1 /*
2 * DMM IOMMU driver support functions for TI OMAP processors.
3 *
4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
5 * Author: Rob Clark <rob@ti.com>
6 * Andy Gross <andy.gross@ti.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation version 2.
11 *
12 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
13 * kind, whether express or implied; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/completion.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmaengine.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h> /* platform_device() */
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/vmalloc.h>
34 #include <linux/wait.h>
35
36 #include "omap_dmm_tiler.h"
37 #include "omap_dmm_priv.h"
38
39 #define DMM_DRIVER_NAME "dmm"
40
41 /* mappings for associating views to luts */
42 static struct tcm *containers[TILFMT_NFORMATS];
43 static struct dmm *omap_dmm;
44
45 #if defined(CONFIG_OF)
46 static const struct of_device_id dmm_of_match[];
47 #endif
48
49 /* global spinlock for protecting lists */
50 static DEFINE_SPINLOCK(list_lock);
51
52 /* Geometry table */
53 #define GEOM(xshift, yshift, bytes_per_pixel) { \
54 .x_shft = (xshift), \
55 .y_shft = (yshift), \
56 .cpp = (bytes_per_pixel), \
57 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
58 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
59 }
60
61 static const struct {
62 u32 x_shft; /* unused X-bits (as part of bpp) */
63 u32 y_shft; /* unused Y-bits (as part of bpp) */
64 u32 cpp; /* bytes/chars per pixel */
65 u32 slot_w; /* width of each slot (in pixels) */
66 u32 slot_h; /* height of each slot (in pixels) */
67 } geom[TILFMT_NFORMATS] = {
68 [TILFMT_8BIT] = GEOM(0, 0, 1),
69 [TILFMT_16BIT] = GEOM(0, 1, 2),
70 [TILFMT_32BIT] = GEOM(1, 1, 4),
71 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
72 };
73
74
75 /* lookup table for registers w/ per-engine instances */
76 static const u32 reg[][4] = {
77 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
78 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
79 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
80 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
81 };
82
dmm_dma_copy(struct dmm * dmm,dma_addr_t src,dma_addr_t dst)83 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst)
84 {
85 struct dma_async_tx_descriptor *tx;
86 enum dma_status status;
87 dma_cookie_t cookie;
88
89 tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0);
90 if (!tx) {
91 dev_err(dmm->dev, "Failed to prepare DMA memcpy\n");
92 return -EIO;
93 }
94
95 cookie = tx->tx_submit(tx);
96 if (dma_submit_error(cookie)) {
97 dev_err(dmm->dev, "Failed to do DMA tx_submit\n");
98 return -EIO;
99 }
100
101 status = dma_sync_wait(dmm->wa_dma_chan, cookie);
102 if (status != DMA_COMPLETE)
103 dev_err(dmm->dev, "i878 wa DMA copy failure\n");
104
105 dmaengine_terminate_all(dmm->wa_dma_chan);
106 return 0;
107 }
108
dmm_read_wa(struct dmm * dmm,u32 reg)109 static u32 dmm_read_wa(struct dmm *dmm, u32 reg)
110 {
111 dma_addr_t src, dst;
112 int r;
113
114 src = dmm->phys_base + reg;
115 dst = dmm->wa_dma_handle;
116
117 r = dmm_dma_copy(dmm, src, dst);
118 if (r) {
119 dev_err(dmm->dev, "sDMA read transfer timeout\n");
120 return readl(dmm->base + reg);
121 }
122
123 /*
124 * As per i878 workaround, the DMA is used to access the DMM registers.
125 * Make sure that the readl is not moved by the compiler or the CPU
126 * earlier than the DMA finished writing the value to memory.
127 */
128 rmb();
129 return readl(dmm->wa_dma_data);
130 }
131
dmm_write_wa(struct dmm * dmm,u32 val,u32 reg)132 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg)
133 {
134 dma_addr_t src, dst;
135 int r;
136
137 writel(val, dmm->wa_dma_data);
138 /*
139 * As per i878 workaround, the DMA is used to access the DMM registers.
