1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12
tcp_fastopen_init_key_once(struct net * net)13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 struct tcp_fastopen_context *ctxt;
17
18 rcu_read_lock();
19 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 if (ctxt) {
21 rcu_read_unlock();
22 return;
23 }
24 rcu_read_unlock();
25
26 /* tcp_fastopen_reset_cipher publishes the new context
27 * atomically, so we allow this race happening here.
28 *
29 * All call sites of tcp_fastopen_cookie_gen also check
30 * for a valid cookie, so this is an acceptable risk.
31 */
32 get_random_bytes(key, sizeof(key));
33 tcp_fastopen_reset_cipher(net, NULL, key, NULL);
34 }
35
tcp_fastopen_ctx_free(struct rcu_head * head)36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 struct tcp_fastopen_context *ctx =
39 container_of(head, struct tcp_fastopen_context, rcu);
40
41 kfree_sensitive(ctx);
42 }
43
tcp_fastopen_destroy_cipher(struct sock * sk)44 void tcp_fastopen_destroy_cipher(struct sock *sk)
45 {
46 struct tcp_fastopen_context *ctx;
47
48 ctx = rcu_dereference_protected(
49 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
50 if (ctx)
51 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
52 }
53
tcp_fastopen_ctx_destroy(struct net * net)54 void tcp_fastopen_ctx_destroy(struct net *net)
55 {
56 struct tcp_fastopen_context *ctxt;
57
58 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
59
60 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
61 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
62 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
63 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
64
65 if (ctxt)
66 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
67 }
68
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)69 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
70 void *primary_key, void *backup_key)
71 {
72 struct tcp_fastopen_context *ctx, *octx;
73 struct fastopen_queue *q;
74 int err = 0;
75
76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 if (!ctx) {
78 err = -ENOMEM;
79 goto out;
80 }
81
82 ctx->key[0].key[0] = get_unaligned_le64(primary_key);
83 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
84 if (backup_key) {
85 ctx->key[1].key[0] = get_unaligned_le64(backup_key);
86 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
87 ctx->num = 2;
88 } else {
89 ctx->num = 1;
90 }
91
92 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
93 if (sk) {
94 q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
95 octx = rcu_dereference_protected(q->ctx,
96 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
97 rcu_assign_pointer(q->ctx, ctx);
98 } else {
99 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
100 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
102 }
103 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
104
105 if (octx)
106 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
107 out:
108 return err;
109 }
110
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)111 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
112 u64 *key)
113 {
114 struct tcp_fastopen_context *ctx;
115 int n_keys = 0, i;
116
117 rcu_read_lock();
118 if (icsk)
119 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
120 else
121 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
122 if (ctx) {
123 n_keys = tcp_fastopen_context_len(ctx);
124 for (i = 0; i < n_keys; i++) {
125 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
126 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
127 }
128 }
129 rcu_read_unlock();
130
131 return n_keys;
132 }
133
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)134 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
135 struct sk_buff *syn,
136 const siphash_key_t *key,
137 struct tcp_fastopen_cookie *foc)
138 {
139 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
140
141 if (req->rsk_ops->family == AF_INET) {
142 const struct iphdr *iph = ip_hdr(syn);
143
144 foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
145 sizeof(iph->saddr) +
146 sizeof(iph->daddr),
147 key));
148 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149 return true;
150 }
151 #if IS_ENABLED(CONFIG_IPV6)
152 if (req->rsk_ops->family == AF_INET6) {
153 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
154
155 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
156 sizeof(ip6h->saddr) +
157 sizeof(ip6h->daddr),
158 key));
159 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
160 return true;
161 }
162 #endif
163 return false;
164 }
165
166 /* Generate the fastopen cookie by applying SipHash to both the source and
167 * destination addresses.
168 */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)169 static void tcp_fastopen_cookie_gen(struct sock *sk,
170 struct request_sock *req,
171 struct sk_buff *syn,
172 struct tcp_fastopen_cookie *foc)
173 {
174 struct tcp_fastopen_context *ctx;
175
176 rcu_read_lock();
177 ctx = tcp_fastopen_get_ctx(sk);
178 if (ctx)
179 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
180 rcu_read_unlock();
181 }
182
183 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
184 * queue this additional data / FIN.
