182  */
t4_get_exprom_version(struct adapter * adap,u32 * vers)3183 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3184 {
3185 	struct exprom_header {
3186 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3187 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3188 	} *hdr;
3189 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3190 					   sizeof(u32))];
3191 	int ret;
3192 
3193 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3194 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3195 			    0);
3196 	if (ret)
3197 		return ret;
3198 
3199 	hdr = (struct exprom_header *)exprom_header_buf;
3200 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3201 		return -ENOENT;
3202 
3203 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3204 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3205 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3206 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3207 	return 0;
3208 }
3209 
3210 /**
3211  *      t4_get_vpd_version - return the VPD version
3212  *      @adapter: the adapter
3213  *      @vers: where to place the version
3214  *
3215  *      Reads the VPD via the Firmware interface (thus this can only be called
3216  *      once we're ready to issue Firmware commands).  The format of the
3217  *      VPD version is adapter specific.  Returns 0 on success, an error on
3218  *      failure.
3219  *
3220  *      Note that early versions of the Firmware didn't include the ability
3221  *      to retrieve the VPD version, so we zero-out the return-value parameter
3222  *      in that case to avoid leaving it with garbage in it.
3223  *
3224  *      Also note that the Firmware will return its cached copy of the VPD
3225  *      Revision ID, not the actual Revision ID as written in the Serial
3226  *      EEPROM.  This is only an issue if a new VPD has been written and the
3227  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3228  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3229  *      if the Host Driver will be performing a full adapter initialization.
3230  */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)3231 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3232 {
3233 	u32 vpdrev_param;
3234 	int ret;
3235 
3236 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3237 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3238 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3239 			      1, &vpdrev_param, vers);
3240 	if (ret)
3241 		*vers = 0;
3242 	return ret;
3243 }
3244 
3245 /**
3246  *      t4_get_scfg_version - return the Serial Configuration version
3247  *      @adapter: the adapter
3248  *      @vers: where to place the version
3249  *
3250  *      Reads the Serial Configuration Version via the Firmware interface
3251  *      (thus this can only be called once we're ready to issue Firmware
3252  *      commands).  The format of the Serial Configuration version is
3253  *      adapter specific.  Returns 0 on success, an error on failure.
3254  *
3255  *      Note that early versions of the Firmware didn't include the ability
3256  *      to retrieve the Serial Configuration version, so we zero-out the
3257  *      return-value parameter in that case to avoid leaving it with
3258  *      garbage in it.
3259  *
3260  *      Also note that the Firmware will return its cached copy of the Serial
3261  *      Initialization Revision ID, not the actual Revision ID as written in
3262  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3263  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3264  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3265  *      been issued if the Host Driver will be performing a full adapter
3266  *      initialization.
3267  */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)3268 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3269 {
3270 	u32 scfgrev_param;
3271 	int ret;
3272 
3273 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3274 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3275 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3276 			      1, &scfgrev_param, vers);
3277 	if (ret)
3278 		*vers = 0;
3279 	return ret;
3280 }
3281 
3282 /**
3283  *      t4_get_version_info - extract various chip/firmware version information
3284  *      @adapter: the adapter
3285  *
3286  *      Reads various chip/firmware version numbers and stores them into the
3287  *      adapter Adapter Parameters structure.  If any of the efforts fails
3288  *      the first failure will be returned, but all of the version numbers
3289  *      will be read.
3290  */
t4_get_version_info(struct adapter * adapter)3291 int t4_get_version_info(struct adapter *adapter)
3292 {
3293 	int ret = 0;
3294 
3295 	#define FIRST_RET(__getvinfo) \
3296 	do { \
3297 		int __ret = __getvinfo; \
3298 		if (__ret && !ret) \
3299 			ret = __ret; \
3300 	} while (0)
3301 
3302 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3303 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3304 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3305 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3306 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3307 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3308 
3309 	#undef FIRST_RET
3310 	return ret;
3311 }
3312 
3313 /**
3314  *      t4_dump_version_info - dump all of the adapter configuration IDs
3315  *      @adapter: the adapter
3316  *
3317  *      Dumps all of the various bits of adapter configuration version/revision
3318  *      IDs information.  This is typically called at some point after
3319  *      t4_get_version_info() has been called.
3320  */
t4_dump_version_info(struct adapter * adapter)3321 void t4_dump_version_info(struct adapter *adapter)
3322 {
3323 	/* Device information */
3324 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3325 		 adapter->params.vpd.id,
3326 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3327 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3328 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3329 
3330 	/* Firmware Version */
3331 	if (!adapter->params.fw_vers)
3332 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3333 	else
3334 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3335 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3336 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3337 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3338 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3339 
3340 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3341 	 * Firmware, so dev_info() is more appropriate here.)
3342 	 */
3343 	if (!adapter->params.bs_vers)
3344 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3345 	else
3346 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3347 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3348 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3349 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3350 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3351 
3352 	/* TP Microcode Version */
3353 	if (!adapter->params.tp_vers)
3354 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3355 	else
3356 		dev_info(adapter->pdev_dev,
3357 			 "TP Microcode version: %u.%u.%u.%u\n",
3358 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3359 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3360 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3361 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3362 
3363 	/* Expansion ROM version */
3364 	if (!adapter->params.er_vers)
3365 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3366 	else
3367 		dev_info(adapter->pdev_dev,
3368 			 "Expansion ROM version: %u.%u.%u.%u\n",
3369 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3370 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3371 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3372 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3373 
3374 	/* Serial Configuration version */
3375 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3376 		 adapter->params.scfg_vers);
3377 
3378 	/* VPD Version */
3379 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3380 		 adapter->params.vpd_vers);
3381 }
3382 
3383 /**
3384  *	t4_check_fw_version - check if the FW is supported with this driver
3385  *	@adap: the adapter
3386  *
3387  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3388  *	if there's exact match, a negative error if the version could not be
3389  *	read or there's a major version mismatch
3390  */
t4_check_fw_version(struct adapter * adap)3391 int t4_check_fw_version(struct adapter *adap)
3392 {
3393 	int i, ret, major, minor, micro;
3394 	int exp_major, exp_minor, exp_micro;
3395 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3396 
3397 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 	/* Try multiple times before returning error */
3399 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3400 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3401 
3402 	if (ret)
3403 		return ret;
3404 
3405 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3406 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3407 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3408 
3409 	switch (chip_version) {
3410 	case CHELSIO_T4:
3411 		exp_major = T4FW_MIN_VERSION_MAJOR;
3412 		exp_minor = T4FW_MIN_VERSION_MINOR;
3413 		exp_micro = T4FW_MIN_VERSION_MICRO;
3414 		break;
3415 	case CHELSIO_T5:
3416 		exp_major = T5FW_MIN_VERSION_MAJOR;
3417 		exp_minor = T5FW_MIN_VERSION_MINOR;
3418 		exp_micro = T5FW_MIN_VERSION_MICRO;
3419 		break;
3420 	case CHELSIO_T6:
3421 		exp_major = T6FW_MIN_VERSION_MAJOR;
3422 		exp_minor = T6FW_MIN_VERSION_MINOR;
3423 		exp_micro = T6FW_MIN_VERSION_MICRO;
3424 		break;
3425 	default:
3426 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3427 			adap->chip);
3428 		return -EINVAL;
3429 	}
3430 
3431 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3432 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3433 		dev_err(adap->pdev_dev,
3434 			"Card has firmware version %u.%u.%u, minimum "
3435 			"supported firmware is %u.%u.%u.\n", major, minor,
3436 			micro, exp_major, exp_minor, exp_micro);
3437 		return -EFAULT;
3438 	}
3439 	return 0;
3440 }
3441 
3442 /* Is the given firmware API compatible with the one the driver was compiled
3443  * with?
3444  */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3445 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3446 {
3447 
3448 	/* short circuit if it's the exact same firmware version */
3449 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3450 		return 1;
3451 
3452 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3453 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3454 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3455 		return 1;
3456 #undef SAME_INTF
3457 
3458 	return 0;
3459 }
3460 
3461 /* The firmware in the filesystem is usable, but should it be installed?
3462  * This routine explains itself in detail if it indicates the filesystem
3463  * firmware should be installed.
3464  */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3465 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3466 				int k, int c)
3467 {
3468 	const char *reason;
3469 
3470 	if (!card_fw_usable) {
3471 		reason = "incompatible or unusable";
3472 		goto install;
3473 	}
3474 
3475 	if (k > c) {
3476 		reason = "older than the version supported with this driver";
3477 		goto install;
3478 	}
3479 
3480 	return 0;
3481 
3482 install:
3483 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3484 		"installing firmware %u.%u.%u.%u on card.\n",
3485 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3486 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3487 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3488 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3489 
3490 	return 1;
3491 }
3492 
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3493 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3494 	       const u8 *fw_data, unsigned int fw_size,
3495 	       struct fw_hdr *card_fw, enum dev_state state,
3496 	       int *reset)
3497 {
3498 	int ret, card_fw_usable, fs_fw_usable;
3499 	const struct fw_hdr *fs_fw;
3500 	const struct fw_hdr *drv_fw;
3501 
3502 	drv_fw = &fw_info->fw_hdr;
3503 
3504 	/* Read the header of the firmware on the card */
3505 	ret = t4_read_flash(adap, FLASH_FW_START,
3506 			    sizeof(*card_fw) / sizeof(uint32_t),
3507 			    (uint32_t *)card_fw, 1);
3508 	if (ret == 0) {
3509 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3510 	} else {
3511 		dev_err(adap->pdev_dev,
3512 			"Unable to read card's firmware header: %d\n", ret);
3513 		card_fw_usable = 0;
3514 	}
3515 
3516 	if (fw_data != NULL) {
3517 		fs_fw = (const void *)fw_data;
3518 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3519 	} else {
3520 		fs_fw = NULL;
3521 		fs_fw_usable = 0;
3522 	}
3523 
3524 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3525 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3526 		/* Common case: the firmware on the card is an exact match and
3527 		 * the filesystem one is an exact match too, or the filesystem
3528 		 * one is absent/incompatible.
3529 		 */
3530 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3531 		   should_install_fs_fw(adap, card_fw_usable,
3532 					be32_to_cpu(fs_fw->fw_ver),
3533 					be32_to_cpu(card_fw->fw_ver))) {
3534 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3535 				    fw_size, 0);
3536 		if (ret != 0) {
3537 			dev_err(adap->pdev_dev,
3538 				"failed to install firmware: %d\n", ret);
3539 			goto bye;
3540 		}
3541 
3542 		/* Installed successfully, update the cached header too. */
3543 		*card_fw = *fs_fw;
3544 		card_fw_usable = 1;
3545 		*reset = 0;	/* already reset as part of load_fw */
3546 	}
3547 
3548 	if (!card_fw_usable) {
3549 		uint32_t d, c, k;
3550 
3551 		d = be32_to_cpu(drv_fw->fw_ver);
3552 		c = be32_to_cpu(card_fw->fw_ver);
3553 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3554 
3555 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3556 			"chip state %d, "
3557 			"driver compiled with %d.%d.%d.%d, "
3558 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3559 			state,
3560 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3561 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3562 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3563 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3564 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3565 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3566 		ret = -EINVAL;
3567 		goto bye;
3568 	}
3569 
3570 	/* We're using whatever's on the card and it's known to be good. */
3571 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3572 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3573 
3574 bye:
3575 	return ret;
3576 }
3577 
3578 /**
3579  *	t4_flash_erase_sectors - erase a range of flash sectors
3580  *	@adapter: the adapter
3581  *	@start: the first sector to erase
3582  *	@end: the last sector to erase
3583  *
3584  *	Erases the sectors in the given inclusive range.
3585  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3586 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3587 {
3588 	int ret = 0;
3589 
3590 	if (end >= adapter->params.sf_nsec)
3591 		return -EINVAL;
3592 
3593 	while (start <= end) {
3594 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3595 		    (ret = sf1_write(adapter, 4, 0, 1,
3596 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3597 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3598 			dev_err(adapter->pdev_dev,
3599 				"erase of flash sector %d failed, error %d\n",
3600 				start, ret);
3601 			break;
3602 		}
3603 		start++;
3604 	}
3605 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3606 	return ret;
3607 }
3608 
3609 /**
3610  *	t4_flash_cfg_addr - return the address of the flash configuration file
3611  *	@adapter: the adapter
3612  *
3613  *	Return the address within the flash where the Firmware Configuration
3614  *	File is stored.
3615  */
t4_flash_cfg_addr(struct adapter * adapter)3616 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3617 {
3618 	if (adapter->params.sf_size == 0x100000)
3619 		return FLASH_FPGA_CFG_START;
3620 	else
3621 		return FLASH_CFG_START;
3622 }
3623 
3624 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3625  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3626  * and emit an error message for mismatched firmware to save our caller the
3627  * effort ...
3628  */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3629 static bool t4_fw_matches_chip(const struct adapter *adap,
3630 			       const struct fw_hdr *hdr)
3631 {
3632 	/* The expression below will return FALSE for any unsupported adapter
3633 	 * which will keep us "honest" in the future ...
3634 	 */
3635 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3636 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3637 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3638 		return true;
3639 
3640 	dev_err(adap->pdev_dev,
3641 		"FW image (%d) is not suitable for this adapter (%d)\n",
3642 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3643 	return false;
3644 }
3645 
3646 /**
3647  *	t4_load_fw - download firmware
3648  *	@adap: the adapter
3649  *	@fw_data: the firmware image to write
3650  *	@size: image size
3651  *
3652  *	Write the supplied firmware image to the card's serial flash.
3653  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3654 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3655 {
3656 	u32 csum;
3657 	int ret, addr;
3658 	unsigned int i;
3659 	u8 first_page[SF_PAGE_SIZE];
3660 	const __be32 *p = (const __be32 *)fw_data;
3661 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3662 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3663 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3664 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3665 	unsigned int fw_start = FLASH_FW_START;
3666 
3667 	if (!size) {
3668 		dev_err(adap->pdev_dev, "FW image has no data\n");
3669 		return -EINVAL;
3670 	}
3671 	if (size & 511) {
3672 		dev_err(adap->pdev_dev,
3673 			"FW image size not multiple of 512 bytes\n");
3674 		return -EINVAL;
3675 	}
3676 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3677 		dev_err(adap->pdev_dev,
3678 			"FW image size differs from size in FW header\n");
3679 		return -EINVAL;
3680 	}
3681 	if (size > fw_size) {
3682 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3683 			fw_size);
3684 		return -EFBIG;
3685 	}
3686 	if (!t4_fw_matches_chip(adap, hdr))
3687 		return -EINVAL;
3688 
3689 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3690 		csum += be32_to_cpu(p[i]);
3691 
3692 	if (csum != 0xffffffff) {
3693 		dev_err(adap->pdev_dev,
3694 			"corrupted firmware image, checksum %#x\n", csum);
3695 		return -EINVAL;
3696 	}
3697 
3698 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3699 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3700 	if (ret)
3701 		goto out;
3702 
3703 	/*
3704 	 * We write the correct version at the end so the driver can see a bad
3705 	 * version if the FW write fails.  Start by writing a copy of the
3706 	 * first page with a bad version.
3707 	 */
3708 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3709 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3710 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3711 	if (ret)
3712 		goto out;
3713 
3714 	addr = fw_start;
3715 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3716 		addr += SF_PAGE_SIZE;
3717 		fw_data += SF_PAGE_SIZE;
3718 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3719 		if (ret)
3720 			goto out;
3721 	}
3722 
3723 	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3724 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3725 			     true);
3726 out:
3727 	if (ret)
3728 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3729 			ret);
3730 	else
3731 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3732 	return ret;
3733 }
3734 
3735 /**
3736  *	t4_phy_fw_ver - return current PHY firmware version
3737  *	@adap: the adapter
3738  *	@phy_fw_ver: return value buffer for PHY firmware version
3739  *
3740  *	Returns the current version of external PHY firmware on the
3741  *	adapter.
3742  */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3743 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3744 {
3745 	u32 param, val;
3746 	int ret;
3747 
3748 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3749 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3750 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3751 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3752 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3753 			      &param, &val);
3754 	if (ret)
3755 		return ret;
3756 	*phy_fw_ver = val;
3757 	return 0;
3758 }
3759 
3760 /**
3761  *	t4_load_phy_fw - download port PHY firmware
3762  *	@adap: the adapter
3763  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3764  *	@phy_fw_version: function to check PHY firmware versions
3765  *	@phy_fw_data: the PHY firmware image to write
3766  *	@phy_fw_size: image size
3767  *
3768  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3769  *	@phy_fw_version is supplied, then it will be used to determine if
3770  *	it's necessary to perform the transfer by comparing the version
3771  *	of any existing adapter PHY firmware with that of the passed in
3772  *	PHY firmware image.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be returned.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
t4_load_phy_fw(struct adapter * adap,int win,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3784 int t4_load_phy_fw(struct adapter *adap, int win,
3785 		   int (*phy_fw_version)(const u8 *, size_t),
3786 		   const u8 *phy_fw_data, size_t phy_fw_size)
3787 {
3788 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int ret;
3792 
3793 	/* If we have version number support, then check to see if the adapter
3794 	 * already has up-to-date PHY firmware loaded.
3795 	 */
3796 	if (phy_fw_version) {
3797 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3798 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3799 		if (ret < 0)
3800 			return ret;
3801 
3802 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3803 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3804 				"version %#x\n", cur_phy_fw_ver);
3805 			return 0;
3806 		}
3807 	}
3808 
3809 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3810 	 * The size of the file requires a special version of the READ command
3811 	 * which will pass the file size via the values field in PARAMS_CMD and
3812 	 * retrieve the return value from firmware and place it in the same
3813 	 * buffer values
3814 	 */
3815 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3816 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3817 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3818 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3819 	val = phy_fw_size;
3820 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3821 				 &param, &val, 1, true);
3822 	if (ret < 0)
3823 		return ret;
3824 	mtype = val >> 8;
3825 	maddr = (val & 0xff) << 16;
3826 
3827 	/* Copy the supplied PHY Firmware image to the adapter memory location
3828 	 * allocated by the adapter firmware.
3829 	 */
3830 	spin_lock_bh(&adap->win0_lock);
3831 	ret = t4_memory_rw(adap, win, mtype, maddr,
3832 			   phy_fw_size, (__be32 *)phy_fw_data,
3833 			   T4_MEMORY_WRITE);
3834 	spin_unlock_bh(&adap->win0_lock);
3835 	if (ret)
3836 		return ret;
3837 
3838 	/* Tell the firmware that the PHY firmware image has been written to
3839 	 * RAM and it can now start copying it over to the PHYs.  The chip
3840 	 * firmware will RESET the affected PHYs as part of this operation
3841 	 * leaving them running the new PHY firmware image.
3842 	 */
3843 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3844 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3845 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3846 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3847 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3848 				    &param, &val, 30000);
3849 
3850 	/* If we have version number support, then check to see that the new
3851 	 * firmware got loaded properly.
3852 	 */
3853 	if (phy_fw_version) {
3854 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3855 		if (ret < 0)
3856 			return ret;
3857 
3858 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3859 			CH_WARN(adap, "PHY Firmware did not update: "
3860 				"version on adapter %#x, "
3861 				"version flashed %#x\n",
3862 				cur_phy_fw_ver, new_phy_fw_vers);
3863 			return -ENXIO;
3864 		}
3865 	}
3866 
3867 	return 1;
3868 }
3869 
3870 /**
3871  *	t4_fwcache - firmware cache operation
3872  *	@adap: the adapter
3873  *	@op  : the operation (flush or flush and invalidate)
3874  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3875 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3876 {
3877 	struct fw_params_cmd c;
3878 
3879 	memset(&c, 0, sizeof(c));
3880 	c.op_to_vfn =
3881 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3882 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3883 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3884 			    FW_PARAMS_CMD_VFN_V(0));
3885 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3886 	c.param[0].mnem =
3887 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3888 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3889 	c.param[0].val = cpu_to_be32(op);
3890 
3891 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3892 }
3893 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3894 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3895 			unsigned int *pif_req_wrptr,
3896 			unsigned int *pif_rsp_wrptr)
3897 {
3898 	int i, j;
3899 	u32 cfg, val, req, rsp;
3900 
3901 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3902 	if (cfg & LADBGEN_F)
3903 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3904 
3905 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3906 	req = POLADBGWRPTR_G(val);
3907 	rsp = PILADBGWRPTR_G(val);
3908 	if (pif_req_wrptr)
3909 		*pif_req_wrptr = req;
3910 	if (pif_rsp_wrptr)
3911 		*pif_rsp_wrptr = rsp;
3912 
3913 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3914 		for (j = 0; j < 6; j++) {
3915 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3916 				     PILADBGRDPTR_V(rsp));
3917 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3918 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3919 			req++;
3920 			rsp++;
3921 		}
3922 		req = (req + 2) & POLADBGRDPTR_M;
3923 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3924 	}
3925 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3926 }
3927 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3928 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3929 {
3930 	u32 cfg;
3931 	int i, j, idx;
3932 
3933 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3934 	if (cfg & LADBGEN_F)
3935 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3936 
3937 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3938 		for (j = 0; j < 5; j++) {
3939 			idx = 8 * i + j;
3940 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3941 				     PILADBGRDPTR_V(idx));
3942 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3943 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3944 		}
3945 	}
3946 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3947 }
3948 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3949 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3950 {
3951 	unsigned int i, j;
3952 
3953 	for (i = 0; i < 8; i++) {
3954 		u32 *p = la_buf + i;
3955 
3956 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3957 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3958 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3959 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3960 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3961 	}
3962 }
3963 
3964 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3965  * Capabilities which we control with separate controls -- see, for instance,
3966  * Pause Frames and Forward Error Correction.  In order to determine what the
3967  * full set of Advertised Port Capabilities are, the base Advertised Port
3968  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3969  * Port Capabilities associated with those other controls.  See
3970  * t4_link_acaps() for how this is done.
3971  */
3972 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3973 		     FW_PORT_CAP32_ANEG)
3974 
3975 /**
3976  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3977  *	@caps16: a 16-bit Port Capabilities value
3978  *
3979  *	Returns the equivalent 32-bit Port Capabilities value.
3980  */
fwcaps16_to_caps32(fw_port_cap16_t caps16)3981 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3982 {
3983 	fw_port_cap32_t caps32 = 0;
3984 
3985 	#define CAP16_TO_CAP32(__cap) \
3986 		do { \
3987 			if (caps16 & FW_PORT_CAP_##__cap) \
3988 				caps32 |= FW_PORT_CAP32_##__cap; \
3989 		} while (0)
3990 
3991 	CAP16_TO_CAP32(SPEED_100M);
3992 	CAP16_TO_CAP32(SPEED_1G);
3993 	CAP16_TO_CAP32(SPEED_25G);
3994 	CAP16_TO_CAP32(SPEED_10G);
3995 	CAP16_TO_CAP32(SPEED_40G);
3996 	CAP16_TO_CAP32(SPEED_100G);
3997 	CAP16_TO_CAP32(FC_RX);
3998 	CAP16_TO_CAP32(FC_TX);
3999 	CAP16_TO_CAP32(ANEG);
4000 	CAP16_TO_CAP32(FORCE_PAUSE);
4001 	CAP16_TO_CAP32(MDIAUTO);
4002 	CAP16_TO_CAP32(MDISTRAIGHT);
4003 	CAP16_TO_CAP32(FEC_RS);
4004 	CAP16_TO_CAP32(FEC_BASER_RS);
4005 	CAP16_TO_CAP32(802_3_PAUSE);
4006 	CAP16_TO_CAP32(802_3_ASM_DIR);
4007 
4008 	#undef CAP16_TO_CAP32
4009 
4010 	return caps32;
4011 }
4012 
4013 /**
4014  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4015  *	@caps32: a 32-bit Port Capabilities value
4016  *
4017  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4018  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4019  *	Port Capabilities and some fields/values may not make it.
4020  */
fwcaps32_to_caps16(fw_port_cap32_t caps32)4021 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4022 {
4023 	fw_port_cap16_t caps16 = 0;
4024 
4025 	#define CAP32_TO_CAP16(__cap) \
4026 		do { \
4027 			if (caps32 & FW_PORT_CAP32_##__cap) \
4028 				caps16 |= FW_PORT_CAP_##__cap; \
4029 		} while (0)
4030 
4031 	CAP32_TO_CAP16(SPEED_100M);
4032 	CAP32_TO_CAP16(SPEED_1G);
4033 	CAP32_TO_CAP16(SPEED_10G);
4034 	CAP32_TO_CAP16(SPEED_25G);
4035 	CAP32_TO_CAP16(SPEED_40G);
4036 	CAP32_TO_CAP16(SPEED_100G);
4037 	CAP32_TO_CAP16(FC_RX);
4038 	CAP32_TO_CAP16(FC_TX);
4039 	CAP32_TO_CAP16(802_3_PAUSE);
4040 	CAP32_TO_CAP16(802_3_ASM_DIR);
4041 	CAP32_TO_CAP16(ANEG);
4042 	CAP32_TO_CAP16(FORCE_PAUSE);
4043 	CAP32_TO_CAP16(MDIAUTO);
4044 	CAP32_TO_CAP16(MDISTRAIGHT);
4045 	CAP32_TO_CAP16(FEC_RS);
4046 	CAP32_TO_CAP16(FEC_BASER_RS);
4047 
4048 	#undef CAP32_TO_CAP16
4049 
4050 	return caps16;
4051 }
4052 
4053 /* Translate Firmware Port Capabilities Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)4054 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4055 {
4056 	enum cc_pause cc_pause = 0;
4057 
4058 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4059 		cc_pause |= PAUSE_RX;
4060 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4061 		cc_pause |= PAUSE_TX;
4062 
4063 	return cc_pause;
4064 }
4065 
4066 /* Translate Common Code Pause specification into Firmware Port Capabilities */
cc_to_fwcap_pause(enum cc_pause cc_pause)4067 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4068 {
4069 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4070 	 * commands, etc.
4071 	 */
4072 	fw_port_cap32_t fw_pause = 0;
4073 
4074 	if (cc_pause & PAUSE_RX)
4075 		fw_pause |= FW_PORT_CAP32_FC_RX;
4076 	if (cc_pause & PAUSE_TX)
4077 		fw_pause |= FW_PORT_CAP32_FC_TX;
4078 	if (!(cc_pause & PAUSE_AUTONEG))
4079 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4080 
4081 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4082 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4083 	 * Note that these bits are ignored in L1 Configure commands.
4084 	 */
4085 	if (cc_pause & PAUSE_RX) {
4086 		if (cc_pause & PAUSE_TX)
4087 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4088 		else
4089 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4090 				    FW_PORT_CAP32_802_3_PAUSE;
4091 	} else if (cc_pause & PAUSE_TX) {
4092 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4093 	}
4094 
4095 	return fw_pause;
4096 }
4097 
4098 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)4099 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4100 {
4101 	enum cc_fec cc_fec = 0;
4102 
4103 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4104 		cc_fec |= FEC_RS;
4105 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4106 		cc_fec |= FEC_BASER_RS;
4107 
4108 	return cc_fec;
4109 }
4110 
4111 /* Translate Common Code Forward Error Correction specification to Firmware */
cc_to_fwcap_fec(enum cc_fec cc_fec)4112 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4113 {
4114 	fw_port_cap32_t fw_fec = 0;
4115 
4116 	if (cc_fec & FEC_RS)
4117 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4118 	if (cc_fec & FEC_BASER_RS)
4119 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4120 
4121 	return fw_fec;
4122 }
4123 
4124 /**
4125  *	t4_link_acaps - compute Link Advertised Port Capabilities
4126  *	@adapter: the adapter
4127  *	@port: the Port ID
4128  *	@lc: the Port's Link Configuration
4129  *
4130  *	Synthesize the Advertised Port Capabilities we'll be using based on
4131  *	the base Advertised Port Capabilities (which have been filtered by
4132  *	ADVERT_MASK) plus the individual controls for things like Pause
4133  *	Frames, Forward Error Correction, MDI, etc.
4134  */
t4_link_acaps(struct adapter * adapter,unsigned int port,struct link_config * lc)4135 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4136 			      struct link_config *lc)
4137 {
4138 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4139 	unsigned int fw_mdi;
4140 	char cc_fec;
4141 
4142 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4143 
4144 	/* Convert driver coding of Pause Frame Flow Control settings into the
4145 	 * Firmware's API.
