• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
284 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
285 
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 
289 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320 
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323 
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325 
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (READ_ONCE(tcp_memory_pressure))
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!READ_ONCE(tcp_memory_pressure))
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	icsk->icsk_rto_min = TCP_RTO_MIN;
422 	icsk->icsk_delack_max = TCP_DELACK_MAX;
423 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425 
426 	/* So many TCP implementations out there (incorrectly) count the
427 	 * initial SYN frame in their delayed-ACK and congestion control
428 	 * algorithms that we must have the following bandaid to talk
429 	 * efficiently to them.  -DaveM
430 	 */
431 	tp->snd_cwnd = TCP_INIT_CWND;
432 
433 	/* There's a bubble in the pipe until at least the first ACK. */
434 	tp->app_limited = ~0U;
435 
436 	/* See draft-stevens-tcpca-spec-01 for discussion of the
437 	 * initialization of these values.
438 	 */
439 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 	tp->snd_cwnd_clamp = ~0;
441 	tp->mss_cache = TCP_MSS_DEFAULT;
442 
443 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
444 	tcp_assign_congestion_control(sk);
445 
446 	tp->tsoffset = 0;
447 	tp->rack.reo_wnd_steps = 1;
448 
449 	sk->sk_write_space = sk_stream_write_space;
450 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451 
452 	icsk->icsk_sync_mss = tcp_sync_mss;
453 
454 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
455 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
456 
457 	sk_sockets_allocated_inc(sk);
458 	sk->sk_route_forced_caps = NETIF_F_GSO;
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 	struct sk_buff *skb = tcp_write_queue_tail(sk);
465 
466 	if (tsflags && skb) {
467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
468 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 
470 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 			tcb->txstamp_ack = 1;
473 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 	}
476 }
477 
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
479 					  int target, struct sock *sk)
480 {
481 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
482 
483 	if (avail > 0) {
484 		if (avail >= target)
485 			return true;
486 		if (tcp_rmem_pressure(sk))
487 			return true;
488 		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
489 			return true;
490 	}
491 	if (sk->sk_prot->stream_memory_read)
492 		return sk->sk_prot->stream_memory_read(sk);
493 	return false;
494 }
495 
496 /*
497  *	Wait for a TCP event.
498  *
499  *	Note that we don't need to lock the socket, as the upper poll layers
500  *	take care of normal races (between the test and the event) and we don't
501  *	go look at any of the socket buffers directly.
502  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 	__poll_t mask;
506 	struct sock *sk = sock->sk;
507 	const struct tcp_sock *tp = tcp_sk(sk);
508 	int state;
509 
510 	sock_poll_wait(file, sock, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (sk->sk_shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 
560 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
561 		    !sock_flag(sk, SOCK_URGINLINE) &&
562 		    tp->urg_data)
563 			target++;
564 
565 		if (tcp_stream_is_readable(tp, target, sk))
566 			mask |= EPOLLIN | EPOLLRDNORM;
567 
568 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 			if (__sk_stream_is_writeable(sk, 1)) {
570 				mask |= EPOLLOUT | EPOLLWRNORM;
571 			} else {  /* send SIGIO later */
572 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574 
575 				/* Race breaker. If space is freed after
576 				 * wspace test but before the flags are set,
577 				 * IO signal will be lost. Memory barrier
578 				 * pairs with the input side.
579 				 */
580 				smp_mb__after_atomic();
581 				if (__sk_stream_is_writeable(sk, 1))
582 					mask |= EPOLLOUT | EPOLLWRNORM;
583 			}
584 		} else
585 			mask |= EPOLLOUT | EPOLLWRNORM;
586 
587 		if (tp->urg_data & TCP_URG_VALID)
588 			mask |= EPOLLPRI;
589 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 		/* Active TCP fastopen socket with defer_connect
591 		 * Return EPOLLOUT so application can call write()
592 		 * in order for kernel to generate SYN+data
593 		 */
594 		mask |= EPOLLOUT | EPOLLWRNORM;
595 	}
596 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
597 	smp_rmb();
598 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = tp->urg_data &&
622 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 		break;
624 	case SIOCOUTQ:
625 		if (sk->sk_state == TCP_LISTEN)
626 			return -EINVAL;
627 
628 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 			answ = 0;
630 		else
631 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 		break;
633 	case SIOCOUTQNSD:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 			answ = 0;
639 		else
640 			answ = READ_ONCE(tp->write_seq) -
641 			       READ_ONCE(tp->snd_nxt);
642 		break;
643 	default:
644 		return -ENOIOCTLCMD;
645 	}
646 
647 	return put_user(answ, (int __user *)arg);
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
skb_entail(struct sock * sk,struct sk_buff * skb)662 static void skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	skb->csum    = 0;
668 	tcb->seq     = tcb->end_seq = tp->write_seq;
669 	tcb->tcp_flags = TCPHDR_ACK;
670 	tcb->sacked  = 0;
671 	__skb_header_release(skb);
672 	tcp_add_write_queue_tail(sk, skb);
673 	sk_wmem_queued_add(sk, skb->truesize);
674 	sk_mem_charge(sk, skb->truesize);
675 	if (tp->nonagle & TCP_NAGLE_PUSH)
676 		tp->nonagle &= ~TCP_NAGLE_PUSH;
677 
678 	tcp_slow_start_after_idle_check(sk);
679 }
680 
tcp_mark_urg(struct tcp_sock * tp,int flags)681 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
682 {
683 	if (flags & MSG_OOB)
684 		tp->snd_up = tp->write_seq;
685 }
686 
687 /* If a not yet filled skb is pushed, do not send it if
688  * we have data packets in Qdisc or NIC queues :
689  * Because TX completion will happen shortly, it gives a chance
690  * to coalesce future sendmsg() payload into this skb, without
691  * need for a timer, and with no latency trade off.
692  * As packets containing data payload have a bigger truesize
693  * than pure acks (dataless) packets, the last checks prevent
694  * autocorking if we only have an ACK in Qdisc/NIC queues,
695  * or if TX completion was delayed after we processed ACK packet.
696  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)697 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
698 				int size_goal)
699 {
700 	return skb->len < size_goal &&
701 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
702 	       !tcp_rtx_queue_empty(sk) &&
703 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
704 }
705 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 	      int nonagle, int size_goal)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	struct sk_buff *skb;
711 
712 	skb = tcp_write_queue_tail(sk);
713 	if (!skb)
714 		return;
715 	if (!(flags & MSG_MORE) || forced_push(tp))
716 		tcp_mark_push(tp, skb);
717 
718 	tcp_mark_urg(tp, flags);
719 
720 	if (tcp_should_autocork(sk, skb, size_goal)) {
721 
722 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
723 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 		}
727 		/* It is possible TX completion already happened
728 		 * before we set TSQ_THROTTLED.
729 		 */
730 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 			return;
732 	}
733 
734 	if (flags & MSG_MORE)
735 		nonagle = TCP_NAGLE_CORK;
736 
737 	__tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 				unsigned int offset, size_t len)
742 {
743 	struct tcp_splice_state *tss = rd_desc->arg.data;
744 	int ret;
745 
746 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 			      min(rd_desc->count, len), tss->flags);
748 	if (ret > 0)
749 		rd_desc->count -= ret;
750 	return ret;
751 }
752 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 	/* Store TCP splice context information in read_descriptor_t. */
756 	read_descriptor_t rd_desc = {
757 		.arg.data = tss,
758 		.count	  = tss->len,
759 	};
760 
761 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763 
764 /**
765  *  tcp_splice_read - splice data from TCP socket to a pipe
766  * @sock:	socket to splice from
767  * @ppos:	position (not valid)
768  * @pipe:	pipe to splice to
769  * @len:	number of bytes to splice
770  * @flags:	splice modifier flags
771  *
772  * Description:
773  *    Will read pages from given socket and fill them into a pipe.
774  *
775  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 			struct pipe_inode_info *pipe, size_t len,
778 			unsigned int flags)
779 {
780 	struct sock *sk = sock->sk;
781 	struct tcp_splice_state tss = {
782 		.pipe = pipe,
783 		.len = len,
784 		.flags = flags,
785 	};
786 	long timeo;
787 	ssize_t spliced;
788 	int ret;
789 
790 	sock_rps_record_flow(sk);
791 	/*
792 	 * We can't seek on a socket input
793 	 */
794 	if (unlikely(*ppos))
795 		return -ESPIPE;
796 
797 	ret = spliced = 0;
798 
799 	lock_sock(sk);
800 
801 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 	while (tss.len) {
803 		ret = __tcp_splice_read(sk, &tss);
804 		if (ret < 0)
805 			break;
806 		else if (!ret) {
807 			if (spliced)
808 				break;
809 			if (sock_flag(sk, SOCK_DONE))
810 				break;
811 			if (sk->sk_err) {
812 				ret = sock_error(sk);
813 				break;
814 			}
815 			if (sk->sk_shutdown & RCV_SHUTDOWN)
816 				break;
817 			if (sk->sk_state == TCP_CLOSE) {
818 				/*
819 				 * This occurs when user tries to read
820 				 * from never connected socket.
821 				 */
822 				ret = -ENOTCONN;
823 				break;
824 			}
825 			if (!timeo) {
826 				ret = -EAGAIN;
827 				break;
828 			}
829 			/* if __tcp_splice_read() got nothing while we have
830 			 * an skb in receive queue, we do not want to loop.
831 			 * This might happen with URG data.
832 			 */
833 			if (!skb_queue_empty(&sk->sk_receive_queue))
834 				break;
835 			sk_wait_data(sk, &timeo, NULL);
836 			if (signal_pending(current)) {
837 				ret = sock_intr_errno(timeo);
838 				break;
839 			}
840 			continue;
841 		}
842 		tss.len -= ret;
843 		spliced += ret;
844 
845 		if (!timeo)
846 			break;
847 		release_sock(sk);
848 		lock_sock(sk);
849 
850 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
851 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
852 		    signal_pending(current))
853 			break;
854 	}
855 
856 	release_sock(sk);
857 
858 	if (spliced)
859 		return spliced;
860 
861 	return ret;
862 }
863 EXPORT_SYMBOL(tcp_splice_read);
864 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
866 				    bool force_schedule)
867 {
868 	struct sk_buff *skb;
869 
870 	if (likely(!size)) {
871 		skb = sk->sk_tx_skb_cache;
872 		if (skb) {
873 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 			sk->sk_tx_skb_cache = NULL;
875 			pskb_trim(skb, 0);
876 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 			skb_shinfo(skb)->tx_flags = 0;
878 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
879 			return skb;
880 		}
881 	}
882 	/* The TCP header must be at least 32-bit aligned.  */
883 	size = ALIGN(size, 4);
884 
885 	if (unlikely(tcp_under_memory_pressure(sk)))
886 		sk_mem_reclaim_partial(sk);
887 
888 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
889 	if (likely(skb)) {
890 		bool mem_scheduled;
891 
892 		if (force_schedule) {
893 			mem_scheduled = true;
894 			sk_forced_mem_schedule(sk, skb->truesize);
895 		} else {
896 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
897 		}
898 		if (likely(mem_scheduled)) {
899 			skb_reserve(skb, sk->sk_prot->max_header);
900 			/*
901 			 * Make sure that we have exactly size bytes
902 			 * available to the caller, no more, no less.
903 			 */
904 			skb->reserved_tailroom = skb->end - skb->tail - size;
905 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 			return skb;
907 		}
908 		__kfree_skb(skb);
909 	} else {
910 		sk->sk_prot->enter_memory_pressure(sk);
911 		sk_stream_moderate_sndbuf(sk);
912 	}
913 	return NULL;
914 }
915 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
917 				       int large_allowed)
918 {
919 	struct tcp_sock *tp = tcp_sk(sk);
920 	u32 new_size_goal, size_goal;
921 
922 	if (!large_allowed)
923 		return mss_now;
924 
925 	/* Note : tcp_tso_autosize() will eventually split this later */
926 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
927 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
928 
929 	/* We try hard to avoid divides here */
930 	size_goal = tp->gso_segs * mss_now;
931 	if (unlikely(new_size_goal < size_goal ||
932 		     new_size_goal >= size_goal + mss_now)) {
933 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 				     sk->sk_gso_max_segs);
935 		size_goal = tp->gso_segs * mss_now;
936 	}
937 
938 	return max(size_goal, mss_now);
939 }
940 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 	int mss_now;
944 
945 	mss_now = tcp_current_mss(sk);
946 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947 
948 	return mss_now;
949 }
950 
951 /* In some cases, both sendpage() and sendmsg() could have added
952  * an skb to the write queue, but failed adding payload on it.
953  * We need to remove it to consume less memory, but more
954  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
955  * users.
956  */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)957 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
958 {
959 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
960 		tcp_unlink_write_queue(skb, sk);
961 		if (tcp_write_queue_empty(sk))
962 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
963 		sk_wmem_free_skb(sk, skb);
964 	}
965 }
966 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)967 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
968 			 size_t size, int flags)
969 {
970 	struct tcp_sock *tp = tcp_sk(sk);
971 	int mss_now, size_goal;
972 	int err;
973 	ssize_t copied;
974 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
975 
976 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
977 	    WARN_ONCE(!sendpage_ok(page),
978 		      "page must not be a Slab one and have page_count > 0"))
979 		return -EINVAL;
980 
981 	/* Wait for a connection to finish. One exception is TCP Fast Open
982 	 * (passive side) where data is allowed to be sent before a connection
983 	 * is fully established.
