1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
284 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
285
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 icsk->icsk_rto_min = TCP_RTO_MIN;
422 icsk->icsk_delack_max = TCP_DELACK_MAX;
423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425
426 /* So many TCP implementations out there (incorrectly) count the
427 * initial SYN frame in their delayed-ACK and congestion control
428 * algorithms that we must have the following bandaid to talk
429 * efficiently to them. -DaveM
430 */
431 tp->snd_cwnd = TCP_INIT_CWND;
432
433 /* There's a bubble in the pipe until at least the first ACK. */
434 tp->app_limited = ~0U;
435
436 /* See draft-stevens-tcpca-spec-01 for discussion of the
437 * initialization of these values.
438 */
439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 tp->snd_cwnd_clamp = ~0;
441 tp->mss_cache = TCP_MSS_DEFAULT;
442
443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
444 tcp_assign_congestion_control(sk);
445
446 tp->tsoffset = 0;
447 tp->rack.reo_wnd_steps = 1;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
456
457 sk_sockets_allocated_inc(sk);
458 sk->sk_route_forced_caps = NETIF_F_GSO;
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 struct sk_buff *skb = tcp_write_queue_tail(sk);
465
466 if (tsflags && skb) {
467 struct skb_shared_info *shinfo = skb_shinfo(skb);
468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469
470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 tcb->txstamp_ack = 1;
473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 }
476 }
477
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
479 int target, struct sock *sk)
480 {
481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
482
483 if (avail > 0) {
484 if (avail >= target)
485 return true;
486 if (tcp_rmem_pressure(sk))
487 return true;
488 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
489 return true;
490 }
491 if (sk->sk_prot->stream_memory_read)
492 return sk->sk_prot->stream_memory_read(sk);
493 return false;
494 }
495
496 /*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (__sk_stream_is_writeable(sk, 1)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (__sk_stream_is_writeable(sk, 1))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data &&
622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 break;
624 case SIOCOUTQ:
625 if (sk->sk_state == TCP_LISTEN)
626 return -EINVAL;
627
628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 answ = 0;
630 else
631 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 break;
633 case SIOCOUTQNSD:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 answ = 0;
639 else
640 answ = READ_ONCE(tp->write_seq) -
641 READ_ONCE(tp->snd_nxt);
642 break;
643 default:
644 return -ENOIOCTLCMD;
645 }
646
647 return put_user(answ, (int __user *)arg);
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
skb_entail(struct sock * sk,struct sk_buff * skb)662 static void skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 skb->csum = 0;
668 tcb->seq = tcb->end_seq = tp->write_seq;
669 tcb->tcp_flags = TCPHDR_ACK;
670 tcb->sacked = 0;
671 __skb_header_release(skb);
672 tcp_add_write_queue_tail(sk, skb);
673 sk_wmem_queued_add(sk, skb->truesize);
674 sk_mem_charge(sk, skb->truesize);
675 if (tp->nonagle & TCP_NAGLE_PUSH)
676 tp->nonagle &= ~TCP_NAGLE_PUSH;
677
678 tcp_slow_start_after_idle_check(sk);
679 }
680
tcp_mark_urg(struct tcp_sock * tp,int flags)681 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
682 {
683 if (flags & MSG_OOB)
684 tp->snd_up = tp->write_seq;
685 }
686
687 /* If a not yet filled skb is pushed, do not send it if
688 * we have data packets in Qdisc or NIC queues :
689 * Because TX completion will happen shortly, it gives a chance
690 * to coalesce future sendmsg() payload into this skb, without
691 * need for a timer, and with no latency trade off.
692 * As packets containing data payload have a bigger truesize
693 * than pure acks (dataless) packets, the last checks prevent
694 * autocorking if we only have an ACK in Qdisc/NIC queues,
695 * or if TX completion was delayed after we processed ACK packet.
696 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)697 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
698 int size_goal)
699 {
700 return skb->len < size_goal &&
701 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
702 !tcp_rtx_queue_empty(sk) &&
703 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
704 }
705
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 int nonagle, int size_goal)
708 {
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct sk_buff *skb;
711
712 skb = tcp_write_queue_tail(sk);
713 if (!skb)
714 return;
715 if (!(flags & MSG_MORE) || forced_push(tp))
716 tcp_mark_push(tp, skb);
717
718 tcp_mark_urg(tp, flags);
719
720 if (tcp_should_autocork(sk, skb, size_goal)) {
721
722 /* avoid atomic op if TSQ_THROTTLED bit is already set */
723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 sk_wait_data(sk, &timeo, NULL);
836 if (signal_pending(current)) {
837 ret = sock_intr_errno(timeo);
838 break;
839 }
840 continue;
841 }
842 tss.len -= ret;
843 spliced += ret;
844
845 if (!timeo)
846 break;
847 release_sock(sk);
848 lock_sock(sk);
849
850 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
851 (sk->sk_shutdown & RCV_SHUTDOWN) ||
852 signal_pending(current))
853 break;
854 }
855
856 release_sock(sk);
857
858 if (spliced)
859 return spliced;
860
861 return ret;
862 }
863 EXPORT_SYMBOL(tcp_splice_read);
864
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
866 bool force_schedule)
867 {
868 struct sk_buff *skb;
869
870 if (likely(!size)) {
871 skb = sk->sk_tx_skb_cache;
872 if (skb) {
873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 sk->sk_tx_skb_cache = NULL;
875 pskb_trim(skb, 0);
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 skb_shinfo(skb)->tx_flags = 0;
878 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
879 return skb;
880 }
881 }
882 /* The TCP header must be at least 32-bit aligned. */
883 size = ALIGN(size, 4);
884
885 if (unlikely(tcp_under_memory_pressure(sk)))
886 sk_mem_reclaim_partial(sk);
887
888 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
889 if (likely(skb)) {
890 bool mem_scheduled;
891
892 if (force_schedule) {
893 mem_scheduled = true;
894 sk_forced_mem_schedule(sk, skb->truesize);
895 } else {
896 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
897 }
898 if (likely(mem_scheduled)) {
899 skb_reserve(skb, sk->sk_prot->max_header);
900 /*
901 * Make sure that we have exactly size bytes
902 * available to the caller, no more, no less.
903 */
904 skb->reserved_tailroom = skb->end - skb->tail - size;
905 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 return skb;
907 }
908 __kfree_skb(skb);
909 } else {
910 sk->sk_prot->enter_memory_pressure(sk);
911 sk_stream_moderate_sndbuf(sk);
912 }
913 return NULL;
914 }
915
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
917 int large_allowed)
918 {
919 struct tcp_sock *tp = tcp_sk(sk);
920 u32 new_size_goal, size_goal;
921
922 if (!large_allowed)
923 return mss_now;
924
925 /* Note : tcp_tso_autosize() will eventually split this later */
926 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
927 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
928
929 /* We try hard to avoid divides here */
930 size_goal = tp->gso_segs * mss_now;
931 if (unlikely(new_size_goal < size_goal ||
932 new_size_goal >= size_goal + mss_now)) {
933 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 sk->sk_gso_max_segs);
935 size_goal = tp->gso_segs * mss_now;
936 }
937
938 return max(size_goal, mss_now);
939 }
940
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 int mss_now;
944
945 mss_now = tcp_current_mss(sk);
946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947
948 return mss_now;
949 }
950
951 /* In some cases, both sendpage() and sendmsg() could have added
952 * an skb to the write queue, but failed adding payload on it.
953 * We need to remove it to consume less memory, but more
954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
955 * users.
956 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)957 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
958 {
959 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
960 tcp_unlink_write_queue(skb, sk);
961 if (tcp_write_queue_empty(sk))
962 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
963 sk_wmem_free_skb(sk, skb);
964 }
965 }
966
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)967 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
968 size_t size, int flags)
969 {
970 struct tcp_sock *tp = tcp_sk(sk);
971 int mss_now, size_goal;
972 int err;
973 ssize_t copied;
974 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
975
976 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
977 WARN_ONCE(!sendpage_ok(page),
978 "page must not be a Slab one and have page_count > 0"))
979 return -EINVAL;
980
981 /* Wait for a connection to finish. One exception is TCP Fast Open
982 * (passive side) where data is allowed to be sent before a connection
983 * is fully established.
984 */
985 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
986 !tcp_passive_fastopen(sk)) {
987 err = sk_stream_wait_connect(sk, &timeo);
988 if (err != 0)
989 goto out_err;
990 }
991
992 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
993
994 mss_now = tcp_send_mss(sk, &size_goal, flags);
995 copied = 0;
996
997 err = -EPIPE;
998 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
999 goto out_err;
1000
1001 while (size > 0) {
1002 struct sk_buff *skb = tcp_write_queue_tail(sk);
1003 int copy, i;
1004 bool can_coalesce;
1005
1006 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1007 !tcp_skb_can_collapse_to(skb)) {
1008 new_segment:
1009 if (!sk_stream_memory_free(sk))
1010 goto wait_for_space;
1011
1012 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1013 tcp_rtx_and_write_queues_empty(sk));
1014 if (!skb)
1015 goto wait_for_space;
1016
1017 #ifdef CONFIG_TLS_DEVICE
1018 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1019 #endif
1020 skb_entail(sk, skb);
1021 copy = size_goal;
1022 }
1023
1024 if (copy > size)
1025 copy = size;
1026
1027 i = skb_shinfo(skb)->nr_frags;
1028 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1029 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1030 tcp_mark_push(tp, skb);
1031 goto new_segment;
1032 }
1033 if (!sk_wmem_schedule(sk, copy))
1034 goto wait_for_space;
1035
1036 if (can_coalesce) {
1037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1038 } else {
1039 get_page(page);
1040 skb_fill_page_desc(skb, i, page, offset, copy);
1041 }
1042
1043 if (!(flags & MSG_NO_SHARED_FRAGS))
1044 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1045
1046 skb->len += copy;
1047 skb->data_len += copy;
1048 skb->truesize += copy;
1049 sk_wmem_queued_add(sk, copy);
1050 sk_mem_charge(sk, copy);
1051 skb->ip_summed = CHECKSUM_PARTIAL;
1052 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1053 TCP_SKB_CB(skb)->end_seq += copy;
1054 tcp_skb_pcount_set(skb, 0);
1055
1056 if (!copied)
1057 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1058
1059 copied += copy;
1060 offset += copy;
1061 size -= copy;
1062 if (!size)
1063 goto out;
1064
1065 if (skb->len < size_goal || (flags & MSG_OOB))
1066 continue;
1067
1068 if (forced_push(tp)) {
1069 tcp_mark_push(tp, skb);
1070 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1071 } else if (skb == tcp_send_head(sk))
1072 tcp_push_one(sk, mss_now);
1073 continue;
1074
1075 wait_for_space:
1076 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1077 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1078 TCP_NAGLE_PUSH, size_goal);
1079
1080 err = sk_stream_wait_memory(sk, &timeo);
1081 if (err != 0)
1082 goto do_error;
1083
1084 mss_now = tcp_send_mss(sk, &size_goal, flags);
1085 }
1086
1087 out:
1088 if (copied) {
1089 tcp_tx_timestamp(sk, sk->sk_tsflags);
1090 if (!(flags & MSG_SENDPAGE_NOTLAST))
1091 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1092 }
1093 return copied;
1094
1095 do_error:
1096 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1097 if (copied)
1098 goto out;
1099 out_err:
1100 /* make sure we wake any epoll edge trigger waiter */
1101 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1102 sk->sk_write_space(sk);
1103 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1104 }
1105 return sk_stream_error(sk, flags, err);
1106 }
1107 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1108
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1109 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1110 size_t size, int flags)
1111 {
1112 if (!(sk->sk_route_caps & NETIF_F_SG))
1113 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1114
1115 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1116
1117 return do_tcp_sendpages(sk, page, offset, size, flags);
1118 }
1119 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1120
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1121 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1122 size_t size, int flags)
1123 {
1124 int ret;
1125
1126 lock_sock(sk);
1127 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1128 release_sock(sk);
1129
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(tcp_sendpage);
1133
tcp_free_fastopen_req(struct tcp_sock * tp)1134 void tcp_free_fastopen_req(struct tcp_sock *tp)
1135 {
1136 if (tp->fastopen_req) {
1137 kfree(tp->fastopen_req);
1138 tp->fastopen_req = NULL;
1139 }
1140 }
1141
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1143 int *copied, size_t size,
1144 struct ubuf_info *uarg)
1145 {
1146 struct tcp_sock *tp = tcp_sk(sk);
1147 struct inet_sock *inet = inet_sk(sk);
1148 struct sockaddr *uaddr = msg->msg_name;
1149 int err, flags;
1150
1151 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1152 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1153 uaddr->sa_family == AF_UNSPEC))
1154 return -EOPNOTSUPP;
1155 if (tp->fastopen_req)
1156 return -EALREADY; /* Another Fast Open is in progress */
1157
1158 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1159 sk->sk_allocation);
1160 if (unlikely(!tp->fastopen_req))
1161 return -ENOBUFS;
1162 tp->fastopen_req->data = msg;
1163 tp->fastopen_req->size = size;
1164 tp->fastopen_req->uarg = uarg;
1165
1166 if (inet->defer_connect) {
1167 err = tcp_connect(sk);
1168 /* Same failure procedure as in tcp_v4/6_connect */
1169 if (err) {
1170 tcp_set_state(sk, TCP_CLOSE);
1171 inet->inet_dport = 0;
1172 sk->sk_route_caps = 0;
1173 }
1174 }
1175 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1176 err = __inet_stream_connect(sk->sk_socket, uaddr,
1177 msg->msg_namelen, flags, 1);
1178 /* fastopen_req could already be freed in __inet_stream_connect
1179 * if the connection times out or gets rst
1180 */
1181 if (tp->fastopen_req) {
1182 *copied = tp->fastopen_req->copied;
1183 tcp_free_fastopen_req(tp);
1184 inet->defer_connect = 0;
1185 }
1186 return err;
1187 }
1188
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1189 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1190 {
1191 struct tcp_sock *tp = tcp_sk(sk);
1192 struct ubuf_info *uarg = NULL;
1193 struct sk_buff *skb;
1194 struct sockcm_cookie sockc;
1195 int flags, err, copied = 0;
1196 int mss_now = 0, size_goal, copied_syn = 0;
1197 int process_backlog = 0;
1198 bool zc = false;
1199 long timeo;
1200
1201 flags = msg->msg_flags;
1202
1203 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1204 skb = tcp_write_queue_tail(sk);
1205 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1206 if (!uarg) {
1207 err = -ENOBUFS;
1208 goto out_err;
1209 }
1210
1211 zc = sk->sk_route_caps & NETIF_F_SG;
1212 if (!zc)
1213 uarg->zerocopy = 0;
1214 }
1215
1216 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1217 !tp->repair) {
1218 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1219 if (err == -EINPROGRESS && copied_syn > 0)
1220 goto out;
1221 else if (err)
1222 goto out_err;
1223 }
1224
1225 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1226
1227 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1228
1229 /* Wait for a connection to finish. One exception is TCP Fast Open
1230 * (passive side) where data is allowed to be sent before a connection
1231 * is fully established.