4146 	 */
4147 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4148 
4149 	/* Convert Common Code Forward Error Control settings into the
4150 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4151 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4152 	 * sent us as part of its IEEE 802.3-based interpretation of
4153 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4154 	 * use whatever is in the current Requested FEC settings.
4155 	 */
4156 	if (lc->requested_fec & FEC_AUTO)
4157 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4158 	else
4159 		cc_fec = lc->requested_fec;
4160 	fw_fec = cc_to_fwcap_fec(cc_fec);
4161 
4162 	/* Figure out what our Requested Port Capabilities are going to be.
4163 	 * Note parallel structure in t4_handle_get_port_info() and
4164 	 * init_link_config().
4165 	 */
4166 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4167 		acaps = lc->acaps | fw_fc | fw_fec;
4168 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4169 		lc->fec = cc_fec;
4170 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4171 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4172 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4173 		lc->fec = cc_fec;
4174 	} else {
4175 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4176 	}
4177 
4178 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4179 	 * the Physical Port Capabilities.  We can check that here and provide
4180 	 * moderately useful feedback in the system log.
4181 	 *
4182 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4183 	 * we need to exclude this from this check in order to maintain
4184 	 * compatibility ...
4185 	 */
4186 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4187 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4188 			acaps, lc->pcaps);
4189 		return -EINVAL;
4190 	}
4191 
4192 	return acaps;
4193 }
4194 
4195 /**
4196  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4197  *	@adapter: the adapter
4198  *	@mbox: the Firmware Mailbox to use
4199  *	@port: the Port ID
4200  *	@lc: the Port's Link Configuration
4201  *	@sleep_ok: if true we may sleep while awaiting command completion
4202  *	@timeout: time to wait for command to finish before timing out
4203  *		(negative implies @sleep_ok=false)
4204  *
4205  *	Set up a port's MAC and PHY according to a desired link configuration.
4206  *	- If the PHY can auto-negotiate first decide what to advertise, then
4207  *	  enable/disable auto-negotiation as desired, and reset.
4208  *	- If the PHY does not auto-negotiate just reset it.
4209  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4210  *	  otherwise do it later based on the outcome of auto-negotiation.
4211  */
t4_link_l1cfg_core(struct adapter * adapter,unsigned int mbox,unsigned int port,struct link_config * lc,u8 sleep_ok,int timeout)4212 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4213 		       unsigned int port, struct link_config *lc,
4214 		       u8 sleep_ok, int timeout)
4215 {
4216 	unsigned int fw_caps = adapter->params.fw_caps_support;
4217 	struct fw_port_cmd cmd;
4218 	fw_port_cap32_t rcap;
4219 	int ret;
4220 
4221 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4222 	    lc->autoneg == AUTONEG_ENABLE) {
4223 		return -EINVAL;
4224 	}
4225 
4226 	/* Compute our Requested Port Capabilities and send that on to the
4227 	 * Firmware.
4228 	 */
4229 	rcap = t4_link_acaps(adapter, port, lc);
4230 	memset(&cmd, 0, sizeof(cmd));
4231 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4232 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4233 				       FW_PORT_CMD_PORTID_V(port));
4234 	cmd.action_to_len16 =
4235 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4236 						 ? FW_PORT_ACTION_L1_CFG
4237 						 : FW_PORT_ACTION_L1_CFG32) |
4238 						 FW_LEN16(cmd));
4239 	if (fw_caps == FW_CAPS16)
4240 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4241 	else
4242 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4243 
4244 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4245 				      sleep_ok, timeout);
4246 
4247 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4248 	 * the Physical Port Capabilities, some combinations of features may
4249 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4250 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4251 	 * request, flag that here.
4252 	 */
4253 	if (ret) {
4254 		dev_err(adapter->pdev_dev,
4255 			"Requested Port Capabilities %#x rejected, error %d\n",
4256 			rcap, -ret);
4257 		return ret;
4258 	}
4259 	return 0;
4260 }
4261 
4262 /**
4263  *	t4_restart_aneg - restart autonegotiation
4264  *	@adap: the adapter
4265  *	@mbox: mbox to use for the FW command
4266  *	@port: the port id
4267  *
4268  *	Restarts autonegotiation for the selected port.
4269  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4270 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4271 {
4272 	unsigned int fw_caps = adap->params.fw_caps_support;
4273 	struct fw_port_cmd c;
4274 
4275 	memset(&c, 0, sizeof(c));
4276 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4277 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4278 				     FW_PORT_CMD_PORTID_V(port));
4279 	c.action_to_len16 =
4280 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4281 						 ? FW_PORT_ACTION_L1_CFG
4282 						 : FW_PORT_ACTION_L1_CFG32) |
4283 			    FW_LEN16(c));
4284 	if (fw_caps == FW_CAPS16)
4285 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4286 	else
4287 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4288 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4289 }
4290 
4291 typedef void (*int_handler_t)(struct adapter *adap);
4292 
4293 struct intr_info {
4294 	unsigned int mask;       /* bits to check in interrupt status */
4295 	const char *msg;         /* message to print or NULL */
4296 	short stat_idx;          /* stat counter to increment or -1 */
4297 	unsigned short fatal;    /* whether the condition reported is fatal */
4298 	int_handler_t int_handler; /* platform-specific int handler */
4299 };
4300 
4301 /**
4302  *	t4_handle_intr_status - table driven interrupt handler
4303  *	@adapter: the adapter that generated the interrupt
4304  *	@reg: the interrupt status register to process
4305  *	@acts: table of interrupt actions
4306  *
4307  *	A table driven interrupt handler that applies a set of masks to an
4308  *	interrupt status word and performs the corresponding actions if the
4309  *	interrupts described by the mask have occurred.  The actions include
4310  *	optionally emitting a warning or alert message.  The table is terminated
4311  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4312  *	conditions.
4313  */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)4314 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4315 				 const struct intr_info *acts)
4316 {
4317 	int fatal = 0;
4318 	unsigned int mask = 0;
4319 	unsigned int status = t4_read_reg(adapter, reg);
4320 
4321 	for ( ; acts->mask; ++acts) {
4322 		if (!(status & acts->mask))
4323 			continue;
4324 		if (acts->fatal) {
4325 			fatal++;
4326 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4327 				  status & acts->mask);
4328 		} else if (acts->msg && printk_ratelimit())
4329 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4330 				 status & acts->mask);
4331 		if (acts->int_handler)
4332 			acts->int_handler(adapter);
4333 		mask |= acts->mask;
4334 	}
4335 	status &= mask;
4336 	if (status)                           /* clear processed interrupts */
4337 		t4_write_reg(adapter, reg, status);
4338 	return fatal;
4339 }
4340 
4341 /*
4342  * Interrupt handler for the PCIE module.
4343  */
pcie_intr_handler(struct adapter * adapter)4344 static void pcie_intr_handler(struct adapter *adapter)
4345 {
4346 	static const struct intr_info sysbus_intr_info[] = {
4347 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4348 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4349 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4350 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4351 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4352 		{ 0 }
4353 	};
4354 	static const struct intr_info pcie_port_intr_info[] = {
4355 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4356 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4357 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4358 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4359 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4360 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4361 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4362 		{ RDPE_F, "Rx data parity error", -1, 1 },
4363 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4364 		{ 0 }
4365 	};
4366 	static const struct intr_info pcie_intr_info[] = {
4367 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4368 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4369 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4370 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4371 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4372 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4373 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4374 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4375 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4376 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4377 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4378 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4379 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4380 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4381 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4382 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4383 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4384 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4385 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4386 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4387 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4388 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4389 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4390 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4391 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4392 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4393 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4394 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4395 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4396 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4397 		  -1, 0 },
4398 		{ 0 }
4399 	};
4400 
4401 	static struct intr_info t5_pcie_intr_info[] = {
4402 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4403 		  -1, 1 },
4404 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4405 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4406 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4407 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4408 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4409 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4410 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4411 		  -1, 1 },
4412 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4413 		  -1, 1 },
4414 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4415 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4416 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4417 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4418 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4419 		  -1, 1 },
4420 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4421 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4422 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4423 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4424 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4425 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4426 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4427 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4428 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4429 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4430 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4431 		  -1, 1 },
4432 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4433 		  -1, 1 },
4434 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4435 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4436 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4437 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4438 		{ 0 }
4439 	};
4440 
4441 	int fat;
4442 
4443 	if (is_t4(adapter->params.chip))
4444 		fat = t4_handle_intr_status(adapter,
4445 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4446 				sysbus_intr_info) +
4447 			t4_handle_intr_status(adapter,
4448 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4449 					pcie_port_intr_info) +
4450 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4451 					      pcie_intr_info);
4452 	else
4453 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4454 					    t5_pcie_intr_info);
4455 
4456 	if (fat)
4457 		t4_fatal_err(adapter);
4458 }
4459 
4460 /*
4461  * TP interrupt handler.
4462  */
tp_intr_handler(struct adapter * adapter)4463 static void tp_intr_handler(struct adapter *adapter)
4464 {
4465 	static const struct intr_info tp_intr_info[] = {
4466 		{ 0x3fffffff, "TP parity error", -1, 1 },
4467 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4468 		{ 0 }
4469 	};
4470 
4471 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4472 		t4_fatal_err(adapter);
4473 }
4474 
4475 /*
4476  * SGE interrupt handler.
4477  */
sge_intr_handler(struct adapter * adapter)4478 static void sge_intr_handler(struct adapter *adapter)
4479 {
4480 	u32 v = 0, perr;
4481 	u32 err;
4482 
4483 	static const struct intr_info sge_intr_info[] = {
4484 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4485 		  "SGE received CPL exceeding IQE size", -1, 1 },
4486 		{ ERR_INVALID_CIDX_INC_F,
4487 		  "SGE GTS CIDX increment too large", -1, 0 },
4488 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4489 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4490 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4491 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4492 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4493 		  0 },
4494 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4495 		  0 },
4496 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4497 		  0 },
4498 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4499 		  0 },
4500 		{ ERR_ING_CTXT_PRIO_F,
4501 		  "SGE too many priority ingress contexts", -1, 0 },
4502 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4503 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4504 		{ 0 }
4505 	};
4506 
4507 	static struct intr_info t4t5_sge_intr_info[] = {
4508 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4509 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4510 		{ ERR_EGR_CTXT_PRIO_F,
4511 		  "SGE too many priority egress contexts", -1, 0 },
4512 		{ 0 }
4513 	};
4514 
4515 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4516 	if (perr) {
4517 		v |= perr;
4518 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4519 			  perr);
4520 	}
4521 
4522 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4523 	if (perr) {
4524 		v |= perr;
4525 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4526 			  perr);
4527 	}
4528 
4529 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4530 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4531 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4532 		perr &= ~ERR_T_RXCRC_F;
4533 		if (perr) {
4534 			v |= perr;
4535 			dev_alert(adapter->pdev_dev,
4536 				  "SGE Cause5 Parity Error %#x\n", perr);
4537 		}
4538 	}
4539 
4540 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4541 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4542 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4543 					   t4t5_sge_intr_info);
4544 
4545 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4546 	if (err & ERROR_QID_VALID_F) {
4547 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4548 			ERROR_QID_G(err));
4549 		if (err & UNCAPTURED_ERROR_F)
4550 			dev_err(adapter->pdev_dev,
4551 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4552 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4553 			     UNCAPTURED_ERROR_F);
4554 	}
4555 
4556 	if (v != 0)
4557 		t4_fatal_err(adapter);
4558 }
4559 
4560 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4561 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4562 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4563 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4564 
4565 /*
4566  * CIM interrupt handler.
4567  */
cim_intr_handler(struct adapter * adapter)4568 static void cim_intr_handler(struct adapter *adapter)
4569 {
4570 	static const struct intr_info cim_intr_info[] = {
4571 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4572 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4573 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4574 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4575 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4576 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4577 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4578 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4579 		{ 0 }
4580 	};
4581 	static const struct intr_info cim_upintr_info[] = {
4582 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4583 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4584 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4585 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4586 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4587 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4588 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4589 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4590 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4591 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4592 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4593 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4594 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4595 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4596 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4597 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4598 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4599 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4600 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4601 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4602 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4603 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4604 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4605 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4606 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4607 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4608 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4609 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4610 		{ 0 }
4611 	};
4612 
4613 	u32 val, fw_err;
4614 	int fat;
4615 
4616 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4617 	if (fw_err & PCIE_FW_ERR_F)
4618 		t4_report_fw_error(adapter);
4619 
4620 	/* When the Firmware detects an internal error which normally
4621 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4622 	 * in order to make sure the Host sees the Firmware Crash.  So
4623 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4624 	 * ignore the Timer0 interrupt.
4625 	 */
4626 
4627 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4628 	if (val & TIMER0INT_F)
4629 		if (!(fw_err & PCIE_FW_ERR_F) ||
4630 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4631 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4632 				     TIMER0INT_F);
4633 
4634 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4635 				    cim_intr_info) +
4636 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4637 				    cim_upintr_info);
4638 	if (fat)
4639 		t4_fatal_err(adapter);
4640 }
4641 
4642 /*
4643  * ULP RX interrupt handler.
4644  */
ulprx_intr_handler(struct adapter * adapter)4645 static void ulprx_intr_handler(struct adapter *adapter)
4646 {
4647 	static const struct intr_info ulprx_intr_info[] = {
4648 		{ 0x1800000, "ULPRX context error", -1, 1 },
4649 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4650 		{ 0 }
4651 	};
4652 
4653 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4654 		t4_fatal_err(adapter);
4655 }
4656 
4657 /*
4658  * ULP TX interrupt handler.
4659  */
ulptx_intr_handler(struct adapter * adapter)4660 static void ulptx_intr_handler(struct adapter *adapter)
4661 {
4662 	static const struct intr_info ulptx_intr_info[] = {
4663 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4664 		  0 },
4665 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4666 		  0 },
4667 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4668 		  0 },
4669 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4670 		  0 },
4671 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4672 		{ 0 }
4673 	};
4674 
4675 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4676 		t4_fatal_err(adapter);
4677 }
4678 
4679 /*
4680  * PM TX interrupt handler.
4681  */
pmtx_intr_handler(struct adapter * adapter)4682 static void pmtx_intr_handler(struct adapter *adapter)
4683 {
4684 	static const struct intr_info pmtx_intr_info[] = {
4685 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4686 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4687 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4688 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4689 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4690 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4691 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4692 		  -1, 1 },
4693 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4694 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4695 		{ 0 }
4696 	};
4697 
4698 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4699 		t4_fatal_err(adapter);
4700 }
4701 
4702 /*
4703  * PM RX interrupt handler.
4704  */
pmrx_intr_handler(struct adapter * adapter)4705 static void pmrx_intr_handler(struct adapter *adapter)
4706 {
4707 	static const struct intr_info pmrx_intr_info[] = {
4708 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4709 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4710 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4711 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4712 		  -1, 1 },
4713 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4714 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4715 		{ 0 }
4716 	};
4717 
4718 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4719 		t4_fatal_err(adapter);
4720 }
4721 
4722 /*
4723  * CPL switch interrupt handler.
4724  */
cplsw_intr_handler(struct adapter * adapter)4725 static void cplsw_intr_handler(struct adapter *adapter)
4726 {
4727 	static const struct intr_info cplsw_intr_info[] = {
4728 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4729 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4730 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4731 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4732 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4733 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4734 		{ 0 }
4735 	};
4736 
4737 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4738 		t4_fatal_err(adapter);
4739 }
4740 
4741 /*
4742  * LE interrupt handler.
4743  */
le_intr_handler(struct adapter * adap)4744 static void le_intr_handler(struct adapter *adap)
4745 {
4746 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4747 	static const struct intr_info le_intr_info[] = {
4748 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4749 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4750 		{ PARITYERR_F, "LE parity error", -1, 1 },
4751 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4752 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4753 		{ 0 }
4754 	};
4755 
4756 	static struct intr_info t6_le_intr_info[] = {
4757 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4758 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4759 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4760 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4761 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4762 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4763 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4764 		{ 0 }
4765 	};
4766 
4767 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4768 				  (chip <= CHELSIO_T5) ?
4769 				  le_intr_info : t6_le_intr_info))
4770 		t4_fatal_err(adap);
4771 }
4772 
4773 /*
4774  * MPS interrupt handler.
4775  */
mps_intr_handler(struct adapter * adapter)4776 static void mps_intr_handler(struct adapter *adapter)
4777 {
4778 	static const struct intr_info mps_rx_intr_info[] = {
4779 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4780 		{ 0 }
4781 	};
4782 	static const struct intr_info mps_tx_intr_info[] = {
4783 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4784 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4785 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4786 		  -1, 1 },
4787 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4788 		  -1, 1 },
4789 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4790 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4791 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4792 		{ 0 }
4793 	};
4794 	static const struct intr_info t6_mps_tx_intr_info[] = {
4795 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4796 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4797 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4798 		  -1, 1 },
4799 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4800 		  -1, 1 },
4801 		/* MPS Tx Bubble is normal for T6 */
4802 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4803 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4804 		{ 0 }
4805 	};
4806 	static const struct intr_info mps_trc_intr_info[] = {
4807 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4808 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4809 		  -1, 1 },
4810 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4811 		{ 0 }
4812 	};
4813 	static const struct intr_info mps_stat_sram_intr_info[] = {
4814 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4815 		{ 0 }
4816 	};
4817 	static const struct intr_info mps_stat_tx_intr_info[] = {
4818 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4819 		{ 0 }
4820 	};
4821 	static const struct intr_info mps_stat_rx_intr_info[] = {
4822 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4823 		{ 0 }
4824 	};
4825 	static const struct intr_info mps_cls_intr_info[] = {
4826 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4827 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4828 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4829 		{ 0 }
4830 	};
4831 
4832 	int fat;
4833 
4834 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4835 				    mps_rx_intr_info) +
4836 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4837 				    is_t6(adapter->params.chip)
4838 				    ? t6_mps_tx_intr_info
4839 				    : mps_tx_intr_info) +
4840 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4841 				    mps_trc_intr_info) +
4842 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4843 				    mps_stat_sram_intr_info) +
4844 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4845 				    mps_stat_tx_intr_info) +
4846 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4847 				    mps_stat_rx_intr_info) +
4848 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4849 				    mps_cls_intr_info);
4850 
4851 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4852 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4853 	if (fat)
4854 		t4_fatal_err(adapter);
4855 }
4856 
4857 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4858 		      ECC_UE_INT_CAUSE_F)
4859 
4860 /*
4861  * EDC/MC interrupt handler.
4862  */
mem_intr_handler(struct adapter * adapter,int idx)4863 static void mem_intr_handler(struct adapter *adapter, int idx)
4864 {
4865 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4866 
4867 	unsigned int addr, cnt_addr, v;
4868 
4869 	if (idx <= MEM_EDC1) {
4870 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4871 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4872 	} else if (idx == MEM_MC) {
4873 		if (is_t4(adapter->params.chip)) {
4874 			addr = MC_INT_CAUSE_A;
4875 			cnt_addr = MC_ECC_STATUS_A;
4876 		} else {
4877 			addr = MC_P_INT_CAUSE_A;
4878 			cnt_addr = MC_P_ECC_STATUS_A;
4879 		}
4880 	} else {
4881 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4882 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4883 	}
4884 
4885 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4886 	if (v & PERR_INT_CAUSE_F)
4887 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4888 			  name[idx]);
4889 	if (v & ECC_CE_INT_CAUSE_F) {
4890 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4891 
4892 		t4_edc_err_read(adapter, idx);
4893 
4894 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4895 		if (printk_ratelimit())
4896 			dev_warn(adapter->pdev_dev,
4897 				 "%u %s correctable ECC data error%s\n",
4898 				 cnt, name[idx], cnt > 1 ? "s" : "");
4899 	}
4900 	if (v & ECC_UE_INT_CAUSE_F)
4901 		dev_alert(adapter->pdev_dev,
4902 			  "%s uncorrectable ECC data error\n", name[idx]);
4903 
4904 	t4_write_reg(adapter, addr, v);
4905 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4906 		t4_fatal_err(adapter);
4907 }
4908 
4909 /*
4910  * MA interrupt handler.
4911  */
ma_intr_handler(struct adapter * adap)4912 static void ma_intr_handler(struct adapter *adap)
4913 {
4914 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4915 
4916 	if (status & MEM_PERR_INT_CAUSE_F) {
4917 		dev_alert(adap->pdev_dev,
4918 			  "MA parity error, parity status %#x\n",
4919 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4920 		if (is_t5(adap->params.chip))
4921 			dev_alert(adap->pdev_dev,
4922 				  "MA parity error, parity status %#x\n",
4923 				  t4_read_reg(adap,
4924 					      MA_PARITY_ERROR_STATUS2_A));
4925 	}
4926 	if (status & MEM_WRAP_INT_CAUSE_F) {
4927 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4928 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4929 			  "client %u to address %#x\n",
4930 			  MEM_WRAP_CLIENT_NUM_G(v),
4931 			  MEM_WRAP_ADDRESS_G(v) << 4);
4932 	}
4933 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4934 	t4_fatal_err(adap);
4935 }
4936 
4937 /*
4938  * SMB interrupt handler.
4939  */
smb_intr_handler(struct adapter * adap)4940 static void smb_intr_handler(struct adapter *adap)
4941 {
4942 	static const struct intr_info smb_intr_info[] = {
4943 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4944 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4945 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4946 		{ 0 }
4947 	};
4948 
4949 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4950 		t4_fatal_err(adap);
4951 }
4952 
4953 /*
4954  * NC-SI interrupt handler.
4955  */
ncsi_intr_handler(struct adapter * adap)4956 static void ncsi_intr_handler(struct adapter *adap)
4957 {
4958 	static const struct intr_info ncsi_intr_info[] = {
4959 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4960 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4961 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4962 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4963 		{ 0 }
4964 	};
4965 
4966 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4967 		t4_fatal_err(adap);
4968 }
4969 
4970 /*
4971  * XGMAC interrupt handler.
4972  */
xgmac_intr_handler(struct adapter * adap,int port)4973 static void xgmac_intr_handler(struct adapter *adap, int port)
4974 {
4975 	u32 v, int_cause_reg;
4976 
4977 	if (is_t4(adap->params.chip))
4978 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4979 	else
4980 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4981 
4982 	v = t4_read_reg(adap, int_cause_reg);
4983 
4984 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4985 	if (!v)
4986 		return;
4987 
4988 	if (v & TXFIFO_PRTY_ERR_F)
4989 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4990 			  port);
4991 	if (v & RXFIFO_PRTY_ERR_F)
4992 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4993 			  port);
4994 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4995 	t4_fatal_err(adap);
4996 }
4997 
4998 /*
4999  * PL interrupt handler.
5000  */
pl_intr_handler(struct adapter * adap)5001 static void pl_intr_handler(struct adapter *adap)
5002 {
5003 	static const struct intr_info pl_intr_info[] = {
5004 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
5005 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
5006 		{ 0 }
5007 	};
5008 
5009 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5010 		t4_fatal_err(adap);
5011 }
5012 
5013 #define PF_INTR_MASK (PFSW_F)
5014 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5015 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5016 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5017 
5018 /**
5019  *	t4_slow_intr_handler - control path interrupt handler
5020  *	@adapter: the adapter
5021  *
5022  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5023  *	The designation 'slow' is because it involves register reads, while
5024  *	data interrupts typically don't involve any MMIOs.
5025  */
t4_slow_intr_handler(struct adapter * adapter)5026 int t4_slow_intr_handler(struct adapter *adapter)
5027 {
5028 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5029 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5030 	 * easiest just to mask that case here.
5031 	 */
5032 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5033 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5034 	u32 cause = raw_cause & enable;
5035 
5036 	if (!(cause & GLBL_INTR_MASK))
5037 		return 0;
5038 	if (cause & CIM_F)
5039 		cim_intr_handler(adapter);
5040 	if (cause & MPS_F)
5041 		mps_intr_handler(adapter);
5042 	if (cause & NCSI_F)
5043 		ncsi_intr_handler(adapter);
5044 	if (cause & PL_F)
5045 		pl_intr_handler(adapter);
5046 	if (cause & SMB_F)
5047 		smb_intr_handler(adapter);
5048 	if (cause & XGMAC0_F)
5049 		xgmac_intr_handler(adapter, 0);
5050 	if (cause & XGMAC1_F)
5051 		xgmac_intr_handler(adapter, 1);
5052 	if (cause & XGMAC_KR0_F)
5053 		xgmac_intr_handler(adapter, 2);
5054 	if (cause & XGMAC_KR1_F)
5055 		xgmac_intr_handler(adapter, 3);
5056 	if (cause & PCIE_F)
5057 		pcie_intr_handler(adapter);
5058 	if (cause & MC_F)
5059 		mem_intr_handler(adapter, MEM_MC);
5060 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5061 		mem_intr_handler(adapter, MEM_MC1);
5062 	if (cause & EDC0_F)
5063 		mem_intr_handler(adapter, MEM_EDC0);
5064 	if (cause & EDC1_F)
5065 		mem_intr_handler(adapter, MEM_EDC1);
5066 	if (cause & LE_F)
5067 		le_intr_handler(adapter);
5068 	if (cause & TP_F)
5069 		tp_intr_handler(adapter);
5070 	if (cause & MA_F)
5071 		ma_intr_handler(adapter);
5072 	if (cause & PM_TX_F)
5073 		pmtx_intr_handler(adapter);
5074 	if (cause & PM_RX_F)
5075 		pmrx_intr_handler(adapter);
5076 	if (cause & ULP_RX_F)
5077 		ulprx_intr_handler(adapter);
5078 	if (cause & CPL_SWITCH_F)
5079 		cplsw_intr_handler(adapter);
5080 	if (cause & SGE_F)
5081 		sge_intr_handler(adapter);
5082 	if (cause & ULP_TX_F)
5083 		ulptx_intr_handler(adapter);
5084 
5085 	/* Clear the interrupts just processed for which we are the master. */
5086 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5087 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5088 	return 1;
5089 }
5090 
5091 /**
5092  *	t4_intr_enable - enable interrupts
5093  *	@adapter: the adapter whose interrupts should be enabled
5094  *
5095  *	Enable PF-specific interrupts for the calling function and the top-level
5096  *	interrupt concentrator for global interrupts.  Interrupts are already
5097  *	enabled at each module,	here we just enable the roots of the interrupt
5098  *	hierarchies.
5099  *
5100  *	Note: this function should be called only when the driver manages
5101  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5102  *	function at a time should be doing this.
5103  */
t4_intr_enable(struct adapter * adapter)5104 void t4_intr_enable(struct adapter *adapter)
5105 {
5106 	u32 val = 0;
5107 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5108 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5109 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5110 
5111 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5112 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5113 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5114 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5115 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5116 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5117 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5118 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5119 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5120 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5121 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5122 }
5123 
5124 /**
5125  *	t4_intr_disable - disable interrupts
5126  *	@adapter: the adapter whose interrupts should be disabled
5127  *
5128  *	Disable interrupts.  We only disable the top-level interrupt
5129  *	concentrators.  The caller must be a PCI function managing global
5130  *	interrupts.
5131  */
t4_intr_disable(struct adapter * adapter)5132 void t4_intr_disable(struct adapter *adapter)
5133 {
5134 	u32 whoami, pf;
5135 
5136 	if (pci_channel_offline(adapter->pdev))
5137 		return;
5138 
5139 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5140 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5141 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5142 
5143 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5144 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5145 }
5146 
t4_chip_rss_size(struct adapter * adap)5147 unsigned int t4_chip_rss_size(struct adapter *adap)
5148 {
5149 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5150 		return RSS_NENTRIES;
5151 	else
5152 		return T6_RSS_NENTRIES;
5153 }
5154 
5155 /**
5156  *	t4_config_rss_range - configure a portion of the RSS mapping table
5157  *	@adapter: the adapter
5158  *	@mbox: mbox to use for the FW command
5159  *	@viid: virtual interface whose RSS subtable is to be written
5160  *	@start: start entry in the table to write
5161  *	@n: how many table entries to write
5162  *	@rspq: values for the response queue lookup table
5163  *	@nrspq: number of values in @rspq
5164  *
5165  *	Programs the selected part of the VI's RSS mapping table with the
5166  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5167  *	until the full table range is populated.
5168  *
5169  *	The caller must ensure the values in @rspq are in the range allowed for
5170  *	@viid.