185 */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)186 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
187 {
188 struct tcp_sock *tp = tcp_sk(sk);
189
190 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
191 return;
192
193 skb = skb_clone(skb, GFP_ATOMIC);
194 if (!skb)
195 return;
196
197 skb_dst_drop(skb);
198 /* segs_in has been initialized to 1 in tcp_create_openreq_child().
199 * Hence, reset segs_in to 0 before calling tcp_segs_in()
200 * to avoid double counting. Also, tcp_segs_in() expects
201 * skb->len to include the tcp_hdrlen. Hence, it should
202 * be called before __skb_pull().
203 */
204 tp->segs_in = 0;
205 tcp_segs_in(tp, skb);
206 __skb_pull(skb, tcp_hdrlen(skb));
207 sk_forced_mem_schedule(sk, skb->truesize);
208 skb_set_owner_r(skb, sk);
209
210 TCP_SKB_CB(skb)->seq++;
211 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
212
213 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
214 __skb_queue_tail(&sk->sk_receive_queue, skb);
215 tp->syn_data_acked = 1;
216
217 /* u64_stats_update_begin(&tp->syncp) not needed here,
218 * as we certainly are not changing upper 32bit value (0)
219 */
220 tp->bytes_received = skb->len;
221
222 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
223 tcp_fin(sk);
224 }
225
226 /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)227 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
228 struct request_sock *req,
229 struct sk_buff *syn,
230 struct tcp_fastopen_cookie *orig,
231 struct tcp_fastopen_cookie *valid_foc)
232 {
233 struct tcp_fastopen_cookie search_foc = { .len = -1 };
234 struct tcp_fastopen_cookie *foc = valid_foc;
235 struct tcp_fastopen_context *ctx;
236 int i, ret = 0;
237
238 rcu_read_lock();
239 ctx = tcp_fastopen_get_ctx(sk);
240 if (!ctx)
241 goto out;
242 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
243 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
244 if (tcp_fastopen_cookie_match(foc, orig)) {
245 ret = i + 1;
246 goto out;
247 }
248 foc = &search_foc;
249 }
250 out:
251 rcu_read_unlock();
252 return ret;
253 }
254
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)255 static struct sock *tcp_fastopen_create_child(struct sock *sk,
256 struct sk_buff *skb,
257 struct request_sock *req)
258 {
259 struct tcp_sock *tp;
260 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
261 struct sock *child;
262 bool own_req;
263
264 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
265 NULL, &own_req);
266 if (!child)
267 return NULL;
268
269 spin_lock(&queue->fastopenq.lock);
270 queue->fastopenq.qlen++;
271 spin_unlock(&queue->fastopenq.lock);
272
273 /* Initialize the child socket. Have to fix some values to take
274 * into account the child is a Fast Open socket and is created
275 * only out of the bits carried in the SYN packet.
276 */
277 tp = tcp_sk(child);
278
279 rcu_assign_pointer(tp->fastopen_rsk, req);
280 tcp_rsk(req)->tfo_listener = true;
281
282 /* RFC1323: The window in SYN & SYN/ACK segments is never
283 * scaled. So correct it appropriately.
284 */
285 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
286 tp->max_window = tp->snd_wnd;
287
288 /* Activate the retrans timer so that SYNACK can be retransmitted.
289 * The request socket is not added to the ehash
290 * because it's been added to the accept queue directly.
291 */
292 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
293 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
294
295 refcount_set(&req->rsk_refcnt, 2);
296
297 /* Now finish processing the fastopen child socket. */
298 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
299
300 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
301
302 tcp_fastopen_add_skb(child, skb);
303
304 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
305 tp->rcv_wup = tp->rcv_nxt;
306 /* tcp_conn_request() is sending the SYNACK,
307 * and queues the child into listener accept queue.
308 */
309 return child;
310 }
311
tcp_fastopen_queue_check(struct sock * sk)312 static bool tcp_fastopen_queue_check(struct sock *sk)
313 {
314 struct fastopen_queue *fastopenq;
315
316 /* Make sure the listener has enabled fastopen, and we don't
317 * exceed the max # of pending TFO requests allowed before trying
318 * to validating the cookie in order to avoid burning CPU cycles
319 * unnecessarily.