1232 */
1233 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1234 !tcp_passive_fastopen(sk)) {
1235 err = sk_stream_wait_connect(sk, &timeo);
1236 if (err != 0)
1237 goto do_error;
1238 }
1239
1240 if (unlikely(tp->repair)) {
1241 if (tp->repair_queue == TCP_RECV_QUEUE) {
1242 copied = tcp_send_rcvq(sk, msg, size);
1243 goto out_nopush;
1244 }
1245
1246 err = -EINVAL;
1247 if (tp->repair_queue == TCP_NO_QUEUE)
1248 goto out_err;
1249
1250 /* 'common' sending to sendq */
1251 }
1252
1253 sockcm_init(&sockc, sk);
1254 if (msg->msg_controllen) {
1255 err = sock_cmsg_send(sk, msg, &sockc);
1256 if (unlikely(err)) {
1257 err = -EINVAL;
1258 goto out_err;
1259 }
1260 }
1261
1262 /* This should be in poll */
1263 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1264
1265 /* Ok commence sending. */
1266 copied = 0;
1267
1268 restart:
1269 mss_now = tcp_send_mss(sk, &size_goal, flags);
1270
1271 err = -EPIPE;
1272 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1273 goto do_error;
1274
1275 while (msg_data_left(msg)) {
1276 int copy = 0;
1277
1278 skb = tcp_write_queue_tail(sk);
1279 if (skb)
1280 copy = size_goal - skb->len;
1281
1282 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1283 bool first_skb;
1284
1285 new_segment:
1286 if (!sk_stream_memory_free(sk))
1287 goto wait_for_space;
1288
1289 if (unlikely(process_backlog >= 16)) {
1290 process_backlog = 0;
1291 if (sk_flush_backlog(sk))
1292 goto restart;
1293 }
1294 first_skb = tcp_rtx_and_write_queues_empty(sk);
1295 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1296 first_skb);
1297 if (!skb)
1298 goto wait_for_space;
1299
1300 process_backlog++;
1301 skb->ip_summed = CHECKSUM_PARTIAL;
1302
1303 skb_entail(sk, skb);
1304 copy = size_goal;
1305
1306 /* All packets are restored as if they have
1307 * already been sent. skb_mstamp_ns isn't set to
1308 * avoid wrong rtt estimation.
1309 */
1310 if (tp->repair)
1311 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1312 }
1313
1314 /* Try to append data to the end of skb. */
1315 if (copy > msg_data_left(msg))
1316 copy = msg_data_left(msg);
1317
1318 /* Where to copy to? */
1319 if (skb_availroom(skb) > 0 && !zc) {
1320 /* We have some space in skb head. Superb! */
1321 copy = min_t(int, copy, skb_availroom(skb));
1322 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1323 if (err)
1324 goto do_fault;
1325 } else if (!zc) {
1326 bool merge = true;
1327 int i = skb_shinfo(skb)->nr_frags;
1328 struct page_frag *pfrag = sk_page_frag(sk);
1329
1330 if (!sk_page_frag_refill(sk, pfrag))
1331 goto wait_for_space;
1332
1333 if (!skb_can_coalesce(skb, i, pfrag->page,
1334 pfrag->offset)) {
1335 if (i >= sysctl_max_skb_frags) {
1336 tcp_mark_push(tp, skb);
1337 goto new_segment;
1338 }
1339 merge = false;
1340 }
1341
1342 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1343
1344 if (!sk_wmem_schedule(sk, copy))
1345 goto wait_for_space;
1346
1347 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1348 pfrag->page,
1349 pfrag->offset,
1350 copy);
1351 if (err)
1352 goto do_error;
1353
1354 /* Update the skb. */
1355 if (merge) {
1356 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1357 } else {
1358 skb_fill_page_desc(skb, i, pfrag->page,
1359 pfrag->offset, copy);
1360 page_ref_inc(pfrag->page);
1361 }
1362 pfrag->offset += copy;
1363 } else {
1364 if (!sk_wmem_schedule(sk, copy))
1365 goto wait_for_space;
1366
1367 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1368 if (err == -EMSGSIZE || err == -EEXIST) {
1369 tcp_mark_push(tp, skb);
1370 goto new_segment;
1371 }
1372 if (err < 0)
1373 goto do_error;
1374 copy = err;
1375 }
1376
1377 if (!copied)
1378 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1379
1380 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1381 TCP_SKB_CB(skb)->end_seq += copy;
1382 tcp_skb_pcount_set(skb, 0);
1383
1384 copied += copy;
1385 if (!msg_data_left(msg)) {
1386 if (unlikely(flags & MSG_EOR))
1387 TCP_SKB_CB(skb)->eor = 1;
1388 goto out;
1389 }
1390
1391 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1392 continue;
1393
1394 if (forced_push(tp)) {
1395 tcp_mark_push(tp, skb);
1396 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1397 } else if (skb == tcp_send_head(sk))
1398 tcp_push_one(sk, mss_now);
1399 continue;
1400
1401 wait_for_space:
1402 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1403 if (copied)
1404 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1405 TCP_NAGLE_PUSH, size_goal);
1406
1407 err = sk_stream_wait_memory(sk, &timeo);
1408 if (err != 0)
1409 goto do_error;
1410
1411 mss_now = tcp_send_mss(sk, &size_goal, flags);
1412 }
1413
1414 out:
1415 if (copied) {
1416 tcp_tx_timestamp(sk, sockc.tsflags);
1417 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1418 }
1419 out_nopush:
1420 sock_zerocopy_put(uarg);
1421 return copied + copied_syn;
1422
1423 do_error:
1424 skb = tcp_write_queue_tail(sk);
1425 do_fault:
1426 tcp_remove_empty_skb(sk, skb);
1427
1428 if (copied + copied_syn)
1429 goto out;
1430 out_err:
1431 sock_zerocopy_put_abort(uarg, true);
1432 err = sk_stream_error(sk, flags, err);
1433 /* make sure we wake any epoll edge trigger waiter */
1434 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1435 sk->sk_write_space(sk);
1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 }
1438 return err;
1439 }
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443 {
1444 int ret;
1445
1446 lock_sock(sk);
1447 ret = tcp_sendmsg_locked(sk, msg, size);
1448 release_sock(sk);
1449
1450 return ret;
1451 }
1452 EXPORT_SYMBOL(tcp_sendmsg);
1453
1454 /*
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1457 */
1458
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 /* No URG data to read. */
1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 tp->urg_data == TCP_URG_READ)
1466 return -EINVAL; /* Yes this is right ! */
1467
1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 return -ENOTCONN;
1470
1471 if (tp->urg_data & TCP_URG_VALID) {
1472 int err = 0;
1473 char c = tp->urg_data;
1474
1475 if (!(flags & MSG_PEEK))
1476 tp->urg_data = TCP_URG_READ;
1477
1478 /* Read urgent data. */
1479 msg->msg_flags |= MSG_OOB;
1480
1481 if (len > 0) {
1482 if (!(flags & MSG_TRUNC))
1483 err = memcpy_to_msg(msg, &c, 1);
1484 len = 1;
1485 } else
1486 msg->msg_flags |= MSG_TRUNC;
1487
1488 return err ? -EFAULT : len;
1489 }
1490
1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 return 0;
1493
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1499 */
1500 return -EAGAIN;
1501 }
1502
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504 {
1505 struct sk_buff *skb;
1506 int copied = 0, err = 0;
1507
1508 /* XXX -- need to support SO_PEEK_OFF */
1509
1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 return err;
1514 copied += skb->len;
1515 }
1516
1517 skb_queue_walk(&sk->sk_write_queue, skb) {
1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 if (err)
1520 break;
1521
1522 copied += skb->len;
1523 }
1524
1525 return err ?: copied;
1526 }
1527
1528 /* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1534 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535 {
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 bool time_to_ack = false;
1538
1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545 if (inet_csk_ack_scheduled(sk)) {
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547
1548 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1549 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1550 /*
1551 * If this read emptied read buffer, we send ACK, if
1552 * connection is not bidirectional, user drained
1553 * receive buffer and there was a small segment
1554 * in queue.
1555 */
1556 (copied > 0 &&
1557 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1559 !inet_csk_in_pingpong_mode(sk))) &&
1560 !atomic_read(&sk->sk_rmem_alloc)))
1561 time_to_ack = true;
1562 }
1563
1564 /* We send an ACK if we can now advertise a non-zero window
1565 * which has been raised "significantly".
1566 *
1567 * Even if window raised up to infinity, do not send window open ACK
1568 * in states, where we will not receive more. It is useless.
1569 */
1570 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1571 __u32 rcv_window_now = tcp_receive_window(tp);
1572
1573 /* Optimize, __tcp_select_window() is not cheap. */
1574 if (2*rcv_window_now <= tp->window_clamp) {
1575 __u32 new_window = __tcp_select_window(sk);
1576
1577 /* Send ACK now, if this read freed lots of space
1578 * in our buffer. Certainly, new_window is new window.
1579 * We can advertise it now, if it is not less than current one.
1580 * "Lots" means "at least twice" here.
1581 */
1582 if (new_window && new_window >= 2 * rcv_window_now)
1583 time_to_ack = true;
1584 }
1585 }
1586 if (time_to_ack)
1587 tcp_send_ack(sk);
1588 }
1589
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1590 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1591 {
1592 struct sk_buff *skb;
1593 u32 offset;
1594
1595 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1596 offset = seq - TCP_SKB_CB(skb)->seq;
1597 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1598 pr_err_once("%s: found a SYN, please report !\n", __func__);
1599 offset--;
1600 }
1601 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1602 *off = offset;
1603 return skb;
1604 }
1605 /* This looks weird, but this can happen if TCP collapsing
1606 * splitted a fat GRO packet, while we released socket lock
1607 * in skb_splice_bits()
1608 */
1609 sk_eat_skb(sk, skb);
1610 }
1611 return NULL;
1612 }
1613
1614 /*
1615 * This routine provides an alternative to tcp_recvmsg() for routines
1616 * that would like to handle copying from skbuffs directly in 'sendfile'
1617 * fashion.
1618 * Note:
1619 * - It is assumed that the socket was locked by the caller.
1620 * - The routine does not block.
1621 * - At present, there is no support for reading OOB data
1622 * or for 'peeking' the socket using this routine
1623 * (although both would be easy to implement).
1624 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1625 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1626 sk_read_actor_t recv_actor)
1627 {
1628 struct sk_buff *skb;
1629 struct tcp_sock *tp = tcp_sk(sk);
1630 u32 seq = tp->copied_seq;
1631 u32 offset;
1632 int copied = 0;
1633
1634 if (sk->sk_state == TCP_LISTEN)
1635 return -ENOTCONN;
1636 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 if (offset < skb->len) {
1638 int used;
1639 size_t len;
1640
1641 len = skb->len - offset;
1642 /* Stop reading if we hit a patch of urgent data */
1643 if (tp->urg_data) {
1644 u32 urg_offset = tp->urg_seq - seq;
1645 if (urg_offset < len)
1646 len = urg_offset;
1647 if (!len)
1648 break;
1649 }
1650 used = recv_actor(desc, skb, offset, len);
1651 if (used <= 0) {
1652 if (!copied)
1653 copied = used;
1654 break;
1655 } else if (used <= len) {
1656 seq += used;
1657 copied += used;
1658 offset += used;
1659 }
1660 /* If recv_actor drops the lock (e.g. TCP splice
1661 * receive) the skb pointer might be invalid when
1662 * getting here: tcp_collapse might have deleted it
1663 * while aggregating skbs from the socket queue.
1664 */
1665 skb = tcp_recv_skb(sk, seq - 1, &offset);
1666 if (!skb)
1667 break;
1668 /* TCP coalescing might have appended data to the skb.