5171  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)5172 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5173 			int start, int n, const u16 *rspq, unsigned int nrspq)
5174 {
5175 	int ret;
5176 	const u16 *rsp = rspq;
5177 	const u16 *rsp_end = rspq + nrspq;
5178 	struct fw_rss_ind_tbl_cmd cmd;
5179 
5180 	memset(&cmd, 0, sizeof(cmd));
5181 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5182 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5183 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5184 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5185 
5186 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5187 	while (n > 0) {
5188 		int nq = min(n, 32);
5189 		__be32 *qp = &cmd.iq0_to_iq2;
5190 
5191 		cmd.niqid = cpu_to_be16(nq);
5192 		cmd.startidx = cpu_to_be16(start);
5193 
5194 		start += nq;
5195 		n -= nq;
5196 
5197 		while (nq > 0) {
5198 			unsigned int v;
5199 
5200 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5201 			if (++rsp >= rsp_end)
5202 				rsp = rspq;
5203 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5204 			if (++rsp >= rsp_end)
5205 				rsp = rspq;
5206 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5207 			if (++rsp >= rsp_end)
5208 				rsp = rspq;
5209 
5210 			*qp++ = cpu_to_be32(v);
5211 			nq -= 3;
5212 		}
5213 
5214 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5215 		if (ret)
5216 			return ret;
5217 	}
5218 	return 0;
5219 }
5220 
5221 /**
5222  *	t4_config_glbl_rss - configure the global RSS mode
5223  *	@adapter: the adapter
5224  *	@mbox: mbox to use for the FW command
5225  *	@mode: global RSS mode
5226  *	@flags: mode-specific flags
5227  *
5228  *	Sets the global RSS mode.
5229  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)5230 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5231 		       unsigned int flags)
5232 {
5233 	struct fw_rss_glb_config_cmd c;
5234 
5235 	memset(&c, 0, sizeof(c));
5236 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5237 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5238 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5239 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5240 		c.u.manual.mode_pkd =
5241 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5242 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5243 		c.u.basicvirtual.mode_pkd =
5244 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5245 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5246 	} else
5247 		return -EINVAL;
5248 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5249 }
5250 
5251 /**
5252  *	t4_config_vi_rss - configure per VI RSS settings
5253  *	@adapter: the adapter
5254  *	@mbox: mbox to use for the FW command
5255  *	@viid: the VI id
5256  *	@flags: RSS flags
5257  *	@defq: id of the default RSS queue for the VI.
5258  *
5259  *	Configures VI-specific RSS properties.
5260  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)5261 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5262 		     unsigned int flags, unsigned int defq)
5263 {
5264 	struct fw_rss_vi_config_cmd c;
5265 
5266 	memset(&c, 0, sizeof(c));
5267 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5268 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5269 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5270 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5271 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5272 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5273 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5274 }
5275 
5276 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)5277 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5278 {
5279 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5280 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5281 				   5, 0, val);
5282 }
5283 
5284 /**
5285  *	t4_read_rss - read the contents of the RSS mapping table
5286  *	@adapter: the adapter
5287  *	@map: holds the contents of the RSS mapping table
5288  *
5289  *	Reads the contents of the RSS hash->queue mapping table.
5290  */
t4_read_rss(struct adapter * adapter,u16 * map)5291 int t4_read_rss(struct adapter *adapter, u16 *map)
5292 {
5293 	int i, ret, nentries;
5294 	u32 val;
5295 
5296 	nentries = t4_chip_rss_size(adapter);
5297 	for (i = 0; i < nentries / 2; ++i) {
5298 		ret = rd_rss_row(adapter, i, &val);
5299 		if (ret)
5300 			return ret;
5301 		*map++ = LKPTBLQUEUE0_G(val);
5302 		*map++ = LKPTBLQUEUE1_G(val);
5303 	}
5304 	return 0;
5305 }
5306 
t4_use_ldst(struct adapter * adap)5307 static unsigned int t4_use_ldst(struct adapter *adap)
5308 {
5309 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5310 }
5311 
5312 /**
5313  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5314  * @adap: the adapter
5315  * @cmd: TP fw ldst address space type
5316  * @vals: where the indirect register values are stored/written
5317  * @nregs: how many indirect registers to read/write
5318  * @start_index: index of first indirect register to read/write
5319  * @rw: Read (1) or Write (0)
5320  * @sleep_ok: if true we may sleep while awaiting command completion
5321  *
5322  * Access TP indirect registers through LDST
5323  */
t4_tp_fw_ldst_rw(struct adapter * adap,int cmd,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw,bool sleep_ok)5324 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5325 			    unsigned int nregs, unsigned int start_index,
5326 			    unsigned int rw, bool sleep_ok)
5327 {
5328 	int ret = 0;
5329 	unsigned int i;
5330 	struct fw_ldst_cmd c;
5331 
5332 	for (i = 0; i < nregs; i++) {
5333 		memset(&c, 0, sizeof(c));
5334 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5335 						FW_CMD_REQUEST_F |
5336 						(rw ? FW_CMD_READ_F :
5337 						      FW_CMD_WRITE_F) |
5338 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5339 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5340 
5341 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5342 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5343 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5344 				      sleep_ok);
5345 		if (ret)
5346 			return ret;
5347 
5348 		if (rw)
5349 			vals[i] = be32_to_cpu(c.u.addrval.val);
5350 	}
5351 	return 0;
5352 }
5353 
5354 /**
5355  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5356  * @adap: the adapter
5357  * @reg_addr: Address Register
5358  * @reg_data: Data register
5359  * @buff: where the indirect register values are stored/written
5360  * @nregs: how many indirect registers to read/write
5361  * @start_index: index of first indirect register to read/write
5362  * @rw: READ(1) or WRITE(0)
5363  * @sleep_ok: if true we may sleep while awaiting command completion
5364  *
5365  * Read/Write TP indirect registers through LDST if possible.
5366  * Else, use backdoor access
5367  **/
t4_tp_indirect_rw(struct adapter * adap,u32 reg_addr,u32 reg_data,u32 * buff,u32 nregs,u32 start_index,int rw,bool sleep_ok)5368 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5369 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5370 			      bool sleep_ok)
5371 {
5372 	int rc = -EINVAL;
5373 	int cmd;
5374 
5375 	switch (reg_addr) {
5376 	case TP_PIO_ADDR_A:
5377 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5378 		break;
5379 	case TP_TM_PIO_ADDR_A:
5380 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5381 		break;
5382 	case TP_MIB_INDEX_A:
5383 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5384 		break;
5385 	default:
5386 		goto indirect_access;
5387 	}
5388 
5389 	if (t4_use_ldst(adap))
5390 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5391 				      sleep_ok);
5392 
5393 indirect_access:
5394 
5395 	if (rc) {
5396 		if (rw)
5397 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5398 					 start_index);
5399 		else
5400 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5401 					  start_index);
5402 	}
5403 }
5404 
5405 /**
5406  * t4_tp_pio_read - Read TP PIO registers
5407  * @adap: the adapter
5408  * @buff: where the indirect register values are written
5409  * @nregs: how many indirect registers to read
5410  * @start_index: index of first indirect register to read
5411  * @sleep_ok: if true we may sleep while awaiting command completion
5412  *
5413  * Read TP PIO Registers
5414  **/
t4_tp_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5415 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5416 		    u32 start_index, bool sleep_ok)
5417 {
5418 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5419 			  start_index, 1, sleep_ok);
5420 }
5421 
5422 /**
5423  * t4_tp_pio_write - Write TP PIO registers
5424  * @adap: the adapter
5425  * @buff: where the indirect register values are stored
5426  * @nregs: how many indirect registers to write
5427  * @start_index: index of first indirect register to write
5428  * @sleep_ok: if true we may sleep while awaiting command completion
5429  *
5430  * Write TP PIO Registers
5431  **/
t4_tp_pio_write(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5432 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5433 			    u32 start_index, bool sleep_ok)
5434 {
5435 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5436 			  start_index, 0, sleep_ok);
5437 }
5438 
5439 /**
5440  * t4_tp_tm_pio_read - Read TP TM PIO registers
5441  * @adap: the adapter
5442  * @buff: where the indirect register values are written
5443  * @nregs: how many indirect registers to read
5444  * @start_index: index of first indirect register to read
5445  * @sleep_ok: if true we may sleep while awaiting command completion
5446  *
5447  * Read TP TM PIO Registers
5448  **/
t4_tp_tm_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5449 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5450 		       u32 start_index, bool sleep_ok)
5451 {
5452 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5453 			  nregs, start_index, 1, sleep_ok);
5454 }
5455 
5456 /**
5457  * t4_tp_mib_read - Read TP MIB registers
5458  * @adap: the adapter
5459  * @buff: where the indirect register values are written
5460  * @nregs: how many indirect registers to read
5461  * @start_index: index of first indirect register to read
5462  * @sleep_ok: if true we may sleep while awaiting command completion
5463  *
5464  * Read TP MIB Registers
5465  **/
t4_tp_mib_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5466 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5467 		    bool sleep_ok)
5468 {
5469 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5470 			  start_index, 1, sleep_ok);
5471 }
5472 
5473 /**
5474  *	t4_read_rss_key - read the global RSS key
5475  *	@adap: the adapter
5476  *	@key: 10-entry array holding the 320-bit RSS key
5477  *      @sleep_ok: if true we may sleep while awaiting command completion
5478  *
5479  *	Reads the global 320-bit RSS key.
5480  */
t4_read_rss_key(struct adapter * adap,u32 * key,bool sleep_ok)5481 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5482 {
5483 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5484 }
5485 
5486 /**
5487  *	t4_write_rss_key - program one of the RSS keys
5488  *	@adap: the adapter
5489  *	@key: 10-entry array holding the 320-bit RSS key
5490  *	@idx: which RSS key to write
5491  *      @sleep_ok: if true we may sleep while awaiting command completion
5492  *
5493  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5494  *	0..15 the corresponding entry in the RSS key table is written,
5495  *	otherwise the global RSS key is written.
5496  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx,bool sleep_ok)5497 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5498 		      bool sleep_ok)
5499 {
5500 	u8 rss_key_addr_cnt = 16;
5501 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5502 
5503 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5504 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5505 	 * as index[5:4](upper 2) into key table
5506 	 */
5507 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5508 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5509 		rss_key_addr_cnt = 32;
5510 
5511 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5512 
5513 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5514 		if (rss_key_addr_cnt > 16)
5515 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5516 				     KEYWRADDRX_V(idx >> 4) |
5517 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5518 		else
5519 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5520 				     KEYWRADDR_V(idx) | KEYWREN_F);
5521 	}
5522 }
5523 
5524 /**
5525  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5526  *	@adapter: the adapter
5527  *	@index: the entry in the PF RSS table to read
5528  *	@valp: where to store the returned value
5529  *      @sleep_ok: if true we may sleep while awaiting command completion
5530  *
5531  *	Reads the PF RSS Configuration Table at the specified index and returns
5532  *	the value found there.
5533  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp,bool sleep_ok)5534 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5535 			   u32 *valp, bool sleep_ok)
5536 {
5537 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5538 }
5539 
5540 /**
5541  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5542  *	@adapter: the adapter
5543  *	@index: the entry in the VF RSS table to read
5544  *	@vfl: where to store the returned VFL
5545  *	@vfh: where to store the returned VFH
5546  *      @sleep_ok: if true we may sleep while awaiting command completion
5547  *
5548  *	Reads the VF RSS Configuration Table at the specified index and returns
5549  *	the (VFL, VFH) values found there.
5550  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh,bool sleep_ok)5551 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5552 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5553 {
5554 	u32 vrt, mask, data;
5555 
5556 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5557 		mask = VFWRADDR_V(VFWRADDR_M);
5558 		data = VFWRADDR_V(index);
5559 	} else {
5560 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5561 		 data = T6_VFWRADDR_V(index);
5562 	}
5563 
5564 	/* Request that the index'th VF Table values be read into VFL/VFH.
5565 	 */
5566 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5567 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5568 	vrt |= data | VFRDEN_F;
5569 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5570 
5571 	/* Grab the VFL/VFH values ...
5572 	 */
5573 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5574 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5575 }
5576 
5577 /**
5578  *	t4_read_rss_pf_map - read PF RSS Map
5579  *	@adapter: the adapter
5580  *      @sleep_ok: if true we may sleep while awaiting command completion
5581  *
5582  *	Reads the PF RSS Map register and returns its value.
5583  */
t4_read_rss_pf_map(struct adapter * adapter,bool sleep_ok)5584 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5585 {
5586 	u32 pfmap;
5587 
5588 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5589 	return pfmap;
5590 }
5591 
5592 /**
5593  *	t4_read_rss_pf_mask - read PF RSS Mask
5594  *	@adapter: the adapter
5595  *      @sleep_ok: if true we may sleep while awaiting command completion
5596  *
5597  *	Reads the PF RSS Mask register and returns its value.
5598  */
t4_read_rss_pf_mask(struct adapter * adapter,bool sleep_ok)5599 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5600 {
5601 	u32 pfmask;
5602 
5603 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5604 	return pfmask;
5605 }
5606 
5607 /**
5608  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5609  *	@adap: the adapter
5610  *	@v4: holds the TCP/IP counter values
5611  *	@v6: holds the TCP/IPv6 counter values
5612  *      @sleep_ok: if true we may sleep while awaiting command completion
5613  *
5614  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5615  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5616  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6,bool sleep_ok)5617 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5618 			 struct tp_tcp_stats *v6, bool sleep_ok)
5619 {
5620 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5621 
5622 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5623 #define STAT(x)     val[STAT_IDX(x)]
5624 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5625 
5626 	if (v4) {
5627 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5628 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5629 		v4->tcp_out_rsts = STAT(OUT_RST);
5630 		v4->tcp_in_segs  = STAT64(IN_SEG);
5631 		v4->tcp_out_segs = STAT64(OUT_SEG);
5632 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5633 	}
5634 	if (v6) {
5635 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5636 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5637 		v6->tcp_out_rsts = STAT(OUT_RST);
5638 		v6->tcp_in_segs  = STAT64(IN_SEG);
5639 		v6->tcp_out_segs = STAT64(OUT_SEG);
5640 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5641 	}
5642 #undef STAT64
5643 #undef STAT
5644 #undef STAT_IDX
5645 }
5646 
5647 /**
5648  *	t4_tp_get_err_stats - read TP's error MIB counters
5649  *	@adap: the adapter
5650  *	@st: holds the counter values
5651  *      @sleep_ok: if true we may sleep while awaiting command completion
5652  *
5653  *	Returns the values of TP's error counters.
5654  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st,bool sleep_ok)5655 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5656 			 bool sleep_ok)
5657 {
5658 	int nchan = adap->params.arch.nchan;
5659 
5660 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5661 		       sleep_ok);
5662 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5663 		       sleep_ok);
5664 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5665 		       sleep_ok);
5666 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5667 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5668 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5669 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5670 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5671 		       sleep_ok);
5672 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5673 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5674 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5675 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5676 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5677 		       sleep_ok);
5678 }
5679 
5680 /**
5681  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5682  *	@adap: the adapter
5683  *	@st: holds the counter values
5684  *      @sleep_ok: if true we may sleep while awaiting command completion
5685  *
5686  *	Returns the values of TP's CPL counters.
5687  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st,bool sleep_ok)5688 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5689 			 bool sleep_ok)
5690 {
5691 	int nchan = adap->params.arch.nchan;
5692 
5693 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5694 
5695 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5696 }
5697 
5698 /**
5699  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5700  *	@adap: the adapter
5701  *	@st: holds the counter values
5702  *      @sleep_ok: if true we may sleep while awaiting command completion
5703  *
5704  *	Returns the values of TP's RDMA counters.
5705  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st,bool sleep_ok)5706 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5707 			  bool sleep_ok)
5708 {
5709 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5710 		       sleep_ok);
5711 }
5712 
5713 /**
5714  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5715  *	@adap: the adapter
5716  *	@idx: the port index
5717  *	@st: holds the counter values
5718  *      @sleep_ok: if true we may sleep while awaiting command completion
5719  *
5720  *	Returns the values of TP's FCoE counters for the selected port.
5721  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st,bool sleep_ok)5722 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5723 		       struct tp_fcoe_stats *st, bool sleep_ok)
5724 {
5725 	u32 val[2];
5726 
5727 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5728 		       sleep_ok);
5729 
5730 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5731 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5732 
5733 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5734 		       sleep_ok);
5735 
5736 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5737 }
5738 
5739 /**
5740  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5741  *	@adap: the adapter
5742  *	@st: holds the counter values
5743  *      @sleep_ok: if true we may sleep while awaiting command completion
5744  *
5745  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5746  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st,bool sleep_ok)5747 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5748 		      bool sleep_ok)
5749 {
5750 	u32 val[4];
5751 
5752 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5753 	st->frames = val[0];
5754 	st->drops = val[1];
5755 	st->octets = ((u64)val[2] << 32) | val[3];
5756 }
5757 
5758 /**
5759  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5760  *	@adap: the adapter
5761  *	@mtus: where to store the MTU values
5762  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5763  *
5764  *	Reads the HW path MTU table.
5765  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)5766 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5767 {
5768 	u32 v;
5769 	int i;
5770 
5771 	for (i = 0; i < NMTUS; ++i) {
5772 		t4_write_reg(adap, TP_MTU_TABLE_A,
5773 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5774 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5775 		mtus[i] = MTUVALUE_G(v);
5776 		if (mtu_log)
5777 			mtu_log[i] = MTUWIDTH_G(v);
5778 	}
5779 }
5780 
5781 /**
5782  *	t4_read_cong_tbl - reads the congestion control table
5783  *	@adap: the adapter
5784  *	@incr: where to store the alpha values
5785  *
5786  *	Reads the additive increments programmed into the HW congestion
5787  *	control table.
5788  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])5789 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5790 {
5791 	unsigned int mtu, w;
5792 
5793 	for (mtu = 0; mtu < NMTUS; ++mtu)
5794 		for (w = 0; w < NCCTRL_WIN; ++w) {
5795 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5796 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5797 			incr[mtu][w] = (u16)t4_read_reg(adap,
5798 						TP_CCTRL_TABLE_A) & 0x1fff;
5799 		}
5800 }
5801 
5802 /**
5803  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5804  *	@adap: the adapter
5805  *	@addr: the indirect TP register address
5806  *	@mask: specifies the field within the register to modify
5807  *	@val: new value for the field
5808  *
5809  *	Sets a field of an indirect TP register to the given value.
5810  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)5811 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5812 			    unsigned int mask, unsigned int val)
5813 {
5814 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5815 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5816 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5817 }
5818 
5819 /**
5820  *	init_cong_ctrl - initialize congestion control parameters
5821  *	@a: the alpha values for congestion control
5822  *	@b: the beta values for congestion control
5823  *
5824  *	Initialize the congestion control parameters.
5825  */
init_cong_ctrl(unsigned short * a,unsigned short * b)5826 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5827 {
5828 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5829 	a[9] = 2;
5830 	a[10] = 3;
5831 	a[11] = 4;
5832 	a[12] = 5;
5833 	a[13] = 6;
5834 	a[14] = 7;
5835 	a[15] = 8;
5836 	a[16] = 9;
5837 	a[17] = 10;
5838 	a[18] = 14;
5839 	a[19] = 17;
5840 	a[20] = 21;
5841 	a[21] = 25;
5842 	a[22] = 30;
5843 	a[23] = 35;
5844 	a[24] = 45;
5845 	a[25] = 60;
5846 	a[26] = 80;
5847 	a[27] = 100;
5848 	a[28] = 200;
5849 	a[29] = 300;
5850 	a[30] = 400;
5851 	a[31] = 500;
5852 
5853 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5854 	b[9] = b[10] = 1;
5855 	b[11] = b[12] = 2;
5856 	b[13] = b[14] = b[15] = b[16] = 3;
5857 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5858 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5859 	b[28] = b[29] = 6;
5860 	b[30] = b[31] = 7;
5861 }
5862 
5863 /* The minimum additive increment value for the congestion control table */
5864 #define CC_MIN_INCR 2U
5865 
5866 /**
5867  *	t4_load_mtus - write the MTU and congestion control HW tables
5868  *	@adap: the adapter
5869  *	@mtus: the values for the MTU table
5870  *	@alpha: the values for the congestion control alpha parameter
5871  *	@beta: the values for the congestion control beta parameter
5872  *
5873  *	Write the HW MTU table with the supplied MTUs and the high-speed
5874  *	congestion control table with the supplied alpha, beta, and MTUs.
5875  *	We write the two tables together because the additive increments
5876  *	depend on the MTUs.
5877  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5878 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5879 		  const unsigned short *alpha, const unsigned short *beta)
5880 {
5881 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5882 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5883 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5884 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5885 	};
5886 
5887 	unsigned int i, w;
5888 
5889 	for (i = 0; i < NMTUS; ++i) {
5890 		unsigned int mtu = mtus[i];
5891 		unsigned int log2 = fls(mtu);
5892 
5893 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5894 			log2--;
5895 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5896 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5897 
5898 		for (w = 0; w < NCCTRL_WIN; ++w) {
5899 			unsigned int inc;
5900 
5901 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5902 				  CC_MIN_INCR);
5903 
5904 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5905 				     (w << 16) | (beta[w] << 13) | inc);
5906 		}
5907 	}
5908 }
5909 
5910 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5911  * clocks.  The formula is
5912  *
5913  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5914  *
5915  * which is equivalent to
5916  *
5917  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5918  */
chan_rate(struct adapter * adap,unsigned int bytes256)5919 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5920 {
5921 	u64 v = bytes256 * adap->params.vpd.cclk;
5922 
5923 	return v * 62 + v / 2;
5924 }
5925 
5926 /**
5927  *	t4_get_chan_txrate - get the current per channel Tx rates
5928  *	@adap: the adapter
5929  *	@nic_rate: rates for NIC traffic
5930  *	@ofld_rate: rates for offloaded traffic
5931  *
5932  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5933  *	for each channel.
5934  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5935 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5936 {
5937 	u32 v;
5938 
5939 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5940 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5941 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5942 	if (adap->params.arch.nchan == NCHAN) {
5943 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5944 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5945 	}
5946 
5947 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5948 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5949 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5950 	if (adap->params.arch.nchan == NCHAN) {
5951 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5952 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5953 	}
5954 }
5955 
5956 /**
5957  *	t4_set_trace_filter - configure one of the tracing filters
5958  *	@adap: the adapter
5959  *	@tp: the desired trace filter parameters
5960  *	@idx: which filter to configure
5961  *	@enable: whether to enable or disable the filter
5962  *
5963  *	Configures one of the tracing filters available in HW.  If @enable is
5964  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5965  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5966  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5967 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5968 			int idx, int enable)
5969 {
5970 	int i, ofst = idx * 4;
5971 	u32 data_reg, mask_reg, cfg;
5972 
5973 	if (!enable) {
5974 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5975 		return 0;
5976 	}
5977 
5978 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5979 	if (cfg & TRCMULTIFILTER_F) {
5980 		/* If multiple tracers are enabled, then maximum
5981 		 * capture size is 2.5KB (FIFO size of a single channel)
5982 		 * minus 2 flits for CPL_TRACE_PKT header.
5983 		 */
5984 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5985 			return -EINVAL;
5986 	} else {
5987 		/* If multiple tracers are disabled, to avoid deadlocks
5988 		 * maximum packet capture size of 9600 bytes is recommended.
5989 		 * Also in this mode, only trace0 can be enabled and running.
5990 		 */
5991 		if (tp->snap_len > 9600 || idx)
5992 			return -EINVAL;
5993 	}
5994 
5995 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5996 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5997 	    tp->min_len > TFMINPKTSIZE_M)
5998 		return -EINVAL;
5999 
6000 	/* stop the tracer we'll be changing */
6001 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
6002 
6003 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
6004 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
6005 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
6006 
6007 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6008 		t4_write_reg(adap, data_reg, tp->data[i]);
6009 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6010 	}
6011 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6012 		     TFCAPTUREMAX_V(tp->snap_len) |
6013 		     TFMINPKTSIZE_V(tp->min_len));
6014 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6015 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6016 		     (is_t4(adap->params.chip) ?
6017 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6018 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6019 		     T5_TFINVERTMATCH_V(tp->invert)));
6020 
6021 	return 0;
6022 }
6023 
6024 /**
6025  *	t4_get_trace_filter - query one of the tracing filters
6026  *	@adap: the adapter
6027  *	@tp: the current trace filter parameters
6028  *	@idx: which trace filter to query
6029  *	@enabled: non-zero if the filter is enabled
6030  *
6031  *	Returns the current settings of one of the HW tracing filters.
6032  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)6033 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6034 			 int *enabled)
6035 {
6036 	u32 ctla, ctlb;
6037 	int i, ofst = idx * 4;
6038 	u32 data_reg, mask_reg;
6039 
6040 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6041 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6042 
6043 	if (is_t4(adap->params.chip)) {
6044 		*enabled = !!(ctla & TFEN_F);
6045 		tp->port =  TFPORT_G(ctla);
6046 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6047 	} else {
6048 		*enabled = !!(ctla & T5_TFEN_F);
6049 		tp->port = T5_TFPORT_G(ctla);
6050 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6051 	}
6052 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6053 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6054 	tp->skip_ofst = TFOFFSET_G(ctla);
6055 	tp->skip_len = TFLENGTH_G(ctla);
6056 
6057 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6058 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6059 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6060 
6061 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6062 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6063 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6064 	}
6065 }
6066 
6067 /**
6068  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6069  *	@adap: the adapter
6070  *	@cnt: where to store the count statistics
6071  *	@cycles: where to store the cycle statistics
6072  *
6073  *	Returns performance statistics from PMTX.
6074  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6075 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6076 {
6077 	int i;
6078 	u32 data[2];
6079 
6080 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6081 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6082 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6083 		if (is_t4(adap->params.chip)) {
6084 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6085 		} else {
6086 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6087 					 PM_TX_DBG_DATA_A, data, 2,
6088 					 PM_TX_DBG_STAT_MSB_A);
6089 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6090 		}
6091 	}
6092 }
6093 
6094 /**
6095  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6096  *	@adap: the adapter
6097  *	@cnt: where to store the count statistics
6098  *	@cycles: where to store the cycle statistics
6099  *
6100  *	Returns performance statistics from PMRX.
6101  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6102 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6103 {
6104 	int i;
6105 	u32 data[2];
6106 
6107 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6108 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6109 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6110 		if (is_t4(adap->params.chip)) {
6111 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6112 		} else {
6113 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6114 					 PM_RX_DBG_DATA_A, data, 2,
6115 					 PM_RX_DBG_STAT_MSB_A);
6116 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6117 		}
6118 	}
6119 }
6120 
6121 /**
6122  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6123  *	@adapter: the adapter
6124  *	@pidx: the port index
6125  *
6126  *	Computes and returns a bitmap indicating which MPS buffer groups are
6127  *	associated with the given Port.  Bit i is set if buffer group i is
6128  *	used by the Port.
6129  */
compute_mps_bg_map(struct adapter * adapter,int pidx)6130 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6131 					      int pidx)
6132 {
6133 	unsigned int chip_version, nports;
6134 
6135 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6136 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6137 
6138 	switch (chip_version) {
6139 	case CHELSIO_T4:
6140 	case CHELSIO_T5:
6141 		switch (nports) {
6142 		case 1: return 0xf;
6143 		case 2: return 3 << (2 * pidx);
6144 		case 4: return 1 << pidx;
6145 		}
6146 		break;
6147 
6148 	case CHELSIO_T6:
6149 		switch (nports) {
6150 		case 2: return 1 << (2 * pidx);
6151 		}
6152 		break;
6153 	}
6154 
6155 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6156 		chip_version, nports);
6157 
6158 	return 0;
6159 }
6160 
6161 /**
6162  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6163  *	@adapter: the adapter
6164  *	@pidx: the port index
6165  *
6166  *	Returns a bitmap indicating which MPS buffer groups are associated
6167  *	with the given Port.  Bit i is set if buffer group i is used by the
6168  *	Port.
6169  */
t4_get_mps_bg_map(struct adapter * adapter,int pidx)6170 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6171 {
6172 	u8 *mps_bg_map;
6173 	unsigned int nports;
6174 
6175 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6176 	if (pidx >= nports) {
6177 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6178 			pidx, nports);
6179 		return 0;
6180 	}
6181 
6182 	/* If we've already retrieved/computed this, just return the result.
