• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12 
tcp_fastopen_init_key_once(struct net * net)13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 	struct tcp_fastopen_context *ctxt;
17 
18 	rcu_read_lock();
19 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 	if (ctxt) {
21 		rcu_read_unlock();
22 		return;
23 	}
24 	rcu_read_unlock();
25 
26 	/* tcp_fastopen_reset_cipher publishes the new context
27 	 * atomically, so we allow this race happening here.
28 	 *
29 	 * All call sites of tcp_fastopen_cookie_gen also check
30 	 * for a valid cookie, so this is an acceptable risk.
31 	 */
32 	get_random_bytes(key, sizeof(key));
33 	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
34 }
35 
tcp_fastopen_ctx_free(struct rcu_head * head)36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 	struct tcp_fastopen_context *ctx =
39 	    container_of(head, struct tcp_fastopen_context, rcu);
40 
41 	kfree_sensitive(ctx);
42 }
43 
tcp_fastopen_destroy_cipher(struct sock * sk)44 void tcp_fastopen_destroy_cipher(struct sock *sk)
45 {
46 	struct tcp_fastopen_context *ctx;
47 
48 	ctx = rcu_dereference_protected(
49 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
50 	if (ctx)
51 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
52 }
53 
tcp_fastopen_ctx_destroy(struct net * net)54 void tcp_fastopen_ctx_destroy(struct net *net)
55 {
56 	struct tcp_fastopen_context *ctxt;
57 
58 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
59 
60 	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
61 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
62 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
63 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
64 
65 	if (ctxt)
66 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
67 }
68 
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)69 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
70 			      void *primary_key, void *backup_key)
71 {
72 	struct tcp_fastopen_context *ctx, *octx;
73 	struct fastopen_queue *q;
74 	int err = 0;
75 
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (!ctx) {
78 		err = -ENOMEM;
79 		goto out;
80 	}
81 
82 	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
83 	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
84 	if (backup_key) {
85 		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
86 		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
87 		ctx->num = 2;
88 	} else {
89 		ctx->num = 1;
90 	}
91 
92 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
93 	if (sk) {
94 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
95 		octx = rcu_dereference_protected(q->ctx,
96 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
97 		rcu_assign_pointer(q->ctx, ctx);
98 	} else {
99 		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
100 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101 		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
102 	}
103 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
104 
105 	if (octx)
106 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
107 out:
108 	return err;
109 }
110 
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)111 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
112 			    u64 *key)
113 {
114 	struct tcp_fastopen_context *ctx;
115 	int n_keys = 0, i;
116 
117 	rcu_read_lock();
118 	if (icsk)
119 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
120 	else
121 		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
122 	if (ctx) {
123 		n_keys = tcp_fastopen_context_len(ctx);
124 		for (i = 0; i < n_keys; i++) {
125 			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
126 			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
127 		}
128 	}
129 	rcu_read_unlock();
130 
131 	return n_keys;
132 }
133 
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)134 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
135 					     struct sk_buff *syn,
136 					     const siphash_key_t *key,
137 					     struct tcp_fastopen_cookie *foc)
138 {
139 	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
140 
141 	if (req->rsk_ops->family == AF_INET) {
142 		const struct iphdr *iph = ip_hdr(syn);
143 
144 		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
145 					  sizeof(iph->saddr) +
146 					  sizeof(iph->daddr),
147 					  key));
148 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149 		return true;
150 	}
151 #if IS_ENABLED(CONFIG_IPV6)
152 	if (req->rsk_ops->family == AF_INET6) {
153 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
154 
155 		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
156 					  sizeof(ip6h->saddr) +
157 					  sizeof(ip6h->daddr),
158 					  key));
159 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
160 		return true;
161 	}
162 #endif
163 	return false;
164 }
165 
166 /* Generate the fastopen cookie by applying SipHash to both the source and
167  * destination addresses.
168  */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)169 static void tcp_fastopen_cookie_gen(struct sock *sk,
170 				    struct request_sock *req,
171 				    struct sk_buff *syn,
172 				    struct tcp_fastopen_cookie *foc)
173 {
174 	struct tcp_fastopen_context *ctx;
175 
176 	rcu_read_lock();
177 	ctx = tcp_fastopen_get_ctx(sk);
178 	if (ctx)
179 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
180 	rcu_read_unlock();
181 }
182 
183 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
184  * queue this additional data / FIN.