984 	 */
985 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
986 	    !tcp_passive_fastopen(sk)) {
987 		err = sk_stream_wait_connect(sk, &timeo);
988 		if (err != 0)
989 			goto out_err;
990 	}
991 
992 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
993 
994 	mss_now = tcp_send_mss(sk, &size_goal, flags);
995 	copied = 0;
996 
997 	err = -EPIPE;
998 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
999 		goto out_err;
1000 
1001 	while (size > 0) {
1002 		struct sk_buff *skb = tcp_write_queue_tail(sk);
1003 		int copy, i;
1004 		bool can_coalesce;
1005 
1006 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1007 		    !tcp_skb_can_collapse_to(skb)) {
1008 new_segment:
1009 			if (!sk_stream_memory_free(sk))
1010 				goto wait_for_space;
1011 
1012 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1013 					tcp_rtx_and_write_queues_empty(sk));
1014 			if (!skb)
1015 				goto wait_for_space;
1016 
1017 #ifdef CONFIG_TLS_DEVICE
1018 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1019 #endif
1020 			skb_entail(sk, skb);
1021 			copy = size_goal;
1022 		}
1023 
1024 		if (copy > size)
1025 			copy = size;
1026 
1027 		i = skb_shinfo(skb)->nr_frags;
1028 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1029 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1030 			tcp_mark_push(tp, skb);
1031 			goto new_segment;
1032 		}
1033 		if (!sk_wmem_schedule(sk, copy))
1034 			goto wait_for_space;
1035 
1036 		if (can_coalesce) {
1037 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1038 		} else {
1039 			get_page(page);
1040 			skb_fill_page_desc(skb, i, page, offset, copy);
1041 		}
1042 
1043 		if (!(flags & MSG_NO_SHARED_FRAGS))
1044 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1045 
1046 		skb->len += copy;
1047 		skb->data_len += copy;
1048 		skb->truesize += copy;
1049 		sk_wmem_queued_add(sk, copy);
1050 		sk_mem_charge(sk, copy);
1051 		skb->ip_summed = CHECKSUM_PARTIAL;
1052 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1053 		TCP_SKB_CB(skb)->end_seq += copy;
1054 		tcp_skb_pcount_set(skb, 0);
1055 
1056 		if (!copied)
1057 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1058 
1059 		copied += copy;
1060 		offset += copy;
1061 		size -= copy;
1062 		if (!size)
1063 			goto out;
1064 
1065 		if (skb->len < size_goal || (flags & MSG_OOB))
1066 			continue;
1067 
1068 		if (forced_push(tp)) {
1069 			tcp_mark_push(tp, skb);
1070 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1071 		} else if (skb == tcp_send_head(sk))
1072 			tcp_push_one(sk, mss_now);
1073 		continue;
1074 
1075 wait_for_space:
1076 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1077 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1078 			 TCP_NAGLE_PUSH, size_goal);
1079 
1080 		err = sk_stream_wait_memory(sk, &timeo);
1081 		if (err != 0)
1082 			goto do_error;
1083 
1084 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1085 	}
1086 
1087 out:
1088 	if (copied) {
1089 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1090 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1091 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1092 	}
1093 	return copied;
1094 
1095 do_error:
1096 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1097 	if (copied)
1098 		goto out;
1099 out_err:
1100 	/* make sure we wake any epoll edge trigger waiter */
1101 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1102 		sk->sk_write_space(sk);
1103 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1104 	}
1105 	return sk_stream_error(sk, flags, err);
1106 }
1107 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1108 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1109 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1110 			size_t size, int flags)
1111 {
1112 	if (!(sk->sk_route_caps & NETIF_F_SG))
1113 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1114 
1115 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1116 
1117 	return do_tcp_sendpages(sk, page, offset, size, flags);
1118 }
1119 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1120 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1121 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1122 		 size_t size, int flags)
1123 {
1124 	int ret;
1125 
1126 	lock_sock(sk);
1127 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1128 	release_sock(sk);
1129 
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL(tcp_sendpage);
1133 
tcp_free_fastopen_req(struct tcp_sock * tp)1134 void tcp_free_fastopen_req(struct tcp_sock *tp)
1135 {
1136 	if (tp->fastopen_req) {
1137 		kfree(tp->fastopen_req);
1138 		tp->fastopen_req = NULL;
1139 	}
1140 }
1141 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1143 				int *copied, size_t size,
1144 				struct ubuf_info *uarg)
1145 {
1146 	struct tcp_sock *tp = tcp_sk(sk);
1147 	struct inet_sock *inet = inet_sk(sk);
1148 	struct sockaddr *uaddr = msg->msg_name;
1149 	int err, flags;
1150 
1151 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1152 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1153 	     uaddr->sa_family == AF_UNSPEC))
1154 		return -EOPNOTSUPP;
1155 	if (tp->fastopen_req)
1156 		return -EALREADY; /* Another Fast Open is in progress */
1157 
1158 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1159 				   sk->sk_allocation);
1160 	if (unlikely(!tp->fastopen_req))
1161 		return -ENOBUFS;
1162 	tp->fastopen_req->data = msg;
1163 	tp->fastopen_req->size = size;
1164 	tp->fastopen_req->uarg = uarg;
1165 
1166 	if (inet->defer_connect) {
1167 		err = tcp_connect(sk);
1168 		/* Same failure procedure as in tcp_v4/6_connect */
1169 		if (err) {
1170 			tcp_set_state(sk, TCP_CLOSE);
1171 			inet->inet_dport = 0;
1172 			sk->sk_route_caps = 0;
1173 		}
1174 	}
1175 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1176 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1177 				    msg->msg_namelen, flags, 1);
1178 	/* fastopen_req could already be freed in __inet_stream_connect
1179 	 * if the connection times out or gets rst
1180 	 */
1181 	if (tp->fastopen_req) {
1182 		*copied = tp->fastopen_req->copied;
1183 		tcp_free_fastopen_req(tp);
1184 		inet->defer_connect = 0;
1185 	}
1186 	return err;
1187 }
1188 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1189 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 	struct ubuf_info *uarg = NULL;
1193 	struct sk_buff *skb;
1194 	struct sockcm_cookie sockc;
1195 	int flags, err, copied = 0;
1196 	int mss_now = 0, size_goal, copied_syn = 0;
1197 	int process_backlog = 0;
1198 	bool zc = false;
1199 	long timeo;
1200 
1201 	flags = msg->msg_flags;
1202 
1203 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1204 		skb = tcp_write_queue_tail(sk);
1205 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1206 		if (!uarg) {
1207 			err = -ENOBUFS;
1208 			goto out_err;
1209 		}
1210 
1211 		zc = sk->sk_route_caps & NETIF_F_SG;
1212 		if (!zc)
1213 			uarg->zerocopy = 0;
1214 	}
1215 
1216 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1217 	    !tp->repair) {
1218 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1219 		if (err == -EINPROGRESS && copied_syn > 0)
1220 			goto out;
1221 		else if (err)
1222 			goto out_err;
1223 	}
1224 
1225 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1226 
1227 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1228 
1229 	/* Wait for a connection to finish. One exception is TCP Fast Open
1230 	 * (passive side) where data is allowed to be sent before a connection
1231 	 * is fully established.
1232 	 */
1233 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1234 	    !tcp_passive_fastopen(sk)) {
1235 		err = sk_stream_wait_connect(sk, &timeo);
1236 		if (err != 0)
1237 			goto do_error;
1238 	}
1239 
1240 	if (unlikely(tp->repair)) {
1241 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1242 			copied = tcp_send_rcvq(sk, msg, size);
1243 			goto out_nopush;
1244 		}
1245 
1246 		err = -EINVAL;
1247 		if (tp->repair_queue == TCP_NO_QUEUE)
1248 			goto out_err;
1249 
1250 		/* 'common' sending to sendq */
1251 	}
1252 
1253 	sockcm_init(&sockc, sk);
1254 	if (msg->msg_controllen) {
1255 		err = sock_cmsg_send(sk, msg, &sockc);
1256 		if (unlikely(err)) {
1257 			err = -EINVAL;
1258 			goto out_err;
1259 		}
1260 	}
1261 
1262 	/* This should be in poll */
1263 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1264 
1265 	/* Ok commence sending. */
1266 	copied = 0;
1267 
1268 restart:
1269 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1270 
1271 	err = -EPIPE;
1272 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1273 		goto do_error;
1274 
1275 	while (msg_data_left(msg)) {
1276 		int copy = 0;
1277 
1278 		skb = tcp_write_queue_tail(sk);
1279 		if (skb)
1280 			copy = size_goal - skb->len;
1281 
1282 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1283 			bool first_skb;
1284 
1285 new_segment:
1286 			if (!sk_stream_memory_free(sk))
1287 				goto wait_for_space;
1288 
1289 			if (unlikely(process_backlog >= 16)) {
1290 				process_backlog = 0;
1291 				if (sk_flush_backlog(sk))
1292 					goto restart;
1293 			}
1294 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1295 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1296 						  first_skb);
1297 			if (!skb)
1298 				goto wait_for_space;
1299 
1300 			process_backlog++;
1301 			skb->ip_summed = CHECKSUM_PARTIAL;
1302 
1303 			skb_entail(sk, skb);
1304 			copy = size_goal;
1305 
1306 			/* All packets are restored as if they have
1307 			 * already been sent. skb_mstamp_ns isn't set to
1308 			 * avoid wrong rtt estimation.
1309 			 */
1310 			if (tp->repair)
1311 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1312 		}
1313 
1314 		/* Try to append data to the end of skb. */
1315 		if (copy > msg_data_left(msg))
1316 			copy = msg_data_left(msg);
1317 
1318 		/* Where to copy to? */
1319 		if (skb_availroom(skb) > 0 && !zc) {
1320 			/* We have some space in skb head. Superb! */
1321 			copy = min_t(int, copy, skb_availroom(skb));
1322 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1323 			if (err)
1324 				goto do_fault;
1325 		} else if (!zc) {
1326 			bool merge = true;
1327 			int i = skb_shinfo(skb)->nr_frags;
1328 			struct page_frag *pfrag = sk_page_frag(sk);
1329 
1330 			if (!sk_page_frag_refill(sk, pfrag))
1331 				goto wait_for_space;
1332 
1333 			if (!skb_can_coalesce(skb, i, pfrag->page,
1334 					      pfrag->offset)) {
1335 				if (i >= sysctl_max_skb_frags) {
1336 					tcp_mark_push(tp, skb);
1337 					goto new_segment;
1338 				}
1339 				merge = false;
1340 			}
1341 
1342 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1343 
1344 			if (!sk_wmem_schedule(sk, copy))
1345 				goto wait_for_space;
1346 
1347 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1348 						       pfrag->page,
1349 						       pfrag->offset,
1350 						       copy);
1351 			if (err)
1352 				goto do_error;
1353 
1354 			/* Update the skb. */
1355 			if (merge) {
1356 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1357 			} else {
1358 				skb_fill_page_desc(skb, i, pfrag->page,
1359 						   pfrag->offset, copy);
1360 				page_ref_inc(pfrag->page);
1361 			}
1362 			pfrag->offset += copy;
1363 		} else {
1364 			if (!sk_wmem_schedule(sk, copy))
1365 				goto wait_for_space;
1366 
1367 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1368 			if (err == -EMSGSIZE || err == -EEXIST) {
1369 				tcp_mark_push(tp, skb);
1370 				goto new_segment;
1371 			}
1372 			if (err < 0)
1373 				goto do_error;
1374 			copy = err;
1375 		}
1376 
1377 		if (!copied)
1378 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1379 
1380 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1381 		TCP_SKB_CB(skb)->end_seq += copy;
1382 		tcp_skb_pcount_set(skb, 0);
1383 
1384 		copied += copy;
1385 		if (!msg_data_left(msg)) {
1386 			if (unlikely(flags & MSG_EOR))
1387 				TCP_SKB_CB(skb)->eor = 1;
1388 			goto out;
1389 		}
1390 
1391 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1392 			continue;
1393 
1394 		if (forced_push(tp)) {
1395 			tcp_mark_push(tp, skb);
1396 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1397 		} else if (skb == tcp_send_head(sk))
1398 			tcp_push_one(sk, mss_now);
1399 		continue;
1400 
1401 wait_for_space:
1402 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1403 		if (copied)
1404 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1405 				 TCP_NAGLE_PUSH, size_goal);
1406 
1407 		err = sk_stream_wait_memory(sk, &timeo);
1408 		if (err != 0)
1409 			goto do_error;
1410 
1411 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1412 	}
1413 
1414 out:
1415 	if (copied) {
1416 		tcp_tx_timestamp(sk, sockc.tsflags);
1417 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1418 	}
1419 out_nopush:
1420 	sock_zerocopy_put(uarg);
1421 	return copied + copied_syn;
1422 
1423 do_error:
1424 	skb = tcp_write_queue_tail(sk);
1425 do_fault:
1426 	tcp_remove_empty_skb(sk, skb);
1427 
1428 	if (copied + copied_syn)
1429 		goto out;
1430 out_err:
1431 	sock_zerocopy_put_abort(uarg, true);
1432 	err = sk_stream_error(sk, flags, err);
1433 	/* make sure we wake any epoll edge trigger waiter */
1434 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1435 		sk->sk_write_space(sk);
1436 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 	}
1438 	return err;
1439 }
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443 {
1444 	int ret;
1445 
1446 	lock_sock(sk);
1447 	ret = tcp_sendmsg_locked(sk, msg, size);
1448 	release_sock(sk);
1449 
1450 	return ret;
1451 }
1452 EXPORT_SYMBOL(tcp_sendmsg);
1453 
1454 /*
1455  *	Handle reading urgent data. BSD has very simple semantics for
1456  *	this, no blocking and very strange errors 8)
1457  */
1458 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	/* No URG data to read. */
1464 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 	    tp->urg_data == TCP_URG_READ)
1466 		return -EINVAL;	/* Yes this is right ! */
1467 
1468 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 		return -ENOTCONN;
1470 
1471 	if (tp->urg_data & TCP_URG_VALID) {
1472 		int err = 0;
1473 		char c = tp->urg_data;
1474 
1475 		if (!(flags & MSG_PEEK))
1476 			tp->urg_data = TCP_URG_READ;
1477 
1478 		/* Read urgent data. */
1479 		msg->msg_flags |= MSG_OOB;
1480 
1481 		if (len > 0) {
1482 			if (!(flags & MSG_TRUNC))
1483 				err = memcpy_to_msg(msg, &c, 1);
1484 			len = 1;
1485 		} else
1486 			msg->msg_flags |= MSG_TRUNC;
1487 
1488 		return err ? -EFAULT : len;
1489 	}
1490 
1491 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 		return 0;
1493 
1494 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495 	 * the available implementations agree in this case:
1496 	 * this call should never block, independent of the
1497 	 * blocking state of the socket.
1498 	 * Mike <pall@rz.uni-karlsruhe.de>
1499 	 */
1500 	return -EAGAIN;
1501 }
1502 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504 {
1505 	struct sk_buff *skb;
1506 	int copied = 0, err = 0;
1507 
1508 	/* XXX -- need to support SO_PEEK_OFF */
1509 
1510 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 		if (err)
1513 			return err;
1514 		copied += skb->len;
1515 	}
1516 
1517 	skb_queue_walk(&sk->sk_write_queue, skb) {
1518 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 		if (err)
1520 			break;
1521 
1522 		copied += skb->len;
1523 	}
1524 
1525 	return err ?: copied;
1526 }
1527 
1528 /* Clean up the receive buffer for full frames taken by the user,
1529  * then send an ACK if necessary.  COPIED is the number of bytes
1530  * tcp_recvmsg has given to the user so far, it speeds up the
1531  * calculation of whether or not we must ACK for the sake of
1532  * a window update.