6183 	 */
6184 	mps_bg_map = adapter->params.mps_bg_map;
6185 	if (mps_bg_map[pidx])
6186 		return mps_bg_map[pidx];
6187 
6188 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6189 	 * If we're talking to such Firmware, let it tell us.  If the new
6190 	 * API isn't supported, revert back to old hardcoded way.  The value
6191 	 * obtained from Firmware is encoded in below format:
6192 	 *
6193 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6194 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6195 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6196 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6197 	 */
6198 	if (adapter->flags & CXGB4_FW_OK) {
6199 		u32 param, val;
6200 		int ret;
6201 
6202 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6203 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6204 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6205 					 0, 1, &param, &val);
6206 		if (!ret) {
6207 			int p;
6208 
6209 			/* Store the BG Map for all of the Ports in order to
6210 			 * avoid more calls to the Firmware in the future.
6211 			 */
6212 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6213 				mps_bg_map[p] = val & 0xff;
6214 
6215 			return mps_bg_map[pidx];
6216 		}
6217 	}
6218 
6219 	/* Either we're not talking to the Firmware or we're dealing with
6220 	 * older Firmware which doesn't support the new API to get the MPS
6221 	 * Buffer Group Map.  Fall back to computing it ourselves.
6222 	 */
6223 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6224 	return mps_bg_map[pidx];
6225 }
6226 
6227 /**
6228  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6229  *      @adapter: the adapter
6230  *      @pidx: the port index
6231  */
t4_get_tp_e2c_map(struct adapter * adapter,int pidx)6232 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6233 {
6234 	unsigned int nports;
6235 	u32 param, val = 0;
6236 	int ret;
6237 
6238 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6239 	if (pidx >= nports) {
6240 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6241 			pidx, nports);
6242 		return 0;
6243 	}
6244 
6245 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6246 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6247 	 */
6248 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6249 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6250 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6251 				 0, 1, &param, &val);
6252 	if (!ret)
6253 		return (val >> (8 * pidx)) & 0xff;
6254 
6255 	return 0;
6256 }
6257 
6258 /**
6259  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6260  *	@adap: the adapter
6261  *	@pidx: the port index
6262  *
6263  *	Returns a bitmap indicating which TP Ingress Channels are associated
6264  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6265  *	the Port.
6266  */
t4_get_tp_ch_map(struct adapter * adap,int pidx)6267 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6268 {
6269 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6270 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6271 
6272 	if (pidx >= nports) {
6273 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6274 			 pidx, nports);
6275 		return 0;
6276 	}
6277 
6278 	switch (chip_version) {
6279 	case CHELSIO_T4:
6280 	case CHELSIO_T5:
6281 		/* Note that this happens to be the same values as the MPS
6282 		 * Buffer Group Map for these Chips.  But we replicate the code
6283 		 * here because they're really separate concepts.
6284 		 */
6285 		switch (nports) {
6286 		case 1: return 0xf;
6287 		case 2: return 3 << (2 * pidx);
6288 		case 4: return 1 << pidx;
6289 		}
6290 		break;
6291 
6292 	case CHELSIO_T6:
6293 		switch (nports) {
6294 		case 1:
6295 		case 2: return 1 << pidx;
6296 		}
6297 		break;
6298 	}
6299 
6300 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6301 		chip_version, nports);
6302 	return 0;
6303 }
6304 
6305 /**
6306  *      t4_get_port_type_description - return Port Type string description
6307  *      @port_type: firmware Port Type enumeration
6308  */
t4_get_port_type_description(enum fw_port_type port_type)6309 const char *t4_get_port_type_description(enum fw_port_type port_type)
6310 {
6311 	static const char *const port_type_description[] = {
6312 		"Fiber_XFI",
6313 		"Fiber_XAUI",
6314 		"BT_SGMII",
6315 		"BT_XFI",
6316 		"BT_XAUI",
6317 		"KX4",
6318 		"CX4",
6319 		"KX",
6320 		"KR",
6321 		"SFP",
6322 		"BP_AP",
6323 		"BP4_AP",
6324 		"QSFP_10G",
6325 		"QSA",
6326 		"QSFP",
6327 		"BP40_BA",
6328 		"KR4_100G",
6329 		"CR4_QSFP",
6330 		"CR_QSFP",
6331 		"CR2_QSFP",
6332 		"SFP28",
6333 		"KR_SFP28",
6334 		"KR_XLAUI"
6335 	};
6336 
6337 	if (port_type < ARRAY_SIZE(port_type_description))
6338 		return port_type_description[port_type];
6339 	return "UNKNOWN";
6340 }
6341 
6342 /**
6343  *      t4_get_port_stats_offset - collect port stats relative to a previous
6344  *                                 snapshot
6345  *      @adap: The adapter
6346  *      @idx: The port
6347  *      @stats: Current stats to fill
6348  *      @offset: Previous stats snapshot
6349  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)6350 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6351 			      struct port_stats *stats,
6352 			      struct port_stats *offset)
6353 {
6354 	u64 *s, *o;
6355 	int i;
6356 
6357 	t4_get_port_stats(adap, idx, stats);
6358 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6359 			i < (sizeof(struct port_stats) / sizeof(u64));
6360 			i++, s++, o++)
6361 		*s -= *o;
6362 }
6363 
6364 /**
6365  *	t4_get_port_stats - collect port statistics
6366  *	@adap: the adapter
6367  *	@idx: the port index
6368  *	@p: the stats structure to fill
6369  *
6370  *	Collect statistics related to the given port from HW.
6371  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)6372 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6373 {
6374 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6375 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6376 
6377 #define GET_STAT(name) \
6378 	t4_read_reg64(adap, \
6379 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6380 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6381 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6382 
6383 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6384 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6385 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6386 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6387 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6388 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6389 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6390 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6391 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6392 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6393 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6394 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6395 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6396 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6397 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6398 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6399 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6400 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6401 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6402 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6403 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6404 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6405 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6406 
6407 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6408 		if (stat_ctl & COUNTPAUSESTATTX_F)
6409 			p->tx_frames_64 -= p->tx_pause;
6410 		if (stat_ctl & COUNTPAUSEMCTX_F)
6411 			p->tx_mcast_frames -= p->tx_pause;
6412 	}
6413 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6414 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6415 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6416 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6417 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6418 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6419 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6420 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6421 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6422 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6423 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6424 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6425 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6426 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6427 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6428 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6429 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6430 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6431 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6432 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6433 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6434 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6435 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6436 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6437 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6438 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6439 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6440 
6441 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6442 		if (stat_ctl & COUNTPAUSESTATRX_F)
6443 			p->rx_frames_64 -= p->rx_pause;
6444 		if (stat_ctl & COUNTPAUSEMCRX_F)
6445 			p->rx_mcast_frames -= p->rx_pause;
6446 	}
6447 
6448 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6449 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6450 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6451 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6452 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6453 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6454 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6455 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6456 
6457 #undef GET_STAT
6458 #undef GET_STAT_COM
6459 }
6460 
6461 /**
6462  *	t4_get_lb_stats - collect loopback port statistics
6463  *	@adap: the adapter
6464  *	@idx: the loopback port index
6465  *	@p: the stats structure to fill
6466  *
6467  *	Return HW statistics for the given loopback port.
6468  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)6469 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6470 {
6471 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6472 
6473 #define GET_STAT(name) \
6474 	t4_read_reg64(adap, \
6475 	(is_t4(adap->params.chip) ? \
6476 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6477 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6478 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6479 
6480 	p->octets           = GET_STAT(BYTES);
6481 	p->frames           = GET_STAT(FRAMES);
6482 	p->bcast_frames     = GET_STAT(BCAST);
6483 	p->mcast_frames     = GET_STAT(MCAST);
6484 	p->ucast_frames     = GET_STAT(UCAST);
6485 	p->error_frames     = GET_STAT(ERROR);
6486 
6487 	p->frames_64        = GET_STAT(64B);
6488 	p->frames_65_127    = GET_STAT(65B_127B);
6489 	p->frames_128_255   = GET_STAT(128B_255B);
6490 	p->frames_256_511   = GET_STAT(256B_511B);
6491 	p->frames_512_1023  = GET_STAT(512B_1023B);
6492 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6493 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6494 	p->drop             = GET_STAT(DROP_FRAMES);
6495 
6496 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6497 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6498 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6499 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6500 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6501 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6502 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6503 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6504 
6505 #undef GET_STAT
6506 #undef GET_STAT_COM
6507 }
6508 
6509 /*     t4_mk_filtdelwr - create a delete filter WR
6510  *     @ftid: the filter ID
6511  *     @wr: the filter work request to populate
6512  *     @qid: ingress queue to receive the delete notification
6513  *
6514  *     Creates a filter work request to delete the supplied filter.  If @qid is
6515  *     negative the delete notification is suppressed.
6516  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)6517 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6518 {
6519 	memset(wr, 0, sizeof(*wr));
6520 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6521 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6522 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6523 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6524 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6525 	if (qid >= 0)
6526 		wr->rx_chan_rx_rpl_iq =
6527 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6528 }
6529 
6530 #define INIT_CMD(var, cmd, rd_wr) do { \
6531 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6532 					FW_CMD_REQUEST_F | \
6533 					FW_CMD_##rd_wr##_F); \
6534 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6535 } while (0)
6536 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)6537 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6538 			  u32 addr, u32 val)
6539 {
6540 	u32 ldst_addrspace;
6541 	struct fw_ldst_cmd c;
6542 
6543 	memset(&c, 0, sizeof(c));
6544 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6545 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6546 					FW_CMD_REQUEST_F |
6547 					FW_CMD_WRITE_F |
6548 					ldst_addrspace);
6549 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550 	c.u.addrval.addr = cpu_to_be32(addr);
6551 	c.u.addrval.val = cpu_to_be32(val);
6552 
6553 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6554 }
6555 
6556 /**
6557  *	t4_mdio_rd - read a PHY register through MDIO
6558  *	@adap: the adapter
6559  *	@mbox: mailbox to use for the FW command
6560  *	@phy_addr: the PHY address
6561  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6562  *	@reg: the register to read
6563  *	@valp: where to store the value
6564  *
6565  *	Issues a FW command through the given mailbox to read a PHY register.
6566  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)6567 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6568 	       unsigned int mmd, unsigned int reg, u16 *valp)
6569 {
6570 	int ret;
6571 	u32 ldst_addrspace;
6572 	struct fw_ldst_cmd c;
6573 
6574 	memset(&c, 0, sizeof(c));
6575 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6576 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6577 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6578 					ldst_addrspace);
6579 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6580 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6581 					 FW_LDST_CMD_MMD_V(mmd));
6582 	c.u.mdio.raddr = cpu_to_be16(reg);
6583 
6584 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6585 	if (ret == 0)
6586 		*valp = be16_to_cpu(c.u.mdio.rval);
6587 	return ret;
6588 }
6589 
6590 /**
6591  *	t4_mdio_wr - write a PHY register through MDIO
6592  *	@adap: the adapter
6593  *	@mbox: mailbox to use for the FW command
6594  *	@phy_addr: the PHY address
6595  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6596  *	@reg: the register to write
6597  *	@val: value to write
6598  *
6599  *	Issues a FW command through the given mailbox to write a PHY register.
6600  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)6601 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6602 	       unsigned int mmd, unsigned int reg, u16 val)
6603 {
6604 	u32 ldst_addrspace;
6605 	struct fw_ldst_cmd c;
6606 
6607 	memset(&c, 0, sizeof(c));
6608 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6609 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6610 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6611 					ldst_addrspace);
6612 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6613 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6614 					 FW_LDST_CMD_MMD_V(mmd));
6615 	c.u.mdio.raddr = cpu_to_be16(reg);
6616 	c.u.mdio.rval = cpu_to_be16(val);
6617 
6618 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6619 }
6620 
6621 /**
6622  *	t4_sge_decode_idma_state - decode the idma state
6623  *	@adapter: the adapter
6624  *	@state: the state idma is stuck in
6625  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)6626 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6627 {
6628 	static const char * const t4_decode[] = {
6629 		"IDMA_IDLE",
6630 		"IDMA_PUSH_MORE_CPL_FIFO",
6631 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6632 		"Not used",
6633 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6634 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6635 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6636 		"IDMA_SEND_FIFO_TO_IMSG",
6637 		"IDMA_FL_REQ_DATA_FL_PREP",
6638 		"IDMA_FL_REQ_DATA_FL",
6639 		"IDMA_FL_DROP",
6640 		"IDMA_FL_H_REQ_HEADER_FL",
6641 		"IDMA_FL_H_SEND_PCIEHDR",
6642 		"IDMA_FL_H_PUSH_CPL_FIFO",
6643 		"IDMA_FL_H_SEND_CPL",
6644 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6645 		"IDMA_FL_H_SEND_IP_HDR",
6646 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6647 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6648 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6649 		"IDMA_FL_D_SEND_PCIEHDR",
6650 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6651 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6652 		"IDMA_FL_SEND_PCIEHDR",
6653 		"IDMA_FL_PUSH_CPL_FIFO",
6654 		"IDMA_FL_SEND_CPL",
6655 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6656 		"IDMA_FL_SEND_PAYLOAD",
6657 		"IDMA_FL_REQ_NEXT_DATA_FL",
6658 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6659 		"IDMA_FL_SEND_PADDING",
6660 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6661 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6662 		"IDMA_FL_REQ_DATAFL_DONE",
6663 		"IDMA_FL_REQ_HEADERFL_DONE",
6664 	};
6665 	static const char * const t5_decode[] = {
6666 		"IDMA_IDLE",
6667 		"IDMA_ALMOST_IDLE",
6668 		"IDMA_PUSH_MORE_CPL_FIFO",
6669 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6670 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6671 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6672 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6673 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6674 		"IDMA_SEND_FIFO_TO_IMSG",
6675 		"IDMA_FL_REQ_DATA_FL",
6676 		"IDMA_FL_DROP",
6677 		"IDMA_FL_DROP_SEND_INC",
6678 		"IDMA_FL_H_REQ_HEADER_FL",
6679 		"IDMA_FL_H_SEND_PCIEHDR",
6680 		"IDMA_FL_H_PUSH_CPL_FIFO",
6681 		"IDMA_FL_H_SEND_CPL",
6682 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6683 		"IDMA_FL_H_SEND_IP_HDR",
6684 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6685 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6686 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6687 		"IDMA_FL_D_SEND_PCIEHDR",
6688 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6689 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6690 		"IDMA_FL_SEND_PCIEHDR",
6691 		"IDMA_FL_PUSH_CPL_FIFO",
6692 		"IDMA_FL_SEND_CPL",
6693 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6694 		"IDMA_FL_SEND_PAYLOAD",
6695 		"IDMA_FL_REQ_NEXT_DATA_FL",
6696 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6697 		"IDMA_FL_SEND_PADDING",
6698 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6699 	};
6700 	static const char * const t6_decode[] = {
6701 		"IDMA_IDLE",
6702 		"IDMA_PUSH_MORE_CPL_FIFO",
6703 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6704 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6705 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6706 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6707 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6708 		"IDMA_FL_REQ_DATA_FL",
6709 		"IDMA_FL_DROP",
6710 		"IDMA_FL_DROP_SEND_INC",
6711 		"IDMA_FL_H_REQ_HEADER_FL",
6712 		"IDMA_FL_H_SEND_PCIEHDR",
6713 		"IDMA_FL_H_PUSH_CPL_FIFO",
6714 		"IDMA_FL_H_SEND_CPL",
6715 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6716 		"IDMA_FL_H_SEND_IP_HDR",
6717 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6718 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6719 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6720 		"IDMA_FL_D_SEND_PCIEHDR",
6721 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6722 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6723 		"IDMA_FL_SEND_PCIEHDR",
6724 		"IDMA_FL_PUSH_CPL_FIFO",
6725 		"IDMA_FL_SEND_CPL",
6726 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6727 		"IDMA_FL_SEND_PAYLOAD",
6728 		"IDMA_FL_REQ_NEXT_DATA_FL",
6729 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6730 		"IDMA_FL_SEND_PADDING",
6731 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6732 	};
6733 	static const u32 sge_regs[] = {
6734 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6735 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6736 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6737 	};
6738 	const char **sge_idma_decode;
6739 	int sge_idma_decode_nstates;
6740 	int i;
6741 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6742 
6743 	/* Select the right set of decode strings to dump depending on the
6744 	 * adapter chip type.
6745 	 */
6746 	switch (chip_version) {
6747 	case CHELSIO_T4:
6748 		sge_idma_decode = (const char **)t4_decode;
6749 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6750 		break;
6751 
6752 	case CHELSIO_T5:
6753 		sge_idma_decode = (const char **)t5_decode;
6754 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6755 		break;
6756 
6757 	case CHELSIO_T6:
6758 		sge_idma_decode = (const char **)t6_decode;
6759 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6760 		break;
6761 
6762 	default:
6763 		dev_err(adapter->pdev_dev,
6764 			"Unsupported chip version %d\n", chip_version);
6765 		return;
6766 	}
6767 
6768 	if (is_t4(adapter->params.chip)) {
6769 		sge_idma_decode = (const char **)t4_decode;
6770 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6771 	} else {
6772 		sge_idma_decode = (const char **)t5_decode;
6773 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6774 	}
6775 
6776 	if (state < sge_idma_decode_nstates)
6777 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6778 	else
6779 		CH_WARN(adapter, "idma state %d unknown\n", state);
6780 
6781 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6782 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6783 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6784 }
6785 
6786 /**
6787  *      t4_sge_ctxt_flush - flush the SGE context cache
6788  *      @adap: the adapter
6789  *      @mbox: mailbox to use for the FW command
6790  *      @ctxt_type: Egress or Ingress
6791  *
6792  *      Issues a FW command through the given mailbox to flush the
6793  *      SGE context cache.
6794  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox,int ctxt_type)6795 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6796 {
6797 	int ret;
6798 	u32 ldst_addrspace;
6799 	struct fw_ldst_cmd c;
6800 
6801 	memset(&c, 0, sizeof(c));
6802 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6803 						 FW_LDST_ADDRSPC_SGE_EGRC :
6804 						 FW_LDST_ADDRSPC_SGE_INGC);
6805 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6806 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6807 					ldst_addrspace);
6808 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6809 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6810 
6811 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6812 	return ret;
6813 }
6814 
6815 /**
6816  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6817  *	@adap: the adapter
6818  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6819  *	@dbqtimers: SGE Doorbell Queue Timer table
6820  *
6821  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6822  *	Returns 0 on success (Firmware and Hardware support this feature),
6823  *	an error on failure.
6824  */
t4_read_sge_dbqtimers(struct adapter * adap,unsigned int ndbqtimers,u16 * dbqtimers)6825 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6826 			  u16 *dbqtimers)
6827 {
6828 	int ret, dbqtimerix;
6829 
6830 	ret = 0;
6831 	dbqtimerix = 0;
6832 	while (dbqtimerix < ndbqtimers) {
6833 		int nparams, param;
6834 		u32 params[7], vals[7];
6835 
6836 		nparams = ndbqtimers - dbqtimerix;
6837 		if (nparams > ARRAY_SIZE(params))
6838 			nparams = ARRAY_SIZE(params);
6839 
6840 		for (param = 0; param < nparams; param++)
6841 			params[param] =
6842 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6843 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6844 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6845 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6846 				      nparams, params, vals);
6847 		if (ret)
6848 			break;
6849 
6850 		for (param = 0; param < nparams; param++)
6851 			dbqtimers[dbqtimerix++] = vals[param];
6852 	}
6853 	return ret;
6854 }
6855 
6856 /**
6857  *      t4_fw_hello - establish communication with FW
6858  *      @adap: the adapter
6859  *      @mbox: mailbox to use for the FW command
6860  *      @evt_mbox: mailbox to receive async FW events
6861  *      @master: specifies the caller's willingness to be the device master
6862  *	@state: returns the current device state (if non-NULL)
6863  *
6864  *	Issues a command to establish communication with FW.  Returns either
6865  *	an error (negative integer) or the mailbox of the Master PF.
6866  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)6867 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6868 		enum dev_master master, enum dev_state *state)
6869 {
6870 	int ret;
6871 	struct fw_hello_cmd c;
6872 	u32 v;
6873 	unsigned int master_mbox;
6874 	int retries = FW_CMD_HELLO_RETRIES;
6875 
6876 retry:
6877 	memset(&c, 0, sizeof(c));
6878 	INIT_CMD(c, HELLO, WRITE);
6879 	c.err_to_clearinit = cpu_to_be32(
6880 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6881 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6882 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6883 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6884 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6885 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6886 		FW_HELLO_CMD_CLEARINIT_F);
6887 
6888 	/*
6889 	 * Issue the HELLO command to the firmware.  If it's not successful
6890 	 * but indicates that we got a "busy" or "timeout" condition, retry
6891 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6892 	 * retry limit, check to see if the firmware left us any error
6893 	 * information and report that if so.
6894 	 */
6895 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6896 	if (ret < 0) {
6897 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6898 			goto retry;
6899 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6900 			t4_report_fw_error(adap);
6901 		return ret;
6902 	}
6903 
6904 	v = be32_to_cpu(c.err_to_clearinit);
6905 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6906 	if (state) {
6907 		if (v & FW_HELLO_CMD_ERR_F)
6908 			*state = DEV_STATE_ERR;
6909 		else if (v & FW_HELLO_CMD_INIT_F)
6910 			*state = DEV_STATE_INIT;
6911 		else
6912 			*state = DEV_STATE_UNINIT;
6913 	}
6914 
6915 	/*
6916 	 * If we're not the Master PF then we need to wait around for the
6917 	 * Master PF Driver to finish setting up the adapter.
6918 	 *
6919 	 * Note that we also do this wait if we're a non-Master-capable PF and
6920 	 * there is no current Master PF; a Master PF may show up momentarily
6921 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6922 	 * OS loads lots of different drivers rapidly at the same time).  In
6923 	 * this case, the Master PF returned by the firmware will be
6924 	 * PCIE_FW_MASTER_M so the test below will work ...
6925 	 */
6926 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6927 	    master_mbox != mbox) {
6928 		int waiting = FW_CMD_HELLO_TIMEOUT;
6929 
6930 		/*
6931 		 * Wait for the firmware to either indicate an error or
6932 		 * initialized state.  If we see either of these we bail out
6933 		 * and report the issue to the caller.  If we exhaust the
6934 		 * "hello timeout" and we haven't exhausted our retries, try
6935 		 * again.  Otherwise bail with a timeout error.
6936 		 */
6937 		for (;;) {
6938 			u32 pcie_fw;
6939 
6940 			msleep(50);
6941 			waiting -= 50;
6942 
6943 			/*
6944 			 * If neither Error nor Initialized are indicated
6945 			 * by the firmware keep waiting till we exhaust our
6946 			 * timeout ... and then retry if we haven't exhausted
6947 			 * our retries ...
6948 			 */
6949 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6950 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6951 				if (waiting <= 0) {
6952 					if (retries-- > 0)
6953 						goto retry;
6954 
6955 					return -ETIMEDOUT;
6956 				}
6957 				continue;
6958 			}
6959 
6960 			/*
6961 			 * We either have an Error or Initialized condition
6962 			 * report errors preferentially.
6963 			 */
6964 			if (state) {
6965 				if (pcie_fw & PCIE_FW_ERR_F)
6966 					*state = DEV_STATE_ERR;
6967 				else if (pcie_fw & PCIE_FW_INIT_F)
6968 					*state = DEV_STATE_INIT;
6969 			}
6970 
6971 			/*
6972 			 * If we arrived before a Master PF was selected and
6973 			 * there's not a valid Master PF, grab its identity
6974 			 * for our caller.
6975 			 */
6976 			if (master_mbox == PCIE_FW_MASTER_M &&
6977 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6978 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6979 			break;
6980 		}
6981 	}
6982 
6983 	return master_mbox;
6984 }
6985 
6986 /**
6987  *	t4_fw_bye - end communication with FW
6988  *	@adap: the adapter
6989  *	@mbox: mailbox to use for the FW command
6990  *
6991  *	Issues a command to terminate communication with FW.
6992  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)6993 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6994 {
6995 	struct fw_bye_cmd c;
6996 
6997 	memset(&c, 0, sizeof(c));
6998 	INIT_CMD(c, BYE, WRITE);
6999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7000 }
7001 
7002 /**
7003  *	t4_init_cmd - ask FW to initialize the device
7004  *	@adap: the adapter
7005  *	@mbox: mailbox to use for the FW command
7006  *
7007  *	Issues a command to FW to partially initialize the device.  This
7008  *	performs initialization that generally doesn't depend on user input.
7009  */
t4_early_init(struct adapter * adap,unsigned int mbox)7010 int t4_early_init(struct adapter *adap, unsigned int mbox)
7011 {
7012 	struct fw_initialize_cmd c;
7013 
7014 	memset(&c, 0, sizeof(c));
7015 	INIT_CMD(c, INITIALIZE, WRITE);
7016 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7017 }
7018 
7019 /**
7020  *	t4_fw_reset - issue a reset to FW
7021  *	@adap: the adapter
7022  *	@mbox: mailbox to use for the FW command
7023  *	@reset: specifies the type of reset to perform
7024  *
7025  *	Issues a reset command of the specified type to FW.
7026  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)7027 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7028 {
7029 	struct fw_reset_cmd c;
7030 
7031 	memset(&c, 0, sizeof(c));
7032 	INIT_CMD(c, RESET, WRITE);
7033 	c.val = cpu_to_be32(reset);
7034 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7035 }
7036 
7037 /**
7038  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7039  *	@adap: the adapter
7040  *	@mbox: mailbox to use for the FW RESET command (if desired)
7041  *	@force: force uP into RESET even if FW RESET command fails
7042  *
7043  *	Issues a RESET command to firmware (if desired) with a HALT indication
7044  *	and then puts the microprocessor into RESET state.  The RESET command
7045  *	will only be issued if a legitimate mailbox is provided (mbox <=
7046  *	PCIE_FW_MASTER_M).
7047  *
7048  *	This is generally used in order for the host to safely manipulate the
7049  *	adapter without fear of conflicting with whatever the firmware might
7050  *	be doing.  The only way out of this state is to RESTART the firmware
7051  *	...
7052  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)7053 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7054 {
7055 	int ret = 0;
7056 
7057 	/*
7058 	 * If a legitimate mailbox is provided, issue a RESET command
7059 	 * with a HALT indication.
7060 	 */
7061 	if (mbox <= PCIE_FW_MASTER_M) {
7062 		struct fw_reset_cmd c;
7063 
7064 		memset(&c, 0, sizeof(c));
7065 		INIT_CMD(c, RESET, WRITE);
7066 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7067 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7068 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7069 	}
7070 
7071 	/*
7072 	 * Normally we won't complete the operation if the firmware RESET
7073 	 * command fails but if our caller insists we'll go ahead and put the
7074 	 * uP into RESET.  This can be useful if the firmware is hung or even
7075 	 * missing ...  We'll have to take the risk of putting the uP into
7076 	 * RESET without the cooperation of firmware in that case.
7077 	 *
7078 	 * We also force the firmware's HALT flag to be on in case we bypassed
7079 	 * the firmware RESET command above or we're dealing with old firmware
7080 	 * which doesn't have the HALT capability.  This will serve as a flag
7081 	 * for the incoming firmware to know that it's coming out of a HALT
7082 	 * rather than a RESET ... if it's new enough to understand that ...
7083 	 */
7084 	if (ret == 0 || force) {
7085 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7086 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7087 				 PCIE_FW_HALT_F);
7088 	}
7089 
7090 	/*
7091 	 * And we always return the result of the firmware RESET command
7092 	 * even when we force the uP into RESET ...
7093 	 */
7094 	return ret;
7095 }
7096 
7097 /**
7098  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7099  *	@adap: the adapter
7100  *	@mbox: mailbox to use for the FW command
7101  *	@reset: if we want to do a RESET to restart things
7102  *
7103  *	Restart firmware previously halted by t4_fw_halt().  On successful
7104  *	return the previous PF Master remains as the new PF Master and there
7105  *	is no need to issue a new HELLO command, etc.