185  */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)186 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
187 {
188 	struct tcp_sock *tp = tcp_sk(sk);
189 
190 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
191 		return;
192 
193 	skb = skb_clone(skb, GFP_ATOMIC);
194 	if (!skb)
195 		return;
196 
197 	skb_dst_drop(skb);
198 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
199 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
200 	 * to avoid double counting.  Also, tcp_segs_in() expects
201 	 * skb->len to include the tcp_hdrlen.  Hence, it should
202 	 * be called before __skb_pull().
203 	 */
204 	tp->segs_in = 0;
205 	tcp_segs_in(tp, skb);
206 	__skb_pull(skb, tcp_hdrlen(skb));
207 	sk_forced_mem_schedule(sk, skb->truesize);
208 	skb_set_owner_r(skb, sk);
209 
210 	TCP_SKB_CB(skb)->seq++;
211 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
212 
213 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
214 	__skb_queue_tail(&sk->sk_receive_queue, skb);
215 	tp->syn_data_acked = 1;
216 
217 	/* u64_stats_update_begin(&tp->syncp) not needed here,
218 	 * as we certainly are not changing upper 32bit value (0)
219 	 */
220 	tp->bytes_received = skb->len;
221 
222 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
223 		tcp_fin(sk);
224 }
225 
226 /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)227 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
228 					 struct request_sock *req,
229 					 struct sk_buff *syn,
230 					 struct tcp_fastopen_cookie *orig,
231 					 struct tcp_fastopen_cookie *valid_foc)
232 {
233 	struct tcp_fastopen_cookie search_foc = { .len = -1 };
234 	struct tcp_fastopen_cookie *foc = valid_foc;
235 	struct tcp_fastopen_context *ctx;
236 	int i, ret = 0;
237 
238 	rcu_read_lock();
239 	ctx = tcp_fastopen_get_ctx(sk);
240 	if (!ctx)
241 		goto out;
242 	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
243 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
244 		if (tcp_fastopen_cookie_match(foc, orig)) {
245 			ret = i + 1;
246 			goto out;
247 		}
248 		foc = &search_foc;
249 	}
250 out:
251 	rcu_read_unlock();
252 	return ret;
253 }
254 
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)255 static struct sock *tcp_fastopen_create_child(struct sock *sk,
256 					      struct sk_buff *skb,
257 					      struct request_sock *req)
258 {
259 	struct tcp_sock *tp;
260 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
261 	struct sock *child;
262 	bool own_req;
263 
264 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
265 							 NULL, &own_req);
266 	if (!child)
267 		return NULL;
268 
269 	spin_lock(&queue->fastopenq.lock);
270 	queue->fastopenq.qlen++;
271 	spin_unlock(&queue->fastopenq.lock);
272 
273 	/* Initialize the child socket. Have to fix some values to take
274 	 * into account the child is a Fast Open socket and is created
275 	 * only out of the bits carried in the SYN packet.
276 	 */
277 	tp = tcp_sk(child);
278 
279 	rcu_assign_pointer(tp->fastopen_rsk, req);
280 	tcp_rsk(req)->tfo_listener = true;
281 
282 	/* RFC1323: The window in SYN & SYN/ACK segments is never
283 	 * scaled. So correct it appropriately.
284 	 */
285 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
286 	tp->max_window = tp->snd_wnd;
287 
288 	/* Activate the retrans timer so that SYNACK can be retransmitted.
289 	 * The request socket is not added to the ehash
290 	 * because it's been added to the accept queue directly.
291 	 */
292 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
293 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
294 
295 	refcount_set(&req->rsk_refcnt, 2);
296 
297 	/* Now finish processing the fastopen child socket. */
298 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
299 
300 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
301 
302 	tcp_fastopen_add_skb(child, skb);
303 
304 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
305 	tp->rcv_wup = tp->rcv_nxt;
306 	/* tcp_conn_request() is sending the SYNACK,
307 	 * and queues the child into listener accept queue.
308 	 */
309 	return child;
310 }
311 
tcp_fastopen_queue_check(struct sock * sk)312 static bool tcp_fastopen_queue_check(struct sock *sk)
313 {
314 	struct fastopen_queue *fastopenq;
315 
316 	/* Make sure the listener has enabled fastopen, and we don't
317 	 * exceed the max # of pending TFO requests allowed before trying
318 	 * to validating the cookie in order to avoid burning CPU cycles
319 	 * unnecessarily.