1533  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1534 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	bool time_to_ack = false;
1538 
1539 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540 
1541 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544 
1545 	if (inet_csk_ack_scheduled(sk)) {
1546 		const struct inet_connection_sock *icsk = inet_csk(sk);
1547 
1548 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1549 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1550 		    /*
1551 		     * If this read emptied read buffer, we send ACK, if
1552 		     * connection is not bidirectional, user drained
1553 		     * receive buffer and there was a small segment
1554 		     * in queue.
1555 		     */
1556 		    (copied > 0 &&
1557 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1558 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1559 		       !inet_csk_in_pingpong_mode(sk))) &&
1560 		      !atomic_read(&sk->sk_rmem_alloc)))
1561 			time_to_ack = true;
1562 	}
1563 
1564 	/* We send an ACK if we can now advertise a non-zero window
1565 	 * which has been raised "significantly".
1566 	 *
1567 	 * Even if window raised up to infinity, do not send window open ACK
1568 	 * in states, where we will not receive more. It is useless.
1569 	 */
1570 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1571 		__u32 rcv_window_now = tcp_receive_window(tp);
1572 
1573 		/* Optimize, __tcp_select_window() is not cheap. */
1574 		if (2*rcv_window_now <= tp->window_clamp) {
1575 			__u32 new_window = __tcp_select_window(sk);
1576 
1577 			/* Send ACK now, if this read freed lots of space
1578 			 * in our buffer. Certainly, new_window is new window.
1579 			 * We can advertise it now, if it is not less than current one.
1580 			 * "Lots" means "at least twice" here.
1581 			 */
1582 			if (new_window && new_window >= 2 * rcv_window_now)
1583 				time_to_ack = true;
1584 		}
1585 	}
1586 	if (time_to_ack)
1587 		tcp_send_ack(sk);
1588 }
1589 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1590 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1591 {
1592 	struct sk_buff *skb;
1593 	u32 offset;
1594 
1595 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1596 		offset = seq - TCP_SKB_CB(skb)->seq;
1597 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1598 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1599 			offset--;
1600 		}
1601 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1602 			*off = offset;
1603 			return skb;
1604 		}
1605 		/* This looks weird, but this can happen if TCP collapsing
1606 		 * splitted a fat GRO packet, while we released socket lock
1607 		 * in skb_splice_bits()
1608 		 */
1609 		sk_eat_skb(sk, skb);
1610 	}
1611 	return NULL;
1612 }
1613 
1614 /*
1615  * This routine provides an alternative to tcp_recvmsg() for routines
1616  * that would like to handle copying from skbuffs directly in 'sendfile'
1617  * fashion.
1618  * Note:
1619  *	- It is assumed that the socket was locked by the caller.
1620  *	- The routine does not block.
1621  *	- At present, there is no support for reading OOB data
1622  *	  or for 'peeking' the socket using this routine
1623  *	  (although both would be easy to implement).
1624  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1625 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1626 		  sk_read_actor_t recv_actor)
1627 {
1628 	struct sk_buff *skb;
1629 	struct tcp_sock *tp = tcp_sk(sk);
1630 	u32 seq = tp->copied_seq;
1631 	u32 offset;
1632 	int copied = 0;
1633 
1634 	if (sk->sk_state == TCP_LISTEN)
1635 		return -ENOTCONN;
1636 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 		if (offset < skb->len) {
1638 			int used;
1639 			size_t len;
1640 
1641 			len = skb->len - offset;
1642 			/* Stop reading if we hit a patch of urgent data */
1643 			if (tp->urg_data) {
1644 				u32 urg_offset = tp->urg_seq - seq;
1645 				if (urg_offset < len)
1646 					len = urg_offset;
1647 				if (!len)
1648 					break;
1649 			}
1650 			used = recv_actor(desc, skb, offset, len);
1651 			if (used <= 0) {
1652 				if (!copied)
1653 					copied = used;
1654 				break;
1655 			} else if (used <= len) {
1656 				seq += used;
1657 				copied += used;
1658 				offset += used;
1659 			}
1660 			/* If recv_actor drops the lock (e.g. TCP splice
1661 			 * receive) the skb pointer might be invalid when
1662 			 * getting here: tcp_collapse might have deleted it
1663 			 * while aggregating skbs from the socket queue.
1664 			 */
1665 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1666 			if (!skb)
1667 				break;
1668 			/* TCP coalescing might have appended data to the skb.
1669 			 * Try to splice more frags
1670 			 */
1671 			if (offset + 1 != skb->len)
1672 				continue;
1673 		}
1674 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1675 			sk_eat_skb(sk, skb);
1676 			++seq;
1677 			break;
1678 		}
1679 		sk_eat_skb(sk, skb);
1680 		if (!desc->count)
1681 			break;
1682 		WRITE_ONCE(tp->copied_seq, seq);
1683 	}
1684 	WRITE_ONCE(tp->copied_seq, seq);
1685 
1686 	tcp_rcv_space_adjust(sk);
1687 
1688 	/* Clean up data we have read: This will do ACK frames. */
1689 	if (copied > 0) {
1690 		tcp_recv_skb(sk, seq, &offset);
1691 		tcp_cleanup_rbuf(sk, copied);
1692 	}
1693 	return copied;
1694 }
1695 EXPORT_SYMBOL(tcp_read_sock);
1696 
tcp_peek_len(struct socket * sock)1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 	return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702 
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 	int cap;
1707 
1708 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 		cap = sk->sk_rcvbuf >> 1;
1710 	else
1711 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1712 	val = min(val, cap);
1713 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714 
1715 	/* Check if we need to signal EPOLLIN right now */
1716 	tcp_data_ready(sk);
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		return 0;
1720 
1721 	val <<= 1;
1722 	if (val > sk->sk_rcvbuf) {
1723 		WRITE_ONCE(sk->sk_rcvbuf, val);
1724 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1725 	}
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729 
1730 #ifdef CONFIG_MMU
1731 static const struct vm_operations_struct tcp_vm_ops = {
1732 };
1733 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1734 int tcp_mmap(struct file *file, struct socket *sock,
1735 	     struct vm_area_struct *vma)
1736 {
1737 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1738 		return -EPERM;
1739 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1740 
1741 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1742 	vma->vm_flags |= VM_MIXEDMAP;
1743 
1744 	vma->vm_ops = &tcp_vm_ops;
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(tcp_mmap);
1748 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1749 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1750 				       u32 *offset_frag)
1751 {
1752 	skb_frag_t *frag;
1753 
1754 	if (unlikely(offset_skb >= skb->len))
1755 		return NULL;
1756 
1757 	offset_skb -= skb_headlen(skb);
1758 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1759 		return NULL;
1760 
1761 	frag = skb_shinfo(skb)->frags;
1762 	while (offset_skb) {
1763 		if (skb_frag_size(frag) > offset_skb) {
1764 			*offset_frag = offset_skb;
1765 			return frag;
1766 		}
1767 		offset_skb -= skb_frag_size(frag);
1768 		++frag;
1769 	}
1770 	*offset_frag = 0;
1771 	return frag;
1772 }
1773 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1774 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1775 				   struct sk_buff *skb, u32 copylen,
1776 				   u32 *offset, u32 *seq)
1777 {
1778 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1779 	struct msghdr msg = {};
1780 	struct iovec iov;
1781 	int err;
1782 
1783 	if (copy_address != zc->copybuf_address)
1784 		return -EINVAL;
1785 
1786 	err = import_single_range(READ, (void __user *)copy_address,
1787 				  copylen, &iov, &msg.msg_iter);
1788 	if (err)
1789 		return err;
1790 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1791 	if (err)
1792 		return err;
1793 	zc->recv_skip_hint -= copylen;
1794 	*offset += copylen;
1795 	*seq += copylen;
1796 	return (__s32)copylen;
1797 }
1798 
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1799 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1800 					     struct sock *sk,
1801 					     struct sk_buff *skb,
1802 					     u32 *seq,
1803 					     s32 copybuf_len)
1804 {
1805 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1806 
1807 	if (!copylen)
1808 		return 0;
1809 	/* skb is null if inq < PAGE_SIZE. */
1810 	if (skb)
1811 		offset = *seq - TCP_SKB_CB(skb)->seq;
1812 	else
1813 		skb = tcp_recv_skb(sk, *seq, &offset);
1814 
1815 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1816 						  seq);
1817 	return zc->copybuf_len < 0 ? 0 : copylen;
1818 }
1819 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1820 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1821 					struct page **pages,
1822 					unsigned long pages_to_map,
1823 					unsigned long *insert_addr,
1824 					u32 *length_with_pending,
1825 					u32 *seq,
1826 					struct tcp_zerocopy_receive *zc)
1827 {
1828 	unsigned long pages_remaining = pages_to_map;
1829 	int bytes_mapped;
1830 	int ret;
1831 
1832 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1833 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1834 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1835 	 * mapping (some but not all of the pages).
1836 	 */
1837 	*seq += bytes_mapped;
1838 	*insert_addr += bytes_mapped;
1839 	if (ret) {
1840 		/* But if vm_insert_pages did fail, we have to unroll some state
1841 		 * we speculatively touched before.
1842 		 */
1843 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1844 		*length_with_pending -= bytes_not_mapped;
1845 		zc->recv_skip_hint += bytes_not_mapped;
1846 	}
1847 	return ret;
1848 }
1849 
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1850 static int tcp_zerocopy_receive(struct sock *sk,
1851 				struct tcp_zerocopy_receive *zc)
1852 {
1853 	u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1854 	unsigned long address = (unsigned long)zc->address;
1855 	s32 copybuf_len = zc->copybuf_len;
1856 	struct tcp_sock *tp = tcp_sk(sk);
1857 	#define PAGE_BATCH_SIZE 8
1858 	struct page *pages[PAGE_BATCH_SIZE];
1859 	const skb_frag_t *frags = NULL;
1860 	struct vm_area_struct *vma;
1861 	struct sk_buff *skb = NULL;
1862 	unsigned long pg_idx = 0;
1863 	unsigned long curr_addr;
1864 	u32 seq = tp->copied_seq;
1865 	int inq = tcp_inq(sk);
1866 	int ret;
1867 
1868 	zc->copybuf_len = 0;
1869 
1870 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1871 		return -EINVAL;
1872 
1873 	if (sk->sk_state == TCP_LISTEN)
1874 		return -ENOTCONN;
1875 
1876 	sock_rps_record_flow(sk);
1877 
1878 	mmap_read_lock(current->mm);
1879 
1880 	vma = find_vma(current->mm, address);
1881 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1882 		mmap_read_unlock(current->mm);
1883 		return -EINVAL;
1884 	}
1885 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1886 	avail_len = min_t(u32, vma_len, inq);
1887 	aligned_len = avail_len & ~(PAGE_SIZE - 1);
1888 	if (aligned_len) {
1889 		zap_page_range(vma, address, aligned_len);
1890 		zc->length = aligned_len;
1891 		zc->recv_skip_hint = 0;
1892 	} else {
1893 		zc->length = avail_len;
1894 		zc->recv_skip_hint = avail_len;
1895 	}
1896 	ret = 0;
1897 	curr_addr = address;
1898 	while (length + PAGE_SIZE <= zc->length) {
1899 		if (zc->recv_skip_hint < PAGE_SIZE) {
1900 			u32 offset_frag;
1901 
1902 			/* If we're here, finish the current batch. */
1903 			if (pg_idx) {
1904 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1905 								   pg_idx,
1906 								   &curr_addr,
1907 								   &length,
1908 								   &seq, zc);
1909 				if (ret)
1910 					goto out;
1911 				pg_idx = 0;
1912 			}
1913 			if (skb) {
1914 				if (zc->recv_skip_hint > 0)
1915 					break;
1916 				skb = skb->next;
1917 				offset = seq - TCP_SKB_CB(skb)->seq;
1918 			} else {
1919 				skb = tcp_recv_skb(sk, seq, &offset);
1920 			}
1921 			zc->recv_skip_hint = skb->len - offset;
1922 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
1923 			if (!frags || offset_frag)
1924 				break;
1925 		}
1926 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1927 			int remaining = zc->recv_skip_hint;
1928 
1929 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1930 					     skb_frag_off(frags))) {
1931 				remaining -= skb_frag_size(frags);
1932 				frags++;
1933 			}
1934 			zc->recv_skip_hint -= remaining;
1935 			break;
1936 		}
1937 		pages[pg_idx] = skb_frag_page(frags);
1938 		pg_idx++;
1939 		length += PAGE_SIZE;
1940 		zc->recv_skip_hint -= PAGE_SIZE;
1941 		frags++;
1942 		if (pg_idx == PAGE_BATCH_SIZE) {
1943 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1944 							   &curr_addr, &length,
1945 							   &seq, zc);
1946 			if (ret)
1947 				goto out;
1948 			pg_idx = 0;
1949 		}
1950 	}
1951 	if (pg_idx) {
1952 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1953 						   &curr_addr, &length, &seq,
1954 						   zc);
1955 	}
1956 out:
1957 	mmap_read_unlock(current->mm);
1958 	/* Try to copy straggler data. */
1959 	if (!ret)
1960 		copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1961 							    copybuf_len);
1962 
1963 	if (length + copylen) {
1964 		WRITE_ONCE(tp->copied_seq, seq);
1965 		tcp_rcv_space_adjust(sk);
1966 
1967 		/* Clean up data we have read: This will do ACK frames. */
1968 		tcp_recv_skb(sk, seq, &offset);
1969 		tcp_cleanup_rbuf(sk, length + copylen);
1970 		ret = 0;
1971 		if (length == zc->length)
1972 			zc->recv_skip_hint = 0;
1973 	} else {
1974 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1975 			ret = -EIO;
1976 	}
1977 	zc->length = length;
1978 	return ret;
1979 }
1980 #endif
1981 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1982 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1983 				    struct scm_timestamping_internal *tss)
1984 {
1985 	if (skb->tstamp)
1986 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1987 	else
1988 		tss->ts[0] = (struct timespec64) {0};
1989 
1990 	if (skb_hwtstamps(skb)->hwtstamp)
1991 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1992 	else
1993 		tss->ts[2] = (struct timespec64) {0};
1994 }
1995 
1996 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1997 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1998 			       struct scm_timestamping_internal *tss)
1999 {
2000 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2001 	bool has_timestamping = false;
2002 
2003 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2004 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2005 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2006 				if (new_tstamp) {
2007 					struct __kernel_timespec kts = {
2008 						.tv_sec = tss->ts[0].tv_sec,
2009 						.tv_nsec = tss->ts[0].tv_nsec,
2010 					};
2011 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2012 						 sizeof(kts), &kts);
2013 				} else {
2014 					struct __kernel_old_timespec ts_old = {
2015 						.tv_sec = tss->ts[0].tv_sec,
2016 						.tv_nsec = tss->ts[0].tv_nsec,
2017 					};
2018 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2019 						 sizeof(ts_old), &ts_old);
2020 				}
2021 			} else {
2022 				if (new_tstamp) {
2023 					struct __kernel_sock_timeval stv = {
2024 						.tv_sec = tss->ts[0].tv_sec,
2025 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2026 					};
2027 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2028 						 sizeof(stv), &stv);
2029 				} else {
2030 					struct __kernel_old_timeval tv = {
2031 						.tv_sec = tss->ts[0].tv_sec,
2032 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2033 					};
2034 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2035 						 sizeof(tv), &tv);
2036 				}
2037 			}
2038 		}
2039 
2040 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2041 			has_timestamping = true;
2042 		else
2043 			tss->ts[0] = (struct timespec64) {0};
2044 	}
2045 
2046 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2047 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2048 			has_timestamping = true;
2049 		else
2050 			tss->ts[2] = (struct timespec64) {0};
2051 	}
2052 
2053 	if (has_timestamping) {
2054 		tss->ts[1] = (struct timespec64) {0};
2055 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2056 			put_cmsg_scm_timestamping64(msg, tss);
2057 		else
2058 			put_cmsg_scm_timestamping(msg, tss);
2059 	}
2060 }
2061 
tcp_inq_hint(struct sock * sk)2062 static int tcp_inq_hint(struct sock *sk)
2063 {
2064 	const struct tcp_sock *tp = tcp_sk(sk);
2065 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2066 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2067 	int inq;
2068 
2069 	inq = rcv_nxt - copied_seq;
2070 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2071 		lock_sock(sk);
2072 		inq = tp->rcv_nxt - tp->copied_seq;
2073 		release_sock(sk);
2074 	}
2075 	/* After receiving a FIN, tell the user-space to continue reading
2076 	 * by returning a non-zero inq.