320 *
321 * XXX (TFO) - The implication of checking the max_qlen before
322 * processing a cookie request is that clients can't differentiate
323 * between qlen overflow causing Fast Open to be disabled
324 * temporarily vs a server not supporting Fast Open at all.
325 */
326 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
327 if (fastopenq->max_qlen == 0)
328 return false;
329
330 if (fastopenq->qlen >= fastopenq->max_qlen) {
331 struct request_sock *req1;
332 spin_lock(&fastopenq->lock);
333 req1 = fastopenq->rskq_rst_head;
334 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
335 __NET_INC_STATS(sock_net(sk),
336 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
337 spin_unlock(&fastopenq->lock);
338 return false;
339 }
340 fastopenq->rskq_rst_head = req1->dl_next;
341 fastopenq->qlen--;
342 spin_unlock(&fastopenq->lock);
343 reqsk_put(req1);
344 }
345 return true;
346 }
347
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)348 static bool tcp_fastopen_no_cookie(const struct sock *sk,
349 const struct dst_entry *dst,
350 int flag)
351 {
352 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
353 tcp_sk(sk)->fastopen_no_cookie ||
354 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
355 }
356
357 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
358 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
359 * cookie request (foc->len == 0).
360 */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)361 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
362 struct request_sock *req,
363 struct tcp_fastopen_cookie *foc,
364 const struct dst_entry *dst)
365 {
366 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
367 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
368 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
369 struct sock *child;
370 int ret = 0;
371
372 if (foc->len == 0) /* Client requests a cookie */
373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
374
375 if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
376 (syn_data || foc->len >= 0) &&
377 tcp_fastopen_queue_check(sk))) {
378 foc->len = -1;
379 return NULL;
380 }
381
382 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
383 goto fastopen;
384
385 if (foc->len == 0) {
386 /* Client requests a cookie. */
387 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
388 } else if (foc->len > 0) {
389 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
390 &valid_foc);
391 if (!ret) {
392 NET_INC_STATS(sock_net(sk),
393 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
394 } else {
395 /* Cookie is valid. Create a (full) child socket to
396 * accept the data in SYN before returning a SYN-ACK to
397 * ack the data. If we fail to create the socket, fall
398 * back and ack the ISN only but includes the same
399 * cookie.
400 *
401 * Note: Data-less SYN with valid cookie is allowed to
402 * send data in SYN_RECV state.
403 */
404 fastopen:
405 child = tcp_fastopen_create_child(sk, skb, req);
406 if (child) {
407 if (ret == 2) {
408 valid_foc.exp = foc->exp;
409 *foc = valid_foc;
410 NET_INC_STATS(sock_net(sk),
411 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
412 } else {
413 foc->len = -1;
414 }
415 NET_INC_STATS(sock_net(sk),
416 LINUX_MIB_TCPFASTOPENPASSIVE);
417 return child;
418 }
419 NET_INC_STATS(sock_net(sk),
420 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
421 }
422 }
423 valid_foc.exp = foc->exp;
424 *foc = valid_foc;
425 return NULL;
426 }
427
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)428 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
429 struct tcp_fastopen_cookie *cookie)
430 {
431 const struct dst_entry *dst;
432
433 tcp_fastopen_cache_get(sk, mss, cookie);
434
435 /* Firewall blackhole issue check */
436 if (tcp_fastopen_active_should_disable(sk)) {
437 cookie->len = -1;
438 return false;
439 }
440
441 dst = __sk_dst_get(sk);
442
443 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
444 cookie->len = -1;
445 return true;
446 }
447 if (cookie->len > 0)
448 return true;
449 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
450 return false;
451 }
452
453 /* This function checks if we want to defer sending SYN until the first
454 * write(). We defer under the following conditions:
455 * 1. fastopen_connect sockopt is set
456 * 2. we have a valid cookie
457 * Return value: return true if we want to defer until application writes data
458 * return false if we want to send out SYN immediately
459 */
tcp_fastopen_defer_connect(struct sock * sk,int * err)460 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
461 {
462 struct tcp_fastopen_cookie cookie = { .len = 0 };
463 struct tcp_sock *tp = tcp_sk(sk);
464 u16 mss;
465
466 if (tp->fastopen_connect && !tp->fastopen_req) {
467 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
468 inet_sk(sk)->defer_connect = 1;
469 return true;
470 }
471
472 /* Alloc fastopen_req in order for FO option to be included
473 * in SYN
474 */
475 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
476 sk->sk_allocation);
477 if (tp->fastopen_req)
478 tp->fastopen_req->cookie = cookie;
479 else
480 *err = -ENOBUFS;
481 }
482 return false;
483 }
484 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
485
486 /*
487 * The following code block is to deal with middle box issues with TFO:
488 * Middlebox firewall issues can potentially cause server's data being
489 * blackholed after a successful 3WHS using TFO.