320 	 *
321 	 * XXX (TFO) - The implication of checking the max_qlen before
322 	 * processing a cookie request is that clients can't differentiate
323 	 * between qlen overflow causing Fast Open to be disabled
324 	 * temporarily vs a server not supporting Fast Open at all.
325 	 */
326 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
327 	if (fastopenq->max_qlen == 0)
328 		return false;
329 
330 	if (fastopenq->qlen >= fastopenq->max_qlen) {
331 		struct request_sock *req1;
332 		spin_lock(&fastopenq->lock);
333 		req1 = fastopenq->rskq_rst_head;
334 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
335 			__NET_INC_STATS(sock_net(sk),
336 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
337 			spin_unlock(&fastopenq->lock);
338 			return false;
339 		}
340 		fastopenq->rskq_rst_head = req1->dl_next;
341 		fastopenq->qlen--;
342 		spin_unlock(&fastopenq->lock);
343 		reqsk_put(req1);
344 	}
345 	return true;
346 }
347 
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)348 static bool tcp_fastopen_no_cookie(const struct sock *sk,
349 				   const struct dst_entry *dst,
350 				   int flag)
351 {
352 	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
353 	       tcp_sk(sk)->fastopen_no_cookie ||
354 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
355 }
356 
357 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
358  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
359  * cookie request (foc->len == 0).
360  */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)361 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
362 			      struct request_sock *req,
363 			      struct tcp_fastopen_cookie *foc,
364 			      const struct dst_entry *dst)
365 {
366 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
367 	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
368 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
369 	struct sock *child;
370 	int ret = 0;
371 
372 	if (foc->len == 0) /* Client requests a cookie */
373 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
374 
375 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
376 	      (syn_data || foc->len >= 0) &&
377 	      tcp_fastopen_queue_check(sk))) {
378 		foc->len = -1;
379 		return NULL;
380 	}
381 
382 	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
383 		goto fastopen;
384 
385 	if (foc->len == 0) {
386 		/* Client requests a cookie. */
387 		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
388 	} else if (foc->len > 0) {
389 		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
390 						    &valid_foc);
391 		if (!ret) {
392 			NET_INC_STATS(sock_net(sk),
393 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
394 		} else {
395 			/* Cookie is valid. Create a (full) child socket to
396 			 * accept the data in SYN before returning a SYN-ACK to
397 			 * ack the data. If we fail to create the socket, fall
398 			 * back and ack the ISN only but includes the same
399 			 * cookie.
400 			 *
401 			 * Note: Data-less SYN with valid cookie is allowed to
402 			 * send data in SYN_RECV state.
403 			 */
404 fastopen:
405 			child = tcp_fastopen_create_child(sk, skb, req);
406 			if (child) {
407 				if (ret == 2) {
408 					valid_foc.exp = foc->exp;
409 					*foc = valid_foc;
410 					NET_INC_STATS(sock_net(sk),
411 						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
412 				} else {
413 					foc->len = -1;
414 				}
415 				NET_INC_STATS(sock_net(sk),
416 					      LINUX_MIB_TCPFASTOPENPASSIVE);
417 				return child;
418 			}
419 			NET_INC_STATS(sock_net(sk),
420 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
421 		}
422 	}
423 	valid_foc.exp = foc->exp;
424 	*foc = valid_foc;
425 	return NULL;
426 }
427 
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)428 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
429 			       struct tcp_fastopen_cookie *cookie)
430 {
431 	const struct dst_entry *dst;
432 
433 	tcp_fastopen_cache_get(sk, mss, cookie);
434 
435 	/* Firewall blackhole issue check */
436 	if (tcp_fastopen_active_should_disable(sk)) {
437 		cookie->len = -1;
438 		return false;
439 	}
440 
441 	dst = __sk_dst_get(sk);
442 
443 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
444 		cookie->len = -1;
445 		return true;
446 	}
447 	if (cookie->len > 0)
448 		return true;
449 	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
450 	return false;
451 }
452 
453 /* This function checks if we want to defer sending SYN until the first
454  * write().  We defer under the following conditions:
455  * 1. fastopen_connect sockopt is set
456  * 2. we have a valid cookie
457  * Return value: return true if we want to defer until application writes data
458  *               return false if we want to send out SYN immediately
459  */
tcp_fastopen_defer_connect(struct sock * sk,int * err)460 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
461 {
462 	struct tcp_fastopen_cookie cookie = { .len = 0 };
463 	struct tcp_sock *tp = tcp_sk(sk);
464 	u16 mss;
465 
466 	if (tp->fastopen_connect && !tp->fastopen_req) {
467 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
468 			inet_sk(sk)->defer_connect = 1;
469 			return true;
470 		}
471 
472 		/* Alloc fastopen_req in order for FO option to be included
473 		 * in SYN
474 		 */
475 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
476 					   sk->sk_allocation);
477 		if (tp->fastopen_req)
478 			tp->fastopen_req->cookie = cookie;
479 		else
480 			*err = -ENOBUFS;
481 	}
482 	return false;
483 }
484 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
485 
486 /*
487  * The following code block is to deal with middle box issues with TFO:
488  * Middlebox firewall issues can potentially cause server's data being
489  * blackholed after a successful 3WHS using TFO.