7106  *
7107  *	We do this in two ways:
7108  *
7109  *	 1. If we're dealing with newer firmware we'll simply want to take
7110  *	    the chip's microprocessor out of RESET.  This will cause the
7111  *	    firmware to start up from its start vector.  And then we'll loop
7112  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7113  *	    reset to 0) or we timeout.
7114  *
7115  *	 2. If we're dealing with older firmware then we'll need to RESET
7116  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7117  *	    flag and automatically RESET itself on startup.
7118  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)7119 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7120 {
7121 	if (reset) {
7122 		/*
7123 		 * Since we're directing the RESET instead of the firmware
7124 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7125 		 * bit.
7126 		 */
7127 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7128 
7129 		/*
7130 		 * If we've been given a valid mailbox, first try to get the
7131 		 * firmware to do the RESET.  If that works, great and we can
7132 		 * return success.  Otherwise, if we haven't been given a
7133 		 * valid mailbox or the RESET command failed, fall back to
7134 		 * hitting the chip with a hammer.
7135 		 */
7136 		if (mbox <= PCIE_FW_MASTER_M) {
7137 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7138 			msleep(100);
7139 			if (t4_fw_reset(adap, mbox,
7140 					PIORST_F | PIORSTMODE_F) == 0)
7141 				return 0;
7142 		}
7143 
7144 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7145 		msleep(2000);
7146 	} else {
7147 		int ms;
7148 
7149 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7150 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7151 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7152 				return 0;
7153 			msleep(100);
7154 			ms += 100;
7155 		}
7156 		return -ETIMEDOUT;
7157 	}
7158 	return 0;
7159 }
7160 
7161 /**
7162  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7163  *	@adap: the adapter
7164  *	@mbox: mailbox to use for the FW RESET command (if desired)
7165  *	@fw_data: the firmware image to write
7166  *	@size: image size
7167  *	@force: force upgrade even if firmware doesn't cooperate
7168  *
7169  *	Perform all of the steps necessary for upgrading an adapter's
7170  *	firmware image.  Normally this requires the cooperation of the
7171  *	existing firmware in order to halt all existing activities
7172  *	but if an invalid mailbox token is passed in we skip that step
7173  *	(though we'll still put the adapter microprocessor into RESET in
7174  *	that case).
7175  *
7176  *	On successful return the new firmware will have been loaded and
7177  *	the adapter will have been fully RESET losing all previous setup
7178  *	state.  On unsuccessful return the adapter may be completely hosed ...
7179  *	positive errno indicates that the adapter is ~probably~ intact, a
7180  *	negative errno indicates that things are looking bad ...
7181  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)7182 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7183 		  const u8 *fw_data, unsigned int size, int force)
7184 {
7185 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7186 	int reset, ret;
7187 
7188 	if (!t4_fw_matches_chip(adap, fw_hdr))
7189 		return -EINVAL;
7190 
7191 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7192 	 * set wont be sent when we are flashing FW.
7193 	 */
7194 	adap->flags &= ~CXGB4_FW_OK;
7195 
7196 	ret = t4_fw_halt(adap, mbox, force);
7197 	if (ret < 0 && !force)
7198 		goto out;
7199 
7200 	ret = t4_load_fw(adap, fw_data, size);
7201 	if (ret < 0)
7202 		goto out;
7203 
7204 	/*
7205 	 * If there was a Firmware Configuration File stored in FLASH,
7206 	 * there's a good chance that it won't be compatible with the new
7207 	 * Firmware.  In order to prevent difficult to diagnose adapter
7208 	 * initialization issues, we clear out the Firmware Configuration File
7209 	 * portion of the FLASH .  The user will need to re-FLASH a new
7210 	 * Firmware Configuration File which is compatible with the new
7211 	 * Firmware if that's desired.
7212 	 */
7213 	(void)t4_load_cfg(adap, NULL, 0);
7214 
7215 	/*
7216 	 * Older versions of the firmware don't understand the new
7217 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7218 	 * restart.  So for newly loaded older firmware we'll have to do the
7219 	 * RESET for it so it starts up on a clean slate.  We can tell if
7220 	 * the newly loaded firmware will handle this right by checking
7221 	 * its header flags to see if it advertises the capability.
7222 	 */
7223 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7224 	ret = t4_fw_restart(adap, mbox, reset);
7225 
7226 	/* Grab potentially new Firmware Device Log parameters so we can see
7227 	 * how healthy the new Firmware is.  It's okay to contact the new
7228 	 * Firmware for these parameters even though, as far as it's
7229 	 * concerned, we've never said "HELLO" to it ...
7230 	 */
7231 	(void)t4_init_devlog_params(adap);
7232 out:
7233 	adap->flags |= CXGB4_FW_OK;
7234 	return ret;
7235 }
7236 
7237 /**
7238  *	t4_fl_pkt_align - return the fl packet alignment
7239  *	@adap: the adapter
7240  *
7241  *	T4 has a single field to specify the packing and padding boundary.
7242  *	T5 onwards has separate fields for this and hence the alignment for
7243  *	next packet offset is maximum of these two.
7244  *
7245  */
t4_fl_pkt_align(struct adapter * adap)7246 int t4_fl_pkt_align(struct adapter *adap)
7247 {
7248 	u32 sge_control, sge_control2;
7249 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7250 
7251 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7252 
7253 	/* T4 uses a single control field to specify both the PCIe Padding and
7254 	 * Packing Boundary.  T5 introduced the ability to specify these
7255 	 * separately.  The actual Ingress Packet Data alignment boundary
7256 	 * within Packed Buffer Mode is the maximum of these two
7257 	 * specifications.  (Note that it makes no real practical sense to
7258 	 * have the Padding Boundary be larger than the Packing Boundary but you
7259 	 * could set the chip up that way and, in fact, legacy T4 code would
7260 	 * end doing this because it would initialize the Padding Boundary and
7261 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7262 	 * Padding Boundary values in T6 starts from 8B,
7263 	 * where as it is 32B for T4 and T5.
7264 	 */
7265 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7266 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7267 	else
7268 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7269 
7270 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7271 
7272 	fl_align = ingpadboundary;
7273 	if (!is_t4(adap->params.chip)) {
7274 		/* T5 has a weird interpretation of one of the PCIe Packing
7275 		 * Boundary values.  No idea why ...
7276 		 */
7277 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7278 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7279 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7280 			ingpackboundary = 16;
7281 		else
7282 			ingpackboundary = 1 << (ingpackboundary +
7283 						INGPACKBOUNDARY_SHIFT_X);
7284 
7285 		fl_align = max(ingpadboundary, ingpackboundary);
7286 	}
7287 	return fl_align;
7288 }
7289 
7290 /**
7291  *	t4_fixup_host_params - fix up host-dependent parameters
7292  *	@adap: the adapter
7293  *	@page_size: the host's Base Page Size
7294  *	@cache_line_size: the host's Cache Line Size
7295  *
7296  *	Various registers in T4 contain values which are dependent on the
7297  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7298  *	those registers with the appropriate values as passed in ...
7299  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)7300 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7301 			 unsigned int cache_line_size)
7302 {
7303 	unsigned int page_shift = fls(page_size) - 1;
7304 	unsigned int sge_hps = page_shift - 10;
7305 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7306 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7307 	unsigned int fl_align_log = fls(fl_align) - 1;
7308 
7309 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7310 		     HOSTPAGESIZEPF0_V(sge_hps) |
7311 		     HOSTPAGESIZEPF1_V(sge_hps) |
7312 		     HOSTPAGESIZEPF2_V(sge_hps) |
7313 		     HOSTPAGESIZEPF3_V(sge_hps) |
7314 		     HOSTPAGESIZEPF4_V(sge_hps) |
7315 		     HOSTPAGESIZEPF5_V(sge_hps) |
7316 		     HOSTPAGESIZEPF6_V(sge_hps) |
7317 		     HOSTPAGESIZEPF7_V(sge_hps));
7318 
7319 	if (is_t4(adap->params.chip)) {
7320 		t4_set_reg_field(adap, SGE_CONTROL_A,
7321 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7322 				 EGRSTATUSPAGESIZE_F,
7323 				 INGPADBOUNDARY_V(fl_align_log -
7324 						  INGPADBOUNDARY_SHIFT_X) |
7325 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7326 	} else {
7327 		unsigned int pack_align;
7328 		unsigned int ingpad, ingpack;
7329 
7330 		/* T5 introduced the separation of the Free List Padding and
7331 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7332 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7333 		 * Bandwidth, and use a Packing Boundary which is large enough
7334 		 * to avoid false sharing between CPUs, etc.
7335 		 *
7336 		 * For the PCI Link, the smaller the Padding Boundary the
7337 		 * better.  For the Memory Controller, a smaller Padding
7338 		 * Boundary is better until we cross under the Memory Line
7339 		 * Size (the minimum unit of transfer to/from Memory).  If we
7340 		 * have a Padding Boundary which is smaller than the Memory
7341 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7342 		 * Memory Controller which is never good.
7343 		 */
7344 
7345 		/* We want the Packing Boundary to be based on the Cache Line
7346 		 * Size in order to help avoid False Sharing performance
7347 		 * issues between CPUs, etc.  We also want the Packing
7348 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7349 		 * get best performance when the Packing Boundary is a
7350 		 * multiple of the Maximum Payload Size.
7351 		 */
7352 		pack_align = fl_align;
7353 		if (pci_is_pcie(adap->pdev)) {
7354 			unsigned int mps, mps_log;
7355 			u16 devctl;
7356 
7357 			/* The PCIe Device Control Maximum Payload Size field
7358 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7359 			 * 128 bytes.
7360 			 */
7361 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7362 						  &devctl);
7363 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7364 			mps = 1 << mps_log;
7365 			if (mps > pack_align)
7366 				pack_align = mps;
7367 		}
7368 
7369 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7370 		 * value for the Packing Boundary.  This corresponds to 16
7371 		 * bytes instead of the expected 32 bytes.  So if we want 32
7372 		 * bytes, the best we can really do is 64 bytes ...
7373 		 */
7374 		if (pack_align <= 16) {
7375 			ingpack = INGPACKBOUNDARY_16B_X;
7376 			fl_align = 16;
7377 		} else if (pack_align == 32) {
7378 			ingpack = INGPACKBOUNDARY_64B_X;
7379 			fl_align = 64;
7380 		} else {
7381 			unsigned int pack_align_log = fls(pack_align) - 1;
7382 
7383 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7384 			fl_align = pack_align;
7385 		}
7386 
7387 		/* Use the smallest Ingress Padding which isn't smaller than
7388 		 * the Memory Controller Read/Write Size.  We'll take that as
7389 		 * being 8 bytes since we don't know of any system with a
7390 		 * wider Memory Controller Bus Width.
7391 		 */
7392 		if (is_t5(adap->params.chip))
7393 			ingpad = INGPADBOUNDARY_32B_X;
7394 		else
7395 			ingpad = T6_INGPADBOUNDARY_8B_X;
7396 
7397 		t4_set_reg_field(adap, SGE_CONTROL_A,
7398 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7399 				 EGRSTATUSPAGESIZE_F,
7400 				 INGPADBOUNDARY_V(ingpad) |
7401 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7402 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7403 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7404 				 INGPACKBOUNDARY_V(ingpack));
7405 	}
7406 	/*
7407 	 * Adjust various SGE Free List Host Buffer Sizes.
7408 	 *
7409 	 * This is something of a crock since we're using fixed indices into
7410 	 * the array which are also known by the sge.c code and the T4
7411 	 * Firmware Configuration File.  We need to come up with a much better
7412 	 * approach to managing this array.  For now, the first four entries
7413 	 * are:
7414 	 *
7415 	 *   0: Host Page Size
7416 	 *   1: 64KB
7417 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7418 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7419 	 *
7420 	 * For the single-MTU buffers in unpacked mode we need to include
7421 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7422 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7423 	 * Padding boundary.  All of these are accommodated in the Factory
7424 	 * Default Firmware Configuration File but we need to adjust it for
7425 	 * this host's cache line size.
7426 	 */
7427 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7428 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7429 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7430 		     & ~(fl_align-1));
7431 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7432 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7433 		     & ~(fl_align-1));
7434 
7435 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7436 
7437 	return 0;
7438 }
7439 
7440 /**
7441  *	t4_fw_initialize - ask FW to initialize the device
7442  *	@adap: the adapter
7443  *	@mbox: mailbox to use for the FW command
7444  *
7445  *	Issues a command to FW to partially initialize the device.  This
7446  *	performs initialization that generally doesn't depend on user input.
7447  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)7448 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7449 {
7450 	struct fw_initialize_cmd c;
7451 
7452 	memset(&c, 0, sizeof(c));
7453 	INIT_CMD(c, INITIALIZE, WRITE);
7454 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7455 }
7456 
7457 /**
7458  *	t4_query_params_rw - query FW or device parameters
7459  *	@adap: the adapter
7460  *	@mbox: mailbox to use for the FW command
7461  *	@pf: the PF
7462  *	@vf: the VF
7463  *	@nparams: the number of parameters
7464  *	@params: the parameter names
7465  *	@val: the parameter values
7466  *	@rw: Write and read flag
7467  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7468  *
7469  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7470  *	queried at once.
7471  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw,bool sleep_ok)7472 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7473 		       unsigned int vf, unsigned int nparams, const u32 *params,
7474 		       u32 *val, int rw, bool sleep_ok)
7475 {
7476 	int i, ret;
7477 	struct fw_params_cmd c;
7478 	__be32 *p = &c.param[0].mnem;
7479 
7480 	if (nparams > 7)
7481 		return -EINVAL;
7482 
7483 	memset(&c, 0, sizeof(c));
7484 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7485 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7486 				  FW_PARAMS_CMD_PFN_V(pf) |
7487 				  FW_PARAMS_CMD_VFN_V(vf));
7488 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7489 
7490 	for (i = 0; i < nparams; i++) {
7491 		*p++ = cpu_to_be32(*params++);
7492 		if (rw)
7493 			*p = cpu_to_be32(*(val + i));
7494 		p++;
7495 	}
7496 
7497 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7498 	if (ret == 0)
7499 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7500 			*val++ = be32_to_cpu(*p);
7501 	return ret;
7502 }
7503 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7504 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7505 		    unsigned int vf, unsigned int nparams, const u32 *params,
7506 		    u32 *val)
7507 {
7508 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7509 				  true);
7510 }
7511 
t4_query_params_ns(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7512 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7513 		       unsigned int vf, unsigned int nparams, const u32 *params,
7514 		       u32 *val)
7515 {
7516 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7517 				  false);
7518 }
7519 
7520 /**
7521  *      t4_set_params_timeout - sets FW or device parameters
7522  *      @adap: the adapter
7523  *      @mbox: mailbox to use for the FW command
7524  *      @pf: the PF
7525  *      @vf: the VF
7526  *      @nparams: the number of parameters
7527  *      @params: the parameter names
7528  *      @val: the parameter values
7529  *      @timeout: the timeout time
7530  *
7531  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7532  *      specified at once.
7533  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)7534 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7535 			  unsigned int pf, unsigned int vf,
7536 			  unsigned int nparams, const u32 *params,
7537 			  const u32 *val, int timeout)
7538 {
7539 	struct fw_params_cmd c;
7540 	__be32 *p = &c.param[0].mnem;
7541 
7542 	if (nparams > 7)
7543 		return -EINVAL;
7544 
7545 	memset(&c, 0, sizeof(c));
7546 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7547 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7548 				  FW_PARAMS_CMD_PFN_V(pf) |
7549 				  FW_PARAMS_CMD_VFN_V(vf));
7550 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7551 
7552 	while (nparams--) {
7553 		*p++ = cpu_to_be32(*params++);
7554 		*p++ = cpu_to_be32(*val++);
7555 	}
7556 
7557 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7558 }
7559 
7560 /**
7561  *	t4_set_params - sets FW or device parameters
7562  *	@adap: the adapter
7563  *	@mbox: mailbox to use for the FW command
7564  *	@pf: the PF
7565  *	@vf: the VF
7566  *	@nparams: the number of parameters
7567  *	@params: the parameter names
7568  *	@val: the parameter values
7569  *
7570  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7571  *	specified at once.
7572  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)7573 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7574 		  unsigned int vf, unsigned int nparams, const u32 *params,
7575 		  const u32 *val)
7576 {
7577 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7578 				     FW_CMD_MAX_TIMEOUT);
7579 }
7580 
7581 /**
7582  *	t4_cfg_pfvf - configure PF/VF resource limits
7583  *	@adap: the adapter
7584  *	@mbox: mailbox to use for the FW command
7585  *	@pf: the PF being configured
7586  *	@vf: the VF being configured
7587  *	@txq: the max number of egress queues
7588  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7589  *	@rxqi: the max number of interrupt-capable ingress queues
7590  *	@rxq: the max number of interruptless ingress queues
7591  *	@tc: the PCI traffic class
7592  *	@vi: the max number of virtual interfaces
7593  *	@cmask: the channel access rights mask for the PF/VF
7594  *	@pmask: the port access rights mask for the PF/VF
7595  *	@nexact: the maximum number of exact MPS filters
7596  *	@rcaps: read capabilities
7597  *	@wxcaps: write/execute capabilities
7598  *
7599  *	Configures resource limits and capabilities for a physical or virtual
7600  *	function.
7601  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)7602 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7603 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7604 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7605 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7606 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7607 {
7608 	struct fw_pfvf_cmd c;
7609 
7610 	memset(&c, 0, sizeof(c));
7611 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7612 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7613 				  FW_PFVF_CMD_VFN_V(vf));
7614 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7615 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7616 				     FW_PFVF_CMD_NIQ_V(rxq));
7617 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7618 				    FW_PFVF_CMD_PMASK_V(pmask) |
7619 				    FW_PFVF_CMD_NEQ_V(txq));
7620 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7621 				      FW_PFVF_CMD_NVI_V(vi) |
7622 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7623 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7624 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7625 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7626 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7627 }
7628 
7629 /**
7630  *	t4_alloc_vi - allocate a virtual interface
7631  *	@adap: the adapter
7632  *	@mbox: mailbox to use for the FW command
7633  *	@port: physical port associated with the VI
7634  *	@pf: the PF owning the VI
7635  *	@vf: the VF owning the VI
7636  *	@nmac: number of MAC addresses needed (1 to 5)
7637  *	@mac: the MAC addresses of the VI
7638  *	@rss_size: size of RSS table slice associated with this VI
7639  *	@vivld: the destination to store the VI Valid value.
7640  *	@vin: the destination to store the VIN value.
7641  *
7642  *	Allocates a virtual interface for the given physical port.  If @mac is
7643  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7644  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7645  *	stored consecutively so the space needed is @nmac * 6 bytes.
7646  *	Returns a negative error number or the non-negative VI id.
7647  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size,u8 * vivld,u8 * vin)7648 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7649 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7650 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7651 {
7652 	int ret;
7653 	struct fw_vi_cmd c;
7654 
7655 	memset(&c, 0, sizeof(c));
7656 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7657 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7658 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7659 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7660 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7661 	c.nmac = nmac - 1;
7662 
7663 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7664 	if (ret)
7665 		return ret;
7666 
7667 	if (mac) {
7668 		memcpy(mac, c.mac, sizeof(c.mac));
7669 		switch (nmac) {
7670 		case 5:
7671 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7672 			fallthrough;
7673 		case 4:
7674 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7675 			fallthrough;
7676 		case 3:
7677 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7678 			fallthrough;
7679 		case 2:
7680 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7681 		}
7682 	}
7683 	if (rss_size)
7684 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7685 
7686 	if (vivld)
7687 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7688 
7689 	if (vin)
7690 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7691 
7692 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7693 }
7694 
7695 /**
7696  *	t4_free_vi - free a virtual interface
7697  *	@adap: the adapter
7698  *	@mbox: mailbox to use for the FW command
7699  *	@pf: the PF owning the VI
7700  *	@vf: the VF owning the VI
7701  *	@viid: virtual interface identifiler
7702  *
7703  *	Free a previously allocated virtual interface.
7704  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)7705 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7706 	       unsigned int vf, unsigned int viid)
7707 {
7708 	struct fw_vi_cmd c;
7709 
7710 	memset(&c, 0, sizeof(c));
7711 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7712 				  FW_CMD_REQUEST_F |
7713 				  FW_CMD_EXEC_F |
7714 				  FW_VI_CMD_PFN_V(pf) |
7715 				  FW_VI_CMD_VFN_V(vf));
7716 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7717 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7718 
7719 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7720 }
7721 
7722 /**
7723  *	t4_set_rxmode - set Rx properties of a virtual interface
7724  *	@adap: the adapter
7725  *	@mbox: mailbox to use for the FW command
7726  *	@viid: the VI id
7727  *	@viid_mirror: the mirror VI id
7728  *	@mtu: the new MTU or -1
7729  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7730  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7731  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7732  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7733  *	@sleep_ok: if true we may sleep while awaiting command completion
7734  *
7735  *	Sets Rx properties of a virtual interface.
7736  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int viid_mirror,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)7737 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7738 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7739 		  int bcast, int vlanex, bool sleep_ok)
7740 {
7741 	struct fw_vi_rxmode_cmd c, c_mirror;
7742 	int ret;
7743 
7744 	/* convert to FW values */
7745 	if (mtu < 0)
7746 		mtu = FW_RXMODE_MTU_NO_CHG;
7747 	if (promisc < 0)
7748 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7749 	if (all_multi < 0)
7750 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7751 	if (bcast < 0)
7752 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7753 	if (vlanex < 0)
7754 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7755 
7756 	memset(&c, 0, sizeof(c));
7757 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7758 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7759 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7760 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7761 	c.mtu_to_vlanexen =
7762 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7763 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7764 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7765 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7766 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7767 
7768 	if (viid_mirror) {
7769 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7770 		c_mirror.op_to_viid =
7771 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7772 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7773 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7774 	}
7775 
7776 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7777 	if (ret)
7778 		return ret;
7779 
7780 	if (viid_mirror)
7781 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7782 				      NULL, sleep_ok);
7783 
7784 	return ret;
7785 }
7786 
7787 /**
7788  *      t4_free_encap_mac_filt - frees MPS entry at given index
7789  *      @adap: the adapter
7790  *      @viid: the VI id
7791  *      @idx: index of MPS entry to be freed
7792  *      @sleep_ok: call is allowed to sleep
7793  *
7794  *      Frees the MPS entry at supplied index
7795  *
7796  *      Returns a negative error number or zero on success
7797  */
t4_free_encap_mac_filt(struct adapter * adap,unsigned int viid,int idx,bool sleep_ok)7798 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7799 			   int idx, bool sleep_ok)
7800 {
7801 	struct fw_vi_mac_exact *p;
7802 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7803 	struct fw_vi_mac_cmd c;
7804 	int ret = 0;
7805 	u32 exact;
7806 
7807 	memset(&c, 0, sizeof(c));
7808 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7809 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7810 				   FW_CMD_EXEC_V(0) |
7811 				   FW_VI_MAC_CMD_VIID_V(viid));
7812 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7813 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7814 					  exact |
7815 					  FW_CMD_LEN16_V(1));
7816 	p = c.u.exact;
7817 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7818 				      FW_VI_MAC_CMD_IDX_V(idx));
7819 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7820 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7821 	return ret;
7822 }
7823 
7824 /**
7825  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7826  *	@adap: the adapter
7827  *	@viid: the VI id
7828  *	@addr: the MAC address
7829  *	@mask: the mask
7830  *	@idx: index of the entry in mps tcam
7831  *	@lookup_type: MAC address for inner (1) or outer (0) header
7832  *	@port_id: the port index
7833  *	@sleep_ok: call is allowed to sleep
7834  *
7835  *	Removes the mac entry at the specified index using raw mac interface.
7836  *
7837  *	Returns a negative error number on failure.
7838  */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7839 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7840 			 const u8 *addr, const u8 *mask, unsigned int idx,
7841 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7842 {
7843 	struct fw_vi_mac_cmd c;
7844 	struct fw_vi_mac_raw *p = &c.u.raw;
7845 	u32 val;
7846 
7847 	memset(&c, 0, sizeof(c));
7848 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7849 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7850 				   FW_CMD_EXEC_V(0) |
7851 				   FW_VI_MAC_CMD_VIID_V(viid));
7852 	val = FW_CMD_LEN16_V(1) |
7853 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7854 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7855 					  FW_CMD_LEN16_V(val));
7856 
7857 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7858 				     FW_VI_MAC_ID_BASED_FREE);
7859 
7860 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7861 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7862 				   DATAPORTNUM_V(port_id));
7863 	/* Lookup mask and port mask */
7864 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7865 				    DATAPORTNUM_V(DATAPORTNUM_M));
7866 
7867 	/* Copy the address and the mask */
7868 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7869 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7870 
7871 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7872 }
7873 
7874 /**
7875  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7876  *      @adap: the adapter
7877  *      @viid: the VI id
7878  *      @addr: the MAC address
7879  *      @mask: the mask
7880  *      @vni: the VNI id for the tunnel protocol
7881  *      @vni_mask: mask for the VNI id
7882  *      @dip_hit: to enable DIP match for the MPS entry
7883  *      @lookup_type: MAC address for inner (1) or outer (0) header
7884  *      @sleep_ok: call is allowed to sleep
7885  *
7886  *      Allocates an MPS entry with specified MAC address and VNI value.
7887  *
7888  *      Returns a negative error number or the allocated index for this mac.
7889  */
t4_alloc_encap_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int vni,unsigned int vni_mask,u8 dip_hit,u8 lookup_type,bool sleep_ok)7890 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7891 			    const u8 *addr, const u8 *mask, unsigned int vni,
7892 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7893 			    bool sleep_ok)
7894 {
7895 	struct fw_vi_mac_cmd c;
7896 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7897 	int ret = 0;
7898 	u32 val;
7899 
7900 	memset(&c, 0, sizeof(c));
7901 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7902 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7903 				   FW_VI_MAC_CMD_VIID_V(viid));
7904 	val = FW_CMD_LEN16_V(1) |
7905 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7906 	c.freemacs_to_len16 = cpu_to_be32(val);
7907 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7908 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7909 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7910 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7911 
7912 	p->lookup_type_to_vni =
7913 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7914 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7915 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7916 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7917 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7918 	if (ret == 0)
7919 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7920 	return ret;
7921 }
7922 
7923 /**
7924  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7925  *	@adap: the adapter
7926  *	@viid: the VI id
7927  *	@addr: the MAC address
7928  *	@mask: the mask
7929  *	@idx: index at which to add this entry
7930  *	@lookup_type: MAC address for inner (1) or outer (0) header
7931  *	@port_id: the port index
7932  *	@sleep_ok: call is allowed to sleep
7933  *
7934  *	Adds the mac entry at the specified index using raw mac interface.
7935  *
7936  *	Returns a negative error number or the allocated index for this mac.
7937  */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7938 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7939 			  const u8 *addr, const u8 *mask, unsigned int idx,
7940 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7941 {
7942 	int ret = 0;
7943 	struct fw_vi_mac_cmd c;
7944 	struct fw_vi_mac_raw *p = &c.u.raw;
7945 	u32 val;
7946 
7947 	memset(&c, 0, sizeof(c));
7948 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7949 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7950 				   FW_VI_MAC_CMD_VIID_V(viid));
7951 	val = FW_CMD_LEN16_V(1) |
7952 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7953 	c.freemacs_to_len16 = cpu_to_be32(val);
7954 
7955 	/* Specify that this is an inner mac address */
7956 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7957 
7958 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7959 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7960 				   DATAPORTNUM_V(port_id));
7961 	/* Lookup mask and port mask */
7962 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7963 				    DATAPORTNUM_V(DATAPORTNUM_M));
7964 
7965 	/* Copy the address and the mask */
7966 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7967 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7968 
7969 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7970 	if (ret == 0) {
7971 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7972 		if (ret != idx)
7973 			ret = -ENOMEM;
7974 	}
7975 
7976 	return ret;
7977 }
7978 
7979 /**
7980  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7981  *	@adap: the adapter
7982  *	@mbox: mailbox to use for the FW command
7983  *	@viid: the VI id
7984  *	@free: if true any existing filters for this VI id are first removed
7985  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7986  *	@addr: the MAC address(es)
7987  *	@idx: where to store the index of each allocated filter
7988  *	@hash: pointer to hash address filter bitmap
7989  *	@sleep_ok: call is allowed to sleep
7990  *
7991  *	Allocates an exact-match filter for each of the supplied addresses and
7992  *	sets it to the corresponding address.  If @idx is not %NULL it should
7993  *	have at least @naddr entries, each of which will be set to the index of
7994  *	the filter allocated for the corresponding MAC address.  If a filter
7995  *	could not be allocated for an address its index is set to 0xffff.