2077 	 */
2078 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2079 		inq = 1;
2080 	return inq;
2081 }
2082 
2083 /*
2084  *	This routine copies from a sock struct into the user buffer.
2085  *
2086  *	Technical note: in 2.3 we work on _locked_ socket, so that
2087  *	tricks with *seq access order and skb->users are not required.
2088  *	Probably, code can be easily improved even more.
2089  */
2090 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2091 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2092 		int flags, int *addr_len)
2093 {
2094 	struct tcp_sock *tp = tcp_sk(sk);
2095 	int copied = 0;
2096 	u32 peek_seq;
2097 	u32 *seq;
2098 	unsigned long used;
2099 	int err, inq;
2100 	int target;		/* Read at least this many bytes */
2101 	long timeo;
2102 	struct sk_buff *skb, *last;
2103 	u32 urg_hole = 0;
2104 	struct scm_timestamping_internal tss;
2105 	int cmsg_flags;
2106 
2107 	if (unlikely(flags & MSG_ERRQUEUE))
2108 		return inet_recv_error(sk, msg, len, addr_len);
2109 
2110 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2111 	    (sk->sk_state == TCP_ESTABLISHED))
2112 		sk_busy_loop(sk, nonblock);
2113 
2114 	lock_sock(sk);
2115 
2116 	err = -ENOTCONN;
2117 	if (sk->sk_state == TCP_LISTEN)
2118 		goto out;
2119 
2120 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2121 	timeo = sock_rcvtimeo(sk, nonblock);
2122 
2123 	/* Urgent data needs to be handled specially. */
2124 	if (flags & MSG_OOB)
2125 		goto recv_urg;
2126 
2127 	if (unlikely(tp->repair)) {
2128 		err = -EPERM;
2129 		if (!(flags & MSG_PEEK))
2130 			goto out;
2131 
2132 		if (tp->repair_queue == TCP_SEND_QUEUE)
2133 			goto recv_sndq;
2134 
2135 		err = -EINVAL;
2136 		if (tp->repair_queue == TCP_NO_QUEUE)
2137 			goto out;
2138 
2139 		/* 'common' recv queue MSG_PEEK-ing */
2140 	}
2141 
2142 	seq = &tp->copied_seq;
2143 	if (flags & MSG_PEEK) {
2144 		peek_seq = tp->copied_seq;
2145 		seq = &peek_seq;
2146 	}
2147 
2148 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2149 
2150 	do {
2151 		u32 offset;
2152 
2153 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2154 		if (tp->urg_data && tp->urg_seq == *seq) {
2155 			if (copied)
2156 				break;
2157 			if (signal_pending(current)) {
2158 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2159 				break;
2160 			}
2161 		}
2162 
2163 		/* Next get a buffer. */
2164 
2165 		last = skb_peek_tail(&sk->sk_receive_queue);
2166 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2167 			last = skb;
2168 			/* Now that we have two receive queues this
2169 			 * shouldn't happen.
2170 			 */
2171 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2172 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2173 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2174 				 flags))
2175 				break;
2176 
2177 			offset = *seq - TCP_SKB_CB(skb)->seq;
2178 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2179 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2180 				offset--;
2181 			}
2182 			if (offset < skb->len)
2183 				goto found_ok_skb;
2184 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2185 				goto found_fin_ok;
2186 			WARN(!(flags & MSG_PEEK),
2187 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2188 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2189 		}
2190 
2191 		/* Well, if we have backlog, try to process it now yet. */
2192 
2193 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2194 			break;
2195 
2196 		if (copied) {
2197 			if (sk->sk_err ||
2198 			    sk->sk_state == TCP_CLOSE ||
2199 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2200 			    !timeo ||
2201 			    signal_pending(current))
2202 				break;
2203 		} else {
2204 			if (sock_flag(sk, SOCK_DONE))
2205 				break;
2206 
2207 			if (sk->sk_err) {
2208 				copied = sock_error(sk);
2209 				break;
2210 			}
2211 
2212 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2213 				break;
2214 
2215 			if (sk->sk_state == TCP_CLOSE) {
2216 				/* This occurs when user tries to read
2217 				 * from never connected socket.
2218 				 */
2219 				copied = -ENOTCONN;
2220 				break;
2221 			}
2222 
2223 			if (!timeo) {
2224 				copied = -EAGAIN;
2225 				break;
2226 			}
2227 
2228 			if (signal_pending(current)) {
2229 				copied = sock_intr_errno(timeo);
2230 				break;
2231 			}
2232 		}
2233 
2234 		tcp_cleanup_rbuf(sk, copied);
2235 
2236 		if (copied >= target) {
2237 			/* Do not sleep, just process backlog. */
2238 			release_sock(sk);
2239 			lock_sock(sk);
2240 		} else {
2241 			sk_wait_data(sk, &timeo, last);
2242 		}
2243 
2244 		if ((flags & MSG_PEEK) &&
2245 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2246 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2247 					    current->comm,
2248 					    task_pid_nr(current));
2249 			peek_seq = tp->copied_seq;
2250 		}
2251 		continue;
2252 
2253 found_ok_skb:
2254 		/* Ok so how much can we use? */
2255 		used = skb->len - offset;
2256 		if (len < used)
2257 			used = len;
2258 
2259 		/* Do we have urgent data here? */
2260 		if (tp->urg_data) {
2261 			u32 urg_offset = tp->urg_seq - *seq;
2262 			if (urg_offset < used) {
2263 				if (!urg_offset) {
2264 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2265 						WRITE_ONCE(*seq, *seq + 1);
2266 						urg_hole++;
2267 						offset++;
2268 						used--;
2269 						if (!used)
2270 							goto skip_copy;
2271 					}
2272 				} else
2273 					used = urg_offset;
2274 			}
2275 		}
2276 
2277 		if (!(flags & MSG_TRUNC)) {
2278 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2279 			if (err) {
2280 				/* Exception. Bailout! */
2281 				if (!copied)
2282 					copied = -EFAULT;
2283 				break;
2284 			}
2285 		}
2286 
2287 		WRITE_ONCE(*seq, *seq + used);
2288 		copied += used;
2289 		len -= used;
2290 
2291 		tcp_rcv_space_adjust(sk);
2292 
2293 skip_copy:
2294 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2295 			tp->urg_data = 0;
2296 			tcp_fast_path_check(sk);
2297 		}
2298 
2299 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2300 			tcp_update_recv_tstamps(skb, &tss);
2301 			cmsg_flags |= 2;
2302 		}
2303 
2304 		if (used + offset < skb->len)
2305 			continue;
2306 
2307 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2308 			goto found_fin_ok;
2309 		if (!(flags & MSG_PEEK))
2310 			sk_eat_skb(sk, skb);
2311 		continue;
2312 
2313 found_fin_ok:
2314 		/* Process the FIN. */
2315 		WRITE_ONCE(*seq, *seq + 1);
2316 		if (!(flags & MSG_PEEK))
2317 			sk_eat_skb(sk, skb);
2318 		break;
2319 	} while (len > 0);
2320 
2321 	/* According to UNIX98, msg_name/msg_namelen are ignored
2322 	 * on connected socket. I was just happy when found this 8) --ANK
2323 	 */
2324 
2325 	/* Clean up data we have read: This will do ACK frames. */
2326 	tcp_cleanup_rbuf(sk, copied);
2327 
2328 	release_sock(sk);
2329 
2330 	if (cmsg_flags) {
2331 		if (cmsg_flags & 2)
2332 			tcp_recv_timestamp(msg, sk, &tss);
2333 		if (cmsg_flags & 1) {
2334 			inq = tcp_inq_hint(sk);
2335 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2336 		}
2337 	}
2338 
2339 	return copied;
2340 
2341 out:
2342 	release_sock(sk);
2343 	return err;
2344 
2345 recv_urg:
2346 	err = tcp_recv_urg(sk, msg, len, flags);
2347 	goto out;
2348 
2349 recv_sndq:
2350 	err = tcp_peek_sndq(sk, msg, len);
2351 	goto out;
2352 }
2353 EXPORT_SYMBOL(tcp_recvmsg);
2354 
tcp_set_state(struct sock * sk,int state)2355 void tcp_set_state(struct sock *sk, int state)
2356 {
2357 	int oldstate = sk->sk_state;
2358 
2359 	/* We defined a new enum for TCP states that are exported in BPF
2360 	 * so as not force the internal TCP states to be frozen. The
2361 	 * following checks will detect if an internal state value ever
2362 	 * differs from the BPF value. If this ever happens, then we will
2363 	 * need to remap the internal value to the BPF value before calling
2364 	 * tcp_call_bpf_2arg.
2365 	 */
2366 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2367 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2368 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2369 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2370 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2371 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2372 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2373 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2374 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2375 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2376 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2377 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2378 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2379 
2380 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2381 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2382 
2383 	switch (state) {
2384 	case TCP_ESTABLISHED:
2385 		if (oldstate != TCP_ESTABLISHED)
2386 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2387 		break;
2388 
2389 	case TCP_CLOSE:
2390 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2391 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2392 
2393 		sk->sk_prot->unhash(sk);
2394 		if (inet_csk(sk)->icsk_bind_hash &&
2395 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2396 			inet_put_port(sk);
2397 		fallthrough;
2398 	default:
2399 		if (oldstate == TCP_ESTABLISHED)
2400 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2401 	}
2402 
2403 	/* Change state AFTER socket is unhashed to avoid closed
2404 	 * socket sitting in hash tables.
2405 	 */
2406 	inet_sk_state_store(sk, state);
2407 }
2408 EXPORT_SYMBOL_GPL(tcp_set_state);
2409 
2410 /*
2411  *	State processing on a close. This implements the state shift for
2412  *	sending our FIN frame. Note that we only send a FIN for some
2413  *	states. A shutdown() may have already sent the FIN, or we may be
2414  *	closed.
2415  */
2416 
2417 static const unsigned char new_state[16] = {
2418   /* current state:        new state:      action:	*/
2419   [0 /* (Invalid) */]	= TCP_CLOSE,
2420   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2421   [TCP_SYN_SENT]	= TCP_CLOSE,
2422   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2423   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2424   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2425   [TCP_TIME_WAIT]	= TCP_CLOSE,
2426   [TCP_CLOSE]		= TCP_CLOSE,
2427   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2428   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2429   [TCP_LISTEN]		= TCP_CLOSE,
2430   [TCP_CLOSING]		= TCP_CLOSING,
2431   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2432 };
2433 
tcp_close_state(struct sock * sk)2434 static int tcp_close_state(struct sock *sk)
2435 {
2436 	int next = (int)new_state[sk->sk_state];
2437 	int ns = next & TCP_STATE_MASK;
2438 
2439 	tcp_set_state(sk, ns);
2440 
2441 	return next & TCP_ACTION_FIN;
2442 }
2443 
2444 /*
2445  *	Shutdown the sending side of a connection. Much like close except
2446  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2447  */
2448 
tcp_shutdown(struct sock * sk,int how)2449 void tcp_shutdown(struct sock *sk, int how)
2450 {
2451 	/*	We need to grab some memory, and put together a FIN,
2452 	 *	and then put it into the queue to be sent.
2453 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2454 	 */
2455 	if (!(how & SEND_SHUTDOWN))
2456 		return;
2457 
2458 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2459 	if ((1 << sk->sk_state) &
2460 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2461 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2462 		/* Clear out any half completed packets.  FIN if needed. */
2463 		if (tcp_close_state(sk))
2464 			tcp_send_fin(sk);
2465 	}
2466 }
2467 EXPORT_SYMBOL(tcp_shutdown);
2468 
tcp_orphan_count_sum(void)2469 int tcp_orphan_count_sum(void)
2470 {
2471 	int i, total = 0;
2472 
2473 	for_each_possible_cpu(i)
2474 		total += per_cpu(tcp_orphan_count, i);
2475 
2476 	return max(total, 0);
2477 }
2478 
2479 static int tcp_orphan_cache;
2480 static struct timer_list tcp_orphan_timer;
2481 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2482 
tcp_orphan_update(struct timer_list * unused)2483 static void tcp_orphan_update(struct timer_list *unused)
2484 {
2485 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2486 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2487 }
2488 
tcp_too_many_orphans(int shift)2489 static bool tcp_too_many_orphans(int shift)
2490 {
2491 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2492 }
2493 
tcp_check_oom(struct sock * sk,int shift)2494 bool tcp_check_oom(struct sock *sk, int shift)
2495 {
2496 	bool too_many_orphans, out_of_socket_memory;
2497 
2498 	too_many_orphans = tcp_too_many_orphans(shift);
2499 	out_of_socket_memory = tcp_out_of_memory(sk);
2500 
2501 	if (too_many_orphans)
2502 		net_info_ratelimited("too many orphaned sockets\n");
2503 	if (out_of_socket_memory)
2504 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2505 	return too_many_orphans || out_of_socket_memory;
2506 }
2507 
tcp_close(struct sock * sk,long timeout)2508 void tcp_close(struct sock *sk, long timeout)
2509 {
2510 	struct sk_buff *skb;
2511 	int data_was_unread = 0;
2512 	int state;
2513 
2514 	lock_sock(sk);
2515 	sk->sk_shutdown = SHUTDOWN_MASK;
2516 
2517 	if (sk->sk_state == TCP_LISTEN) {
2518 		tcp_set_state(sk, TCP_CLOSE);
2519 
2520 		/* Special case. */
2521 		inet_csk_listen_stop(sk);
2522 
2523 		goto adjudge_to_death;
2524 	}
2525 
2526 	/*  We need to flush the recv. buffs.  We do this only on the
2527 	 *  descriptor close, not protocol-sourced closes, because the
2528 	 *  reader process may not have drained the data yet!