490  * The proposed solution is to disable active TFO globally under the
491  * following circumstances:
492  *   1. client side TFO socket receives out of order FIN
493  *   2. client side TFO socket receives out of order RST
494  *   3. client side TFO socket has timed out three times consecutively during
495  *      or after handshake
496  * We disable active side TFO globally for 1hr at first. Then if it
497  * happens again, we disable it for 2h, then 4h, 8h, ...
498  * And we reset the timeout back to 1hr when we see a successful active
499  * TFO connection with data exchanges.
500  */
501 
502 /* Disable active TFO and record current jiffies and
503  * tfo_active_disable_times
504  */
tcp_fastopen_active_disable(struct sock * sk)505 void tcp_fastopen_active_disable(struct sock *sk)
506 {
507 	struct net *net = sock_net(sk);
508 
509 	if (!sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)
510 		return;
511 
512 	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
513 	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
514 
515 	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
516 	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
517 	 */
518 	smp_mb__before_atomic();
519 	atomic_inc(&net->ipv4.tfo_active_disable_times);
520 
521 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
522 }
523 
524 /* Calculate timeout for tfo active disable
525  * Return true if we are still in the active TFO disable period
526  * Return false if timeout already expired and we should use active TFO
527  */
tcp_fastopen_active_should_disable(struct sock * sk)528 bool tcp_fastopen_active_should_disable(struct sock *sk)
529 {
530 	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
531 	unsigned long timeout;
532 	int tfo_da_times;
533 	int multiplier;
534 
535 	if (!tfo_bh_timeout)
536 		return false;
537 
538 	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
539 	if (!tfo_da_times)
540 		return false;
541 
542 	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
543 	smp_rmb();
544 
545 	/* Limit timout to max: 2^6 * initial timeout */
546 	multiplier = 1 << min(tfo_da_times - 1, 6);
547 
548 	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
549 	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
550 		  multiplier * tfo_bh_timeout * HZ;
551 	if (time_before(jiffies, timeout))
552 		return true;
553 
554 	/* Mark check bit so we can check for successful active TFO
555 	 * condition and reset tfo_active_disable_times
556 	 */
557 	tcp_sk(sk)->syn_fastopen_ch = 1;
558 	return false;
559 }
560 
561 /* Disable active TFO if FIN is the only packet in the ofo queue
562  * and no data is received.
563  * Also check if we can reset tfo_active_disable_times if data is
564  * received successfully on a marked active TFO sockets opened on
565  * a non-loopback interface
566  */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)567 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
568 {
569 	struct tcp_sock *tp = tcp_sk(sk);
570 	struct dst_entry *dst;
571 	struct sk_buff *skb;
572 
573 	if (!tp->syn_fastopen)
574 		return;
575 
576 	if (!tp->data_segs_in) {
577 		skb = skb_rb_first(&tp->out_of_order_queue);
578 		if (skb && !skb_rb_next(skb)) {
579 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
580 				tcp_fastopen_active_disable(sk);
581 				return;
582 			}
583 		}
584 	} else if (tp->syn_fastopen_ch &&
585 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
586 		dst = sk_dst_get(sk);
587 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
588 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
589 		dst_release(dst);
590 	}
591 }
592 
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)593 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
594 {
595 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
596 	struct tcp_sock *tp = tcp_sk(sk);
597 
598 	/* Broken middle-boxes may black-hole Fast Open connection during or
599 	 * even after the handshake. Be extremely conservative and pause
600 	 * Fast Open globally after hitting the third consecutive timeout or
601 	 * exceeding the configured timeout limit.
602 	 */
603 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
604 	    (timeouts == 2 || (timeouts < 2 && expired))) {
605 		tcp_fastopen_active_disable(sk);
606 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
607 	}
608 }
609