1669 * Try to splice more frags
1670 */
1671 if (offset + 1 != skb->len)
1672 continue;
1673 }
1674 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1675 sk_eat_skb(sk, skb);
1676 ++seq;
1677 break;
1678 }
1679 sk_eat_skb(sk, skb);
1680 if (!desc->count)
1681 break;
1682 WRITE_ONCE(tp->copied_seq, seq);
1683 }
1684 WRITE_ONCE(tp->copied_seq, seq);
1685
1686 tcp_rcv_space_adjust(sk);
1687
1688 /* Clean up data we have read: This will do ACK frames. */
1689 if (copied > 0) {
1690 tcp_recv_skb(sk, seq, &offset);
1691 tcp_cleanup_rbuf(sk, copied);
1692 }
1693 return copied;
1694 }
1695 EXPORT_SYMBOL(tcp_read_sock);
1696
tcp_peek_len(struct socket * sock)1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 int cap;
1707
1708 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 cap = sk->sk_rcvbuf >> 1;
1710 else
1711 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1712 val = min(val, cap);
1713 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714
1715 /* Check if we need to signal EPOLLIN right now */
1716 tcp_data_ready(sk);
1717
1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 return 0;
1720
1721 val <<= 1;
1722 if (val > sk->sk_rcvbuf) {
1723 WRITE_ONCE(sk->sk_rcvbuf, val);
1724 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1725 }
1726 return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729
1730 #ifdef CONFIG_MMU
1731 static const struct vm_operations_struct tcp_vm_ops = {
1732 };
1733
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1734 int tcp_mmap(struct file *file, struct socket *sock,
1735 struct vm_area_struct *vma)
1736 {
1737 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1738 return -EPERM;
1739 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1740
1741 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1742 vma->vm_flags |= VM_MIXEDMAP;
1743
1744 vma->vm_ops = &tcp_vm_ops;
1745 return 0;
1746 }
1747 EXPORT_SYMBOL(tcp_mmap);
1748
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1749 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1750 u32 *offset_frag)
1751 {
1752 skb_frag_t *frag;
1753
1754 if (unlikely(offset_skb >= skb->len))
1755 return NULL;
1756
1757 offset_skb -= skb_headlen(skb);
1758 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1759 return NULL;
1760
1761 frag = skb_shinfo(skb)->frags;
1762 while (offset_skb) {
1763 if (skb_frag_size(frag) > offset_skb) {
1764 *offset_frag = offset_skb;
1765 return frag;
1766 }
1767 offset_skb -= skb_frag_size(frag);
1768 ++frag;
1769 }
1770 *offset_frag = 0;
1771 return frag;
1772 }
1773
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1774 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1775 struct sk_buff *skb, u32 copylen,
1776 u32 *offset, u32 *seq)
1777 {
1778 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1779 struct msghdr msg = {};
1780 struct iovec iov;
1781 int err;
1782
1783 if (copy_address != zc->copybuf_address)
1784 return -EINVAL;
1785
1786 err = import_single_range(READ, (void __user *)copy_address,
1787 copylen, &iov, &msg.msg_iter);
1788 if (err)
1789 return err;
1790 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1791 if (err)
1792 return err;
1793 zc->recv_skip_hint -= copylen;
1794 *offset += copylen;
1795 *seq += copylen;
1796 return (__s32)copylen;
1797 }
1798
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1799 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1800 struct sock *sk,
1801 struct sk_buff *skb,
1802 u32 *seq,
1803 s32 copybuf_len)
1804 {
1805 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1806
1807 if (!copylen)
1808 return 0;
1809 /* skb is null if inq < PAGE_SIZE. */
1810 if (skb)
1811 offset = *seq - TCP_SKB_CB(skb)->seq;
1812 else
1813 skb = tcp_recv_skb(sk, *seq, &offset);
1814
1815 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1816 seq);
1817 return zc->copybuf_len < 0 ? 0 : copylen;
1818 }
1819
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1820 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1821 struct page **pages,
1822 unsigned long pages_to_map,
1823 unsigned long *insert_addr,
1824 u32 *length_with_pending,
1825 u32 *seq,
1826 struct tcp_zerocopy_receive *zc)
1827 {
1828 unsigned long pages_remaining = pages_to_map;
1829 int bytes_mapped;
1830 int ret;
1831
1832 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1833 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1834 /* Even if vm_insert_pages fails, it may have partially succeeded in
1835 * mapping (some but not all of the pages).
1836 */
1837 *seq += bytes_mapped;
1838 *insert_addr += bytes_mapped;
1839 if (ret) {
1840 /* But if vm_insert_pages did fail, we have to unroll some state
1841 * we speculatively touched before.
1842 */
1843 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1844 *length_with_pending -= bytes_not_mapped;
1845 zc->recv_skip_hint += bytes_not_mapped;
1846 }
1847 return ret;
1848 }
1849
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1850 static int tcp_zerocopy_receive(struct sock *sk,
1851 struct tcp_zerocopy_receive *zc)
1852 {
1853 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1854 unsigned long address = (unsigned long)zc->address;
1855 s32 copybuf_len = zc->copybuf_len;
1856 struct tcp_sock *tp = tcp_sk(sk);
1857 #define PAGE_BATCH_SIZE 8
1858 struct page *pages[PAGE_BATCH_SIZE];
1859 const skb_frag_t *frags = NULL;
1860 struct vm_area_struct *vma;
1861 struct sk_buff *skb = NULL;
1862 unsigned long pg_idx = 0;
1863 unsigned long curr_addr;
1864 u32 seq = tp->copied_seq;
1865 int inq = tcp_inq(sk);
1866 int ret;
1867
1868 zc->copybuf_len = 0;
1869
1870 if (address & (PAGE_SIZE - 1) || address != zc->address)
1871 return -EINVAL;
1872
1873 if (sk->sk_state == TCP_LISTEN)
1874 return -ENOTCONN;
1875
1876 sock_rps_record_flow(sk);
1877
1878 mmap_read_lock(current->mm);
1879
1880 vma = find_vma(current->mm, address);
1881 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1882 mmap_read_unlock(current->mm);
1883 return -EINVAL;
1884 }
1885 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1886 avail_len = min_t(u32, vma_len, inq);
1887 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1888 if (aligned_len) {
1889 zap_page_range(vma, address, aligned_len);
1890 zc->length = aligned_len;
1891 zc->recv_skip_hint = 0;
1892 } else {
1893 zc->length = avail_len;
1894 zc->recv_skip_hint = avail_len;
1895 }
1896 ret = 0;
1897 curr_addr = address;
1898 while (length + PAGE_SIZE <= zc->length) {
1899 if (zc->recv_skip_hint < PAGE_SIZE) {
1900 u32 offset_frag;
1901
1902 /* If we're here, finish the current batch. */
1903 if (pg_idx) {
1904 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1905 pg_idx,
1906 &curr_addr,
1907 &length,
1908 &seq, zc);
1909 if (ret)
1910 goto out;
1911 pg_idx = 0;
1912 }
1913 if (skb) {
1914 if (zc->recv_skip_hint > 0)
1915 break;
1916 skb = skb->next;
1917 offset = seq - TCP_SKB_CB(skb)->seq;
1918 } else {
1919 skb = tcp_recv_skb(sk, seq, &offset);
1920 }
1921 zc->recv_skip_hint = skb->len - offset;
1922 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1923 if (!frags || offset_frag)
1924 break;
1925 }
1926 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1927 int remaining = zc->recv_skip_hint;
1928
1929 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1930 skb_frag_off(frags))) {
1931 remaining -= skb_frag_size(frags);
1932 frags++;
1933 }
1934 zc->recv_skip_hint -= remaining;
1935 break;
1936 }
1937 pages[pg_idx] = skb_frag_page(frags);
1938 pg_idx++;
1939 length += PAGE_SIZE;
1940 zc->recv_skip_hint -= PAGE_SIZE;
1941 frags++;
1942 if (pg_idx == PAGE_BATCH_SIZE) {
1943 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1944 &curr_addr, &length,
1945 &seq, zc);
1946 if (ret)
1947 goto out;
1948 pg_idx = 0;
1949 }
1950 }
1951 if (pg_idx) {
1952 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1953 &curr_addr, &length, &seq,
1954 zc);
1955 }
1956 out:
1957 mmap_read_unlock(current->mm);
1958 /* Try to copy straggler data. */
1959 if (!ret)
1960 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1961 copybuf_len);
1962
1963 if (length + copylen) {
1964 WRITE_ONCE(tp->copied_seq, seq);
1965 tcp_rcv_space_adjust(sk);
1966
1967 /* Clean up data we have read: This will do ACK frames. */
1968 tcp_recv_skb(sk, seq, &offset);
1969 tcp_cleanup_rbuf(sk, length + copylen);
1970 ret = 0;
1971 if (length == zc->length)
1972 zc->recv_skip_hint = 0;
1973 } else {
1974 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1975 ret = -EIO;
1976 }
1977 zc->length = length;
1978 return ret;
1979 }
1980 #endif
1981
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1982 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1983 struct scm_timestamping_internal *tss)
1984 {
1985 if (skb->tstamp)
1986 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1987 else
1988 tss->ts[0] = (struct timespec64) {0};
1989
1990 if (skb_hwtstamps(skb)->hwtstamp)
1991 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1992 else
1993 tss->ts[2] = (struct timespec64) {0};
1994 }
1995
1996 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1997 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1998 struct scm_timestamping_internal *tss)
1999 {
2000 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2001 bool has_timestamping = false;
2002
2003 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2004 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2005 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2006 if (new_tstamp) {
2007 struct __kernel_timespec kts = {
2008 .tv_sec = tss->ts[0].tv_sec,
2009 .tv_nsec = tss->ts[0].tv_nsec,
2010 };
2011 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2012 sizeof(kts), &kts);
2013 } else {
2014 struct __kernel_old_timespec ts_old = {
2015 .tv_sec = tss->ts[0].tv_sec,
2016 .tv_nsec = tss->ts[0].tv_nsec,
2017 };
2018 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2019 sizeof(ts_old), &ts_old);
2020 }
2021 } else {
2022 if (new_tstamp) {
2023 struct __kernel_sock_timeval stv = {
2024 .tv_sec = tss->ts[0].tv_sec,
2025 .tv_usec = tss->ts[0].tv_nsec / 1000,
2026 };
2027 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2028 sizeof(stv), &stv);
2029 } else {
2030 struct __kernel_old_timeval tv = {
2031 .tv_sec = tss->ts[0].tv_sec,
2032 .tv_usec = tss->ts[0].tv_nsec / 1000,
2033 };
2034 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2035 sizeof(tv), &tv);
2036 }
2037 }
2038 }
2039
2040 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2041 has_timestamping = true;
2042 else
2043 tss->ts[0] = (struct timespec64) {0};
2044 }
2045
2046 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2047 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2048 has_timestamping = true;
2049 else
2050 tss->ts[2] = (struct timespec64) {0};
2051 }
2052
2053 if (has_timestamping) {
2054 tss->ts[1] = (struct timespec64) {0};
2055 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2056 put_cmsg_scm_timestamping64(msg, tss);
2057 else
2058 put_cmsg_scm_timestamping(msg, tss);
2059 }
2060 }
2061
tcp_inq_hint(struct sock * sk)2062 static int tcp_inq_hint(struct sock *sk)
2063 {
2064 const struct tcp_sock *tp = tcp_sk(sk);
2065 u32 copied_seq = READ_ONCE(tp->copied_seq);
2066 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2067 int inq;
2068
2069 inq = rcv_nxt - copied_seq;
2070 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2071 lock_sock(sk);
2072 inq = tp->rcv_nxt - tp->copied_seq;
2073 release_sock(sk);
2074 }
2075 /* After receiving a FIN, tell the user-space to continue reading
2076 * by returning a non-zero inq.
2077 */
2078 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2079 inq = 1;
2080 return inq;
2081 }
2082
2083 /*
2084 * This routine copies from a sock struct into the user buffer.
2085 *
2086 * Technical note: in 2.3 we work on _locked_ socket, so that
2087 * tricks with *seq access order and skb->users are not required.
2088 * Probably, code can be easily improved even more.
2089 */
2090
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2091 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2092 int flags, int *addr_len)
2093 {
2094 struct tcp_sock *tp = tcp_sk(sk);
2095 int copied = 0;
2096 u32 peek_seq;
2097 u32 *seq;
2098 unsigned long used;
2099 int err, inq;
2100 int target; /* Read at least this many bytes */
2101 long timeo;
2102 struct sk_buff *skb, *last;
2103 u32 urg_hole = 0;
2104 struct scm_timestamping_internal tss;
2105 int cmsg_flags;
2106
2107 if (unlikely(flags & MSG_ERRQUEUE))
2108 return inet_recv_error(sk, msg, len, addr_len);
2109
2110 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2111 (sk->sk_state == TCP_ESTABLISHED))
2112 sk_busy_loop(sk, nonblock);
2113
2114 lock_sock(sk);
2115
2116 err = -ENOTCONN;
2117 if (sk->sk_state == TCP_LISTEN)
2118 goto out;
2119
2120 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2121 timeo = sock_rcvtimeo(sk, nonblock);
2122
2123 /* Urgent data needs to be handled specially. */
2124 if (flags & MSG_OOB)
2125 goto recv_urg;
2126
2127 if (unlikely(tp->repair)) {
2128 err = -EPERM;
2129 if (!(flags & MSG_PEEK))
2130 goto out;
2131
2132 if (tp->repair_queue == TCP_SEND_QUEUE)
2133 goto recv_sndq;
2134
2135 err = -EINVAL;
2136 if (tp->repair_queue == TCP_NO_QUEUE)
2137 goto out;
2138
2139 /* 'common' recv queue MSG_PEEK-ing */
2140 }
2141
2142 seq = &tp->copied_seq;
2143 if (flags & MSG_PEEK) {
2144 peek_seq = tp->copied_seq;
2145 seq = &peek_seq;
2146 }
2147
2148 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2149
2150 do {
2151 u32 offset;
2152
2153 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2154 if (tp->urg_data && tp->urg_seq == *seq) {
2155 if (copied)
2156 break;
2157 if (signal_pending(current)) {
2158 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2159 break;
2160 }
2161 }
2162
2163 /* Next get a buffer. */
2164
2165 last = skb_peek_tail(&sk->sk_receive_queue);
2166 skb_queue_walk(&sk->sk_receive_queue, skb) {
2167 last = skb;
2168 /* Now that we have two receive queues this
2169 * shouldn't happen.