2529 	 */
2530 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2531 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2532 
2533 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2534 			len--;
2535 		data_was_unread += len;
2536 		__kfree_skb(skb);
2537 	}
2538 
2539 	sk_mem_reclaim(sk);
2540 
2541 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2542 	if (sk->sk_state == TCP_CLOSE)
2543 		goto adjudge_to_death;
2544 
2545 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2546 	 * data was lost. To witness the awful effects of the old behavior of
2547 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2548 	 * GET in an FTP client, suspend the process, wait for the client to
2549 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2550 	 * Note: timeout is always zero in such a case.
2551 	 */
2552 	if (unlikely(tcp_sk(sk)->repair)) {
2553 		sk->sk_prot->disconnect(sk, 0);
2554 	} else if (data_was_unread) {
2555 		/* Unread data was tossed, zap the connection. */
2556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2557 		tcp_set_state(sk, TCP_CLOSE);
2558 		tcp_send_active_reset(sk, sk->sk_allocation);
2559 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2560 		/* Check zero linger _after_ checking for unread data. */
2561 		sk->sk_prot->disconnect(sk, 0);
2562 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2563 	} else if (tcp_close_state(sk)) {
2564 		/* We FIN if the application ate all the data before
2565 		 * zapping the connection.
2566 		 */
2567 
2568 		/* RED-PEN. Formally speaking, we have broken TCP state
2569 		 * machine. State transitions:
2570 		 *
2571 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2572 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2573 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2574 		 *
2575 		 * are legal only when FIN has been sent (i.e. in window),
2576 		 * rather than queued out of window. Purists blame.
2577 		 *
2578 		 * F.e. "RFC state" is ESTABLISHED,
2579 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2580 		 *
2581 		 * The visible declinations are that sometimes
2582 		 * we enter time-wait state, when it is not required really
2583 		 * (harmless), do not send active resets, when they are
2584 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2585 		 * they look as CLOSING or LAST_ACK for Linux)
2586 		 * Probably, I missed some more holelets.
2587 		 * 						--ANK
2588 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2589 		 * in a single packet! (May consider it later but will
2590 		 * probably need API support or TCP_CORK SYN-ACK until
2591 		 * data is written and socket is closed.)
2592 		 */
2593 		tcp_send_fin(sk);
2594 	}
2595 
2596 	sk_stream_wait_close(sk, timeout);
2597 
2598 adjudge_to_death:
2599 	state = sk->sk_state;
2600 	sock_hold(sk);
2601 	sock_orphan(sk);
2602 
2603 	local_bh_disable();
2604 	bh_lock_sock(sk);
2605 	/* remove backlog if any, without releasing ownership. */
2606 	__release_sock(sk);
2607 
2608 	this_cpu_inc(tcp_orphan_count);
2609 
2610 	/* Have we already been destroyed by a softirq or backlog? */
2611 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2612 		goto out;
2613 
2614 	/*	This is a (useful) BSD violating of the RFC. There is a
2615 	 *	problem with TCP as specified in that the other end could
2616 	 *	keep a socket open forever with no application left this end.
2617 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2618 	 *	our end. If they send after that then tough - BUT: long enough
2619 	 *	that we won't make the old 4*rto = almost no time - whoops
2620 	 *	reset mistake.
2621 	 *
2622 	 *	Nope, it was not mistake. It is really desired behaviour
2623 	 *	f.e. on http servers, when such sockets are useless, but
2624 	 *	consume significant resources. Let's do it with special
2625 	 *	linger2	option.					--ANK
2626 	 */
2627 
2628 	if (sk->sk_state == TCP_FIN_WAIT2) {
2629 		struct tcp_sock *tp = tcp_sk(sk);
2630 		if (tp->linger2 < 0) {
2631 			tcp_set_state(sk, TCP_CLOSE);
2632 			tcp_send_active_reset(sk, GFP_ATOMIC);
2633 			__NET_INC_STATS(sock_net(sk),
2634 					LINUX_MIB_TCPABORTONLINGER);
2635 		} else {
2636 			const int tmo = tcp_fin_time(sk);
2637 
2638 			if (tmo > TCP_TIMEWAIT_LEN) {
2639 				inet_csk_reset_keepalive_timer(sk,
2640 						tmo - TCP_TIMEWAIT_LEN);
2641 			} else {
2642 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2643 				goto out;
2644 			}
2645 		}
2646 	}
2647 	if (sk->sk_state != TCP_CLOSE) {
2648 		sk_mem_reclaim(sk);
2649 		if (tcp_check_oom(sk, 0)) {
2650 			tcp_set_state(sk, TCP_CLOSE);
2651 			tcp_send_active_reset(sk, GFP_ATOMIC);
2652 			__NET_INC_STATS(sock_net(sk),
2653 					LINUX_MIB_TCPABORTONMEMORY);
2654 		} else if (!check_net(sock_net(sk))) {
2655 			/* Not possible to send reset; just close */
2656 			tcp_set_state(sk, TCP_CLOSE);
2657 		}
2658 	}
2659 
2660 	if (sk->sk_state == TCP_CLOSE) {
2661 		struct request_sock *req;
2662 
2663 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2664 						lockdep_sock_is_held(sk));
2665 		/* We could get here with a non-NULL req if the socket is
2666 		 * aborted (e.g., closed with unread data) before 3WHS
2667 		 * finishes.
2668 		 */
2669 		if (req)
2670 			reqsk_fastopen_remove(sk, req, false);
2671 		inet_csk_destroy_sock(sk);
2672 	}
2673 	/* Otherwise, socket is reprieved until protocol close. */
2674 
2675 out:
2676 	bh_unlock_sock(sk);
2677 	local_bh_enable();
2678 	release_sock(sk);
2679 	sock_put(sk);
2680 }
2681 EXPORT_SYMBOL(tcp_close);
2682 
2683 /* These states need RST on ABORT according to RFC793 */
2684 
tcp_need_reset(int state)2685 static inline bool tcp_need_reset(int state)
2686 {
2687 	return (1 << state) &
2688 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2689 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2690 }
2691 
tcp_rtx_queue_purge(struct sock * sk)2692 static void tcp_rtx_queue_purge(struct sock *sk)
2693 {
2694 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2695 
2696 	tcp_sk(sk)->highest_sack = NULL;
2697 	while (p) {
2698 		struct sk_buff *skb = rb_to_skb(p);
2699 
2700 		p = rb_next(p);
2701 		/* Since we are deleting whole queue, no need to
2702 		 * list_del(&skb->tcp_tsorted_anchor)
2703 		 */
2704 		tcp_rtx_queue_unlink(skb, sk);
2705 		sk_wmem_free_skb(sk, skb);
2706 	}
2707 }
2708 
tcp_write_queue_purge(struct sock * sk)2709 void tcp_write_queue_purge(struct sock *sk)
2710 {
2711 	struct sk_buff *skb;
2712 
2713 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2714 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2715 		tcp_skb_tsorted_anchor_cleanup(skb);
2716 		sk_wmem_free_skb(sk, skb);
2717 	}
2718 	tcp_rtx_queue_purge(sk);
2719 	skb = sk->sk_tx_skb_cache;
2720 	if (skb) {
2721 		__kfree_skb(skb);
2722 		sk->sk_tx_skb_cache = NULL;
2723 	}
2724 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2725 	sk_mem_reclaim(sk);
2726 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2727 	tcp_sk(sk)->packets_out = 0;
2728 	inet_csk(sk)->icsk_backoff = 0;
2729 }
2730 
tcp_disconnect(struct sock * sk,int flags)2731 int tcp_disconnect(struct sock *sk, int flags)
2732 {
2733 	struct inet_sock *inet = inet_sk(sk);
2734 	struct inet_connection_sock *icsk = inet_csk(sk);
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 	int old_state = sk->sk_state;
2737 	u32 seq;
2738 
2739 	if (old_state != TCP_CLOSE)
2740 		tcp_set_state(sk, TCP_CLOSE);
2741 
2742 	/* ABORT function of RFC793 */
2743 	if (old_state == TCP_LISTEN) {
2744 		inet_csk_listen_stop(sk);
2745 	} else if (unlikely(tp->repair)) {
2746 		sk->sk_err = ECONNABORTED;
2747 	} else if (tcp_need_reset(old_state) ||
2748 		   (tp->snd_nxt != tp->write_seq &&
2749 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2750 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2751 		 * states
2752 		 */
2753 		tcp_send_active_reset(sk, gfp_any());
2754 		sk->sk_err = ECONNRESET;
2755 	} else if (old_state == TCP_SYN_SENT)
2756 		sk->sk_err = ECONNRESET;
2757 
2758 	tcp_clear_xmit_timers(sk);
2759 	__skb_queue_purge(&sk->sk_receive_queue);
2760 	if (sk->sk_rx_skb_cache) {
2761 		__kfree_skb(sk->sk_rx_skb_cache);
2762 		sk->sk_rx_skb_cache = NULL;
2763 	}
2764 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2765 	tp->urg_data = 0;
2766 	tcp_write_queue_purge(sk);
2767 	tcp_fastopen_active_disable_ofo_check(sk);
2768 	skb_rbtree_purge(&tp->out_of_order_queue);
2769 
2770 	inet->inet_dport = 0;
2771 
2772 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2773 		inet_reset_saddr(sk);
2774 
2775 	sk->sk_shutdown = 0;
2776 	sock_reset_flag(sk, SOCK_DONE);
2777 	tp->srtt_us = 0;
2778 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2779 	tp->rcv_rtt_last_tsecr = 0;
2780 
2781 	seq = tp->write_seq + tp->max_window + 2;
2782 	if (!seq)
2783 		seq = 1;
2784 	WRITE_ONCE(tp->write_seq, seq);
2785 
2786 	icsk->icsk_backoff = 0;
2787 	icsk->icsk_probes_out = 0;
2788 	icsk->icsk_probes_tstamp = 0;
2789 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2790 	icsk->icsk_rto_min = TCP_RTO_MIN;
2791 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2792 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2793 	tp->snd_cwnd = TCP_INIT_CWND;
2794 	tp->snd_cwnd_cnt = 0;
2795 	tp->window_clamp = 0;
2796 	tp->delivered = 0;
2797 	tp->delivered_ce = 0;
2798 	if (icsk->icsk_ca_ops->release)
2799 		icsk->icsk_ca_ops->release(sk);
2800 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2801 	icsk->icsk_ca_initialized = 0;
2802 	tcp_set_ca_state(sk, TCP_CA_Open);
2803 	tp->is_sack_reneg = 0;
2804 	tcp_clear_retrans(tp);
2805 	tp->total_retrans = 0;
2806 	inet_csk_delack_init(sk);
2807 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2808 	 * issue in __tcp_select_window()
2809 	 */
2810 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2811 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2812 	__sk_dst_reset(sk);
2813 	dst_release(sk->sk_rx_dst);
2814 	sk->sk_rx_dst = NULL;
2815 	tcp_saved_syn_free(tp);
2816 	tp->compressed_ack = 0;
2817 	tp->segs_in = 0;
2818 	tp->segs_out = 0;
2819 	tp->bytes_sent = 0;
2820 	tp->bytes_acked = 0;
2821 	tp->bytes_received = 0;
2822 	tp->bytes_retrans = 0;
2823 	tp->data_segs_in = 0;
2824 	tp->data_segs_out = 0;
2825 	tp->duplicate_sack[0].start_seq = 0;
2826 	tp->duplicate_sack[0].end_seq = 0;
2827 	tp->dsack_dups = 0;
2828 	tp->reord_seen = 0;
2829 	tp->retrans_out = 0;
2830 	tp->sacked_out = 0;
2831 	tp->tlp_high_seq = 0;
2832 	tp->last_oow_ack_time = 0;
2833 	/* There's a bubble in the pipe until at least the first ACK. */
2834 	tp->app_limited = ~0U;
2835 	tp->rack.mstamp = 0;
2836 	tp->rack.advanced = 0;
2837 	tp->rack.reo_wnd_steps = 1;
2838 	tp->rack.last_delivered = 0;
2839 	tp->rack.reo_wnd_persist = 0;
2840 	tp->rack.dsack_seen = 0;
2841 	tp->syn_data_acked = 0;
2842 	tp->rx_opt.saw_tstamp = 0;
2843 	tp->rx_opt.dsack = 0;
2844 	tp->rx_opt.num_sacks = 0;
2845 	tp->rcv_ooopack = 0;
2846 
2847 
2848 	/* Clean up fastopen related fields */
2849 	tcp_free_fastopen_req(tp);
2850 	inet->defer_connect = 0;
2851 	tp->fastopen_client_fail = 0;
2852 
2853 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2854 
2855 	if (sk->sk_frag.page) {
2856 		put_page(sk->sk_frag.page);
2857 		sk->sk_frag.page = NULL;
2858 		sk->sk_frag.offset = 0;
2859 	}
2860 
2861 	sk->sk_error_report(sk);
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL(tcp_disconnect);
2865 
tcp_can_repair_sock(const struct sock * sk)2866 static inline bool tcp_can_repair_sock(const struct sock *sk)
2867 {
2868 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2869 		(sk->sk_state != TCP_LISTEN);
2870 }
2871 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2872 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2873 {
2874 	struct tcp_repair_window opt;
2875 
2876 	if (!tp->repair)
2877 		return -EPERM;
2878 
2879 	if (len != sizeof(opt))
2880 		return -EINVAL;
2881 
2882 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2883 		return -EFAULT;
2884 
2885 	if (opt.max_window < opt.snd_wnd)
2886 		return -EINVAL;
2887 
2888 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2889 		return -EINVAL;
2890 
2891 	if (after(opt.rcv_wup, tp->rcv_nxt))
2892 		return -EINVAL;
2893 
2894 	tp->snd_wl1	= opt.snd_wl1;
2895 	tp->snd_wnd	= opt.snd_wnd;
2896 	tp->max_window	= opt.max_window;
2897 
2898 	tp->rcv_wnd	= opt.rcv_wnd;
2899 	tp->rcv_wup	= opt.rcv_wup;
2900 
2901 	return 0;
2902 }
2903 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2904 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2905 		unsigned int len)
2906 {
2907 	struct tcp_sock *tp = tcp_sk(sk);
2908 	struct tcp_repair_opt opt;
2909 	size_t offset = 0;
2910 
2911 	while (len >= sizeof(opt)) {
2912 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2913 			return -EFAULT;
2914 
2915 		offset += sizeof(opt);
2916 		len -= sizeof(opt);
2917 
2918 		switch (opt.opt_code) {
2919 		case TCPOPT_MSS:
2920 			tp->rx_opt.mss_clamp = opt.opt_val;
2921 			tcp_mtup_init(sk);
2922 			break;
2923 		case TCPOPT_WINDOW:
2924 			{
2925 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2926 				u16 rcv_wscale = opt.opt_val >> 16;
2927 
2928 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2929 					return -EFBIG;
2930 
2931 				tp->rx_opt.snd_wscale = snd_wscale;
2932 				tp->rx_opt.rcv_wscale = rcv_wscale;
2933 				tp->rx_opt.wscale_ok = 1;
2934 			}
2935 			break;
2936 		case TCPOPT_SACK_PERM:
2937 			if (opt.opt_val != 0)
2938 				return -EINVAL;
2939 
2940 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2941 			break;
2942 		case TCPOPT_TIMESTAMP:
2943 			if (opt.opt_val != 0)
2944 				return -EINVAL;
2945 
2946 			tp->rx_opt.tstamp_ok = 1;
2947 			break;
2948 		}
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2955 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2956 
tcp_enable_tx_delay(void)2957 static void tcp_enable_tx_delay(void)
2958 {
2959 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2960 		static int __tcp_tx_delay_enabled = 0;
2961 
2962 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2963 			static_branch_enable(&tcp_tx_delay_enabled);
2964 			pr_info("TCP_TX_DELAY enabled\n");
2965 		}
2966 	}
2967 }
2968 
2969 /* When set indicates to always queue non-full frames.  Later the user clears
2970  * this option and we transmit any pending partial frames in the queue.  This is
2971  * meant to be used alongside sendfile() to get properly filled frames when the
2972  * user (for example) must write out headers with a write() call first and then
2973  * use sendfile to send out the data parts.