7996  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7997  *	are hashed and update the hash filter bitmap pointed at by @hash.
7998  *
7999  *	Returns a negative error number or the number of filters allocated.
8000  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)8001 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8002 		      unsigned int viid, bool free, unsigned int naddr,
8003 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8004 {
8005 	int offset, ret = 0;
8006 	struct fw_vi_mac_cmd c;
8007 	unsigned int nfilters = 0;
8008 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
8009 	unsigned int rem = naddr;
8010 
8011 	if (naddr > max_naddr)
8012 		return -EINVAL;
8013 
8014 	for (offset = 0; offset < naddr ; /**/) {
8015 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8016 					 rem : ARRAY_SIZE(c.u.exact));
8017 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8018 						     u.exact[fw_naddr]), 16);
8019 		struct fw_vi_mac_exact *p;
8020 		int i;
8021 
8022 		memset(&c, 0, sizeof(c));
8023 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8024 					   FW_CMD_REQUEST_F |
8025 					   FW_CMD_WRITE_F |
8026 					   FW_CMD_EXEC_V(free) |
8027 					   FW_VI_MAC_CMD_VIID_V(viid));
8028 		c.freemacs_to_len16 =
8029 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8030 				    FW_CMD_LEN16_V(len16));
8031 
8032 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8033 			p->valid_to_idx =
8034 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8035 					    FW_VI_MAC_CMD_IDX_V(
8036 						    FW_VI_MAC_ADD_MAC));
8037 			memcpy(p->macaddr, addr[offset + i],
8038 			       sizeof(p->macaddr));
8039 		}
8040 
8041 		/* It's okay if we run out of space in our MAC address arena.
8042 		 * Some of the addresses we submit may get stored so we need
8043 		 * to run through the reply to see what the results were ...
8044 		 */
8045 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8046 		if (ret && ret != -FW_ENOMEM)
8047 			break;
8048 
8049 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8050 			u16 index = FW_VI_MAC_CMD_IDX_G(
8051 					be16_to_cpu(p->valid_to_idx));
8052 
8053 			if (idx)
8054 				idx[offset + i] = (index >= max_naddr ?
8055 						   0xffff : index);
8056 			if (index < max_naddr)
8057 				nfilters++;
8058 			else if (hash)
8059 				*hash |= (1ULL <<
8060 					  hash_mac_addr(addr[offset + i]));
8061 		}
8062 
8063 		free = false;
8064 		offset += fw_naddr;
8065 		rem -= fw_naddr;
8066 	}
8067 
8068 	if (ret == 0 || ret == -FW_ENOMEM)
8069 		ret = nfilters;
8070 	return ret;
8071 }
8072 
8073 /**
8074  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8075  *	@adap: the adapter
8076  *	@mbox: mailbox to use for the FW command
8077  *	@viid: the VI id
8078  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8079  *	@addr: the MAC address(es)
8080  *	@sleep_ok: call is allowed to sleep
8081  *
8082  *	Frees the exact-match filter for each of the supplied addresses
8083  *
8084  *	Returns a negative error number or the number of filters freed.
8085  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)8086 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8087 		     unsigned int viid, unsigned int naddr,
8088 		     const u8 **addr, bool sleep_ok)
8089 {
8090 	int offset, ret = 0;
8091 	struct fw_vi_mac_cmd c;
8092 	unsigned int nfilters = 0;
8093 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8094 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8095 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8096 	unsigned int rem = naddr;
8097 
8098 	if (naddr > max_naddr)
8099 		return -EINVAL;
8100 
8101 	for (offset = 0; offset < (int)naddr ; /**/) {
8102 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8103 					 ? rem
8104 					 : ARRAY_SIZE(c.u.exact));
8105 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8106 						     u.exact[fw_naddr]), 16);
8107 		struct fw_vi_mac_exact *p;
8108 		int i;
8109 
8110 		memset(&c, 0, sizeof(c));
8111 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8112 				     FW_CMD_REQUEST_F |
8113 				     FW_CMD_WRITE_F |
8114 				     FW_CMD_EXEC_V(0) |
8115 				     FW_VI_MAC_CMD_VIID_V(viid));
8116 		c.freemacs_to_len16 =
8117 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8118 					    FW_CMD_LEN16_V(len16));
8119 
8120 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8121 			p->valid_to_idx = cpu_to_be16(
8122 				FW_VI_MAC_CMD_VALID_F |
8123 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8124 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8125 		}
8126 
8127 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8128 		if (ret)
8129 			break;
8130 
8131 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8132 			u16 index = FW_VI_MAC_CMD_IDX_G(
8133 						be16_to_cpu(p->valid_to_idx));
8134 
8135 			if (index < max_naddr)
8136 				nfilters++;
8137 		}
8138 
8139 		offset += fw_naddr;
8140 		rem -= fw_naddr;
8141 	}
8142 
8143 	if (ret == 0)
8144 		ret = nfilters;
8145 	return ret;
8146 }
8147 
8148 /**
8149  *	t4_change_mac - modifies the exact-match filter for a MAC address
8150  *	@adap: the adapter
8151  *	@mbox: mailbox to use for the FW command
8152  *	@viid: the VI id
8153  *	@idx: index of existing filter for old value of MAC address, or -1
8154  *	@addr: the new MAC address value
8155  *	@persist: whether a new MAC allocation should be persistent
8156  *	@smt_idx: the destination to store the new SMT index.
8157  *
8158  *	Modifies an exact-match filter and sets it to the new MAC address.
8159  *	Note that in general it is not possible to modify the value of a given
8160  *	filter so the generic way to modify an address filter is to free the one
8161  *	being used by the old address value and allocate a new filter for the
8162  *	new address value.  @idx can be -1 if the address is a new addition.
8163  *
8164  *	Returns a negative error number or the index of the filter with the new
8165  *	MAC value.
8166  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,u8 * smt_idx)8167 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8168 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8169 {
8170 	int ret, mode;
8171 	struct fw_vi_mac_cmd c;
8172 	struct fw_vi_mac_exact *p = c.u.exact;
8173 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8174 
8175 	if (idx < 0)                             /* new allocation */
8176 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8177 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8178 
8179 	memset(&c, 0, sizeof(c));
8180 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8181 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8182 				   FW_VI_MAC_CMD_VIID_V(viid));
8183 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8184 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8185 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8186 				      FW_VI_MAC_CMD_IDX_V(idx));
8187 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8188 
8189 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8190 	if (ret == 0) {
8191 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8192 		if (ret >= max_mac_addr)
8193 			ret = -ENOMEM;
8194 		if (smt_idx) {
8195 			if (adap->params.viid_smt_extn_support) {
8196 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8197 						    (be32_to_cpu(c.op_to_viid));
8198 			} else {
8199 				/* In T4/T5, SMT contains 256 SMAC entries
8200 				 * organized in 128 rows of 2 entries each.
8201 				 * In T6, SMT contains 256 SMAC entries in
8202 				 * 256 rows.
8203 				 */
8204 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8205 								     CHELSIO_T5)
8206 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8207 				else
8208 					*smt_idx = (viid & FW_VIID_VIN_M);
8209 			}
8210 		}
8211 	}
8212 	return ret;
8213 }
8214 
8215 /**
8216  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8217  *	@adap: the adapter
8218  *	@mbox: mailbox to use for the FW command
8219  *	@viid: the VI id
8220  *	@ucast: whether the hash filter should also match unicast addresses
8221  *	@vec: the value to be written to the hash filter
8222  *	@sleep_ok: call is allowed to sleep
8223  *
8224  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8225  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)8226 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8227 		     bool ucast, u64 vec, bool sleep_ok)
8228 {
8229 	struct fw_vi_mac_cmd c;
8230 
8231 	memset(&c, 0, sizeof(c));
8232 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8233 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8234 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8235 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8236 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8237 					  FW_CMD_LEN16_V(1));
8238 	c.u.hash.hashvec = cpu_to_be64(vec);
8239 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8240 }
8241 
8242 /**
8243  *      t4_enable_vi_params - enable/disable a virtual interface
8244  *      @adap: the adapter
8245  *      @mbox: mailbox to use for the FW command
8246  *      @viid: the VI id
8247  *      @rx_en: 1=enable Rx, 0=disable Rx
8248  *      @tx_en: 1=enable Tx, 0=disable Tx
8249  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8250  *
8251  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8252  *      only makes sense when enabling a Virtual Interface ...
8253  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)8254 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8255 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8256 {
8257 	struct fw_vi_enable_cmd c;
8258 
8259 	memset(&c, 0, sizeof(c));
8260 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8261 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8262 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8263 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8264 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8265 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8266 				     FW_LEN16(c));
8267 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8268 }
8269 
8270 /**
8271  *	t4_enable_vi - enable/disable a virtual interface
8272  *	@adap: the adapter
8273  *	@mbox: mailbox to use for the FW command
8274  *	@viid: the VI id
8275  *	@rx_en: 1=enable Rx, 0=disable Rx
8276  *	@tx_en: 1=enable Tx, 0=disable Tx
8277  *
8278  *	Enables/disables a virtual interface.
8279  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)8280 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8281 		 bool rx_en, bool tx_en)
8282 {
8283 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8284 }
8285 
8286 /**
8287  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8288  *      @adap: the adapter
8289  *      @mbox: mailbox to use for the FW command
8290  *      @pi: the Port Information structure
8291  *      @rx_en: 1=enable Rx, 0=disable Rx
8292  *      @tx_en: 1=enable Tx, 0=disable Tx
8293  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8294  *
8295  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8296  *	Enable only makes sense when enabling a Virtual Interface ...
8297  *	If the Virtual Interface enable/disable operation is successful,
8298  *	we notify the OS-specific code of a potential Link Status change
8299  *	via the OS Contract API t4_os_link_changed().
8300  */
t4_enable_pi_params(struct adapter * adap,unsigned int mbox,struct port_info * pi,bool rx_en,bool tx_en,bool dcb_en)8301 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8302 			struct port_info *pi,
8303 			bool rx_en, bool tx_en, bool dcb_en)
8304 {
8305 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8306 				      rx_en, tx_en, dcb_en);
8307 	if (ret)
8308 		return ret;
8309 	t4_os_link_changed(adap, pi->port_id,
8310 			   rx_en && tx_en && pi->link_cfg.link_ok);
8311 	return 0;
8312 }
8313 
8314 /**
8315  *	t4_identify_port - identify a VI's port by blinking its LED
8316  *	@adap: the adapter
8317  *	@mbox: mailbox to use for the FW command
8318  *	@viid: the VI id
8319  *	@nblinks: how many times to blink LED at 2.5 Hz
8320  *
8321  *	Identifies a VI's port by blinking its LED.
8322  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)8323 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8324 		     unsigned int nblinks)
8325 {
8326 	struct fw_vi_enable_cmd c;
8327 
8328 	memset(&c, 0, sizeof(c));
8329 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8330 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8331 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8332 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8333 	c.blinkdur = cpu_to_be16(nblinks);
8334 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8335 }
8336 
8337 /**
8338  *	t4_iq_stop - stop an ingress queue and its FLs
8339  *	@adap: the adapter
8340  *	@mbox: mailbox to use for the FW command
8341  *	@pf: the PF owning the queues
8342  *	@vf: the VF owning the queues
8343  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8344  *	@iqid: ingress queue id
8345  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8346  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8347  *
8348  *	Stops an ingress queue and its associated FLs, if any.  This causes
8349  *	any current or future data/messages destined for these queues to be
8350  *	tossed.
8351  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8352 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354 	       unsigned int fl0id, unsigned int fl1id)
8355 {
8356 	struct fw_iq_cmd c;
8357 
8358 	memset(&c, 0, sizeof(c));
8359 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361 				  FW_IQ_CMD_VFN_V(vf));
8362 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8363 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364 	c.iqid = cpu_to_be16(iqid);
8365 	c.fl0id = cpu_to_be16(fl0id);
8366 	c.fl1id = cpu_to_be16(fl1id);
8367 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368 }
8369 
8370 /**
8371  *	t4_iq_free - free an ingress queue and its FLs
8372  *	@adap: the adapter
8373  *	@mbox: mailbox to use for the FW command
8374  *	@pf: the PF owning the queues
8375  *	@vf: the VF owning the queues
8376  *	@iqtype: the ingress queue type
8377  *	@iqid: ingress queue id
8378  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8379  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8380  *
8381  *	Frees an ingress queue and its associated FLs, if any.
8382  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8383 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8384 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8385 	       unsigned int fl0id, unsigned int fl1id)
8386 {
8387 	struct fw_iq_cmd c;
8388 
8389 	memset(&c, 0, sizeof(c));
8390 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8391 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8392 				  FW_IQ_CMD_VFN_V(vf));
8393 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8394 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8395 	c.iqid = cpu_to_be16(iqid);
8396 	c.fl0id = cpu_to_be16(fl0id);
8397 	c.fl1id = cpu_to_be16(fl1id);
8398 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8399 }
8400 
8401 /**
8402  *	t4_eth_eq_free - free an Ethernet egress queue
8403  *	@adap: the adapter
8404  *	@mbox: mailbox to use for the FW command
8405  *	@pf: the PF owning the queue
8406  *	@vf: the VF owning the queue
8407  *	@eqid: egress queue id
8408  *
8409  *	Frees an Ethernet egress queue.
8410  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8411 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8412 		   unsigned int vf, unsigned int eqid)
8413 {
8414 	struct fw_eq_eth_cmd c;
8415 
8416 	memset(&c, 0, sizeof(c));
8417 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8418 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8419 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8420 				  FW_EQ_ETH_CMD_VFN_V(vf));
8421 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8422 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8423 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8424 }
8425 
8426 /**
8427  *	t4_ctrl_eq_free - free a control egress queue
8428  *	@adap: the adapter
8429  *	@mbox: mailbox to use for the FW command
8430  *	@pf: the PF owning the queue
8431  *	@vf: the VF owning the queue
8432  *	@eqid: egress queue id
8433  *
8434  *	Frees a control egress queue.
8435  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8436 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8437 		    unsigned int vf, unsigned int eqid)
8438 {
8439 	struct fw_eq_ctrl_cmd c;
8440 
8441 	memset(&c, 0, sizeof(c));
8442 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8443 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8444 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8445 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8446 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8447 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8448 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8449 }
8450 
8451 /**
8452  *	t4_ofld_eq_free - free an offload egress queue
8453  *	@adap: the adapter
8454  *	@mbox: mailbox to use for the FW command
8455  *	@pf: the PF owning the queue
8456  *	@vf: the VF owning the queue
8457  *	@eqid: egress queue id
8458  *
8459  *	Frees a control egress queue.
8460  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8461 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8462 		    unsigned int vf, unsigned int eqid)
8463 {
8464 	struct fw_eq_ofld_cmd c;
8465 
8466 	memset(&c, 0, sizeof(c));
8467 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8468 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8469 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8470 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8471 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8472 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8473 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8474 }
8475 
8476 /**
8477  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8478  *	@link_down_rc: Link Down Reason Code
8479  *
8480  *	Returns a string representation of the Link Down Reason Code.
8481  */
t4_link_down_rc_str(unsigned char link_down_rc)8482 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8483 {
8484 	static const char * const reason[] = {
8485 		"Link Down",
8486 		"Remote Fault",
8487 		"Auto-negotiation Failure",
8488 		"Reserved",
8489 		"Insufficient Airflow",
8490 		"Unable To Determine Reason",
8491 		"No RX Signal Detected",
8492 		"Reserved",
8493 	};
8494 
8495 	if (link_down_rc >= ARRAY_SIZE(reason))
8496 		return "Bad Reason Code";
8497 
8498 	return reason[link_down_rc];
8499 }
8500 
8501 /* Return the highest speed set in the port capabilities, in Mb/s. */
fwcap_to_speed(fw_port_cap32_t caps)8502 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8503 {
8504 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8505 		do { \
8506 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507 				return __speed; \
8508 		} while (0)
8509 
8510 	TEST_SPEED_RETURN(400G, 400000);
8511 	TEST_SPEED_RETURN(200G, 200000);
8512 	TEST_SPEED_RETURN(100G, 100000);
8513 	TEST_SPEED_RETURN(50G,   50000);
8514 	TEST_SPEED_RETURN(40G,   40000);
8515 	TEST_SPEED_RETURN(25G,   25000);
8516 	TEST_SPEED_RETURN(10G,   10000);
8517 	TEST_SPEED_RETURN(1G,     1000);
8518 	TEST_SPEED_RETURN(100M,    100);
8519 
8520 	#undef TEST_SPEED_RETURN
8521 
8522 	return 0;
8523 }
8524 
8525 /**
8526  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8527  *	@acaps: advertised Port Capabilities
8528  *
8529  *	Get the highest speed for the port from the advertised Port
8530  *	Capabilities.  It will be either the highest speed from the list of
8531  *	speeds or whatever user has set using ethtool.
8532  */
fwcap_to_fwspeed(fw_port_cap32_t acaps)8533 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8534 {
8535 	#define TEST_SPEED_RETURN(__caps_speed) \
8536 		do { \
8537 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8538 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8539 		} while (0)
8540 
8541 	TEST_SPEED_RETURN(400G);
8542 	TEST_SPEED_RETURN(200G);
8543 	TEST_SPEED_RETURN(100G);
8544 	TEST_SPEED_RETURN(50G);
8545 	TEST_SPEED_RETURN(40G);
8546 	TEST_SPEED_RETURN(25G);
8547 	TEST_SPEED_RETURN(10G);
8548 	TEST_SPEED_RETURN(1G);
8549 	TEST_SPEED_RETURN(100M);
8550 
8551 	#undef TEST_SPEED_RETURN
8552 
8553 	return 0;
8554 }
8555 
8556 /**
8557  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8558  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8559  *
8560  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8561  *	32-bit Port Capabilities value.
8562  */
lstatus_to_fwcap(u32 lstatus)8563 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8564 {
8565 	fw_port_cap32_t linkattr = 0;
8566 
8567 	/* Unfortunately the format of the Link Status in the old
8568 	 * 16-bit Port Information message isn't the same as the
8569 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8570 	 */
8571 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8572 		linkattr |= FW_PORT_CAP32_FC_RX;
8573 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8574 		linkattr |= FW_PORT_CAP32_FC_TX;
8575 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8576 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8577 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8578 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8579 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8580 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8581 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8582 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8583 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8584 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8585 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8586 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8587 
8588 	return linkattr;
8589 }
8590 
8591 /**
8592  *	t4_handle_get_port_info - process a FW reply message
8593  *	@pi: the port info
8594  *	@rpl: start of the FW message
8595  *
8596  *	Processes a GET_PORT_INFO FW reply message.
8597  */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)8598 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8599 {
8600 	const struct fw_port_cmd *cmd = (const void *)rpl;
8601 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8602 	struct link_config *lc = &pi->link_cfg;
8603 	struct adapter *adapter = pi->adapter;
8604 	unsigned int speed, fc, fec, adv_fc;
8605 	enum fw_port_module_type mod_type;
8606 	int action, link_ok, linkdnrc;
8607 	enum fw_port_type port_type;
8608 
8609 	/* Extract the various fields from the Port Information message.
8610 	 */
8611 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8612 	switch (action) {
8613 	case FW_PORT_ACTION_GET_PORT_INFO: {
8614 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8615 
8616 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8617 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8618 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8619 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8620 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8621 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8622 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8623 		linkattr = lstatus_to_fwcap(lstatus);
8624 		break;
8625 	}
8626 
8627 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8628 		u32 lstatus32;
8629 
8630 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8631 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8632 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8633 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8634 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8635 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8636 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8637 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8638 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8639 		break;
8640 	}
8641 
8642 	default:
8643 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8644 			be32_to_cpu(cmd->action_to_len16));
8645 		return;
8646 	}
8647 
8648 	fec = fwcap_to_cc_fec(acaps);
8649 	adv_fc = fwcap_to_cc_pause(acaps);
8650 	fc = fwcap_to_cc_pause(linkattr);
8651 	speed = fwcap_to_speed(linkattr);
8652 
8653 	/* Reset state for communicating new Transceiver Module status and
8654 	 * whether the OS-dependent layer wants us to redo the current
8655 	 * "sticky" L1 Configure Link Parameters.
8656 	 */
8657 	lc->new_module = false;
8658 	lc->redo_l1cfg = false;
8659 
8660 	if (mod_type != pi->mod_type) {
8661 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8662 		 * various fundamental Port Capabilities which used to be
8663 		 * immutable can now change radically.  We can now have
8664 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8665 		 * all change based on what Transceiver Module is inserted.
8666 		 * So we need to record the Physical "Port" Capabilities on
8667 		 * every Transceiver Module change.
8668 		 */
8669 		lc->pcaps = pcaps;
8670 
8671 		/* When a new Transceiver Module is inserted, the Firmware
8672 		 * will examine its i2c EPROM to determine its type and
8673 		 * general operating parameters including things like Forward
8674 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8675 		 * how to interpret these i2c values to determine default
8676 		 * "sutomatic" settings.  We record these for future use when
8677 		 * the user explicitly requests these standards-based values.
8678 		 */
8679 		lc->def_acaps = acaps;
8680 
8681 		/* Some versions of the early T6 Firmware "cheated" when
8682 		 * handling different Transceiver Modules by changing the
8683 		 * underlaying Port Type reported to the Host Drivers.  As
8684 		 * such we need to capture whatever Port Type the Firmware
8685 		 * sends us and record it in case it's different from what we
8686 		 * were told earlier.  Unfortunately, since Firmware is
8687 		 * forever, we'll need to keep this code here forever, but in
8688 		 * later T6 Firmware it should just be an assignment of the
8689 		 * same value already recorded.
8690 		 */
8691 		pi->port_type = port_type;
8692 
8693 		/* Record new Module Type information.
8694 		 */
8695 		pi->mod_type = mod_type;
8696 
8697 		/* Let the OS-dependent layer know if we have a new
8698 		 * Transceiver Module inserted.
8699 		 */
8700 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8701 
8702 		t4_os_portmod_changed(adapter, pi->port_id);
8703 	}
8704 
8705 	if (link_ok != lc->link_ok || speed != lc->speed ||
8706 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8707 	    fec != lc->fec) {
8708 		/* something changed */
8709 		if (!link_ok && lc->link_ok) {
8710 			lc->link_down_rc = linkdnrc;
8711 			dev_warn_ratelimited(adapter->pdev_dev,
8712 					     "Port %d link down, reason: %s\n",
8713 					     pi->tx_chan,
8714 					     t4_link_down_rc_str(linkdnrc));
8715 		}
8716 		lc->link_ok = link_ok;
8717 		lc->speed = speed;
8718 		lc->advertised_fc = adv_fc;
8719 		lc->fc = fc;
8720 		lc->fec = fec;
8721 
8722 		lc->lpacaps = lpacaps;
8723 		lc->acaps = acaps & ADVERT_MASK;
8724 
8725 		/* If we're not physically capable of Auto-Negotiation, note
8726 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8727 		 * what Auto-Negotiation settings we have.  Note parallel
8728 		 * structure in t4_link_l1cfg_core() and init_link_config().
8729 		 */
8730 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8731 			lc->autoneg = AUTONEG_DISABLE;
8732 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8733 			lc->autoneg = AUTONEG_ENABLE;
8734 		} else {
8735 			/* When Autoneg is disabled, user needs to set
8736 			 * single speed.
8737 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8738 			 */
8739 			lc->acaps = 0;
8740 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8741 			lc->autoneg = AUTONEG_DISABLE;
8742 		}
8743 
8744 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8745 	}
8746 
8747 	/* If we have a new Transceiver Module and the OS-dependent code has
8748 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8749 	 * Link Parameters are set, do that now.
8750 	 */
8751 	if (lc->new_module && lc->redo_l1cfg) {
8752 		struct link_config old_lc;
8753 		int ret;
8754 
8755 		/* Save the current L1 Configuration and restore it if an
8756 		 * error occurs.  We probably should fix the l1_cfg*()
8757 		 * routines not to change the link_config when an error
8758 		 * occurs ...
8759 		 */
8760 		old_lc = *lc;
8761 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8762 		if (ret) {
8763 			*lc = old_lc;
8764 			dev_warn(adapter->pdev_dev,
8765 				 "Attempt to update new Transceiver Module settings failed\n");
8766 		}
8767 	}
8768 	lc->new_module = false;
8769 	lc->redo_l1cfg = false;
8770 }
8771 
8772 /**
8773  *	t4_update_port_info - retrieve and update port information if changed
8774  *	@pi: the port_info
8775  *
8776  *	We issue a Get Port Information Command to the Firmware and, if
8777  *	successful, we check to see if anything is different from what we
8778  *	last recorded and update things accordingly.
8779  */
t4_update_port_info(struct port_info * pi)8780 int t4_update_port_info(struct port_info *pi)
8781 {
8782 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8783 	struct fw_port_cmd port_cmd;
8784 	int ret;
8785 
8786 	memset(&port_cmd, 0, sizeof(port_cmd));
8787 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8788 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8789 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8790 	port_cmd.action_to_len16 = cpu_to_be32(
8791 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8792 				     ? FW_PORT_ACTION_GET_PORT_INFO
8793 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8794 		FW_LEN16(port_cmd));
8795 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8796 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8797 	if (ret)
8798 		return ret;
8799 
8800 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8801 	return 0;
8802 }
8803 
8804 /**
8805  *	t4_get_link_params - retrieve basic link parameters for given port
8806  *	@pi: the port
8807  *	@link_okp: value return pointer for link up/down
8808  *	@speedp: value return pointer for speed (Mb/s)
8809  *	@mtup: value return pointer for mtu
8810  *
8811  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8812  *	and MTU for a specified port.  A negative error is returned on
8813  *	failure; 0 on success.
8814  */
t4_get_link_params(struct port_info * pi,unsigned int * link_okp,unsigned int * speedp,unsigned int * mtup)8815 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8816 		       unsigned int *speedp, unsigned int *mtup)
8817 {
8818 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8819 	unsigned int action, link_ok, mtu;
8820 	struct fw_port_cmd port_cmd;
8821 	fw_port_cap32_t linkattr;
8822 	int ret;
8823 
8824 	memset(&port_cmd, 0, sizeof(port_cmd));
8825 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8826 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8827 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8828 	action = (fw_caps == FW_CAPS16
8829 		  ? FW_PORT_ACTION_GET_PORT_INFO
8830 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8831 	port_cmd.action_to_len16 = cpu_to_be32(
8832 		FW_PORT_CMD_ACTION_V(action) |
8833 		FW_LEN16(port_cmd));
8834 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8835 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8836 	if (ret)
8837 		return ret;
8838 
8839 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8840 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8841 
8842 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8843 		linkattr = lstatus_to_fwcap(lstatus);
8844 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8845 	} else {
8846 		u32 lstatus32 =
8847 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8848 
8849 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8850 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8851 		mtu = FW_PORT_CMD_MTU32_G(
8852 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8853 	}
8854 
8855 	if (link_okp)
8856 		*link_okp = link_ok;
8857 	if (speedp)
8858 		*speedp = fwcap_to_speed(linkattr);
8859 	if (mtup)
8860 		*mtup = mtu;
8861 
8862 	return 0;
8863 }
8864 
8865 /**
8866  *      t4_handle_fw_rpl - process a FW reply message
8867  *      @adap: the adapter
8868  *      @rpl: start of the FW message
8869  *
8870  *      Processes a FW message, such as link state change messages.
8871  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)8872 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8873 {
8874 	u8 opcode = *(const u8 *)rpl;
8875 
8876 	/* This might be a port command ... this simplifies the following
8877 	 * conditionals ...  We can get away with pre-dereferencing
8878 	 * action_to_len16 because it's in the first 16 bytes and all messages
8879 	 * will be at least that long.