2170 */
2171 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2172 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2173 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2174 flags))
2175 break;
2176
2177 offset = *seq - TCP_SKB_CB(skb)->seq;
2178 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2179 pr_err_once("%s: found a SYN, please report !\n", __func__);
2180 offset--;
2181 }
2182 if (offset < skb->len)
2183 goto found_ok_skb;
2184 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2185 goto found_fin_ok;
2186 WARN(!(flags & MSG_PEEK),
2187 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2188 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2189 }
2190
2191 /* Well, if we have backlog, try to process it now yet. */
2192
2193 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2194 break;
2195
2196 if (copied) {
2197 if (sk->sk_err ||
2198 sk->sk_state == TCP_CLOSE ||
2199 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2200 !timeo ||
2201 signal_pending(current))
2202 break;
2203 } else {
2204 if (sock_flag(sk, SOCK_DONE))
2205 break;
2206
2207 if (sk->sk_err) {
2208 copied = sock_error(sk);
2209 break;
2210 }
2211
2212 if (sk->sk_shutdown & RCV_SHUTDOWN)
2213 break;
2214
2215 if (sk->sk_state == TCP_CLOSE) {
2216 /* This occurs when user tries to read
2217 * from never connected socket.
2218 */
2219 copied = -ENOTCONN;
2220 break;
2221 }
2222
2223 if (!timeo) {
2224 copied = -EAGAIN;
2225 break;
2226 }
2227
2228 if (signal_pending(current)) {
2229 copied = sock_intr_errno(timeo);
2230 break;
2231 }
2232 }
2233
2234 tcp_cleanup_rbuf(sk, copied);
2235
2236 if (copied >= target) {
2237 /* Do not sleep, just process backlog. */
2238 release_sock(sk);
2239 lock_sock(sk);
2240 } else {
2241 sk_wait_data(sk, &timeo, last);
2242 }
2243
2244 if ((flags & MSG_PEEK) &&
2245 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2246 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2247 current->comm,
2248 task_pid_nr(current));
2249 peek_seq = tp->copied_seq;
2250 }
2251 continue;
2252
2253 found_ok_skb:
2254 /* Ok so how much can we use? */
2255 used = skb->len - offset;
2256 if (len < used)
2257 used = len;
2258
2259 /* Do we have urgent data here? */
2260 if (tp->urg_data) {
2261 u32 urg_offset = tp->urg_seq - *seq;
2262 if (urg_offset < used) {
2263 if (!urg_offset) {
2264 if (!sock_flag(sk, SOCK_URGINLINE)) {
2265 WRITE_ONCE(*seq, *seq + 1);
2266 urg_hole++;
2267 offset++;
2268 used--;
2269 if (!used)
2270 goto skip_copy;
2271 }
2272 } else
2273 used = urg_offset;
2274 }
2275 }
2276
2277 if (!(flags & MSG_TRUNC)) {
2278 err = skb_copy_datagram_msg(skb, offset, msg, used);
2279 if (err) {
2280 /* Exception. Bailout! */
2281 if (!copied)
2282 copied = -EFAULT;
2283 break;
2284 }
2285 }
2286
2287 WRITE_ONCE(*seq, *seq + used);
2288 copied += used;
2289 len -= used;
2290
2291 tcp_rcv_space_adjust(sk);
2292
2293 skip_copy:
2294 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2295 tp->urg_data = 0;
2296 tcp_fast_path_check(sk);
2297 }
2298
2299 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2300 tcp_update_recv_tstamps(skb, &tss);
2301 cmsg_flags |= 2;
2302 }
2303
2304 if (used + offset < skb->len)
2305 continue;
2306
2307 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2308 goto found_fin_ok;
2309 if (!(flags & MSG_PEEK))
2310 sk_eat_skb(sk, skb);
2311 continue;
2312
2313 found_fin_ok:
2314 /* Process the FIN. */
2315 WRITE_ONCE(*seq, *seq + 1);
2316 if (!(flags & MSG_PEEK))
2317 sk_eat_skb(sk, skb);
2318 break;
2319 } while (len > 0);
2320
2321 /* According to UNIX98, msg_name/msg_namelen are ignored
2322 * on connected socket. I was just happy when found this 8) --ANK
2323 */
2324
2325 /* Clean up data we have read: This will do ACK frames. */
2326 tcp_cleanup_rbuf(sk, copied);
2327
2328 release_sock(sk);
2329
2330 if (cmsg_flags) {
2331 if (cmsg_flags & 2)
2332 tcp_recv_timestamp(msg, sk, &tss);
2333 if (cmsg_flags & 1) {
2334 inq = tcp_inq_hint(sk);
2335 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2336 }
2337 }
2338
2339 return copied;
2340
2341 out:
2342 release_sock(sk);
2343 return err;
2344
2345 recv_urg:
2346 err = tcp_recv_urg(sk, msg, len, flags);
2347 goto out;
2348
2349 recv_sndq:
2350 err = tcp_peek_sndq(sk, msg, len);
2351 goto out;
2352 }
2353 EXPORT_SYMBOL(tcp_recvmsg);
2354
tcp_set_state(struct sock * sk,int state)2355 void tcp_set_state(struct sock *sk, int state)
2356 {
2357 int oldstate = sk->sk_state;
2358
2359 /* We defined a new enum for TCP states that are exported in BPF
2360 * so as not force the internal TCP states to be frozen. The
2361 * following checks will detect if an internal state value ever
2362 * differs from the BPF value. If this ever happens, then we will
2363 * need to remap the internal value to the BPF value before calling
2364 * tcp_call_bpf_2arg.
2365 */
2366 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2367 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2368 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2369 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2370 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2371 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2372 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2373 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2374 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2375 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2376 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2377 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2378 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2379
2380 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2381 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2382
2383 switch (state) {
2384 case TCP_ESTABLISHED:
2385 if (oldstate != TCP_ESTABLISHED)
2386 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2387 break;
2388
2389 case TCP_CLOSE:
2390 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2391 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2392
2393 sk->sk_prot->unhash(sk);
2394 if (inet_csk(sk)->icsk_bind_hash &&
2395 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2396 inet_put_port(sk);
2397 fallthrough;
2398 default:
2399 if (oldstate == TCP_ESTABLISHED)
2400 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2401 }
2402
2403 /* Change state AFTER socket is unhashed to avoid closed
2404 * socket sitting in hash tables.
2405 */
2406 inet_sk_state_store(sk, state);
2407 }
2408 EXPORT_SYMBOL_GPL(tcp_set_state);
2409
2410 /*
2411 * State processing on a close. This implements the state shift for
2412 * sending our FIN frame. Note that we only send a FIN for some
2413 * states. A shutdown() may have already sent the FIN, or we may be
2414 * closed.
2415 */
2416
2417 static const unsigned char new_state[16] = {
2418 /* current state: new state: action: */
2419 [0 /* (Invalid) */] = TCP_CLOSE,
2420 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2421 [TCP_SYN_SENT] = TCP_CLOSE,
2422 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2423 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2424 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2425 [TCP_TIME_WAIT] = TCP_CLOSE,
2426 [TCP_CLOSE] = TCP_CLOSE,
2427 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2428 [TCP_LAST_ACK] = TCP_LAST_ACK,
2429 [TCP_LISTEN] = TCP_CLOSE,
2430 [TCP_CLOSING] = TCP_CLOSING,
2431 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2432 };
2433
tcp_close_state(struct sock * sk)2434 static int tcp_close_state(struct sock *sk)
2435 {
2436 int next = (int)new_state[sk->sk_state];
2437 int ns = next & TCP_STATE_MASK;
2438
2439 tcp_set_state(sk, ns);
2440
2441 return next & TCP_ACTION_FIN;
2442 }
2443
2444 /*
2445 * Shutdown the sending side of a connection. Much like close except
2446 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2447 */
2448
tcp_shutdown(struct sock * sk,int how)2449 void tcp_shutdown(struct sock *sk, int how)
2450 {
2451 /* We need to grab some memory, and put together a FIN,
2452 * and then put it into the queue to be sent.
2453 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2454 */
2455 if (!(how & SEND_SHUTDOWN))
2456 return;
2457
2458 /* If we've already sent a FIN, or it's a closed state, skip this. */
2459 if ((1 << sk->sk_state) &
2460 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2461 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2462 /* Clear out any half completed packets. FIN if needed. */
2463 if (tcp_close_state(sk))
2464 tcp_send_fin(sk);
2465 }
2466 }
2467 EXPORT_SYMBOL(tcp_shutdown);
2468
tcp_orphan_count_sum(void)2469 int tcp_orphan_count_sum(void)
2470 {
2471 int i, total = 0;
2472
2473 for_each_possible_cpu(i)
2474 total += per_cpu(tcp_orphan_count, i);
2475
2476 return max(total, 0);
2477 }
2478
2479 static int tcp_orphan_cache;
2480 static struct timer_list tcp_orphan_timer;
2481 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2482
tcp_orphan_update(struct timer_list * unused)2483 static void tcp_orphan_update(struct timer_list *unused)
2484 {
2485 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2486 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2487 }
2488
tcp_too_many_orphans(int shift)2489 static bool tcp_too_many_orphans(int shift)
2490 {
2491 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2492 }
2493
tcp_check_oom(struct sock * sk,int shift)2494 bool tcp_check_oom(struct sock *sk, int shift)
2495 {
2496 bool too_many_orphans, out_of_socket_memory;
2497
2498 too_many_orphans = tcp_too_many_orphans(shift);
2499 out_of_socket_memory = tcp_out_of_memory(sk);
2500
2501 if (too_many_orphans)
2502 net_info_ratelimited("too many orphaned sockets\n");
2503 if (out_of_socket_memory)
2504 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2505 return too_many_orphans || out_of_socket_memory;
2506 }
2507
tcp_close(struct sock * sk,long timeout)2508 void tcp_close(struct sock *sk, long timeout)
2509 {
2510 struct sk_buff *skb;
2511 int data_was_unread = 0;
2512 int state;
2513
2514 lock_sock(sk);
2515 sk->sk_shutdown = SHUTDOWN_MASK;
2516
2517 if (sk->sk_state == TCP_LISTEN) {
2518 tcp_set_state(sk, TCP_CLOSE);
2519
2520 /* Special case. */
2521 inet_csk_listen_stop(sk);
2522
2523 goto adjudge_to_death;
2524 }
2525
2526 /* We need to flush the recv. buffs. We do this only on the
2527 * descriptor close, not protocol-sourced closes, because the
2528 * reader process may not have drained the data yet!
2529 */
2530 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2531 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2532
2533 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2534 len--;
2535 data_was_unread += len;
2536 __kfree_skb(skb);
2537 }
2538
2539 sk_mem_reclaim(sk);
2540
2541 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2542 if (sk->sk_state == TCP_CLOSE)
2543 goto adjudge_to_death;
2544
2545 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2546 * data was lost. To witness the awful effects of the old behavior of
2547 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2548 * GET in an FTP client, suspend the process, wait for the client to
2549 * advertise a zero window, then kill -9 the FTP client, wheee...
2550 * Note: timeout is always zero in such a case.
2551 */
2552 if (unlikely(tcp_sk(sk)->repair)) {
2553 sk->sk_prot->disconnect(sk, 0);
2554 } else if (data_was_unread) {
2555 /* Unread data was tossed, zap the connection. */
2556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2557 tcp_set_state(sk, TCP_CLOSE);
2558 tcp_send_active_reset(sk, sk->sk_allocation);
2559 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2560 /* Check zero linger _after_ checking for unread data. */
2561 sk->sk_prot->disconnect(sk, 0);
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2563 } else if (tcp_close_state(sk)) {
2564 /* We FIN if the application ate all the data before
2565 * zapping the connection.
2566 */
2567
2568 /* RED-PEN. Formally speaking, we have broken TCP state
2569 * machine. State transitions:
2570 *
2571 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2572 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2573 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2574 *
2575 * are legal only when FIN has been sent (i.e. in window),
2576 * rather than queued out of window. Purists blame.
2577 *
2578 * F.e. "RFC state" is ESTABLISHED,
2579 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2580 *
2581 * The visible declinations are that sometimes
2582 * we enter time-wait state, when it is not required really
2583 * (harmless), do not send active resets, when they are
2584 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2585 * they look as CLOSING or LAST_ACK for Linux)
2586 * Probably, I missed some more holelets.