2974  *
2975  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2976  * TCP_NODELAY.
2977  */
__tcp_sock_set_cork(struct sock * sk,bool on)2978 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2979 {
2980 	struct tcp_sock *tp = tcp_sk(sk);
2981 
2982 	if (on) {
2983 		tp->nonagle |= TCP_NAGLE_CORK;
2984 	} else {
2985 		tp->nonagle &= ~TCP_NAGLE_CORK;
2986 		if (tp->nonagle & TCP_NAGLE_OFF)
2987 			tp->nonagle |= TCP_NAGLE_PUSH;
2988 		tcp_push_pending_frames(sk);
2989 	}
2990 }
2991 
tcp_sock_set_cork(struct sock * sk,bool on)2992 void tcp_sock_set_cork(struct sock *sk, bool on)
2993 {
2994 	lock_sock(sk);
2995 	__tcp_sock_set_cork(sk, on);
2996 	release_sock(sk);
2997 }
2998 EXPORT_SYMBOL(tcp_sock_set_cork);
2999 
3000 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3001  * remembered, but it is not activated until cork is cleared.
3002  *
3003  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3004  * even TCP_CORK for currently queued segments.
3005  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3006 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3007 {
3008 	if (on) {
3009 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3010 		tcp_push_pending_frames(sk);
3011 	} else {
3012 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3013 	}
3014 }
3015 
tcp_sock_set_nodelay(struct sock * sk)3016 void tcp_sock_set_nodelay(struct sock *sk)
3017 {
3018 	lock_sock(sk);
3019 	__tcp_sock_set_nodelay(sk, true);
3020 	release_sock(sk);
3021 }
3022 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3023 
__tcp_sock_set_quickack(struct sock * sk,int val)3024 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3025 {
3026 	if (!val) {
3027 		inet_csk_enter_pingpong_mode(sk);
3028 		return;
3029 	}
3030 
3031 	inet_csk_exit_pingpong_mode(sk);
3032 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3033 	    inet_csk_ack_scheduled(sk)) {
3034 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3035 		tcp_cleanup_rbuf(sk, 1);
3036 		if (!(val & 1))
3037 			inet_csk_enter_pingpong_mode(sk);
3038 	}
3039 }
3040 
tcp_sock_set_quickack(struct sock * sk,int val)3041 void tcp_sock_set_quickack(struct sock *sk, int val)
3042 {
3043 	lock_sock(sk);
3044 	__tcp_sock_set_quickack(sk, val);
3045 	release_sock(sk);
3046 }
3047 EXPORT_SYMBOL(tcp_sock_set_quickack);
3048 
tcp_sock_set_syncnt(struct sock * sk,int val)3049 int tcp_sock_set_syncnt(struct sock *sk, int val)
3050 {
3051 	if (val < 1 || val > MAX_TCP_SYNCNT)
3052 		return -EINVAL;
3053 
3054 	lock_sock(sk);
3055 	inet_csk(sk)->icsk_syn_retries = val;
3056 	release_sock(sk);
3057 	return 0;
3058 }
3059 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3060 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3061 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3062 {
3063 	lock_sock(sk);
3064 	inet_csk(sk)->icsk_user_timeout = val;
3065 	release_sock(sk);
3066 }
3067 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3068 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3069 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3070 {
3071 	struct tcp_sock *tp = tcp_sk(sk);
3072 
3073 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3074 		return -EINVAL;
3075 
3076 	tp->keepalive_time = val * HZ;
3077 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3078 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3079 		u32 elapsed = keepalive_time_elapsed(tp);
3080 
3081 		if (tp->keepalive_time > elapsed)
3082 			elapsed = tp->keepalive_time - elapsed;
3083 		else
3084 			elapsed = 0;
3085 		inet_csk_reset_keepalive_timer(sk, elapsed);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
tcp_sock_set_keepidle(struct sock * sk,int val)3091 int tcp_sock_set_keepidle(struct sock *sk, int val)
3092 {
3093 	int err;
3094 
3095 	lock_sock(sk);
3096 	err = tcp_sock_set_keepidle_locked(sk, val);
3097 	release_sock(sk);
3098 	return err;
3099 }
3100 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3101 
tcp_sock_set_keepintvl(struct sock * sk,int val)3102 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3103 {
3104 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3105 		return -EINVAL;
3106 
3107 	lock_sock(sk);
3108 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3109 	release_sock(sk);
3110 	return 0;
3111 }
3112 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3113 
tcp_sock_set_keepcnt(struct sock * sk,int val)3114 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3115 {
3116 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3117 		return -EINVAL;
3118 
3119 	lock_sock(sk);
3120 	tcp_sk(sk)->keepalive_probes = val;
3121 	release_sock(sk);
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3125 
3126 /*
3127  *	Socket option code for TCP.
3128  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3129 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3130 		sockptr_t optval, unsigned int optlen)
3131 {
3132 	struct tcp_sock *tp = tcp_sk(sk);
3133 	struct inet_connection_sock *icsk = inet_csk(sk);
3134 	struct net *net = sock_net(sk);
3135 	int val;
3136 	int err = 0;
3137 
3138 	/* These are data/string values, all the others are ints */
3139 	switch (optname) {
3140 	case TCP_CONGESTION: {
3141 		char name[TCP_CA_NAME_MAX];
3142 
3143 		if (optlen < 1)
3144 			return -EINVAL;
3145 
3146 		val = strncpy_from_sockptr(name, optval,
3147 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3148 		if (val < 0)
3149 			return -EFAULT;
3150 		name[val] = 0;
3151 
3152 		lock_sock(sk);
3153 		err = tcp_set_congestion_control(sk, name, true,
3154 						 ns_capable(sock_net(sk)->user_ns,
3155 							    CAP_NET_ADMIN));
3156 		release_sock(sk);
3157 		return err;
3158 	}
3159 	case TCP_ULP: {
3160 		char name[TCP_ULP_NAME_MAX];
3161 
3162 		if (optlen < 1)
3163 			return -EINVAL;
3164 
3165 		val = strncpy_from_sockptr(name, optval,
3166 					min_t(long, TCP_ULP_NAME_MAX - 1,
3167 					      optlen));
3168 		if (val < 0)
3169 			return -EFAULT;
3170 		name[val] = 0;
3171 
3172 		lock_sock(sk);
3173 		err = tcp_set_ulp(sk, name);
3174 		release_sock(sk);
3175 		return err;
3176 	}
3177 	case TCP_FASTOPEN_KEY: {
3178 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3179 		__u8 *backup_key = NULL;
3180 
3181 		/* Allow a backup key as well to facilitate key rotation
3182 		 * First key is the active one.
3183 		 */
3184 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3185 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3186 			return -EINVAL;
3187 
3188 		if (copy_from_sockptr(key, optval, optlen))
3189 			return -EFAULT;
3190 
3191 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3192 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3193 
3194 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3195 	}
3196 	default:
3197 		/* fallthru */
3198 		break;
3199 	}
3200 
3201 	if (optlen < sizeof(int))
3202 		return -EINVAL;
3203 
3204 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3205 		return -EFAULT;
3206 
3207 	lock_sock(sk);
3208 
3209 	switch (optname) {
3210 	case TCP_MAXSEG:
3211 		/* Values greater than interface MTU won't take effect. However
3212 		 * at the point when this call is done we typically don't yet
3213 		 * know which interface is going to be used
3214 		 */
3215 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3216 			err = -EINVAL;
3217 			break;
3218 		}
3219 		tp->rx_opt.user_mss = val;
3220 		break;
3221 
3222 	case TCP_NODELAY:
3223 		__tcp_sock_set_nodelay(sk, val);
3224 		break;
3225 
3226 	case TCP_THIN_LINEAR_TIMEOUTS:
3227 		if (val < 0 || val > 1)
3228 			err = -EINVAL;
3229 		else
3230 			tp->thin_lto = val;
3231 		break;
3232 
3233 	case TCP_THIN_DUPACK:
3234 		if (val < 0 || val > 1)
3235 			err = -EINVAL;
3236 		break;
3237 
3238 	case TCP_REPAIR:
3239 		if (!tcp_can_repair_sock(sk))
3240 			err = -EPERM;
3241 		else if (val == TCP_REPAIR_ON) {
3242 			tp->repair = 1;
3243 			sk->sk_reuse = SK_FORCE_REUSE;
3244 			tp->repair_queue = TCP_NO_QUEUE;
3245 		} else if (val == TCP_REPAIR_OFF) {
3246 			tp->repair = 0;
3247 			sk->sk_reuse = SK_NO_REUSE;
3248 			tcp_send_window_probe(sk);
3249 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3250 			tp->repair = 0;
3251 			sk->sk_reuse = SK_NO_REUSE;
3252 		} else
3253 			err = -EINVAL;
3254 
3255 		break;
3256 
3257 	case TCP_REPAIR_QUEUE:
3258 		if (!tp->repair)
3259 			err = -EPERM;
3260 		else if ((unsigned int)val < TCP_QUEUES_NR)
3261 			tp->repair_queue = val;
3262 		else
3263 			err = -EINVAL;
3264 		break;
3265 
3266 	case TCP_QUEUE_SEQ:
3267 		if (sk->sk_state != TCP_CLOSE) {
3268 			err = -EPERM;
3269 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3270 			if (!tcp_rtx_queue_empty(sk))
3271 				err = -EPERM;
3272 			else
3273 				WRITE_ONCE(tp->write_seq, val);
3274 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3275 			if (tp->rcv_nxt != tp->copied_seq) {
3276 				err = -EPERM;
3277 			} else {
3278 				WRITE_ONCE(tp->rcv_nxt, val);
3279 				WRITE_ONCE(tp->copied_seq, val);
3280 			}
3281 		} else {
3282 			err = -EINVAL;
3283 		}
3284 		break;
3285 
3286 	case TCP_REPAIR_OPTIONS:
3287 		if (!tp->repair)
3288 			err = -EINVAL;
3289 		else if (sk->sk_state == TCP_ESTABLISHED)
3290 			err = tcp_repair_options_est(sk, optval, optlen);
3291 		else
3292 			err = -EPERM;
3293 		break;
3294 
3295 	case TCP_CORK:
3296 		__tcp_sock_set_cork(sk, val);
3297 		break;
3298 
3299 	case TCP_KEEPIDLE:
3300 		err = tcp_sock_set_keepidle_locked(sk, val);
3301 		break;
3302 	case TCP_KEEPINTVL:
3303 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3304 			err = -EINVAL;
3305 		else
3306 			tp->keepalive_intvl = val * HZ;
3307 		break;
3308 	case TCP_KEEPCNT:
3309 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3310 			err = -EINVAL;
3311 		else
3312 			tp->keepalive_probes = val;
3313 		break;
3314 	case TCP_SYNCNT:
3315 		if (val < 1 || val > MAX_TCP_SYNCNT)
3316 			err = -EINVAL;
3317 		else
3318 			icsk->icsk_syn_retries = val;
3319 		break;
3320 
3321 	case TCP_SAVE_SYN:
3322 		/* 0: disable, 1: enable, 2: start from ether_header */
3323 		if (val < 0 || val > 2)
3324 			err = -EINVAL;
3325 		else
3326 			tp->save_syn = val;
3327 		break;
3328 
3329 	case TCP_LINGER2:
3330 		if (val < 0)
3331 			tp->linger2 = -1;
3332 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3333 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3334 		else
3335 			tp->linger2 = val * HZ;
3336 		break;
3337 
3338 	case TCP_DEFER_ACCEPT:
3339 		/* Translate value in seconds to number of retransmits */
3340 		icsk->icsk_accept_queue.rskq_defer_accept =
3341 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3342 					TCP_RTO_MAX / HZ);
3343 		break;
3344 
3345 	case TCP_WINDOW_CLAMP:
3346 		if (!val) {
3347 			if (sk->sk_state != TCP_CLOSE) {
3348 				err = -EINVAL;
3349 				break;
3350 			}
3351 			tp->window_clamp = 0;
3352 		} else
3353 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3354 						SOCK_MIN_RCVBUF / 2 : val;
3355 		break;
3356 
3357 	case TCP_QUICKACK:
3358 		__tcp_sock_set_quickack(sk, val);
3359 		break;
3360 
3361 #ifdef CONFIG_TCP_MD5SIG
3362 	case TCP_MD5SIG:
3363 	case TCP_MD5SIG_EXT:
3364 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3365 		break;
3366 #endif
3367 	case TCP_USER_TIMEOUT:
3368 		/* Cap the max time in ms TCP will retry or probe the window
3369 		 * before giving up and aborting (ETIMEDOUT) a connection.