8880 	 */
8881 	const struct fw_port_cmd *p = (const void *)rpl;
8882 	unsigned int action =
8883 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8884 
8885 	if (opcode == FW_PORT_CMD &&
8886 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8887 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8888 		int i;
8889 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8890 		struct port_info *pi = NULL;
8891 
8892 		for_each_port(adap, i) {
8893 			pi = adap2pinfo(adap, i);
8894 			if (pi->tx_chan == chan)
8895 				break;
8896 		}
8897 
8898 		t4_handle_get_port_info(pi, rpl);
8899 	} else {
8900 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8901 			 opcode);
8902 		return -EINVAL;
8903 	}
8904 	return 0;
8905 }
8906 
get_pci_mode(struct adapter * adapter,struct pci_params * p)8907 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8908 {
8909 	u16 val;
8910 
8911 	if (pci_is_pcie(adapter->pdev)) {
8912 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8913 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8914 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8915 	}
8916 }
8917 
8918 /**
8919  *	init_link_config - initialize a link's SW state
8920  *	@lc: pointer to structure holding the link state
8921  *	@pcaps: link Port Capabilities
8922  *	@acaps: link current Advertised Port Capabilities
8923  *
8924  *	Initializes the SW state maintained for each link, including the link's
8925  *	capabilities and default speed/flow-control/autonegotiation settings.
8926  */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)8927 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8928 			     fw_port_cap32_t acaps)
8929 {
8930 	lc->pcaps = pcaps;
8931 	lc->def_acaps = acaps;
8932 	lc->lpacaps = 0;
8933 	lc->speed_caps = 0;
8934 	lc->speed = 0;
8935 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8936 
8937 	/* For Forward Error Control, we default to whatever the Firmware
8938 	 * tells us the Link is currently advertising.
8939 	 */
8940 	lc->requested_fec = FEC_AUTO;
8941 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8942 
8943 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8944 	 * "enabled" and copy over all of the Physical Port Capabilities
8945 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8946 	 * Auto-Negotiate disabled and select the highest supported speed
8947 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8948 	 * and t4_handle_get_port_info().
8949 	 */
8950 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8951 		lc->acaps = lc->pcaps & ADVERT_MASK;
8952 		lc->autoneg = AUTONEG_ENABLE;
8953 		lc->requested_fc |= PAUSE_AUTONEG;
8954 	} else {
8955 		lc->acaps = 0;
8956 		lc->autoneg = AUTONEG_DISABLE;
8957 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8958 	}
8959 }
8960 
8961 #define CIM_PF_NOACCESS 0xeeeeeeee
8962 
t4_wait_dev_ready(void __iomem * regs)8963 int t4_wait_dev_ready(void __iomem *regs)
8964 {
8965 	u32 whoami;
8966 
8967 	whoami = readl(regs + PL_WHOAMI_A);
8968 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8969 		return 0;
8970 
8971 	msleep(500);
8972 	whoami = readl(regs + PL_WHOAMI_A);
8973 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8974 }
8975 
8976 struct flash_desc {
8977 	u32 vendor_and_model_id;
8978 	u32 size_mb;
8979 };
8980 
t4_get_flash_params(struct adapter * adap)8981 static int t4_get_flash_params(struct adapter *adap)
8982 {
8983 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8984 	 * to the preexisting code.  All flash parts have 64KB sectors.
8985 	 */
8986 	static struct flash_desc supported_flash[] = {
8987 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8988 	};
8989 
8990 	unsigned int part, manufacturer;
8991 	unsigned int density, size = 0;
8992 	u32 flashid = 0;
8993 	int ret;
8994 
8995 	/* Issue a Read ID Command to the Flash part.  We decode supported
8996 	 * Flash parts and their sizes from this.  There's a newer Query
8997 	 * Command which can retrieve detailed geometry information but many
8998 	 * Flash parts don't support it.
8999 	 */
9000 
9001 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
9002 	if (!ret)
9003 		ret = sf1_read(adap, 3, 0, 1, &flashid);
9004 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
9005 	if (ret)
9006 		return ret;
9007 
9008 	/* Check to see if it's one of our non-standard supported Flash parts.
9009 	 */
9010 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9011 		if (supported_flash[part].vendor_and_model_id == flashid) {
9012 			adap->params.sf_size = supported_flash[part].size_mb;
9013 			adap->params.sf_nsec =
9014 				adap->params.sf_size / SF_SEC_SIZE;
9015 			goto found;
9016 		}
9017 
9018 	/* Decode Flash part size.  The code below looks repetitive with
9019 	 * common encodings, but that's not guaranteed in the JEDEC
9020 	 * specification for the Read JEDEC ID command.  The only thing that
9021 	 * we're guaranteed by the JEDEC specification is where the
9022 	 * Manufacturer ID is in the returned result.  After that each
9023 	 * Manufacturer ~could~ encode things completely differently.
9024 	 * Note, all Flash parts must have 64KB sectors.
9025 	 */
9026 	manufacturer = flashid & 0xff;
9027 	switch (manufacturer) {
9028 	case 0x20: { /* Micron/Numonix */
9029 		/* This Density -> Size decoding table is taken from Micron
9030 		 * Data Sheets.
9031 		 */
9032 		density = (flashid >> 16) & 0xff;
9033 		switch (density) {
9034 		case 0x14: /* 1MB */
9035 			size = 1 << 20;
9036 			break;
9037 		case 0x15: /* 2MB */
9038 			size = 1 << 21;
9039 			break;
9040 		case 0x16: /* 4MB */
9041 			size = 1 << 22;
9042 			break;
9043 		case 0x17: /* 8MB */
9044 			size = 1 << 23;
9045 			break;
9046 		case 0x18: /* 16MB */
9047 			size = 1 << 24;
9048 			break;
9049 		case 0x19: /* 32MB */
9050 			size = 1 << 25;
9051 			break;
9052 		case 0x20: /* 64MB */
9053 			size = 1 << 26;
9054 			break;
9055 		case 0x21: /* 128MB */
9056 			size = 1 << 27;
9057 			break;
9058 		case 0x22: /* 256MB */
9059 			size = 1 << 28;
9060 			break;
9061 		}
9062 		break;
9063 	}
9064 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9065 		/* This Density -> Size decoding table is taken from ISSI
9066 		 * Data Sheets.
9067 		 */
9068 		density = (flashid >> 16) & 0xff;
9069 		switch (density) {
9070 		case 0x16: /* 32 MB */
9071 			size = 1 << 25;
9072 			break;
9073 		case 0x17: /* 64MB */
9074 			size = 1 << 26;
9075 			break;
9076 		}
9077 		break;
9078 	}
9079 	case 0xc2: { /* Macronix */
9080 		/* This Density -> Size decoding table is taken from Macronix
9081 		 * Data Sheets.
9082 		 */
9083 		density = (flashid >> 16) & 0xff;
9084 		switch (density) {
9085 		case 0x17: /* 8MB */
9086 			size = 1 << 23;
9087 			break;
9088 		case 0x18: /* 16MB */
9089 			size = 1 << 24;
9090 			break;
9091 		}
9092 		break;
9093 	}
9094 	case 0xef: { /* Winbond */
9095 		/* This Density -> Size decoding table is taken from Winbond
9096 		 * Data Sheets.
9097 		 */
9098 		density = (flashid >> 16) & 0xff;
9099 		switch (density) {
9100 		case 0x17: /* 8MB */
9101 			size = 1 << 23;
9102 			break;
9103 		case 0x18: /* 16MB */
9104 			size = 1 << 24;
9105 			break;
9106 		}
9107 		break;
9108 	}
9109 	}
9110 
9111 	/* If we didn't recognize the FLASH part, that's no real issue: the
9112 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9113 	 * use a FLASH part which is at least 4MB in size and has 64KB
9114 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9115 	 * than 4MB, but that's all we really need.
9116 	 */
9117 	if (size == 0) {
9118 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9119 			 flashid);
9120 		size = 1 << 22;
9121 	}
9122 
9123 	/* Store decoded Flash size and fall through into vetting code. */
9124 	adap->params.sf_size = size;
9125 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9126 
9127 found:
9128 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9129 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9130 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9131 	return 0;
9132 }
9133 
9134 /**
9135  *	t4_prep_adapter - prepare SW and HW for operation
9136  *	@adapter: the adapter
9137  *
9138  *	Initialize adapter SW state for the various HW modules, set initial
9139  *	values for some adapter tunables, take PHYs out of reset, and
9140  *	initialize the MDIO interface.
9141  */
t4_prep_adapter(struct adapter * adapter)9142 int t4_prep_adapter(struct adapter *adapter)
9143 {
9144 	int ret, ver;
9145 	uint16_t device_id;
9146 	u32 pl_rev;
9147 
9148 	get_pci_mode(adapter, &adapter->params.pci);
9149 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9150 
9151 	ret = t4_get_flash_params(adapter);
9152 	if (ret < 0) {
9153 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9154 		return ret;
9155 	}
9156 
9157 	/* Retrieve adapter's device ID
9158 	 */
9159 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9160 	ver = device_id >> 12;
9161 	adapter->params.chip = 0;
9162 	switch (ver) {
9163 	case CHELSIO_T4:
9164 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9165 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9166 		adapter->params.arch.mps_tcam_size =
9167 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9168 		adapter->params.arch.mps_rplc_size = 128;
9169 		adapter->params.arch.nchan = NCHAN;
9170 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9171 		adapter->params.arch.vfcount = 128;
9172 		/* Congestion map is for 4 channels so that
9173 		 * MPS can have 4 priority per port.
9174 		 */
9175 		adapter->params.arch.cng_ch_bits_log = 2;
9176 		break;
9177 	case CHELSIO_T5:
9178 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9179 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9180 		adapter->params.arch.mps_tcam_size =
9181 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9182 		adapter->params.arch.mps_rplc_size = 128;
9183 		adapter->params.arch.nchan = NCHAN;
9184 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9185 		adapter->params.arch.vfcount = 128;
9186 		adapter->params.arch.cng_ch_bits_log = 2;
9187 		break;
9188 	case CHELSIO_T6:
9189 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9190 		adapter->params.arch.sge_fl_db = 0;
9191 		adapter->params.arch.mps_tcam_size =
9192 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9193 		adapter->params.arch.mps_rplc_size = 256;
9194 		adapter->params.arch.nchan = 2;
9195 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9196 		adapter->params.arch.vfcount = 256;
9197 		/* Congestion map will be for 2 channels so that
9198 		 * MPS can have 8 priority per port.
9199 		 */
9200 		adapter->params.arch.cng_ch_bits_log = 3;
9201 		break;
9202 	default:
9203 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9204 			device_id);
9205 		return -EINVAL;
9206 	}
9207 
9208 	adapter->params.cim_la_size = CIMLA_SIZE;
9209 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9210 
9211 	/*
9212 	 * Default port for debugging in case we can't reach FW.
9213 	 */
9214 	adapter->params.nports = 1;
9215 	adapter->params.portvec = 1;
9216 	adapter->params.vpd.cclk = 50000;
9217 
9218 	/* Set PCIe completion timeout to 4 seconds. */
9219 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9220 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9221 	return 0;
9222 }
9223 
9224 /**
9225  *	t4_shutdown_adapter - shut down adapter, host & wire
9226  *	@adapter: the adapter
9227  *
9228  *	Perform an emergency shutdown of the adapter and stop it from
9229  *	continuing any further communication on the ports or DMA to the
9230  *	host.  This is typically used when the adapter and/or firmware
9231  *	have crashed and we want to prevent any further accidental
9232  *	communication with the rest of the world.  This will also force
9233  *	the port Link Status to go down -- if register writes work --
9234  *	which should help our peers figure out that we're down.
9235  */
t4_shutdown_adapter(struct adapter * adapter)9236 int t4_shutdown_adapter(struct adapter *adapter)
9237 {
9238 	int port;
9239 
9240 	t4_intr_disable(adapter);
9241 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9242 	for_each_port(adapter, port) {
9243 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9244 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9245 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9246 
9247 		t4_write_reg(adapter, a_port_cfg,
9248 			     t4_read_reg(adapter, a_port_cfg)
9249 			     & ~SIGNAL_DET_V(1));
9250 	}
9251 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9252 
9253 	return 0;
9254 }
9255 
9256 /**
9257  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9258  *	@adapter: the adapter
9259  *	@qid: the Queue ID
9260  *	@qtype: the Ingress or Egress type for @qid
9261  *	@user: true if this request is for a user mode queue
9262  *	@pbar2_qoffset: BAR2 Queue Offset
9263  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9264  *
9265  *	Returns the BAR2 SGE Queue Registers information associated with the
9266  *	indicated Absolute Queue ID.  These are passed back in return value
9267  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9268  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9269  *
9270  *	This may return an error which indicates that BAR2 SGE Queue
9271  *	registers aren't available.  If an error is not returned, then the
9272  *	following values are returned:
9273  *
9274  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9275  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9276  *
9277  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9278  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9279  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9280  *	then these "Inferred Queue ID" register may not be used.
9281  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)9282 int t4_bar2_sge_qregs(struct adapter *adapter,
9283 		      unsigned int qid,
9284 		      enum t4_bar2_qtype qtype,
9285 		      int user,
9286 		      u64 *pbar2_qoffset,
9287 		      unsigned int *pbar2_qid)
9288 {
9289 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9290 	u64 bar2_page_offset, bar2_qoffset;
9291 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9292 
9293 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9294 	if (!user && is_t4(adapter->params.chip))
9295 		return -EINVAL;
9296 
9297 	/* Get our SGE Page Size parameters.
9298 	 */
9299 	page_shift = adapter->params.sge.hps + 10;
9300 	page_size = 1 << page_shift;
9301 
9302 	/* Get the right Queues per Page parameters for our Queue.
9303 	 */
9304 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9305 		     ? adapter->params.sge.eq_qpp
9306 		     : adapter->params.sge.iq_qpp);
9307 	qpp_mask = (1 << qpp_shift) - 1;
9308 
9309 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9310 	 *  o The BAR2 page the Queue registers will be in.
9311 	 *  o The BAR2 Queue ID.
9312 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9313 	 */
9314 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9315 	bar2_qid = qid & qpp_mask;
9316 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9317 
9318 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9319 	 * hardware will infer the Absolute Queue ID simply from the writes to
9320 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9321 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9322 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9323 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9324 	 * from the BAR2 Page and BAR2 Queue ID.
9325 	 *
9326 	 * One important censequence of this is that some BAR2 SGE registers
9327 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9328 	 * there.  But other registers synthesize the SGE Queue ID purely
9329 	 * from the writes to the registers -- the Write Combined Doorbell
9330 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9331 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9332 	 * Queue ID can be inferred from simple writes.
9333 	 */
9334 	bar2_qoffset = bar2_page_offset;
9335 	bar2_qinferred = (bar2_qid_offset < page_size);
9336 	if (bar2_qinferred) {
9337 		bar2_qoffset += bar2_qid_offset;
9338 		bar2_qid = 0;
9339 	}
9340 
9341 	*pbar2_qoffset = bar2_qoffset;
9342 	*pbar2_qid = bar2_qid;
9343 	return 0;
9344 }
9345 
9346 /**
9347  *	t4_init_devlog_params - initialize adapter->params.devlog
9348  *	@adap: the adapter
9349  *
9350  *	Initialize various fields of the adapter's Firmware Device Log
9351  *	Parameters structure.
9352  */
t4_init_devlog_params(struct adapter * adap)9353 int t4_init_devlog_params(struct adapter *adap)
9354 {
9355 	struct devlog_params *dparams = &adap->params.devlog;
9356 	u32 pf_dparams;
9357 	unsigned int devlog_meminfo;
9358 	struct fw_devlog_cmd devlog_cmd;
9359 	int ret;
9360 
9361 	/* If we're dealing with newer firmware, the Device Log Parameters
9362 	 * are stored in a designated register which allows us to access the
9363 	 * Device Log even if we can't talk to the firmware.
9364 	 */
9365 	pf_dparams =
9366 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9367 	if (pf_dparams) {
9368 		unsigned int nentries, nentries128;
9369 
9370 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9371 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9372 
9373 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9374 		nentries = (nentries128 + 1) * 128;
9375 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9376 
9377 		return 0;
9378 	}
9379 
9380 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9381 	 */
9382 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9383 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9384 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9385 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9386 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9387 			 &devlog_cmd);
9388 	if (ret)
9389 		return ret;
9390 
9391 	devlog_meminfo =
9392 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9393 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9394 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9395 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9396 
9397 	return 0;
9398 }
9399 
9400 /**
9401  *	t4_init_sge_params - initialize adap->params.sge
9402  *	@adapter: the adapter
9403  *
9404  *	Initialize various fields of the adapter's SGE Parameters structure.
9405  */
t4_init_sge_params(struct adapter * adapter)9406 int t4_init_sge_params(struct adapter *adapter)
9407 {
9408 	struct sge_params *sge_params = &adapter->params.sge;
9409 	u32 hps, qpp;
9410 	unsigned int s_hps, s_qpp;
9411 
9412 	/* Extract the SGE Page Size for our PF.
9413 	 */
9414 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9415 	s_hps = (HOSTPAGESIZEPF0_S +
9416 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9417 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9418 
9419 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9420 	 */
9421 	s_qpp = (QUEUESPERPAGEPF0_S +
9422 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9423 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9424 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9425 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9426 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9427 
9428 	return 0;
9429 }
9430 
9431 /**
9432  *      t4_init_tp_params - initialize adap->params.tp
9433  *      @adap: the adapter
9434  *      @sleep_ok: if true we may sleep while awaiting command completion
9435  *
9436  *      Initialize various fields of the adapter's TP Parameters structure.
9437  */
t4_init_tp_params(struct adapter * adap,bool sleep_ok)9438 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9439 {
9440 	u32 param, val, v;
9441 	int chan, ret;
9442 
9443 
9444 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9445 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9446 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9447 
9448 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9449 	for (chan = 0; chan < NCHAN; chan++)
9450 		adap->params.tp.tx_modq[chan] = chan;
9451 
9452 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9453 	 * Configuration.
9454 	 */
9455 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9456 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9457 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9458 
9459 	/* Read current value */
9460 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9461 			      &param, &val);
9462 	if (ret == 0) {
9463 		dev_info(adap->pdev_dev,
9464 			 "Current filter mode/mask 0x%x:0x%x\n",
9465 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9466 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9467 		adap->params.tp.vlan_pri_map =
9468 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9469 		adap->params.tp.filter_mask =
9470 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9471 	} else {
9472 		dev_info(adap->pdev_dev,
9473 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9474 
9475 		/* Incase of older-fw (which doesn't expose the api
9476 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9477 		 * the fw api) combination, fall-back to older method of reading
9478 		 * the filter mode from indirect-register
9479 		 */
9480 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9481 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9482 
9483 		/* With the older-fw and newer-driver combination we might run
9484 		 * into an issue when user wants to use hash filter region but
9485 		 * the filter_mask is zero, in this case filter_mask validation
9486 		 * is tough. To avoid that we set the filter_mask same as filter
9487 		 * mode, which will behave exactly as the older way of ignoring
9488 		 * the filter mask validation.
9489 		 */
9490 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9491 	}
9492 
9493 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9494 		       TP_INGRESS_CONFIG_A, sleep_ok);
9495 
9496 	/* For T6, cache the adapter's compressed error vector
9497 	 * and passing outer header info for encapsulated packets.
9498 	 */
9499 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9500 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9501 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9502 	}
9503 
9504 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9505 	 * shift positions of several elements of the Compressed Filter Tuple
9506 	 * for this adapter which we need frequently ...
9507 	 */
9508 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9509 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9510 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9511 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9512 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9513 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9514 							       PROTOCOL_F);
9515 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9516 								ETHERTYPE_F);
9517 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9518 							       MACMATCH_F);
9519 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9520 								MPSHITTYPE_F);
9521 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9522 							   FRAGMENTATION_F);
9523 
9524 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9525 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9526 	 */
9527 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9528 		adap->params.tp.vnic_shift = -1;
9529 
9530 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9531 	adap->params.tp.hash_filter_mask = v;
9532 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9533 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9534 	return 0;
9535 }
9536 
9537 /**
9538  *      t4_filter_field_shift - calculate filter field shift
9539  *      @adap: the adapter
9540  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9541  *
9542  *      Return the shift position of a filter field within the Compressed
9543  *      Filter Tuple.  The filter field is specified via its selection bit
9544  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9545  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)9546 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9547 {
9548 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9549 	unsigned int sel;
9550 	int field_shift;
9551 
9552 	if ((filter_mode & filter_sel) == 0)
9553 		return -1;
9554 
9555 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9556 		switch (filter_mode & sel) {
9557 		case FCOE_F:
9558 			field_shift += FT_FCOE_W;
9559 			break;
9560 		case PORT_F:
9561 			field_shift += FT_PORT_W;
9562 			break;
9563 		case VNIC_ID_F:
9564 			field_shift += FT_VNIC_ID_W;
9565 			break;
9566 		case VLAN_F:
9567 			field_shift += FT_VLAN_W;
9568 			break;
9569 		case TOS_F:
9570 			field_shift += FT_TOS_W;
9571 			break;
9572 		case PROTOCOL_F:
9573 			field_shift += FT_PROTOCOL_W;
9574 			break;
9575 		case ETHERTYPE_F:
9576 			field_shift += FT_ETHERTYPE_W;
9577 			break;
9578 		case MACMATCH_F:
9579 			field_shift += FT_MACMATCH_W;
9580 			break;
9581 		case MPSHITTYPE_F:
9582 			field_shift += FT_MPSHITTYPE_W;
9583 			break;
9584 		case FRAGMENTATION_F:
9585 			field_shift += FT_FRAGMENTATION_W;
9586 			break;
9587 		}
9588 	}
9589 	return field_shift;
9590 }
9591 
t4_init_rss_mode(struct adapter * adap,int mbox)9592 int t4_init_rss_mode(struct adapter *adap, int mbox)
9593 {
9594 	int i, ret;
9595 	struct fw_rss_vi_config_cmd rvc;
9596 
9597 	memset(&rvc, 0, sizeof(rvc));
9598 
9599 	for_each_port(adap, i) {
9600 		struct port_info *p = adap2pinfo(adap, i);
9601 
9602 		rvc.op_to_viid =
9603 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9604 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9605 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9606 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9607 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9608 		if (ret)
9609 			return ret;
9610 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9611 	}
9612 	return 0;
9613 }
9614 
9615 /**
9616  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9617  *	@pi: the port_info
9618  *	@mbox: mailbox to use for the FW command
9619  *	@port: physical port associated with the VI
9620  *	@pf: the PF owning the VI
9621  *	@vf: the VF owning the VI
9622  *	@mac: the MAC address of the VI
9623  *
9624  *	Allocates a virtual interface for the given physical port.  If @mac is
9625  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9626  *	@mac should be large enough to hold an Ethernet address.
9627  *	Returns < 0 on error.
9628  */
t4_init_portinfo(struct port_info * pi,int mbox,int port,int pf,int vf,u8 mac[])9629 int t4_init_portinfo(struct port_info *pi, int mbox,
9630 		     int port, int pf, int vf, u8 mac[])
9631 {
9632 	struct adapter *adapter = pi->adapter;
9633 	unsigned int fw_caps = adapter->params.fw_caps_support;
9634 	struct fw_port_cmd cmd;
9635 	unsigned int rss_size;
9636 	enum fw_port_type port_type;
9637 	int mdio_addr;
9638 	fw_port_cap32_t pcaps, acaps;
9639 	u8 vivld = 0, vin = 0;
9640 	int ret;
9641 
9642 	/* If we haven't yet determined whether we're talking to Firmware
9643 	 * which knows the new 32-bit Port Capabilities, it's time to find
9644 	 * out now.  This will also tell new Firmware to send us Port Status
9645 	 * Updates using the new 32-bit Port Capabilities version of the
9646 	 * Port Information message.
9647 	 */
9648 	if (fw_caps == FW_CAPS_UNKNOWN) {
9649 		u32 param, val;
9650 
9651 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9652 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9653 		val = 1;
9654 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9655 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9656 		adapter->params.fw_caps_support = fw_caps;
9657 	}
9658 
9659 	memset(&cmd, 0, sizeof(cmd));
9660 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9661 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9662 				       FW_PORT_CMD_PORTID_V(port));
9663 	cmd.action_to_len16 = cpu_to_be32(
9664 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9665 				     ? FW_PORT_ACTION_GET_PORT_INFO
9666 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9667 		FW_LEN16(cmd));
9668 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9669 	if (ret)
9670 		return ret;
9671 
9672 	/* Extract the various fields from the Port Information message.
9673 	 */
9674 	if (fw_caps == FW_CAPS16) {
9675 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9676 
9677 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9678 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9679 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9680 			     : -1);
9681 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9682 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9683 	} else {
9684 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9685 
9686 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9687 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9688 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9689 			     : -1);
9690 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9691 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9692 	}
9693 
9694 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9695 			  &vivld, &vin);
9696 	if (ret < 0)
9697 		return ret;
9698 
9699 	pi->viid = ret;
9700 	pi->tx_chan = port;
9701 	pi->lport = port;
9702 	pi->rss_size = rss_size;
9703 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9704 
9705 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9706 	 * save the returned values.
9707 	 */
9708 	if (adapter->params.viid_smt_extn_support) {
9709 		pi->vivld = vivld;
9710 		pi->vin = vin;
9711 	} else {
9712 		/* Retrieve the values from VIID */
9713 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9714 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9715 	}
9716 
9717 	pi->port_type = port_type;
9718 	pi->mdio_addr = mdio_addr;
9719 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9720 
9721 	init_link_config(&pi->link_cfg, pcaps, acaps);
9722 	return 0;
9723 }
9724 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)9725 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9726 {
9727 	u8 addr[6];
9728 	int ret, i, j = 0;
9729 
9730 	for_each_port(adap, i) {
9731 		struct port_info *pi = adap2pinfo(adap, i);
9732 
9733 		while ((adap->params.portvec & (1 << j)) == 0)
9734 			j++;
9735 
9736 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9737 		if (ret)
9738 			return ret;
9739 
9740 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9741 		j++;
9742 	}
9743 	return 0;
9744 }
9745 
t4_init_port_mirror(struct port_info * pi,u8 mbox,u8 port,u8 pf,u8 vf,u16 * mirror_viid)9746 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9747 			u16 *mirror_viid)
9748 {
9749 	int ret;
9750 
9751 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9752 			  NULL, NULL);
9753 	if (ret < 0)
9754 		return ret;
9755 
9756 	if (mirror_viid)
9757 		*mirror_viid = ret;
9758 
9759 	return 0;
9760 }
9761 
9762 /**
9763  *	t4_read_cimq_cfg - read CIM queue configuration
9764  *	@adap: the adapter
9765  *	@base: holds the queue base addresses in bytes
9766  *	@size: holds the queue sizes in bytes
9767  *	@thres: holds the queue full thresholds in bytes
9768  *
9769  *	Returns the current configuration of the CIM queues, starting with
9770  *	the IBQs, then the OBQs.
9771  */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)9772 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9773 {
9774 	unsigned int i, v;
9775 	int cim_num_obq = is_t4(adap->params.chip) ?
9776 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9777 
9778 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9779 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9780 			     QUENUMSELECT_V(i));
9781 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9782 		/* value is in 256-byte units */
9783 		*base++ = CIMQBASE_G(v) * 256;
9784 		*size++ = CIMQSIZE_G(v) * 256;
9785 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9786 	}
9787 	for (i = 0; i < cim_num_obq; i++) {
9788 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9789 			     QUENUMSELECT_V(i));
9790 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9791 		/* value is in 256-byte units */
9792 		*base++ = CIMQBASE_G(v) * 256;
9793 		*size++ = CIMQSIZE_G(v) * 256;
9794 	}
9795 }
9796 
9797 /**
9798  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9799  *	@adap: the adapter
9800  *	@qid: the queue index
9801  *	@data: where to store the queue contents
9802  *	@n: capacity of @data in 32-bit words
9803  *
9804  *	Reads the contents of the selected CIM queue starting at address 0 up
9805  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9806  *	error and the number of 32-bit words actually read on success.
9807  */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9808 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9809 {
9810 	int i, err, attempts;
9811 	unsigned int addr;
9812 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9813 
9814 	if (qid > 5 || (n & 3))
9815 		return -EINVAL;
9816 
9817 	addr = qid * nwords;
9818 	if (n > nwords)
9819 		n = nwords;
9820 
9821 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9822 	 * Wait for 1 Sec with a delay of 1 usec.