2587 * --ANK
2588 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2589 * in a single packet! (May consider it later but will
2590 * probably need API support or TCP_CORK SYN-ACK until
2591 * data is written and socket is closed.)
2592 */
2593 tcp_send_fin(sk);
2594 }
2595
2596 sk_stream_wait_close(sk, timeout);
2597
2598 adjudge_to_death:
2599 state = sk->sk_state;
2600 sock_hold(sk);
2601 sock_orphan(sk);
2602
2603 local_bh_disable();
2604 bh_lock_sock(sk);
2605 /* remove backlog if any, without releasing ownership. */
2606 __release_sock(sk);
2607
2608 this_cpu_inc(tcp_orphan_count);
2609
2610 /* Have we already been destroyed by a softirq or backlog? */
2611 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2612 goto out;
2613
2614 /* This is a (useful) BSD violating of the RFC. There is a
2615 * problem with TCP as specified in that the other end could
2616 * keep a socket open forever with no application left this end.
2617 * We use a 1 minute timeout (about the same as BSD) then kill
2618 * our end. If they send after that then tough - BUT: long enough
2619 * that we won't make the old 4*rto = almost no time - whoops
2620 * reset mistake.
2621 *
2622 * Nope, it was not mistake. It is really desired behaviour
2623 * f.e. on http servers, when such sockets are useless, but
2624 * consume significant resources. Let's do it with special
2625 * linger2 option. --ANK
2626 */
2627
2628 if (sk->sk_state == TCP_FIN_WAIT2) {
2629 struct tcp_sock *tp = tcp_sk(sk);
2630 if (tp->linger2 < 0) {
2631 tcp_set_state(sk, TCP_CLOSE);
2632 tcp_send_active_reset(sk, GFP_ATOMIC);
2633 __NET_INC_STATS(sock_net(sk),
2634 LINUX_MIB_TCPABORTONLINGER);
2635 } else {
2636 const int tmo = tcp_fin_time(sk);
2637
2638 if (tmo > TCP_TIMEWAIT_LEN) {
2639 inet_csk_reset_keepalive_timer(sk,
2640 tmo - TCP_TIMEWAIT_LEN);
2641 } else {
2642 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2643 goto out;
2644 }
2645 }
2646 }
2647 if (sk->sk_state != TCP_CLOSE) {
2648 sk_mem_reclaim(sk);
2649 if (tcp_check_oom(sk, 0)) {
2650 tcp_set_state(sk, TCP_CLOSE);
2651 tcp_send_active_reset(sk, GFP_ATOMIC);
2652 __NET_INC_STATS(sock_net(sk),
2653 LINUX_MIB_TCPABORTONMEMORY);
2654 } else if (!check_net(sock_net(sk))) {
2655 /* Not possible to send reset; just close */
2656 tcp_set_state(sk, TCP_CLOSE);
2657 }
2658 }
2659
2660 if (sk->sk_state == TCP_CLOSE) {
2661 struct request_sock *req;
2662
2663 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2664 lockdep_sock_is_held(sk));
2665 /* We could get here with a non-NULL req if the socket is
2666 * aborted (e.g., closed with unread data) before 3WHS
2667 * finishes.
2668 */
2669 if (req)
2670 reqsk_fastopen_remove(sk, req, false);
2671 inet_csk_destroy_sock(sk);
2672 }
2673 /* Otherwise, socket is reprieved until protocol close. */
2674
2675 out:
2676 bh_unlock_sock(sk);
2677 local_bh_enable();
2678 release_sock(sk);
2679 sock_put(sk);
2680 }
2681 EXPORT_SYMBOL(tcp_close);
2682
2683 /* These states need RST on ABORT according to RFC793 */
2684
tcp_need_reset(int state)2685 static inline bool tcp_need_reset(int state)
2686 {
2687 return (1 << state) &
2688 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2689 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2690 }
2691
tcp_rtx_queue_purge(struct sock * sk)2692 static void tcp_rtx_queue_purge(struct sock *sk)
2693 {
2694 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2695
2696 tcp_sk(sk)->highest_sack = NULL;
2697 while (p) {
2698 struct sk_buff *skb = rb_to_skb(p);
2699
2700 p = rb_next(p);
2701 /* Since we are deleting whole queue, no need to
2702 * list_del(&skb->tcp_tsorted_anchor)
2703 */
2704 tcp_rtx_queue_unlink(skb, sk);
2705 sk_wmem_free_skb(sk, skb);
2706 }
2707 }
2708
tcp_write_queue_purge(struct sock * sk)2709 void tcp_write_queue_purge(struct sock *sk)
2710 {
2711 struct sk_buff *skb;
2712
2713 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2714 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2715 tcp_skb_tsorted_anchor_cleanup(skb);
2716 sk_wmem_free_skb(sk, skb);
2717 }
2718 tcp_rtx_queue_purge(sk);
2719 skb = sk->sk_tx_skb_cache;
2720 if (skb) {
2721 __kfree_skb(skb);
2722 sk->sk_tx_skb_cache = NULL;
2723 }
2724 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2725 sk_mem_reclaim(sk);
2726 tcp_clear_all_retrans_hints(tcp_sk(sk));
2727 tcp_sk(sk)->packets_out = 0;
2728 inet_csk(sk)->icsk_backoff = 0;
2729 }
2730
tcp_disconnect(struct sock * sk,int flags)2731 int tcp_disconnect(struct sock *sk, int flags)
2732 {
2733 struct inet_sock *inet = inet_sk(sk);
2734 struct inet_connection_sock *icsk = inet_csk(sk);
2735 struct tcp_sock *tp = tcp_sk(sk);
2736 int old_state = sk->sk_state;
2737 u32 seq;
2738
2739 if (old_state != TCP_CLOSE)
2740 tcp_set_state(sk, TCP_CLOSE);
2741
2742 /* ABORT function of RFC793 */
2743 if (old_state == TCP_LISTEN) {
2744 inet_csk_listen_stop(sk);
2745 } else if (unlikely(tp->repair)) {
2746 sk->sk_err = ECONNABORTED;
2747 } else if (tcp_need_reset(old_state) ||
2748 (tp->snd_nxt != tp->write_seq &&
2749 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2750 /* The last check adjusts for discrepancy of Linux wrt. RFC
2751 * states
2752 */
2753 tcp_send_active_reset(sk, gfp_any());
2754 sk->sk_err = ECONNRESET;
2755 } else if (old_state == TCP_SYN_SENT)
2756 sk->sk_err = ECONNRESET;
2757
2758 tcp_clear_xmit_timers(sk);
2759 __skb_queue_purge(&sk->sk_receive_queue);
2760 if (sk->sk_rx_skb_cache) {
2761 __kfree_skb(sk->sk_rx_skb_cache);
2762 sk->sk_rx_skb_cache = NULL;
2763 }
2764 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2765 tp->urg_data = 0;
2766 tcp_write_queue_purge(sk);
2767 tcp_fastopen_active_disable_ofo_check(sk);
2768 skb_rbtree_purge(&tp->out_of_order_queue);
2769
2770 inet->inet_dport = 0;
2771
2772 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2773 inet_reset_saddr(sk);
2774
2775 sk->sk_shutdown = 0;
2776 sock_reset_flag(sk, SOCK_DONE);
2777 tp->srtt_us = 0;
2778 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2779 tp->rcv_rtt_last_tsecr = 0;
2780
2781 seq = tp->write_seq + tp->max_window + 2;
2782 if (!seq)
2783 seq = 1;
2784 WRITE_ONCE(tp->write_seq, seq);
2785
2786 icsk->icsk_backoff = 0;
2787 icsk->icsk_probes_out = 0;
2788 icsk->icsk_probes_tstamp = 0;
2789 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2790 icsk->icsk_rto_min = TCP_RTO_MIN;
2791 icsk->icsk_delack_max = TCP_DELACK_MAX;
2792 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2793 tp->snd_cwnd = TCP_INIT_CWND;
2794 tp->snd_cwnd_cnt = 0;
2795 tp->window_clamp = 0;
2796 tp->delivered = 0;
2797 tp->delivered_ce = 0;
2798 if (icsk->icsk_ca_ops->release)
2799 icsk->icsk_ca_ops->release(sk);
2800 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2801 icsk->icsk_ca_initialized = 0;
2802 tcp_set_ca_state(sk, TCP_CA_Open);
2803 tp->is_sack_reneg = 0;
2804 tcp_clear_retrans(tp);
2805 tp->total_retrans = 0;
2806 inet_csk_delack_init(sk);
2807 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2808 * issue in __tcp_select_window()
2809 */
2810 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2811 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2812 __sk_dst_reset(sk);
2813 dst_release(sk->sk_rx_dst);
2814 sk->sk_rx_dst = NULL;
2815 tcp_saved_syn_free(tp);
2816 tp->compressed_ack = 0;
2817 tp->segs_in = 0;
2818 tp->segs_out = 0;
2819 tp->bytes_sent = 0;
2820 tp->bytes_acked = 0;
2821 tp->bytes_received = 0;
2822 tp->bytes_retrans = 0;
2823 tp->data_segs_in = 0;
2824 tp->data_segs_out = 0;
2825 tp->duplicate_sack[0].start_seq = 0;
2826 tp->duplicate_sack[0].end_seq = 0;
2827 tp->dsack_dups = 0;
2828 tp->reord_seen = 0;
2829 tp->retrans_out = 0;
2830 tp->sacked_out = 0;
2831 tp->tlp_high_seq = 0;
2832 tp->last_oow_ack_time = 0;
2833 /* There's a bubble in the pipe until at least the first ACK. */
2834 tp->app_limited = ~0U;
2835 tp->rack.mstamp = 0;
2836 tp->rack.advanced = 0;
2837 tp->rack.reo_wnd_steps = 1;
2838 tp->rack.last_delivered = 0;
2839 tp->rack.reo_wnd_persist = 0;
2840 tp->rack.dsack_seen = 0;
2841 tp->syn_data_acked = 0;
2842 tp->rx_opt.saw_tstamp = 0;
2843 tp->rx_opt.dsack = 0;
2844 tp->rx_opt.num_sacks = 0;
2845 tp->rcv_ooopack = 0;
2846
2847
2848 /* Clean up fastopen related fields */
2849 tcp_free_fastopen_req(tp);
2850 inet->defer_connect = 0;
2851 tp->fastopen_client_fail = 0;
2852
2853 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2854
2855 if (sk->sk_frag.page) {
2856 put_page(sk->sk_frag.page);
2857 sk->sk_frag.page = NULL;
2858 sk->sk_frag.offset = 0;
2859 }
2860
2861 sk->sk_error_report(sk);
2862 return 0;
2863 }
2864 EXPORT_SYMBOL(tcp_disconnect);
2865
tcp_can_repair_sock(const struct sock * sk)2866 static inline bool tcp_can_repair_sock(const struct sock *sk)
2867 {
2868 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2869 (sk->sk_state != TCP_LISTEN);
2870 }
2871
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2872 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2873 {
2874 struct tcp_repair_window opt;
2875
2876 if (!tp->repair)
2877 return -EPERM;
2878
2879 if (len != sizeof(opt))
2880 return -EINVAL;
2881
2882 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2883 return -EFAULT;
2884
2885 if (opt.max_window < opt.snd_wnd)
2886 return -EINVAL;
2887
2888 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2889 return -EINVAL;
2890
2891 if (after(opt.rcv_wup, tp->rcv_nxt))
2892 return -EINVAL;
2893
2894 tp->snd_wl1 = opt.snd_wl1;
2895 tp->snd_wnd = opt.snd_wnd;
2896 tp->max_window = opt.max_window;
2897
2898 tp->rcv_wnd = opt.rcv_wnd;
2899 tp->rcv_wup = opt.rcv_wup;
2900
2901 return 0;
2902 }
2903
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2904 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2905 unsigned int len)
2906 {
2907 struct tcp_sock *tp = tcp_sk(sk);
2908 struct tcp_repair_opt opt;
2909 size_t offset = 0;
2910
2911 while (len >= sizeof(opt)) {
2912 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2913 return -EFAULT;
2914
2915 offset += sizeof(opt);
2916 len -= sizeof(opt);
2917
2918 switch (opt.opt_code) {
2919 case TCPOPT_MSS:
2920 tp->rx_opt.mss_clamp = opt.opt_val;
2921 tcp_mtup_init(sk);
2922 break;
2923 case TCPOPT_WINDOW:
2924 {
2925 u16 snd_wscale = opt.opt_val & 0xFFFF;
2926 u16 rcv_wscale = opt.opt_val >> 16;
2927
2928 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2929 return -EFBIG;
2930
2931 tp->rx_opt.snd_wscale = snd_wscale;
2932 tp->rx_opt.rcv_wscale = rcv_wscale;
2933 tp->rx_opt.wscale_ok = 1;
2934 }
2935 break;
2936 case TCPOPT_SACK_PERM:
2937 if (opt.opt_val != 0)
2938 return -EINVAL;
2939
2940 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2941 break;
2942 case TCPOPT_TIMESTAMP:
2943 if (opt.opt_val != 0)
2944 return -EINVAL;
2945
2946 tp->rx_opt.tstamp_ok = 1;
2947 break;
2948 }
2949 }
2950
2951 return 0;
2952 }
2953
2954 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2955 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2956
tcp_enable_tx_delay(void)2957 static void tcp_enable_tx_delay(void)
2958 {
2959 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2960 static int __tcp_tx_delay_enabled = 0;
2961
2962 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2963 static_branch_enable(&tcp_tx_delay_enabled);
2964 pr_info("TCP_TX_DELAY enabled\n");
2965 }
2966 }
2967 }
2968
2969 /* When set indicates to always queue non-full frames. Later the user clears
2970 * this option and we transmit any pending partial frames in the queue. This is
2971 * meant to be used alongside sendfile() to get properly filled frames when the
2972 * user (for example) must write out headers with a write() call first and then
2973 * use sendfile to send out the data parts.