3370 		 */
3371 		if (val < 0)
3372 			err = -EINVAL;
3373 		else
3374 			icsk->icsk_user_timeout = val;
3375 		break;
3376 
3377 	case TCP_FASTOPEN:
3378 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3379 		    TCPF_LISTEN))) {
3380 			tcp_fastopen_init_key_once(net);
3381 
3382 			fastopen_queue_tune(sk, val);
3383 		} else {
3384 			err = -EINVAL;
3385 		}
3386 		break;
3387 	case TCP_FASTOPEN_CONNECT:
3388 		if (val > 1 || val < 0) {
3389 			err = -EINVAL;
3390 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3391 			if (sk->sk_state == TCP_CLOSE)
3392 				tp->fastopen_connect = val;
3393 			else
3394 				err = -EINVAL;
3395 		} else {
3396 			err = -EOPNOTSUPP;
3397 		}
3398 		break;
3399 	case TCP_FASTOPEN_NO_COOKIE:
3400 		if (val > 1 || val < 0)
3401 			err = -EINVAL;
3402 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3403 			err = -EINVAL;
3404 		else
3405 			tp->fastopen_no_cookie = val;
3406 		break;
3407 	case TCP_TIMESTAMP:
3408 		if (!tp->repair)
3409 			err = -EPERM;
3410 		else
3411 			tp->tsoffset = val - tcp_time_stamp_raw();
3412 		break;
3413 	case TCP_REPAIR_WINDOW:
3414 		err = tcp_repair_set_window(tp, optval, optlen);
3415 		break;
3416 	case TCP_NOTSENT_LOWAT:
3417 		tp->notsent_lowat = val;
3418 		sk->sk_write_space(sk);
3419 		break;
3420 	case TCP_INQ:
3421 		if (val > 1 || val < 0)
3422 			err = -EINVAL;
3423 		else
3424 			tp->recvmsg_inq = val;
3425 		break;
3426 	case TCP_TX_DELAY:
3427 		if (val)
3428 			tcp_enable_tx_delay();
3429 		tp->tcp_tx_delay = val;
3430 		break;
3431 	default:
3432 		err = -ENOPROTOOPT;
3433 		break;
3434 	}
3435 
3436 	release_sock(sk);
3437 	return err;
3438 }
3439 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3440 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3441 		   unsigned int optlen)
3442 {
3443 	const struct inet_connection_sock *icsk = inet_csk(sk);
3444 
3445 	if (level != SOL_TCP)
3446 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3447 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3448 								optval, optlen);
3449 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3450 }
3451 EXPORT_SYMBOL(tcp_setsockopt);
3452 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3453 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3454 				      struct tcp_info *info)
3455 {
3456 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3457 	enum tcp_chrono i;
3458 
3459 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3460 		stats[i] = tp->chrono_stat[i - 1];
3461 		if (i == tp->chrono_type)
3462 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3463 		stats[i] *= USEC_PER_SEC / HZ;
3464 		total += stats[i];
3465 	}
3466 
3467 	info->tcpi_busy_time = total;
3468 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3469 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3470 }
3471 
3472 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3473 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3474 {
3475 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3476 	const struct inet_connection_sock *icsk = inet_csk(sk);
3477 	unsigned long rate;
3478 	u32 now;
3479 	u64 rate64;
3480 	bool slow;
3481 
3482 	memset(info, 0, sizeof(*info));
3483 	if (sk->sk_type != SOCK_STREAM)
3484 		return;
3485 
3486 	info->tcpi_state = inet_sk_state_load(sk);
3487 
3488 	/* Report meaningful fields for all TCP states, including listeners */
3489 	rate = READ_ONCE(sk->sk_pacing_rate);
3490 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3491 	info->tcpi_pacing_rate = rate64;
3492 
3493 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3494 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3495 	info->tcpi_max_pacing_rate = rate64;
3496 
3497 	info->tcpi_reordering = tp->reordering;
3498 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3499 
3500 	if (info->tcpi_state == TCP_LISTEN) {
3501 		/* listeners aliased fields :
3502 		 * tcpi_unacked -> Number of children ready for accept()
3503 		 * tcpi_sacked  -> max backlog
3504 		 */
3505 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3506 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3507 		return;
3508 	}
3509 
3510 	slow = lock_sock_fast(sk);
3511 
3512 	info->tcpi_ca_state = icsk->icsk_ca_state;
3513 	info->tcpi_retransmits = icsk->icsk_retransmits;
3514 	info->tcpi_probes = icsk->icsk_probes_out;
3515 	info->tcpi_backoff = icsk->icsk_backoff;
3516 
3517 	if (tp->rx_opt.tstamp_ok)
3518 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3519 	if (tcp_is_sack(tp))
3520 		info->tcpi_options |= TCPI_OPT_SACK;
3521 	if (tp->rx_opt.wscale_ok) {
3522 		info->tcpi_options |= TCPI_OPT_WSCALE;
3523 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3524 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3525 	}
3526 
3527 	if (tp->ecn_flags & TCP_ECN_OK)
3528 		info->tcpi_options |= TCPI_OPT_ECN;
3529 	if (tp->ecn_flags & TCP_ECN_SEEN)
3530 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3531 	if (tp->syn_data_acked)
3532 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3533 
3534 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3535 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3536 	info->tcpi_snd_mss = tp->mss_cache;
3537 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3538 
3539 	info->tcpi_unacked = tp->packets_out;
3540 	info->tcpi_sacked = tp->sacked_out;
3541 
3542 	info->tcpi_lost = tp->lost_out;
3543 	info->tcpi_retrans = tp->retrans_out;
3544 
3545 	now = tcp_jiffies32;
3546 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3547 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3548 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3549 
3550 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3551 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3552 	info->tcpi_rtt = tp->srtt_us >> 3;
3553 	info->tcpi_rttvar = tp->mdev_us >> 2;
3554 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3555 	info->tcpi_advmss = tp->advmss;
3556 
3557 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3558 	info->tcpi_rcv_space = tp->rcvq_space.space;
3559 
3560 	info->tcpi_total_retrans = tp->total_retrans;
3561 
3562 	info->tcpi_bytes_acked = tp->bytes_acked;
3563 	info->tcpi_bytes_received = tp->bytes_received;
3564 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3565 	tcp_get_info_chrono_stats(tp, info);
3566 
3567 	info->tcpi_segs_out = tp->segs_out;
3568 	info->tcpi_segs_in = tp->segs_in;
3569 
3570 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3571 	info->tcpi_data_segs_in = tp->data_segs_in;
3572 	info->tcpi_data_segs_out = tp->data_segs_out;
3573 
3574 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3575 	rate64 = tcp_compute_delivery_rate(tp);
3576 	if (rate64)
3577 		info->tcpi_delivery_rate = rate64;
3578 	info->tcpi_delivered = tp->delivered;
3579 	info->tcpi_delivered_ce = tp->delivered_ce;
3580 	info->tcpi_bytes_sent = tp->bytes_sent;
3581 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3582 	info->tcpi_dsack_dups = tp->dsack_dups;
3583 	info->tcpi_reord_seen = tp->reord_seen;
3584 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3585 	info->tcpi_snd_wnd = tp->snd_wnd;
3586 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3587 	unlock_sock_fast(sk, slow);
3588 }
3589 EXPORT_SYMBOL_GPL(tcp_get_info);
3590 
tcp_opt_stats_get_size(void)3591 static size_t tcp_opt_stats_get_size(void)
3592 {
3593 	return
3594 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3595 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3596 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3597 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3598 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3599 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3600 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3601 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3602 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3603 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3604 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3605 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3606 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3607 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3608 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3609 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3610 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3611 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3612 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3613 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3614 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3615 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3616 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3617 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3618 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3619 		0;
3620 }
3621 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3622 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3623 					       const struct sk_buff *orig_skb)
3624 {
3625 	const struct tcp_sock *tp = tcp_sk(sk);
3626 	struct sk_buff *stats;
3627 	struct tcp_info info;
3628 	unsigned long rate;
3629 	u64 rate64;
3630 
3631 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3632 	if (!stats)
3633 		return NULL;
3634 
3635 	tcp_get_info_chrono_stats(tp, &info);
3636 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3637 			  info.tcpi_busy_time, TCP_NLA_PAD);
3638 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3639 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3640 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3641 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3642 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3643 			  tp->data_segs_out, TCP_NLA_PAD);
3644 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3645 			  tp->total_retrans, TCP_NLA_PAD);
3646 
3647 	rate = READ_ONCE(sk->sk_pacing_rate);
3648 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3649 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3650 
3651 	rate64 = tcp_compute_delivery_rate(tp);
3652 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3653 
3654 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3655 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3656 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3657 
3658 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3659 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3660 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3661 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3662 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3663 
3664 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3665 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3666 
3667 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3668 			  TCP_NLA_PAD);
3669 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3670 			  TCP_NLA_PAD);
3671 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3672 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3673 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3674 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3675 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3676 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3677 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3678 			  TCP_NLA_PAD);
3679 
3680 	return stats;
3681 }
3682 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3683 static int do_tcp_getsockopt(struct sock *sk, int level,
3684 		int optname, char __user *optval, int __user *optlen)
3685 {
3686 	struct inet_connection_sock *icsk = inet_csk(sk);
3687 	struct tcp_sock *tp = tcp_sk(sk);
3688 	struct net *net = sock_net(sk);
3689 	int val, len;
3690 
3691 	if (get_user(len, optlen))
3692 		return -EFAULT;
3693 
3694 	len = min_t(unsigned int, len, sizeof(int));
3695 
3696 	if (len < 0)
3697 		return -EINVAL;
3698 
3699 	switch (optname) {
3700 	case TCP_MAXSEG:
3701 		val = tp->mss_cache;
3702 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3703 			val = tp->rx_opt.user_mss;
3704 		if (tp->repair)
3705 			val = tp->rx_opt.mss_clamp;
3706 		break;
3707 	case TCP_NODELAY:
3708 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3709 		break;
3710 	case TCP_CORK:
3711 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3712 		break;
3713 	case TCP_KEEPIDLE:
3714 		val = keepalive_time_when(tp) / HZ;
3715 		break;
3716 	case TCP_KEEPINTVL:
3717 		val = keepalive_intvl_when(tp) / HZ;
3718 		break;
3719 	case TCP_KEEPCNT:
3720 		val = keepalive_probes(tp);
3721 		break;
3722 	case TCP_SYNCNT:
3723 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3724 		break;
3725 	case TCP_LINGER2:
3726 		val = tp->linger2;
3727 		if (val >= 0)
3728 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3729 		break;
3730 	case TCP_DEFER_ACCEPT:
3731 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3732 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3733 		break;
3734 	case TCP_WINDOW_CLAMP:
3735 		val = tp->window_clamp;
3736 		break;
3737 	case TCP_INFO: {
3738 		struct tcp_info info;
3739 
3740 		if (get_user(len, optlen))
3741 			return -EFAULT;
3742 
3743 		tcp_get_info(sk, &info);
3744 
3745 		len = min_t(unsigned int, len, sizeof(info));
3746 		if (put_user(len, optlen))
3747 			return -EFAULT;
3748 		if (copy_to_user(optval, &info, len))
3749 			return -EFAULT;
3750 		return 0;
3751 	}
3752 	case TCP_CC_INFO: {
3753 		const struct tcp_congestion_ops *ca_ops;
3754 		union tcp_cc_info info;
3755 		size_t sz = 0;
3756 		int attr;
3757 
3758 		if (get_user(len, optlen))
3759 			return -EFAULT;
3760 
3761 		ca_ops = icsk->icsk_ca_ops;
3762 		if (ca_ops && ca_ops->get_info)
3763 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3764 
3765 		len = min_t(unsigned int, len, sz);
3766 		if (put_user(len, optlen))
3767 			return -EFAULT;
3768 		if (copy_to_user(optval, &info, len))
3769 			return -EFAULT;
3770 		return 0;
3771 	}
3772 	case TCP_QUICKACK:
3773 		val = !inet_csk_in_pingpong_mode(sk);
3774 		break;
3775 
3776 	case TCP_CONGESTION:
3777 		if (get_user(len, optlen))
3778 			return -EFAULT;
3779 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3780 		if (put_user(len, optlen))
3781 			return -EFAULT;
3782 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3783 			return -EFAULT;
3784 		return 0;
3785 
3786 	case TCP_ULP:
3787 		if (get_user(len, optlen))
3788 			return -EFAULT;
3789 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3790 		if (!icsk->icsk_ulp_ops) {
3791 			if (put_user(0, optlen))
3792 				return -EFAULT;
3793 			return 0;
3794 		}
3795 		if (put_user(len, optlen))
3796 			return -EFAULT;
3797 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3798 			return -EFAULT;
3799 		return 0;
3800 
3801 	case TCP_FASTOPEN_KEY: {
3802 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3803 		unsigned int key_len;
3804 
3805 		if (get_user(len, optlen))
3806 			return -EFAULT;
3807 
3808 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3809 				TCP_FASTOPEN_KEY_LENGTH;
3810 		len = min_t(unsigned int, len, key_len);
3811 		if (put_user(len, optlen))