9823 	 */
9824 	attempts = 1000000;
9825 
9826 	for (i = 0; i < n; i++, addr++) {
9827 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9828 			     IBQDBGEN_F);
9829 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9830 				      attempts, 1);
9831 		if (err)
9832 			return err;
9833 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9834 	}
9835 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9836 	return i;
9837 }
9838 
9839 /**
9840  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9841  *	@adap: the adapter
9842  *	@qid: the queue index
9843  *	@data: where to store the queue contents
9844  *	@n: capacity of @data in 32-bit words
9845  *
9846  *	Reads the contents of the selected CIM queue starting at address 0 up
9847  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9848  *	error and the number of 32-bit words actually read on success.
9849  */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9850 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9851 {
9852 	int i, err;
9853 	unsigned int addr, v, nwords;
9854 	int cim_num_obq = is_t4(adap->params.chip) ?
9855 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9856 
9857 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9858 		return -EINVAL;
9859 
9860 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9861 		     QUENUMSELECT_V(qid));
9862 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9863 
9864 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9865 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9866 	if (n > nwords)
9867 		n = nwords;
9868 
9869 	for (i = 0; i < n; i++, addr++) {
9870 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9871 			     OBQDBGEN_F);
9872 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9873 				      2, 1);
9874 		if (err)
9875 			return err;
9876 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9877 	}
9878 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9879 	return i;
9880 }
9881 
9882 /**
9883  *	t4_cim_read - read a block from CIM internal address space
9884  *	@adap: the adapter
9885  *	@addr: the start address within the CIM address space
9886  *	@n: number of words to read
9887  *	@valp: where to store the result
9888  *
9889  *	Reads a block of 4-byte words from the CIM intenal address space.
9890  */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)9891 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9892 		unsigned int *valp)
9893 {
9894 	int ret = 0;
9895 
9896 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9897 		return -EBUSY;
9898 
9899 	for ( ; !ret && n--; addr += 4) {
9900 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9901 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9902 				      0, 5, 2);
9903 		if (!ret)
9904 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9905 	}
9906 	return ret;
9907 }
9908 
9909 /**
9910  *	t4_cim_write - write a block into CIM internal address space
9911  *	@adap: the adapter
9912  *	@addr: the start address within the CIM address space
9913  *	@n: number of words to write
9914  *	@valp: set of values to write
9915  *
9916  *	Writes a block of 4-byte words into the CIM intenal address space.
9917  */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)9918 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9919 		 const unsigned int *valp)
9920 {
9921 	int ret = 0;
9922 
9923 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9924 		return -EBUSY;
9925 
9926 	for ( ; !ret && n--; addr += 4) {
9927 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9928 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9929 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9930 				      0, 5, 2);
9931 	}
9932 	return ret;
9933 }
9934 
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)9935 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9936 			 unsigned int val)
9937 {
9938 	return t4_cim_write(adap, addr, 1, &val);
9939 }
9940 
9941 /**
9942  *	t4_cim_read_la - read CIM LA capture buffer
9943  *	@adap: the adapter
9944  *	@la_buf: where to store the LA data
9945  *	@wrptr: the HW write pointer within the capture buffer
9946  *
9947  *	Reads the contents of the CIM LA buffer with the most recent entry at
9948  *	the end	of the returned data and with the entry at @wrptr first.
9949  *	We try to leave the LA in the running state we find it in.
9950  */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)9951 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9952 {
9953 	int i, ret;
9954 	unsigned int cfg, val, idx;
9955 
9956 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9957 	if (ret)
9958 		return ret;
9959 
9960 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9961 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9962 		if (ret)
9963 			return ret;
9964 	}
9965 
9966 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9967 	if (ret)
9968 		goto restart;
9969 
9970 	idx = UPDBGLAWRPTR_G(val);
9971 	if (wrptr)
9972 		*wrptr = idx;
9973 
9974 	for (i = 0; i < adap->params.cim_la_size; i++) {
9975 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9976 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9977 		if (ret)
9978 			break;
9979 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9980 		if (ret)
9981 			break;
9982 		if (val & UPDBGLARDEN_F) {
9983 			ret = -ETIMEDOUT;
9984 			break;
9985 		}
9986 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9987 		if (ret)
9988 			break;
9989 
9990 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9991 		 * identify the 32-bit portion of the full 312-bit data
9992 		 */
9993 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9994 			idx = (idx & 0xff0) + 0x10;
9995 		else
9996 			idx++;
9997 		/* address can't exceed 0xfff */
9998 		idx &= UPDBGLARDPTR_M;
9999 	}
10000 restart:
10001 	if (cfg & UPDBGLAEN_F) {
10002 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
10003 				      cfg & ~UPDBGLARDEN_F);
10004 		if (!ret)
10005 			ret = r;
10006 	}
10007 	return ret;
10008 }
10009 
10010 /**
10011  *	t4_tp_read_la - read TP LA capture buffer
10012  *	@adap: the adapter
10013  *	@la_buf: where to store the LA data
10014  *	@wrptr: the HW write pointer within the capture buffer
10015  *
10016  *	Reads the contents of the TP LA buffer with the most recent entry at
10017  *	the end	of the returned data and with the entry at @wrptr first.
10018  *	We leave the LA in the running state we find it in.
10019  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)10020 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10021 {
10022 	bool last_incomplete;
10023 	unsigned int i, cfg, val, idx;
10024 
10025 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10026 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10027 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10028 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10029 
10030 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10031 	idx = DBGLAWPTR_G(val);
10032 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10033 	if (last_incomplete)
10034 		idx = (idx + 1) & DBGLARPTR_M;
10035 	if (wrptr)
10036 		*wrptr = idx;
10037 
10038 	val &= 0xffff;
10039 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10040 	val |= adap->params.tp.la_mask;
10041 
10042 	for (i = 0; i < TPLA_SIZE; i++) {
10043 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10044 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10045 		idx = (idx + 1) & DBGLARPTR_M;
10046 	}
10047 
10048 	/* Wipe out last entry if it isn't valid */
10049 	if (last_incomplete)
10050 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10051 
10052 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10053 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10054 			     cfg | adap->params.tp.la_mask);
10055 }
10056 
10057 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10058  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10059  * state for more than the Warning Threshold then we'll issue a warning about
10060  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10061  * appears to be hung every Warning Repeat second till the situation clears.
10062  * If the situation clears, we'll note that as well.
10063  */
10064 #define SGE_IDMA_WARN_THRESH 1
10065 #define SGE_IDMA_WARN_REPEAT 300
10066 
10067 /**
10068  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10069  *	@adapter: the adapter
10070  *	@idma: the adapter IDMA Monitor state
10071  *
10072  *	Initialize the state of an SGE Ingress DMA Monitor.
10073  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)10074 void t4_idma_monitor_init(struct adapter *adapter,
10075 			  struct sge_idma_monitor_state *idma)
10076 {
10077 	/* Initialize the state variables for detecting an SGE Ingress DMA
10078 	 * hang.  The SGE has internal counters which count up on each clock
10079 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10080 	 * same state they were on the previous clock tick.  The clock used is
10081 	 * the Core Clock so we have a limit on the maximum "time" they can
10082 	 * record; typically a very small number of seconds.  For instance,
10083 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10084 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10085 	 * risk of having the "timers" overflow and give us the flexibility to
10086 	 * maintain a Hung SGE State Machine of our own which operates across
10087 	 * a longer time frame.
10088 	 */
10089 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10090 	idma->idma_stalled[0] = 0;
10091 	idma->idma_stalled[1] = 0;
10092 }
10093 
10094 /**
10095  *	t4_idma_monitor - monitor SGE Ingress DMA state
10096  *	@adapter: the adapter
10097  *	@idma: the adapter IDMA Monitor state
10098  *	@hz: number of ticks/second
10099  *	@ticks: number of ticks since the last IDMA Monitor call
10100  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)10101 void t4_idma_monitor(struct adapter *adapter,
10102 		     struct sge_idma_monitor_state *idma,
10103 		     int hz, int ticks)
10104 {
10105 	int i, idma_same_state_cnt[2];
10106 
10107 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10108 	  * are counters inside the SGE which count up on each clock when the
10109 	  * SGE finds its Ingress DMA State Engines in the same states they
10110 	  * were in the previous clock.  The counters will peg out at
10111 	  * 0xffffffff without wrapping around so once they pass the 1s
10112 	  * threshold they'll stay above that till the IDMA state changes.
10113 	  */
10114 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10115 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10116 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10117 
10118 	for (i = 0; i < 2; i++) {
10119 		u32 debug0, debug11;
10120 
10121 		/* If the Ingress DMA Same State Counter ("timer") is less
10122 		 * than 1s, then we can reset our synthesized Stall Timer and
10123 		 * continue.  If we have previously emitted warnings about a
10124 		 * potential stalled Ingress Queue, issue a note indicating
10125 		 * that the Ingress Queue has resumed forward progress.
10126 		 */
10127 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10128 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10129 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10130 					 "resumed after %d seconds\n",
10131 					 i, idma->idma_qid[i],
10132 					 idma->idma_stalled[i] / hz);
10133 			idma->idma_stalled[i] = 0;
10134 			continue;
10135 		}
10136 
10137 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10138 		 * domain.  The first time we get here it'll be because we
10139 		 * passed the 1s Threshold; each additional time it'll be
10140 		 * because the RX Timer Callback is being fired on its regular
10141 		 * schedule.
10142 		 *
10143 		 * If the stall is below our Potential Hung Ingress Queue
10144 		 * Warning Threshold, continue.
10145 		 */
10146 		if (idma->idma_stalled[i] == 0) {
10147 			idma->idma_stalled[i] = hz;
10148 			idma->idma_warn[i] = 0;
10149 		} else {
10150 			idma->idma_stalled[i] += ticks;
10151 			idma->idma_warn[i] -= ticks;
10152 		}
10153 
10154 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10155 			continue;
10156 
10157 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10158 		 */
10159 		if (idma->idma_warn[i] > 0)
10160 			continue;
10161 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10162 
10163 		/* Read and save the SGE IDMA State and Queue ID information.
10164 		 * We do this every time in case it changes across time ...
10165 		 * can't be too careful ...
10166 		 */
10167 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10168 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10169 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10170 
10171 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10172 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10173 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10174 
10175 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10176 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10177 			 i, idma->idma_qid[i], idma->idma_state[i],
10178 			 idma->idma_stalled[i] / hz,
10179 			 debug0, debug11);
10180 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10181 	}
10182 }
10183 
10184 /**
10185  *	t4_load_cfg - download config file
10186  *	@adap: the adapter
10187  *	@cfg_data: the cfg text file to write
10188  *	@size: text file size
10189  *
10190  *	Write the supplied config text file to the card's serial flash.
10191  */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10192 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10193 {
10194 	int ret, i, n, cfg_addr;
10195 	unsigned int addr;
10196 	unsigned int flash_cfg_start_sec;
10197 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10198 
10199 	cfg_addr = t4_flash_cfg_addr(adap);
10200 	if (cfg_addr < 0)
10201 		return cfg_addr;
10202 
10203 	addr = cfg_addr;
10204 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10205 
10206 	if (size > FLASH_CFG_MAX_SIZE) {
10207 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10208 			FLASH_CFG_MAX_SIZE);
10209 		return -EFBIG;
10210 	}
10211 
10212 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10213 			 sf_sec_size);
10214 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10215 				     flash_cfg_start_sec + i - 1);
10216 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10217 	 * with the on-adapter Firmware Configuration File.
10218 	 */
10219 	if (ret || size == 0)
10220 		goto out;
10221 
10222 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10223 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10224 		if ((size - i) <  SF_PAGE_SIZE)
10225 			n = size - i;
10226 		else
10227 			n = SF_PAGE_SIZE;
10228 		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10229 		if (ret)
10230 			goto out;
10231 
10232 		addr += SF_PAGE_SIZE;
10233 		cfg_data += SF_PAGE_SIZE;
10234 	}
10235 
10236 out:
10237 	if (ret)
10238 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10239 			(size == 0 ? "clear" : "download"), ret);
10240 	return ret;
10241 }
10242 
10243 /**
10244  *	t4_set_vf_mac - Set MAC address for the specified VF
10245  *	@adapter: The adapter
10246  *	@vf: one of the VFs instantiated by the specified PF
10247  *	@naddr: the number of MAC addresses
10248  *	@addr: the MAC address(es) to be set to the specified VF
10249  */
t4_set_vf_mac_acl(struct adapter * adapter,unsigned int vf,unsigned int naddr,u8 * addr)10250 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10251 		      unsigned int naddr, u8 *addr)
10252 {
10253 	struct fw_acl_mac_cmd cmd;
10254 
10255 	memset(&cmd, 0, sizeof(cmd));
10256 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10257 				    FW_CMD_REQUEST_F |
10258 				    FW_CMD_WRITE_F |
10259 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10260 				    FW_ACL_MAC_CMD_VFN_V(vf));
10261 
10262 	/* Note: Do not enable the ACL */
10263 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10264 	cmd.nmac = naddr;
10265 
10266 	switch (adapter->pf) {
10267 	case 3:
10268 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10269 		break;
10270 	case 2:
10271 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10272 		break;
10273 	case 1:
10274 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10275 		break;
10276 	case 0:
10277 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10278 		break;
10279 	}
10280 
10281 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10282 }
10283 
10284 /**
10285  * t4_read_pace_tbl - read the pace table
10286  * @adap: the adapter
10287  * @pace_vals: holds the returned values
10288  *
10289  * Returns the values of TP's pace table in microseconds.
10290  */
t4_read_pace_tbl(struct adapter * adap,unsigned int pace_vals[NTX_SCHED])10291 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10292 {
10293 	unsigned int i, v;
10294 
10295 	for (i = 0; i < NTX_SCHED; i++) {
10296 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10297 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10298 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10299 	}
10300 }
10301 
10302 /**
10303  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10304  * @adap: the adapter
10305  * @sched: the scheduler index
10306  * @kbps: the byte rate in Kbps
10307  * @ipg: the interpacket delay in tenths of nanoseconds
10308  * @sleep_ok: if true we may sleep while awaiting command completion
10309  *
10310  * Return the current configuration of a HW Tx scheduler.
10311  */
t4_get_tx_sched(struct adapter * adap,unsigned int sched,unsigned int * kbps,unsigned int * ipg,bool sleep_ok)10312 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10313 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10314 {
10315 	unsigned int v, addr, bpt, cpt;
10316 
10317 	if (kbps) {
10318 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10319 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10320 		if (sched & 1)
10321 			v >>= 16;
10322 		bpt = (v >> 8) & 0xff;
10323 		cpt = v & 0xff;
10324 		if (!cpt) {
10325 			*kbps = 0;	/* scheduler disabled */
10326 		} else {
10327 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10328 			*kbps = (v * bpt) / 125;
10329 		}
10330 	}
10331 	if (ipg) {
10332 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10333 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10334 		if (sched & 1)
10335 			v >>= 16;
10336 		v &= 0xffff;
10337 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10338 	}
10339 }
10340 
10341 /* t4_sge_ctxt_rd - read an SGE context through FW
10342  * @adap: the adapter
10343  * @mbox: mailbox to use for the FW command
10344  * @cid: the context id
10345  * @ctype: the context type
10346  * @data: where to store the context data
10347  *
10348  * Issues a FW command through the given mailbox to read an SGE context.
10349  */
t4_sge_ctxt_rd(struct adapter * adap,unsigned int mbox,unsigned int cid,enum ctxt_type ctype,u32 * data)10350 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10351 		   enum ctxt_type ctype, u32 *data)
10352 {
10353 	struct fw_ldst_cmd c;
10354 	int ret;
10355 
10356 	if (ctype == CTXT_FLM)
10357 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10358 	else
10359 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10360 
10361 	memset(&c, 0, sizeof(c));
10362 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10363 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10364 					FW_LDST_CMD_ADDRSPACE_V(ret));
10365 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10366 	c.u.idctxt.physid = cpu_to_be32(cid);
10367 
10368 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10369 	if (ret == 0) {
10370 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10371 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10372 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10373 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10374 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10375 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10376 	}
10377 	return ret;
10378 }
10379 
10380 /**
10381  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10382  * @adap: the adapter
10383  * @cid: the context id
10384  * @ctype: the context type
10385  * @data: where to store the context data
10386  *
10387  * Reads an SGE context directly, bypassing FW.  This is only for
10388  * debugging when FW is unavailable.
10389  */
t4_sge_ctxt_rd_bd(struct adapter * adap,unsigned int cid,enum ctxt_type ctype,u32 * data)10390 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10391 		      enum ctxt_type ctype, u32 *data)
10392 {
10393 	int i, ret;
10394 
10395 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10396 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10397 	if (!ret)
10398 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10399 			*data++ = t4_read_reg(adap, i);
10400 	return ret;
10401 }
10402 
t4_sched_params(struct adapter * adapter,u8 type,u8 level,u8 mode,u8 rateunit,u8 ratemode,u8 channel,u8 class,u32 minrate,u32 maxrate,u16 weight,u16 pktsize,u16 burstsize)10403 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10404 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10405 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10406 		    u16 burstsize)
10407 {
10408 	struct fw_sched_cmd cmd;
10409 
10410 	memset(&cmd, 0, sizeof(cmd));
10411 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10412 				      FW_CMD_REQUEST_F |
10413 				      FW_CMD_WRITE_F);
10414 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10415 
10416 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10417 	cmd.u.params.type = type;
10418 	cmd.u.params.level = level;
10419 	cmd.u.params.mode = mode;
10420 	cmd.u.params.ch = channel;
10421 	cmd.u.params.cl = class;
10422 	cmd.u.params.unit = rateunit;
10423 	cmd.u.params.rate = ratemode;
10424 	cmd.u.params.min = cpu_to_be32(minrate);
10425 	cmd.u.params.max = cpu_to_be32(maxrate);
10426 	cmd.u.params.weight = cpu_to_be16(weight);
10427 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10428 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10429 
10430 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10431 			       NULL, 1);
10432 }
10433 
10434 /**
10435  *	t4_i2c_rd - read I2C data from adapter
10436  *	@adap: the adapter
10437  *	@mbox: mailbox to use for the FW command
10438  *	@port: Port number if per-port device; <0 if not
10439  *	@devid: per-port device ID or absolute device ID
10440  *	@offset: byte offset into device I2C space
10441  *	@len: byte length of I2C space data
10442  *	@buf: buffer in which to return I2C data
10443  *
10444  *	Reads the I2C data from the indicated device and location.
10445  */
t4_i2c_rd(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)10446 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10447 	      unsigned int devid, unsigned int offset,
10448 	      unsigned int len, u8 *buf)
10449 {
10450 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10451 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10452 	int ret = 0;
10453 
10454 	if (len > I2C_PAGE_SIZE)
10455 		return -EINVAL;
10456 
10457 	/* Dont allow reads that spans multiple pages */
10458 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10459 		return -EINVAL;
10460 
10461 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10462 	ldst_cmd.op_to_addrspace =
10463 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10464 			    FW_CMD_REQUEST_F |
10465 			    FW_CMD_READ_F |
10466 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10467 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10468 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10469 	ldst_cmd.u.i2c.did = devid;
10470 
10471 	while (len > 0) {
10472 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10473 
10474 		ldst_cmd.u.i2c.boffset = offset;
10475 		ldst_cmd.u.i2c.blen = i2c_len;
10476 
10477 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10478 				 &ldst_rpl);
10479 		if (ret)
10480 			break;
10481 
10482 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10483 		offset += i2c_len;
10484 		buf += i2c_len;
10485 		len -= i2c_len;
10486 	}
10487 
10488 	return ret;
10489 }
10490 
10491 /**
10492  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10493  *      @adap: the adapter
10494  *      @mbox: mailbox to use for the FW command
10495  *      @vf: one of the VFs instantiated by the specified PF
10496  *      @vlan: The vlanid to be set
10497  */
t4_set_vlan_acl(struct adapter * adap,unsigned int mbox,unsigned int vf,u16 vlan)10498 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10499 		    u16 vlan)
10500 {
10501 	struct fw_acl_vlan_cmd vlan_cmd;
10502 	unsigned int enable;
10503 
10504 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10505 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10506 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10507 					 FW_CMD_REQUEST_F |
10508 					 FW_CMD_WRITE_F |
10509 					 FW_CMD_EXEC_F |
10510 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10511 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10512 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10513 	/* Drop all packets that donot match vlan id */
10514 	vlan_cmd.dropnovlan_fm = (enable
10515 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10516 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10517 	if (enable != 0) {
10518 		vlan_cmd.nvlan = 1;
10519 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10520 	}
10521 
10522 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10523 }
10524 
10525 /**
10526  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10527  *	@device_id: the device ID to write.
10528  *	@boot_data: the boot image to modify.
10529  *
10530  *	Write the supplied device ID to the boot BIOS image.
10531  */
modify_device_id(int device_id,u8 * boot_data)10532 static void modify_device_id(int device_id, u8 *boot_data)
10533 {
10534 	struct cxgb4_pcir_data *pcir_header;
10535 	struct legacy_pci_rom_hdr *header;
10536 	u8 *cur_header = boot_data;
10537 	u16 pcir_offset;
10538 
10539 	 /* Loop through all chained images and change the device ID's */
10540 	do {
10541 		header = (struct legacy_pci_rom_hdr *)cur_header;
10542 		pcir_offset = le16_to_cpu(header->pcir_offset);
10543 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10544 			      pcir_offset);
10545 
10546 		/**
10547 		 * Only modify the Device ID if code type is Legacy or HP.
10548 		 * 0x00: Okay to modify
10549 		 * 0x01: FCODE. Do not modify
10550 		 * 0x03: Okay to modify
10551 		 * 0x04-0xFF: Do not modify
10552 		 */
10553 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10554 			u8 csum = 0;
10555 			int i;
10556 
10557 			/**
10558 			 * Modify Device ID to match current adatper
10559 			 */
10560 			pcir_header->device_id = cpu_to_le16(device_id);
10561 
10562 			/**
10563 			 * Set checksum temporarily to 0.
10564 			 * We will recalculate it later.
10565 			 */
10566 			header->cksum = 0x0;
10567 
10568 			/**
10569 			 * Calculate and update checksum
10570 			 */
10571 			for (i = 0; i < (header->size512 * 512); i++)
10572 				csum += cur_header[i];
10573 
10574 			/**
10575 			 * Invert summed value to create the checksum
10576 			 * Writing new checksum value directly to the boot data
10577 			 */
10578 			cur_header[7] = -csum;
10579 
10580 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10581 			/**
10582 			 * Modify Device ID to match current adatper
10583 			 */
10584 			pcir_header->device_id = cpu_to_le16(device_id);
10585 		}
10586 
10587 		/**
10588 		 * Move header pointer up to the next image in the ROM.
10589 		 */
10590 		cur_header += header->size512 * 512;
10591 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10592 }
10593 
10594 /**
10595  *	t4_load_boot - download boot flash
10596  *	@adap: the adapter
10597  *	@boot_data: the boot image to write
10598  *	@boot_addr: offset in flash to write boot_data
10599  *	@size: image size
10600  *
10601  *	Write the supplied boot image to the card's serial flash.
10602  *	The boot image has the following sections: a 28-byte header and the
10603  *	boot image.
10604  */
t4_load_boot(struct adapter * adap,u8 * boot_data,unsigned int boot_addr,unsigned int size)10605 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10606 		 unsigned int boot_addr, unsigned int size)
10607 {
10608 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10609 	unsigned int boot_sector = (boot_addr * 1024);
10610 	struct cxgb4_pci_exp_rom_header *header;
10611 	struct cxgb4_pcir_data *pcir_header;
10612 	int pcir_offset;
10613 	unsigned int i;
10614 	u16 device_id;
10615 	int ret, addr;
10616 
10617 	/**
10618 	 * Make sure the boot image does not encroach on the firmware region
10619 	 */
10620 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10621 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10622 		return -EFBIG;
10623 	}
10624 
10625 	/* Get boot header */
10626 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10627 	pcir_offset = le16_to_cpu(header->pcir_offset);
10628 	/* PCIR Data Structure */
10629 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10630 
10631 	/**
10632 	 * Perform some primitive sanity testing to avoid accidentally
10633 	 * writing garbage over the boot sectors.  We ought to check for
10634 	 * more but it's not worth it for now ...
10635 	 */
10636 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10637 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10638 		return -EFBIG;
10639 	}
10640 
10641 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10642 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10643 		return -EINVAL;
10644 	}
10645 
10646 	/* Check PCI header signature */
10647 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10648 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10649 		return -EINVAL;
10650 	}
10651 
10652 	/* Check Vendor ID matches Chelsio ID*/
10653 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10654 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10655 		return -EINVAL;
10656 	}
10657 
10658 	/**
10659 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10660 	 * and Boot configuration data sections. These 3 boot sections span
10661 	 * sectors 0 to 7 in flash and live right before the FW image location.
10662 	 */
10663 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10664 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10665 				     (boot_sector >> 16) + i - 1);
10666 
10667 	/**
10668 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10669 	 * with the on-adapter option ROM file
10670 	 */
10671 	if (ret || size == 0)
10672 		goto out;
10673 	/* Retrieve adapter's device ID */
10674 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10675        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10676 	device_id = device_id & 0xf0ff;
10677 
10678 	 /* Check PCIE Device ID */
10679 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10680 		/**
10681 		 * Change the device ID in the Boot BIOS image to match
10682 		 * the Device ID of the current adapter.
10683 		 */
10684 		modify_device_id(device_id, boot_data);
10685 	}
10686 
10687 	/**
10688 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10689 	 * we finish copying the rest of the boot image. This will ensure
10690 	 * that the BIOS boot header will only be written if the boot image
10691 	 * was written in full.
10692 	 */
10693 	addr = boot_sector;
10694 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10695 		addr += SF_PAGE_SIZE;
10696 		boot_data += SF_PAGE_SIZE;
10697 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10698 				     false);
10699 		if (ret)
10700 			goto out;
10701 	}
10702 
10703 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10704 			     (const u8 *)header, false);
10705 
10706 out:
10707 	if (ret)
10708 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10709 			ret);
10710 	return ret;
10711 }
10712 
10713 /**
10714  *	t4_flash_bootcfg_addr - return the address of the flash
10715  *	optionrom configuration
10716  *	@adapter: the adapter
10717  *
10718  *	Return the address within the flash where the OptionROM Configuration
10719  *	is stored, or an error if the device FLASH is too small to contain
10720  *	a OptionROM Configuration.
10721  */
t4_flash_bootcfg_addr(struct adapter * adapter)10722 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10723 {
10724 	/**
10725 	 * If the device FLASH isn't large enough to hold a Firmware
10726 	 * Configuration File, return an error.
10727 	 */
10728 	if (adapter->params.sf_size <
10729 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10730 		return -ENOSPC;
10731 
10732 	return FLASH_BOOTCFG_START;
10733 }
10734 
t4_load_bootcfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10735 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10736 {
10737 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10738 	struct cxgb4_bootcfg_data *header;
10739 	unsigned int flash_cfg_start_sec;
10740 	unsigned int addr, npad;
10741 	int ret, i, n, cfg_addr;
10742 
10743 	cfg_addr = t4_flash_bootcfg_addr(adap);
10744 	if (cfg_addr < 0)
10745 		return cfg_addr;
10746 
10747 	addr = cfg_addr;
10748 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10749 
10750 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10751 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10752 			FLASH_BOOTCFG_MAX_SIZE);
10753 		return -EFBIG;
10754 	}
10755 
10756 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10757 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10758 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10759 		ret = -EINVAL;
10760 		goto out;
10761 	}
10762 
10763 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10764 			 sf_sec_size);
10765 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10766 				     flash_cfg_start_sec + i - 1);
10767 
10768 	/**
10769 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10770 	 * with the on-adapter OptionROM Configuration File.
10771 	 */
10772 	if (ret || size == 0)
10773 		goto out;
10774 
10775 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10776 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10777 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10778 
10779 		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10780 		if (ret)
10781 			goto out;
10782 
10783 		addr += SF_PAGE_SIZE;
10784 		cfg_data += SF_PAGE_SIZE;
10785 	}
10786 
10787 	npad = ((size + 4 - 1) & ~3) - size;
10788 	for (i = 0; i < npad; i++) {
10789 		u8 data = 0;
10790 
10791 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10792 				     false);
10793 		if (ret)
10794 			goto out;
10795 	}
10796 
10797 out:
10798 	if (ret)
10799 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10800 			(size == 0 ? "clear" : "download"), ret);
10801 	return ret;
10802 }
10803