2974 *
2975 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2976 * TCP_NODELAY.
2977 */
__tcp_sock_set_cork(struct sock * sk,bool on)2978 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2979 {
2980 struct tcp_sock *tp = tcp_sk(sk);
2981
2982 if (on) {
2983 tp->nonagle |= TCP_NAGLE_CORK;
2984 } else {
2985 tp->nonagle &= ~TCP_NAGLE_CORK;
2986 if (tp->nonagle & TCP_NAGLE_OFF)
2987 tp->nonagle |= TCP_NAGLE_PUSH;
2988 tcp_push_pending_frames(sk);
2989 }
2990 }
2991
tcp_sock_set_cork(struct sock * sk,bool on)2992 void tcp_sock_set_cork(struct sock *sk, bool on)
2993 {
2994 lock_sock(sk);
2995 __tcp_sock_set_cork(sk, on);
2996 release_sock(sk);
2997 }
2998 EXPORT_SYMBOL(tcp_sock_set_cork);
2999
3000 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3001 * remembered, but it is not activated until cork is cleared.
3002 *
3003 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3004 * even TCP_CORK for currently queued segments.
3005 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3006 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3007 {
3008 if (on) {
3009 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3010 tcp_push_pending_frames(sk);
3011 } else {
3012 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3013 }
3014 }
3015
tcp_sock_set_nodelay(struct sock * sk)3016 void tcp_sock_set_nodelay(struct sock *sk)
3017 {
3018 lock_sock(sk);
3019 __tcp_sock_set_nodelay(sk, true);
3020 release_sock(sk);
3021 }
3022 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3023
__tcp_sock_set_quickack(struct sock * sk,int val)3024 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3025 {
3026 if (!val) {
3027 inet_csk_enter_pingpong_mode(sk);
3028 return;
3029 }
3030
3031 inet_csk_exit_pingpong_mode(sk);
3032 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3033 inet_csk_ack_scheduled(sk)) {
3034 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3035 tcp_cleanup_rbuf(sk, 1);
3036 if (!(val & 1))
3037 inet_csk_enter_pingpong_mode(sk);
3038 }
3039 }
3040
tcp_sock_set_quickack(struct sock * sk,int val)3041 void tcp_sock_set_quickack(struct sock *sk, int val)
3042 {
3043 lock_sock(sk);
3044 __tcp_sock_set_quickack(sk, val);
3045 release_sock(sk);
3046 }
3047 EXPORT_SYMBOL(tcp_sock_set_quickack);
3048
tcp_sock_set_syncnt(struct sock * sk,int val)3049 int tcp_sock_set_syncnt(struct sock *sk, int val)
3050 {
3051 if (val < 1 || val > MAX_TCP_SYNCNT)
3052 return -EINVAL;
3053
3054 lock_sock(sk);
3055 inet_csk(sk)->icsk_syn_retries = val;
3056 release_sock(sk);
3057 return 0;
3058 }
3059 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3060
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3061 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3062 {
3063 lock_sock(sk);
3064 inet_csk(sk)->icsk_user_timeout = val;
3065 release_sock(sk);
3066 }
3067 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3068
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3069 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3070 {
3071 struct tcp_sock *tp = tcp_sk(sk);
3072
3073 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3074 return -EINVAL;
3075
3076 tp->keepalive_time = val * HZ;
3077 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3078 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3079 u32 elapsed = keepalive_time_elapsed(tp);
3080
3081 if (tp->keepalive_time > elapsed)
3082 elapsed = tp->keepalive_time - elapsed;
3083 else
3084 elapsed = 0;
3085 inet_csk_reset_keepalive_timer(sk, elapsed);
3086 }
3087
3088 return 0;
3089 }
3090
tcp_sock_set_keepidle(struct sock * sk,int val)3091 int tcp_sock_set_keepidle(struct sock *sk, int val)
3092 {
3093 int err;
3094
3095 lock_sock(sk);
3096 err = tcp_sock_set_keepidle_locked(sk, val);
3097 release_sock(sk);
3098 return err;
3099 }
3100 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3101
tcp_sock_set_keepintvl(struct sock * sk,int val)3102 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3103 {
3104 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3105 return -EINVAL;
3106
3107 lock_sock(sk);
3108 tcp_sk(sk)->keepalive_intvl = val * HZ;
3109 release_sock(sk);
3110 return 0;
3111 }
3112 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3113
tcp_sock_set_keepcnt(struct sock * sk,int val)3114 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3115 {
3116 if (val < 1 || val > MAX_TCP_KEEPCNT)
3117 return -EINVAL;
3118
3119 lock_sock(sk);
3120 tcp_sk(sk)->keepalive_probes = val;
3121 release_sock(sk);
3122 return 0;
3123 }
3124 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3125
3126 /*
3127 * Socket option code for TCP.
3128 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3129 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3130 sockptr_t optval, unsigned int optlen)
3131 {
3132 struct tcp_sock *tp = tcp_sk(sk);
3133 struct inet_connection_sock *icsk = inet_csk(sk);
3134 struct net *net = sock_net(sk);
3135 int val;
3136 int err = 0;
3137
3138 /* These are data/string values, all the others are ints */
3139 switch (optname) {
3140 case TCP_CONGESTION: {
3141 char name[TCP_CA_NAME_MAX];
3142
3143 if (optlen < 1)
3144 return -EINVAL;
3145
3146 val = strncpy_from_sockptr(name, optval,
3147 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3148 if (val < 0)
3149 return -EFAULT;
3150 name[val] = 0;
3151
3152 lock_sock(sk);
3153 err = tcp_set_congestion_control(sk, name, true,
3154 ns_capable(sock_net(sk)->user_ns,
3155 CAP_NET_ADMIN));
3156 release_sock(sk);
3157 return err;
3158 }
3159 case TCP_ULP: {
3160 char name[TCP_ULP_NAME_MAX];
3161
3162 if (optlen < 1)
3163 return -EINVAL;
3164
3165 val = strncpy_from_sockptr(name, optval,
3166 min_t(long, TCP_ULP_NAME_MAX - 1,
3167 optlen));
3168 if (val < 0)
3169 return -EFAULT;
3170 name[val] = 0;
3171
3172 lock_sock(sk);
3173 err = tcp_set_ulp(sk, name);
3174 release_sock(sk);
3175 return err;
3176 }
3177 case TCP_FASTOPEN_KEY: {
3178 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3179 __u8 *backup_key = NULL;
3180
3181 /* Allow a backup key as well to facilitate key rotation
3182 * First key is the active one.
3183 */
3184 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3185 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3186 return -EINVAL;
3187
3188 if (copy_from_sockptr(key, optval, optlen))
3189 return -EFAULT;
3190
3191 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3192 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3193
3194 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3195 }
3196 default:
3197 /* fallthru */
3198 break;
3199 }
3200
3201 if (optlen < sizeof(int))
3202 return -EINVAL;
3203
3204 if (copy_from_sockptr(&val, optval, sizeof(val)))
3205 return -EFAULT;
3206
3207 lock_sock(sk);
3208
3209 switch (optname) {
3210 case TCP_MAXSEG:
3211 /* Values greater than interface MTU won't take effect. However
3212 * at the point when this call is done we typically don't yet
3213 * know which interface is going to be used
3214 */
3215 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3216 err = -EINVAL;
3217 break;
3218 }
3219 tp->rx_opt.user_mss = val;
3220 break;
3221
3222 case TCP_NODELAY:
3223 __tcp_sock_set_nodelay(sk, val);
3224 break;
3225
3226 case TCP_THIN_LINEAR_TIMEOUTS:
3227 if (val < 0 || val > 1)
3228 err = -EINVAL;
3229 else
3230 tp->thin_lto = val;
3231 break;
3232
3233 case TCP_THIN_DUPACK:
3234 if (val < 0 || val > 1)
3235 err = -EINVAL;
3236 break;
3237
3238 case TCP_REPAIR:
3239 if (!tcp_can_repair_sock(sk))
3240 err = -EPERM;
3241 else if (val == TCP_REPAIR_ON) {
3242 tp->repair = 1;
3243 sk->sk_reuse = SK_FORCE_REUSE;
3244 tp->repair_queue = TCP_NO_QUEUE;
3245 } else if (val == TCP_REPAIR_OFF) {
3246 tp->repair = 0;
3247 sk->sk_reuse = SK_NO_REUSE;
3248 tcp_send_window_probe(sk);
3249 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3250 tp->repair = 0;
3251 sk->sk_reuse = SK_NO_REUSE;
3252 } else
3253 err = -EINVAL;
3254
3255 break;
3256
3257 case TCP_REPAIR_QUEUE:
3258 if (!tp->repair)
3259 err = -EPERM;
3260 else if ((unsigned int)val < TCP_QUEUES_NR)
3261 tp->repair_queue = val;
3262 else
3263 err = -EINVAL;
3264 break;
3265
3266 case TCP_QUEUE_SEQ:
3267 if (sk->sk_state != TCP_CLOSE) {
3268 err = -EPERM;
3269 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3270 if (!tcp_rtx_queue_empty(sk))
3271 err = -EPERM;
3272 else
3273 WRITE_ONCE(tp->write_seq, val);
3274 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3275 if (tp->rcv_nxt != tp->copied_seq) {
3276 err = -EPERM;
3277 } else {
3278 WRITE_ONCE(tp->rcv_nxt, val);
3279 WRITE_ONCE(tp->copied_seq, val);
3280 }
3281 } else {
3282 err = -EINVAL;
3283 }
3284 break;
3285
3286 case TCP_REPAIR_OPTIONS:
3287 if (!tp->repair)
3288 err = -EINVAL;
3289 else if (sk->sk_state == TCP_ESTABLISHED)
3290 err = tcp_repair_options_est(sk, optval, optlen);
3291 else
3292 err = -EPERM;
3293 break;
3294
3295 case TCP_CORK:
3296 __tcp_sock_set_cork(sk, val);
3297 break;
3298
3299 case TCP_KEEPIDLE:
3300 err = tcp_sock_set_keepidle_locked(sk, val);
3301 break;
3302 case TCP_KEEPINTVL:
3303 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3304 err = -EINVAL;
3305 else
3306 tp->keepalive_intvl = val * HZ;
3307 break;
3308 case TCP_KEEPCNT:
3309 if (val < 1 || val > MAX_TCP_KEEPCNT)
3310 err = -EINVAL;
3311 else
3312 tp->keepalive_probes = val;
3313 break;
3314 case TCP_SYNCNT:
3315 if (val < 1 || val > MAX_TCP_SYNCNT)
3316 err = -EINVAL;
3317 else
3318 icsk->icsk_syn_retries = val;
3319 break;
3320
3321 case TCP_SAVE_SYN:
3322 /* 0: disable, 1: enable, 2: start from ether_header */
3323 if (val < 0 || val > 2)
3324 err = -EINVAL;
3325 else
3326 tp->save_syn = val;
3327 break;
3328
3329 case TCP_LINGER2:
3330 if (val < 0)
3331 tp->linger2 = -1;
3332 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3333 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3334 else
3335 tp->linger2 = val * HZ;
3336 break;
3337
3338 case TCP_DEFER_ACCEPT:
3339 /* Translate value in seconds to number of retransmits */
3340 icsk->icsk_accept_queue.rskq_defer_accept =
3341 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3342 TCP_RTO_MAX / HZ);
3343 break;
3344
3345 case TCP_WINDOW_CLAMP:
3346 if (!val) {
3347 if (sk->sk_state != TCP_CLOSE) {
3348 err = -EINVAL;
3349 break;
3350 }
3351 tp->window_clamp = 0;
3352 } else
3353 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3354 SOCK_MIN_RCVBUF / 2 : val;
3355 break;
3356
3357 case TCP_QUICKACK:
3358 __tcp_sock_set_quickack(sk, val);
3359 break;
3360
3361 #ifdef CONFIG_TCP_MD5SIG
3362 case TCP_MD5SIG:
3363 case TCP_MD5SIG_EXT:
3364 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3365 break;
3366 #endif
3367 case TCP_USER_TIMEOUT:
3368 /* Cap the max time in ms TCP will retry or probe the window
3369 * before giving up and aborting (ETIMEDOUT) a connection.