3812 			return -EFAULT;
3813 		if (copy_to_user(optval, key, len))
3814 			return -EFAULT;
3815 		return 0;
3816 	}
3817 	case TCP_THIN_LINEAR_TIMEOUTS:
3818 		val = tp->thin_lto;
3819 		break;
3820 
3821 	case TCP_THIN_DUPACK:
3822 		val = 0;
3823 		break;
3824 
3825 	case TCP_REPAIR:
3826 		val = tp->repair;
3827 		break;
3828 
3829 	case TCP_REPAIR_QUEUE:
3830 		if (tp->repair)
3831 			val = tp->repair_queue;
3832 		else
3833 			return -EINVAL;
3834 		break;
3835 
3836 	case TCP_REPAIR_WINDOW: {
3837 		struct tcp_repair_window opt;
3838 
3839 		if (get_user(len, optlen))
3840 			return -EFAULT;
3841 
3842 		if (len != sizeof(opt))
3843 			return -EINVAL;
3844 
3845 		if (!tp->repair)
3846 			return -EPERM;
3847 
3848 		opt.snd_wl1	= tp->snd_wl1;
3849 		opt.snd_wnd	= tp->snd_wnd;
3850 		opt.max_window	= tp->max_window;
3851 		opt.rcv_wnd	= tp->rcv_wnd;
3852 		opt.rcv_wup	= tp->rcv_wup;
3853 
3854 		if (copy_to_user(optval, &opt, len))
3855 			return -EFAULT;
3856 		return 0;
3857 	}
3858 	case TCP_QUEUE_SEQ:
3859 		if (tp->repair_queue == TCP_SEND_QUEUE)
3860 			val = tp->write_seq;
3861 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3862 			val = tp->rcv_nxt;
3863 		else
3864 			return -EINVAL;
3865 		break;
3866 
3867 	case TCP_USER_TIMEOUT:
3868 		val = icsk->icsk_user_timeout;
3869 		break;
3870 
3871 	case TCP_FASTOPEN:
3872 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3873 		break;
3874 
3875 	case TCP_FASTOPEN_CONNECT:
3876 		val = tp->fastopen_connect;
3877 		break;
3878 
3879 	case TCP_FASTOPEN_NO_COOKIE:
3880 		val = tp->fastopen_no_cookie;
3881 		break;
3882 
3883 	case TCP_TX_DELAY:
3884 		val = tp->tcp_tx_delay;
3885 		break;
3886 
3887 	case TCP_TIMESTAMP:
3888 		val = tcp_time_stamp_raw() + tp->tsoffset;
3889 		break;
3890 	case TCP_NOTSENT_LOWAT:
3891 		val = tp->notsent_lowat;
3892 		break;
3893 	case TCP_INQ:
3894 		val = tp->recvmsg_inq;
3895 		break;
3896 	case TCP_SAVE_SYN:
3897 		val = tp->save_syn;
3898 		break;
3899 	case TCP_SAVED_SYN: {
3900 		if (get_user(len, optlen))
3901 			return -EFAULT;
3902 
3903 		lock_sock(sk);
3904 		if (tp->saved_syn) {
3905 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3906 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3907 					     optlen)) {
3908 					release_sock(sk);
3909 					return -EFAULT;
3910 				}
3911 				release_sock(sk);
3912 				return -EINVAL;
3913 			}
3914 			len = tcp_saved_syn_len(tp->saved_syn);
3915 			if (put_user(len, optlen)) {
3916 				release_sock(sk);
3917 				return -EFAULT;
3918 			}
3919 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
3920 				release_sock(sk);
3921 				return -EFAULT;
3922 			}
3923 			tcp_saved_syn_free(tp);
3924 			release_sock(sk);
3925 		} else {
3926 			release_sock(sk);
3927 			len = 0;
3928 			if (put_user(len, optlen))
3929 				return -EFAULT;
3930 		}
3931 		return 0;
3932 	}
3933 #ifdef CONFIG_MMU
3934 	case TCP_ZEROCOPY_RECEIVE: {
3935 		struct tcp_zerocopy_receive zc = {};
3936 		int err;
3937 
3938 		if (get_user(len, optlen))
3939 			return -EFAULT;
3940 		if (len < 0 ||
3941 		    len < offsetofend(struct tcp_zerocopy_receive, length))
3942 			return -EINVAL;
3943 		if (len > sizeof(zc)) {
3944 			len = sizeof(zc);
3945 			if (put_user(len, optlen))
3946 				return -EFAULT;
3947 		}
3948 		if (copy_from_user(&zc, optval, len))
3949 			return -EFAULT;
3950 		lock_sock(sk);
3951 		err = tcp_zerocopy_receive(sk, &zc);
3952 		release_sock(sk);
3953 		if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3954 			goto zerocopy_rcv_sk_err;
3955 		switch (len) {
3956 		case offsetofend(struct tcp_zerocopy_receive, err):
3957 			goto zerocopy_rcv_sk_err;
3958 		case offsetofend(struct tcp_zerocopy_receive, inq):
3959 			goto zerocopy_rcv_inq;
3960 		case offsetofend(struct tcp_zerocopy_receive, length):
3961 		default:
3962 			goto zerocopy_rcv_out;
3963 		}
3964 zerocopy_rcv_sk_err:
3965 		if (!err)
3966 			zc.err = sock_error(sk);
3967 zerocopy_rcv_inq:
3968 		zc.inq = tcp_inq_hint(sk);
3969 zerocopy_rcv_out:
3970 		if (!err && copy_to_user(optval, &zc, len))
3971 			err = -EFAULT;
3972 		return err;
3973 	}
3974 #endif
3975 	default:
3976 		return -ENOPROTOOPT;
3977 	}
3978 
3979 	if (put_user(len, optlen))
3980 		return -EFAULT;
3981 	if (copy_to_user(optval, &val, len))
3982 		return -EFAULT;
3983 	return 0;
3984 }
3985 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3986 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3987 		   int __user *optlen)
3988 {
3989 	struct inet_connection_sock *icsk = inet_csk(sk);
3990 
3991 	if (level != SOL_TCP)
3992 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3993 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
3994 								optval, optlen);
3995 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3996 }
3997 EXPORT_SYMBOL(tcp_getsockopt);
3998 
3999 #ifdef CONFIG_TCP_MD5SIG
4000 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4001 static DEFINE_MUTEX(tcp_md5sig_mutex);
4002 static bool tcp_md5sig_pool_populated = false;
4003 
__tcp_alloc_md5sig_pool(void)4004 static void __tcp_alloc_md5sig_pool(void)
4005 {
4006 	struct crypto_ahash *hash;
4007 	int cpu;
4008 
4009 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4010 	if (IS_ERR(hash))
4011 		return;
4012 
4013 	for_each_possible_cpu(cpu) {
4014 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4015 		struct ahash_request *req;
4016 
4017 		if (!scratch) {
4018 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4019 					       sizeof(struct tcphdr),
4020 					       GFP_KERNEL,
4021 					       cpu_to_node(cpu));
4022 			if (!scratch)
4023 				return;
4024 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4025 		}
4026 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4027 			continue;
4028 
4029 		req = ahash_request_alloc(hash, GFP_KERNEL);
4030 		if (!req)
4031 			return;
4032 
4033 		ahash_request_set_callback(req, 0, NULL, NULL);
4034 
4035 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4036 	}
4037 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4038 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4039 	 */
4040 	smp_wmb();
4041 	tcp_md5sig_pool_populated = true;
4042 }
4043 
tcp_alloc_md5sig_pool(void)4044 bool tcp_alloc_md5sig_pool(void)
4045 {
4046 	if (unlikely(!tcp_md5sig_pool_populated)) {
4047 		mutex_lock(&tcp_md5sig_mutex);
4048 
4049 		if (!tcp_md5sig_pool_populated) {
4050 			__tcp_alloc_md5sig_pool();
4051 			if (tcp_md5sig_pool_populated)
4052 				static_branch_inc(&tcp_md5_needed);
4053 		}
4054 
4055 		mutex_unlock(&tcp_md5sig_mutex);
4056 	}
4057 	return tcp_md5sig_pool_populated;
4058 }
4059 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4060 
4061 
4062 /**
4063  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4064  *
4065  *	We use percpu structure, so if we succeed, we exit with preemption
4066  *	and BH disabled, to make sure another thread or softirq handling
4067  *	wont try to get same context.
4068  */
tcp_get_md5sig_pool(void)4069 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4070 {
4071 	local_bh_disable();
4072 
4073 	if (tcp_md5sig_pool_populated) {
4074 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4075 		smp_rmb();
4076 		return this_cpu_ptr(&tcp_md5sig_pool);
4077 	}
4078 	local_bh_enable();
4079 	return NULL;
4080 }
4081 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4082 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4083 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4084 			  const struct sk_buff *skb, unsigned int header_len)
4085 {
4086 	struct scatterlist sg;
4087 	const struct tcphdr *tp = tcp_hdr(skb);
4088 	struct ahash_request *req = hp->md5_req;
4089 	unsigned int i;
4090 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4091 					   skb_headlen(skb) - header_len : 0;
4092 	const struct skb_shared_info *shi = skb_shinfo(skb);
4093 	struct sk_buff *frag_iter;
4094 
4095 	sg_init_table(&sg, 1);
4096 
4097 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4098 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4099 	if (crypto_ahash_update(req))
4100 		return 1;
4101 
4102 	for (i = 0; i < shi->nr_frags; ++i) {
4103 		const skb_frag_t *f = &shi->frags[i];
4104 		unsigned int offset = skb_frag_off(f);
4105 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4106 
4107 		sg_set_page(&sg, page, skb_frag_size(f),
4108 			    offset_in_page(offset));
4109 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4110 		if (crypto_ahash_update(req))
4111 			return 1;
4112 	}
4113 
4114 	skb_walk_frags(skb, frag_iter)
4115 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4116 			return 1;
4117 
4118 	return 0;
4119 }
4120 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4121 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4122 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4123 {
4124 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4125 	struct scatterlist sg;
4126 
4127 	sg_init_one(&sg, key->key, keylen);
4128 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4129 
4130 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4131 	return data_race(crypto_ahash_update(hp->md5_req));
4132 }
4133 EXPORT_SYMBOL(tcp_md5_hash_key);
4134 
4135 #endif
4136 
tcp_done(struct sock * sk)4137 void tcp_done(struct sock *sk)
4138 {
4139 	struct request_sock *req;
4140 
4141 	/* We might be called with a new socket, after
4142 	 * inet_csk_prepare_forced_close() has been called
4143 	 * so we can not use lockdep_sock_is_held(sk)
4144 	 */
4145 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4146 
4147 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4148 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4149 
4150 	tcp_set_state(sk, TCP_CLOSE);
4151 	tcp_clear_xmit_timers(sk);
4152 	if (req)
4153 		reqsk_fastopen_remove(sk, req, false);
4154 
4155 	sk->sk_shutdown = SHUTDOWN_MASK;
4156 
4157 	if (!sock_flag(sk, SOCK_DEAD))
4158 		sk->sk_state_change(sk);
4159 	else
4160 		inet_csk_destroy_sock(sk);
4161 }
4162 EXPORT_SYMBOL_GPL(tcp_done);
4163 
tcp_abort(struct sock * sk,int err)4164 int tcp_abort(struct sock *sk, int err)
4165 {
4166 	if (!sk_fullsock(sk)) {
4167 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4168 			struct request_sock *req = inet_reqsk(sk);
4169 
4170 			local_bh_disable();
4171 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4172 			local_bh_enable();
4173 			return 0;
4174 		}
4175 		return -EOPNOTSUPP;
4176 	}
4177 
4178 	/* Don't race with userspace socket closes such as tcp_close. */
4179 	lock_sock(sk);
4180 
4181 	if (sk->sk_state == TCP_LISTEN) {
4182 		tcp_set_state(sk, TCP_CLOSE);
4183 		inet_csk_listen_stop(sk);
4184 	}
4185 
4186 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4187 	local_bh_disable();
4188 	bh_lock_sock(sk);
4189 
4190 	if (!sock_flag(sk, SOCK_DEAD)) {
4191 		sk->sk_err = err;
4192 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4193 		smp_wmb();
4194 		sk->sk_error_report(sk);
4195 		if (tcp_need_reset(sk->sk_state))
4196 			tcp_send_active_reset(sk, GFP_ATOMIC);
4197 		tcp_done(sk);
4198 	}
4199 
4200 	bh_unlock_sock(sk);
4201 	local_bh_enable();
4202 	tcp_write_queue_purge(sk);
4203 	release_sock(sk);
4204 	return 0;
4205 }
4206 EXPORT_SYMBOL_GPL(tcp_abort);
4207 
4208 extern struct tcp_congestion_ops tcp_reno;
4209 
4210 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4211 static int __init set_thash_entries(char *str)
4212 {
4213 	ssize_t ret;
4214 
4215 	if (!str)
4216 		return 0;
4217 
4218 	ret = kstrtoul(str, 0, &thash_entries);
4219 	if (ret)
4220 		return 0;
4221 
4222 	return 1;
4223 }
4224 __setup("thash_entries=", set_thash_entries);
4225 
tcp_init_mem(void)4226 static void __init tcp_init_mem(void)
4227 {
4228 	unsigned long limit = nr_free_buffer_pages() / 16;
4229 
4230 	limit = max(limit, 128UL);
4231 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4232 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4233 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4234 }
4235 
tcp_init(void)4236 void __init tcp_init(void)
4237 {
4238 	int max_rshare, max_wshare, cnt;
4239 	unsigned long limit;
4240 	unsigned int i;
4241 
4242 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4243 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4244 		     sizeof_field(struct sk_buff, cb));
4245 
4246 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4247 
4248 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4249 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4250 
4251 	inet_hashinfo_init(&tcp_hashinfo);
4252 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4253 			    thash_entries, 21,  /* one slot per 2 MB*/
4254 			    0, 64 * 1024);
4255 	tcp_hashinfo.bind_bucket_cachep =
4256 		kmem_cache_create("tcp_bind_bucket",
4257 				  sizeof(struct inet_bind_bucket), 0,
4258 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4259 
4260 	/* Size and allocate the main established and bind bucket
4261 	 * hash tables.
4262 	 *
4263 	 * The methodology is similar to that of the buffer cache.
4264 	 */
4265 	tcp_hashinfo.ehash =
4266 		alloc_large_system_hash("TCP established",
4267 					sizeof(struct inet_ehash_bucket),
4268 					thash_entries,
4269 					17, /* one slot per 128 KB of memory */
4270 					0,
4271 					NULL,
4272 					&tcp_hashinfo.ehash_mask,
4273 					0,
4274 					thash_entries ? 0 : 512 * 1024);
4275 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4276 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4277 
4278 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4279 		panic("TCP: failed to alloc ehash_locks");
4280 	tcp_hashinfo.bhash =
4281 		alloc_large_system_hash("TCP bind",
4282 					sizeof(struct inet_bind_hashbucket),
4283 					tcp_hashinfo.ehash_mask + 1,
4284 					17, /* one slot per 128 KB of memory */
4285 					0,
4286 					&tcp_hashinfo.bhash_size,
4287 					NULL,
4288 					0,
4289 					64 * 1024);
4290 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4291 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4292 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4293 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4294 	}
4295 
4296 
4297 	cnt = tcp_hashinfo.ehash_mask + 1;
4298 	sysctl_tcp_max_orphans = cnt / 2;
4299 
4300 	tcp_init_mem();
4301 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4302 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4303 	max_wshare = min(4UL*1024*1024, limit);
4304 	max_rshare = min(6UL*1024*1024, limit);
4305 
4306 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4307 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4308 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4309 
4310 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4311 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4312 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4313 
4314 	pr_info("Hash tables configured (established %u bind %u)\n",
4315 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4316 
4317 	tcp_v4_init();
4318 	tcp_metrics_init();
4319 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4320 	tcp_tasklet_init();
4321 	mptcp_init();
4322 }
4323