490 * The proposed solution is to disable active TFO globally under the
491 * following circumstances:
492 * 1. client side TFO socket receives out of order FIN
493 * 2. client side TFO socket receives out of order RST
494 * 3. client side TFO socket has timed out three times consecutively during
495 * or after handshake
496 * We disable active side TFO globally for 1hr at first. Then if it
497 * happens again, we disable it for 2h, then 4h, 8h, ...
498 * And we reset the timeout back to 1hr when we see a successful active
499 * TFO connection with data exchanges.
500 */
501
502 /* Disable active TFO and record current jiffies and
503 * tfo_active_disable_times
504 */
tcp_fastopen_active_disable(struct sock * sk)505 void tcp_fastopen_active_disable(struct sock *sk)
506 {
507 struct net *net = sock_net(sk);
508
509 if (!sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)
510 return;
511
512 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
513 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
514
515 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
516 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
517 */
518 smp_mb__before_atomic();
519 atomic_inc(&net->ipv4.tfo_active_disable_times);
520
521 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
522 }
523
524 /* Calculate timeout for tfo active disable
525 * Return true if we are still in the active TFO disable period
526 * Return false if timeout already expired and we should use active TFO
527 */
tcp_fastopen_active_should_disable(struct sock * sk)528 bool tcp_fastopen_active_should_disable(struct sock *sk)
529 {
530 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
531 unsigned long timeout;
532 int tfo_da_times;
533 int multiplier;
534
535 if (!tfo_bh_timeout)
536 return false;
537
538 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
539 if (!tfo_da_times)
540 return false;
541
542 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
543 smp_rmb();
544
545 /* Limit timout to max: 2^6 * initial timeout */
546 multiplier = 1 << min(tfo_da_times - 1, 6);
547
548 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
549 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
550 multiplier * tfo_bh_timeout * HZ;
551 if (time_before(jiffies, timeout))
552 return true;
553
554 /* Mark check bit so we can check for successful active TFO
555 * condition and reset tfo_active_disable_times
556 */
557 tcp_sk(sk)->syn_fastopen_ch = 1;
558 return false;
559 }
560
561 /* Disable active TFO if FIN is the only packet in the ofo queue
562 * and no data is received.
563 * Also check if we can reset tfo_active_disable_times if data is
564 * received successfully on a marked active TFO sockets opened on
565 * a non-loopback interface
566 */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)567 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
568 {
569 struct tcp_sock *tp = tcp_sk(sk);
570 struct dst_entry *dst;
571 struct sk_buff *skb;
572
573 if (!tp->syn_fastopen)
574 return;
575
576 if (!tp->data_segs_in) {
577 skb = skb_rb_first(&tp->out_of_order_queue);
578 if (skb && !skb_rb_next(skb)) {
579 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
580 tcp_fastopen_active_disable(sk);
581 return;
582 }
583 }
584 } else if (tp->syn_fastopen_ch &&
585 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
586 dst = sk_dst_get(sk);
587 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
588 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
589 dst_release(dst);
590 }
591 }
592
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)593 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
594 {
595 u32 timeouts = inet_csk(sk)->icsk_retransmits;
596 struct tcp_sock *tp = tcp_sk(sk);
597
598 /* Broken middle-boxes may black-hole Fast Open connection during or
599 * even after the handshake. Be extremely conservative and pause
600 * Fast Open globally after hitting the third consecutive timeout or
601 * exceeding the configured timeout limit.
602 */
603 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
604 (timeouts == 2 || (timeouts < 2 && expired))) {
605 tcp_fastopen_active_disable(sk);
606 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
607 }
608 }
609