3370 */
3371 if (val < 0)
3372 err = -EINVAL;
3373 else
3374 icsk->icsk_user_timeout = val;
3375 break;
3376
3377 case TCP_FASTOPEN:
3378 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3379 TCPF_LISTEN))) {
3380 tcp_fastopen_init_key_once(net);
3381
3382 fastopen_queue_tune(sk, val);
3383 } else {
3384 err = -EINVAL;
3385 }
3386 break;
3387 case TCP_FASTOPEN_CONNECT:
3388 if (val > 1 || val < 0) {
3389 err = -EINVAL;
3390 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3391 if (sk->sk_state == TCP_CLOSE)
3392 tp->fastopen_connect = val;
3393 else
3394 err = -EINVAL;
3395 } else {
3396 err = -EOPNOTSUPP;
3397 }
3398 break;
3399 case TCP_FASTOPEN_NO_COOKIE:
3400 if (val > 1 || val < 0)
3401 err = -EINVAL;
3402 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3403 err = -EINVAL;
3404 else
3405 tp->fastopen_no_cookie = val;
3406 break;
3407 case TCP_TIMESTAMP:
3408 if (!tp->repair)
3409 err = -EPERM;
3410 else
3411 tp->tsoffset = val - tcp_time_stamp_raw();
3412 break;
3413 case TCP_REPAIR_WINDOW:
3414 err = tcp_repair_set_window(tp, optval, optlen);
3415 break;
3416 case TCP_NOTSENT_LOWAT:
3417 tp->notsent_lowat = val;
3418 sk->sk_write_space(sk);
3419 break;
3420 case TCP_INQ:
3421 if (val > 1 || val < 0)
3422 err = -EINVAL;
3423 else
3424 tp->recvmsg_inq = val;
3425 break;
3426 case TCP_TX_DELAY:
3427 if (val)
3428 tcp_enable_tx_delay();
3429 tp->tcp_tx_delay = val;
3430 break;
3431 default:
3432 err = -ENOPROTOOPT;
3433 break;
3434 }
3435
3436 release_sock(sk);
3437 return err;
3438 }
3439
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3440 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3441 unsigned int optlen)
3442 {
3443 const struct inet_connection_sock *icsk = inet_csk(sk);
3444
3445 if (level != SOL_TCP)
3446 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3447 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3448 optval, optlen);
3449 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3450 }
3451 EXPORT_SYMBOL(tcp_setsockopt);
3452
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3453 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3454 struct tcp_info *info)
3455 {
3456 u64 stats[__TCP_CHRONO_MAX], total = 0;
3457 enum tcp_chrono i;
3458
3459 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3460 stats[i] = tp->chrono_stat[i - 1];
3461 if (i == tp->chrono_type)
3462 stats[i] += tcp_jiffies32 - tp->chrono_start;
3463 stats[i] *= USEC_PER_SEC / HZ;
3464 total += stats[i];
3465 }
3466
3467 info->tcpi_busy_time = total;
3468 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3469 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3470 }
3471
3472 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3473 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3474 {
3475 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3476 const struct inet_connection_sock *icsk = inet_csk(sk);
3477 unsigned long rate;
3478 u32 now;
3479 u64 rate64;
3480 bool slow;
3481
3482 memset(info, 0, sizeof(*info));
3483 if (sk->sk_type != SOCK_STREAM)
3484 return;
3485
3486 info->tcpi_state = inet_sk_state_load(sk);
3487
3488 /* Report meaningful fields for all TCP states, including listeners */
3489 rate = READ_ONCE(sk->sk_pacing_rate);
3490 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3491 info->tcpi_pacing_rate = rate64;
3492
3493 rate = READ_ONCE(sk->sk_max_pacing_rate);
3494 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3495 info->tcpi_max_pacing_rate = rate64;
3496
3497 info->tcpi_reordering = tp->reordering;
3498 info->tcpi_snd_cwnd = tp->snd_cwnd;
3499
3500 if (info->tcpi_state == TCP_LISTEN) {
3501 /* listeners aliased fields :
3502 * tcpi_unacked -> Number of children ready for accept()
3503 * tcpi_sacked -> max backlog
3504 */
3505 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3506 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3507 return;
3508 }
3509
3510 slow = lock_sock_fast(sk);
3511
3512 info->tcpi_ca_state = icsk->icsk_ca_state;
3513 info->tcpi_retransmits = icsk->icsk_retransmits;
3514 info->tcpi_probes = icsk->icsk_probes_out;
3515 info->tcpi_backoff = icsk->icsk_backoff;
3516
3517 if (tp->rx_opt.tstamp_ok)
3518 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3519 if (tcp_is_sack(tp))
3520 info->tcpi_options |= TCPI_OPT_SACK;
3521 if (tp->rx_opt.wscale_ok) {
3522 info->tcpi_options |= TCPI_OPT_WSCALE;
3523 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3524 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3525 }
3526
3527 if (tp->ecn_flags & TCP_ECN_OK)
3528 info->tcpi_options |= TCPI_OPT_ECN;
3529 if (tp->ecn_flags & TCP_ECN_SEEN)
3530 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3531 if (tp->syn_data_acked)
3532 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3533
3534 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3535 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3536 info->tcpi_snd_mss = tp->mss_cache;
3537 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3538
3539 info->tcpi_unacked = tp->packets_out;
3540 info->tcpi_sacked = tp->sacked_out;
3541
3542 info->tcpi_lost = tp->lost_out;
3543 info->tcpi_retrans = tp->retrans_out;
3544
3545 now = tcp_jiffies32;
3546 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3547 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3548 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3549
3550 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3551 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3552 info->tcpi_rtt = tp->srtt_us >> 3;
3553 info->tcpi_rttvar = tp->mdev_us >> 2;
3554 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3555 info->tcpi_advmss = tp->advmss;
3556
3557 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3558 info->tcpi_rcv_space = tp->rcvq_space.space;
3559
3560 info->tcpi_total_retrans = tp->total_retrans;
3561
3562 info->tcpi_bytes_acked = tp->bytes_acked;
3563 info->tcpi_bytes_received = tp->bytes_received;
3564 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3565 tcp_get_info_chrono_stats(tp, info);
3566
3567 info->tcpi_segs_out = tp->segs_out;
3568 info->tcpi_segs_in = tp->segs_in;
3569
3570 info->tcpi_min_rtt = tcp_min_rtt(tp);
3571 info->tcpi_data_segs_in = tp->data_segs_in;
3572 info->tcpi_data_segs_out = tp->data_segs_out;
3573
3574 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3575 rate64 = tcp_compute_delivery_rate(tp);
3576 if (rate64)
3577 info->tcpi_delivery_rate = rate64;
3578 info->tcpi_delivered = tp->delivered;
3579 info->tcpi_delivered_ce = tp->delivered_ce;
3580 info->tcpi_bytes_sent = tp->bytes_sent;
3581 info->tcpi_bytes_retrans = tp->bytes_retrans;
3582 info->tcpi_dsack_dups = tp->dsack_dups;
3583 info->tcpi_reord_seen = tp->reord_seen;
3584 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3585 info->tcpi_snd_wnd = tp->snd_wnd;
3586 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3587 unlock_sock_fast(sk, slow);
3588 }
3589 EXPORT_SYMBOL_GPL(tcp_get_info);
3590
tcp_opt_stats_get_size(void)3591 static size_t tcp_opt_stats_get_size(void)
3592 {
3593 return
3594 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3595 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3596 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3597 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3598 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3599 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3600 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3601 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3602 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3603 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3604 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3605 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3606 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3607 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3608 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3609 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3610 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3611 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3612 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3613 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3614 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3615 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3616 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3617 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3618 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3619 0;
3620 }
3621
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3622 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3623 const struct sk_buff *orig_skb)
3624 {
3625 const struct tcp_sock *tp = tcp_sk(sk);
3626 struct sk_buff *stats;
3627 struct tcp_info info;
3628 unsigned long rate;
3629 u64 rate64;
3630
3631 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3632 if (!stats)
3633 return NULL;
3634
3635 tcp_get_info_chrono_stats(tp, &info);
3636 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3637 info.tcpi_busy_time, TCP_NLA_PAD);
3638 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3639 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3640 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3641 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3642 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3643 tp->data_segs_out, TCP_NLA_PAD);
3644 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3645 tp->total_retrans, TCP_NLA_PAD);
3646
3647 rate = READ_ONCE(sk->sk_pacing_rate);
3648 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3649 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3650
3651 rate64 = tcp_compute_delivery_rate(tp);
3652 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3653
3654 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3655 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3656 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3657
3658 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3659 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3660 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3661 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3662 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3663
3664 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3665 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3666
3667 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3668 TCP_NLA_PAD);
3669 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3670 TCP_NLA_PAD);
3671 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3672 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3673 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3674 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3675 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3676 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3677 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3678 TCP_NLA_PAD);
3679
3680 return stats;
3681 }
3682
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3683 static int do_tcp_getsockopt(struct sock *sk, int level,
3684 int optname, char __user *optval, int __user *optlen)
3685 {
3686 struct inet_connection_sock *icsk = inet_csk(sk);
3687 struct tcp_sock *tp = tcp_sk(sk);
3688 struct net *net = sock_net(sk);
3689 int val, len;
3690
3691 if (get_user(len, optlen))
3692 return -EFAULT;
3693
3694 len = min_t(unsigned int, len, sizeof(int));
3695
3696 if (len < 0)
3697 return -EINVAL;
3698
3699 switch (optname) {
3700 case TCP_MAXSEG:
3701 val = tp->mss_cache;
3702 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3703 val = tp->rx_opt.user_mss;
3704 if (tp->repair)
3705 val = tp->rx_opt.mss_clamp;
3706 break;
3707 case TCP_NODELAY:
3708 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3709 break;
3710 case TCP_CORK:
3711 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3712 break;
3713 case TCP_KEEPIDLE:
3714 val = keepalive_time_when(tp) / HZ;
3715 break;
3716 case TCP_KEEPINTVL:
3717 val = keepalive_intvl_when(tp) / HZ;
3718 break;
3719 case TCP_KEEPCNT:
3720 val = keepalive_probes(tp);
3721 break;
3722 case TCP_SYNCNT:
3723 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3724 break;
3725 case TCP_LINGER2:
3726 val = tp->linger2;
3727 if (val >= 0)
3728 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3729 break;
3730 case TCP_DEFER_ACCEPT:
3731 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3732 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3733 break;
3734 case TCP_WINDOW_CLAMP:
3735 val = tp->window_clamp;
3736 break;
3737 case TCP_INFO: {
3738 struct tcp_info info;
3739
3740 if (get_user(len, optlen))
3741 return -EFAULT;
3742
3743 tcp_get_info(sk, &info);
3744
3745 len = min_t(unsigned int, len, sizeof(info));
3746 if (put_user(len, optlen))
3747 return -EFAULT;
3748 if (copy_to_user(optval, &info, len))
3749 return -EFAULT;
3750 return 0;
3751 }
3752 case TCP_CC_INFO: {
3753 const struct tcp_congestion_ops *ca_ops;
3754 union tcp_cc_info info;
3755 size_t sz = 0;
3756 int attr;
3757
3758 if (get_user(len, optlen))
3759 return -EFAULT;
3760
3761 ca_ops = icsk->icsk_ca_ops;
3762 if (ca_ops && ca_ops->get_info)
3763 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3764
3765 len = min_t(unsigned int, len, sz);
3766 if (put_user(len, optlen))
3767 return -EFAULT;
3768 if (copy_to_user(optval, &info, len))
3769 return -EFAULT;
3770 return 0;
3771 }
3772 case TCP_QUICKACK:
3773 val = !inet_csk_in_pingpong_mode(sk);
3774 break;
3775
3776 case TCP_CONGESTION:
3777 if (get_user(len, optlen))
3778 return -EFAULT;
3779 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3780 if (put_user(len, optlen))
3781 return -EFAULT;
3782 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3783 return -EFAULT;
3784 return 0;
3785
3786 case TCP_ULP:
3787 if (get_user(len, optlen))
3788 return -EFAULT;
3789 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3790 if (!icsk->icsk_ulp_ops) {
3791 if (put_user(0, optlen))
3792 return -EFAULT;
3793 return 0;
3794 }
3795 if (put_user(len, optlen))
3796 return -EFAULT;
3797 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3798 return -EFAULT;
3799 return 0;
3800
3801 case TCP_FASTOPEN_KEY: {
3802 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3803 unsigned int key_len;
3804
3805 if (get_user(len, optlen))
3806 return -EFAULT;
3807
3808 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3809 TCP_FASTOPEN_KEY_LENGTH;
3810 len = min_t(unsigned int, len, key_len);
3811 if (put_user(len, optlen))
3812 return -EFAULT;
3813 if (copy_to_user(optval, key, len))
3814 return -EFAULT;
3815 return 0;
3816 }
3817 case TCP_THIN_LINEAR_TIMEOUTS:
3818 val = tp->thin_lto;
3819 break;
3820
3821 case TCP_THIN_DUPACK:
3822 val = 0;
3823 break;
3824
3825 case TCP_REPAIR:
3826 val = tp->repair;
3827 break;
3828
3829 case TCP_REPAIR_QUEUE:
3830 if (tp->repair)
3831 val = tp->repair_queue;
3832 else
3833 return -EINVAL;
3834 break;
3835
3836 case TCP_REPAIR_WINDOW: {
3837 struct tcp_repair_window opt;
3838
3839 if (get_user(len, optlen))
3840 return -EFAULT;
3841
3842 if (len != sizeof(opt))
3843 return -EINVAL;
3844
3845 if (!tp->repair)
3846 return -EPERM;
3847
3848 opt.snd_wl1 = tp->snd_wl1;
3849 opt.snd_wnd = tp->snd_wnd;
3850 opt.max_window = tp->max_window;
3851 opt.rcv_wnd = tp->rcv_wnd;
3852 opt.rcv_wup = tp->rcv_wup;
3853
3854 if (copy_to_user(optval, &opt, len))
3855 return -EFAULT;
3856 return 0;
3857 }
3858 case TCP_QUEUE_SEQ:
3859 if (tp->repair_queue == TCP_SEND_QUEUE)
3860 val = tp->write_seq;
3861 else if (tp->repair_queue == TCP_RECV_QUEUE)
3862 val = tp->rcv_nxt;
3863 else
3864 return -EINVAL;
3865 break;
3866
3867 case TCP_USER_TIMEOUT:
3868 val = icsk->icsk_user_timeout;
3869 break;
3870
3871 case TCP_FASTOPEN:
3872 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3873 break;
3874
3875 case TCP_FASTOPEN_CONNECT:
3876 val = tp->fastopen_connect;
3877 break;
3878
3879 case TCP_FASTOPEN_NO_COOKIE:
3880 val = tp->fastopen_no_cookie;
3881 break;
3882
3883 case TCP_TX_DELAY:
3884 val = tp->tcp_tx_delay;
3885 break;
3886
3887 case TCP_TIMESTAMP:
3888 val = tcp_time_stamp_raw() + tp->tsoffset;
3889 break;
3890 case TCP_NOTSENT_LOWAT:
3891 val = tp->notsent_lowat;
3892 break;
3893 case TCP_INQ:
3894 val = tp->recvmsg_inq;
3895 break;
3896 case TCP_SAVE_SYN:
3897 val = tp->save_syn;
3898 break;
3899 case TCP_SAVED_SYN: {
3900 if (get_user(len, optlen))
3901 return -EFAULT;
3902
3903 lock_sock(sk);
3904 if (tp->saved_syn) {
3905 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3906 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3907 optlen)) {
3908 release_sock(sk);
3909 return -EFAULT;
3910 }
3911 release_sock(sk);
3912 return -EINVAL;
3913 }
3914 len = tcp_saved_syn_len(tp->saved_syn);
3915 if (put_user(len, optlen)) {
3916 release_sock(sk);
3917 return -EFAULT;
3918 }
3919 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3920 release_sock(sk);
3921 return -EFAULT;
3922 }
3923 tcp_saved_syn_free(tp);
3924 release_sock(sk);
3925 } else {
3926 release_sock(sk);
3927 len = 0;
3928 if (put_user(len, optlen))
3929 return -EFAULT;
3930 }
3931 return 0;
3932 }
3933 #ifdef CONFIG_MMU
3934 case TCP_ZEROCOPY_RECEIVE: {
3935 struct tcp_zerocopy_receive zc = {};
3936 int err;
3937
3938 if (get_user(len, optlen))
3939 return -EFAULT;
3940 if (len < 0 ||
3941 len < offsetofend(struct tcp_zerocopy_receive, length))
3942 return -EINVAL;
3943 if (len > sizeof(zc)) {
3944 len = sizeof(zc);
3945 if (put_user(len, optlen))
3946 return -EFAULT;
3947 }
3948 if (copy_from_user(&zc, optval, len))
3949 return -EFAULT;
3950 lock_sock(sk);
3951 err = tcp_zerocopy_receive(sk, &zc);
3952 release_sock(sk);
3953 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3954 goto zerocopy_rcv_sk_err;
3955 switch (len) {
3956 case offsetofend(struct tcp_zerocopy_receive, err):
3957 goto zerocopy_rcv_sk_err;
3958 case offsetofend(struct tcp_zerocopy_receive, inq):
3959 goto zerocopy_rcv_inq;
3960 case offsetofend(struct tcp_zerocopy_receive, length):
3961 default:
3962 goto zerocopy_rcv_out;
3963 }
3964 zerocopy_rcv_sk_err:
3965 if (!err)
3966 zc.err = sock_error(sk);
3967 zerocopy_rcv_inq:
3968 zc.inq = tcp_inq_hint(sk);
3969 zerocopy_rcv_out:
3970 if (!err && copy_to_user(optval, &zc, len))
3971 err = -EFAULT;
3972 return err;
3973 }
3974 #endif
3975 default:
3976 return -ENOPROTOOPT;
3977 }
3978
3979 if (put_user(len, optlen))
3980 return -EFAULT;
3981 if (copy_to_user(optval, &val, len))
3982 return -EFAULT;
3983 return 0;
3984 }
3985
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3986 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3987 int __user *optlen)
3988 {
3989 struct inet_connection_sock *icsk = inet_csk(sk);
3990
3991 if (level != SOL_TCP)
3992 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3993 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
3994 optval, optlen);
3995 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3996 }
3997 EXPORT_SYMBOL(tcp_getsockopt);
3998
3999 #ifdef CONFIG_TCP_MD5SIG
4000 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4001 static DEFINE_MUTEX(tcp_md5sig_mutex);
4002 static bool tcp_md5sig_pool_populated = false;
4003
__tcp_alloc_md5sig_pool(void)4004 static void __tcp_alloc_md5sig_pool(void)
4005 {
4006 struct crypto_ahash *hash;
4007 int cpu;
4008
4009 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4010 if (IS_ERR(hash))
4011 return;
4012
4013 for_each_possible_cpu(cpu) {
4014 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4015 struct ahash_request *req;
4016
4017 if (!scratch) {
4018 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4019 sizeof(struct tcphdr),
4020 GFP_KERNEL,
4021 cpu_to_node(cpu));
4022 if (!scratch)
4023 return;
4024 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4025 }
4026 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4027 continue;
4028
4029 req = ahash_request_alloc(hash, GFP_KERNEL);
4030 if (!req)
4031 return;
4032
4033 ahash_request_set_callback(req, 0, NULL, NULL);
4034
4035 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4036 }
4037 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4038 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4039 */
4040 smp_wmb();
4041 tcp_md5sig_pool_populated = true;
4042 }
4043
tcp_alloc_md5sig_pool(void)4044 bool tcp_alloc_md5sig_pool(void)
4045 {
4046 if (unlikely(!tcp_md5sig_pool_populated)) {
4047 mutex_lock(&tcp_md5sig_mutex);
4048
4049 if (!tcp_md5sig_pool_populated) {
4050 __tcp_alloc_md5sig_pool();
4051 if (tcp_md5sig_pool_populated)
4052 static_branch_inc(&tcp_md5_needed);
4053 }
4054
4055 mutex_unlock(&tcp_md5sig_mutex);
4056 }
4057 return tcp_md5sig_pool_populated;
4058 }
4059 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4060
4061
4062 /**
4063 * tcp_get_md5sig_pool - get md5sig_pool for this user
4064 *
4065 * We use percpu structure, so if we succeed, we exit with preemption
4066 * and BH disabled, to make sure another thread or softirq handling
4067 * wont try to get same context.
4068 */
tcp_get_md5sig_pool(void)4069 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4070 {
4071 local_bh_disable();
4072
4073 if (tcp_md5sig_pool_populated) {
4074 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4075 smp_rmb();
4076 return this_cpu_ptr(&tcp_md5sig_pool);
4077 }
4078 local_bh_enable();
4079 return NULL;
4080 }
4081 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4082
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4083 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4084 const struct sk_buff *skb, unsigned int header_len)
4085 {
4086 struct scatterlist sg;
4087 const struct tcphdr *tp = tcp_hdr(skb);
4088 struct ahash_request *req = hp->md5_req;
4089 unsigned int i;
4090 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4091 skb_headlen(skb) - header_len : 0;
4092 const struct skb_shared_info *shi = skb_shinfo(skb);
4093 struct sk_buff *frag_iter;
4094
4095 sg_init_table(&sg, 1);
4096
4097 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4098 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4099 if (crypto_ahash_update(req))
4100 return 1;
4101
4102 for (i = 0; i < shi->nr_frags; ++i) {
4103 const skb_frag_t *f = &shi->frags[i];
4104 unsigned int offset = skb_frag_off(f);
4105 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4106
4107 sg_set_page(&sg, page, skb_frag_size(f),
4108 offset_in_page(offset));
4109 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4110 if (crypto_ahash_update(req))
4111 return 1;
4112 }
4113
4114 skb_walk_frags(skb, frag_iter)
4115 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4116 return 1;
4117
4118 return 0;
4119 }
4120 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4121
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4122 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4123 {
4124 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4125 struct scatterlist sg;
4126
4127 sg_init_one(&sg, key->key, keylen);
4128 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4129
4130 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4131 return data_race(crypto_ahash_update(hp->md5_req));
4132 }
4133 EXPORT_SYMBOL(tcp_md5_hash_key);
4134
4135 #endif
4136
tcp_done(struct sock * sk)4137 void tcp_done(struct sock *sk)
4138 {
4139 struct request_sock *req;
4140
4141 /* We might be called with a new socket, after
4142 * inet_csk_prepare_forced_close() has been called
4143 * so we can not use lockdep_sock_is_held(sk)
4144 */
4145 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4146
4147 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4148 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4149
4150 tcp_set_state(sk, TCP_CLOSE);
4151 tcp_clear_xmit_timers(sk);
4152 if (req)
4153 reqsk_fastopen_remove(sk, req, false);
4154
4155 sk->sk_shutdown = SHUTDOWN_MASK;
4156
4157 if (!sock_flag(sk, SOCK_DEAD))
4158 sk->sk_state_change(sk);
4159 else
4160 inet_csk_destroy_sock(sk);
4161 }
4162 EXPORT_SYMBOL_GPL(tcp_done);
4163
tcp_abort(struct sock * sk,int err)4164 int tcp_abort(struct sock *sk, int err)
4165 {
4166 if (!sk_fullsock(sk)) {
4167 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4168 struct request_sock *req = inet_reqsk(sk);
4169
4170 local_bh_disable();
4171 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4172 local_bh_enable();
4173 return 0;
4174 }
4175 return -EOPNOTSUPP;
4176 }
4177
4178 /* Don't race with userspace socket closes such as tcp_close. */
4179 lock_sock(sk);
4180
4181 if (sk->sk_state == TCP_LISTEN) {
4182 tcp_set_state(sk, TCP_CLOSE);
4183 inet_csk_listen_stop(sk);
4184 }
4185
4186 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4187 local_bh_disable();
4188 bh_lock_sock(sk);
4189
4190 if (!sock_flag(sk, SOCK_DEAD)) {
4191 sk->sk_err = err;
4192 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4193 smp_wmb();
4194 sk->sk_error_report(sk);
4195 if (tcp_need_reset(sk->sk_state))
4196 tcp_send_active_reset(sk, GFP_ATOMIC);
4197 tcp_done(sk);
4198 }
4199
4200 bh_unlock_sock(sk);
4201 local_bh_enable();
4202 tcp_write_queue_purge(sk);
4203 release_sock(sk);
4204 return 0;
4205 }
4206 EXPORT_SYMBOL_GPL(tcp_abort);
4207
4208 extern struct tcp_congestion_ops tcp_reno;
4209
4210 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4211 static int __init set_thash_entries(char *str)
4212 {
4213 ssize_t ret;
4214
4215 if (!str)
4216 return 0;
4217
4218 ret = kstrtoul(str, 0, &thash_entries);
4219 if (ret)
4220 return 0;
4221
4222 return 1;
4223 }
4224 __setup("thash_entries=", set_thash_entries);
4225
tcp_init_mem(void)4226 static void __init tcp_init_mem(void)
4227 {
4228 unsigned long limit = nr_free_buffer_pages() / 16;
4229
4230 limit = max(limit, 128UL);
4231 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4232 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4233 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4234 }
4235
tcp_init(void)4236 void __init tcp_init(void)
4237 {
4238 int max_rshare, max_wshare, cnt;
4239 unsigned long limit;
4240 unsigned int i;
4241
4242 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4243 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4244 sizeof_field(struct sk_buff, cb));
4245
4246 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4247
4248 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4249 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4250
4251 inet_hashinfo_init(&tcp_hashinfo);
4252 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4253 thash_entries, 21, /* one slot per 2 MB*/
4254 0, 64 * 1024);
4255 tcp_hashinfo.bind_bucket_cachep =
4256 kmem_cache_create("tcp_bind_bucket",
4257 sizeof(struct inet_bind_bucket), 0,
4258 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4259
4260 /* Size and allocate the main established and bind bucket
4261 * hash tables.
4262 *
4263 * The methodology is similar to that of the buffer cache.
4264 */
4265 tcp_hashinfo.ehash =
4266 alloc_large_system_hash("TCP established",
4267 sizeof(struct inet_ehash_bucket),
4268 thash_entries,
4269 17, /* one slot per 128 KB of memory */
4270 0,
4271 NULL,
4272 &tcp_hashinfo.ehash_mask,
4273 0,
4274 thash_entries ? 0 : 512 * 1024);
4275 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4276 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4277
4278 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4279 panic("TCP: failed to alloc ehash_locks");
4280 tcp_hashinfo.bhash =
4281 alloc_large_system_hash("TCP bind",
4282 sizeof(struct inet_bind_hashbucket),
4283 tcp_hashinfo.ehash_mask + 1,
4284 17, /* one slot per 128 KB of memory */
4285 0,
4286 &tcp_hashinfo.bhash_size,
4287 NULL,
4288 0,
4289 64 * 1024);
4290 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4291 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4292 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4293 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4294 }
4295
4296
4297 cnt = tcp_hashinfo.ehash_mask + 1;
4298 sysctl_tcp_max_orphans = cnt / 2;
4299
4300 tcp_init_mem();
4301 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4302 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4303 max_wshare = min(4UL*1024*1024, limit);
4304 max_rshare = min(6UL*1024*1024, limit);
4305
4306 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4307 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4308 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4309
4310 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4311 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4312 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4313
4314 pr_info("Hash tables configured (established %u bind %u)\n",
4315 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4316
4317 tcp_v4_init();
4318 tcp_metrics_init();
4319 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4320 tcp_tasklet_init();
4321 mptcp_init();
4322 }
4323