140 * Make sure that the writel is not moved by the compiler or the CPU, so
141 * the data will be in place before we start the DMA to do the actual
142 * register write.
143 */
144 wmb();
145
146 src = dmm->wa_dma_handle;
147 dst = dmm->phys_base + reg;
148
149 r = dmm_dma_copy(dmm, src, dst);
150 if (r) {
151 dev_err(dmm->dev, "sDMA write transfer timeout\n");
152 writel(val, dmm->base + reg);
153 }
154 }
155
dmm_read(struct dmm * dmm,u32 reg)156 static u32 dmm_read(struct dmm *dmm, u32 reg)
157 {
158 if (dmm->dmm_workaround) {
159 u32 v;
160 unsigned long flags;
161
162 spin_lock_irqsave(&dmm->wa_lock, flags);
163 v = dmm_read_wa(dmm, reg);
164 spin_unlock_irqrestore(&dmm->wa_lock, flags);
165
166 return v;
167 } else {
168 return readl(dmm->base + reg);
169 }
170 }
171
dmm_write(struct dmm * dmm,u32 val,u32 reg)172 static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
173 {
174 if (dmm->dmm_workaround) {
175 unsigned long flags;
176
177 spin_lock_irqsave(&dmm->wa_lock, flags);
178 dmm_write_wa(dmm, val, reg);
179 spin_unlock_irqrestore(&dmm->wa_lock, flags);
180 } else {
181 writel(val, dmm->base + reg);
182 }
183 }
184
dmm_workaround_init(struct dmm * dmm)185 static int dmm_workaround_init(struct dmm *dmm)
186 {
187 dma_cap_mask_t mask;
188
189 spin_lock_init(&dmm->wa_lock);
190
191 dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32),
192 &dmm->wa_dma_handle, GFP_KERNEL);
193 if (!dmm->wa_dma_data)
194 return -ENOMEM;
195
196 dma_cap_zero(mask);
197 dma_cap_set(DMA_MEMCPY, mask);
198
199 dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL);
200 if (!dmm->wa_dma_chan) {
201 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
202 return -ENODEV;
203 }
204
205 return 0;
206 }
207
dmm_workaround_uninit(struct dmm * dmm)208 static void dmm_workaround_uninit(struct dmm *dmm)
209 {
210 dma_release_channel(dmm->wa_dma_chan);
211
212 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
213 }
214
215 /* simple allocator to grab next 16 byte aligned memory from txn */
alloc_dma(struct dmm_txn * txn,size_t sz,dma_addr_t * pa)216 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
217 {
218 void *ptr;
219 struct refill_engine *engine = txn->engine_handle;
220
221 /* dmm programming requires 16 byte aligned addresses */
222 txn->current_pa = round_up(txn->current_pa, 16);
223 txn->current_va = (void *)round_up((long)txn->current_va, 16);
224
225 ptr = txn->current_va;
226 *pa = txn->current_pa;
227
228 txn->current_pa += sz;
229 txn->current_va += sz;
230
231 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
232
233 return ptr;
234 }
235
236 /* check status and spin until wait_mask comes true */
wait_status(struct refill_engine * engine,u32 wait_mask)237 static int wait_status(struct refill_engine *engine, u32 wait_mask)
238 {
239 struct dmm *dmm = engine->dmm;
240 u32 r = 0, err, i;
241
242 i = DMM_FIXED_RETRY_COUNT;
243 while (true) {
244 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
245 err = r & DMM_PATSTATUS_ERR;
246 if (err) {
247 dev_err(dmm->dev,
248 "%s: error (engine%d). PAT_STATUS: 0x%08x\n",
249 __func__, engine->id, r);
250 return -EFAULT;
251 }
252
253 if ((r & wait_mask) == wait_mask)
254 break;
255
256 if (--i == 0) {
257 dev_err(dmm->dev,
258 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n",
259 __func__, engine->id, r);
260 return -ETIMEDOUT;
261 }
262
263 udelay(1);
264 }
265
266 return 0;
267 }
268
release_engine(struct refill_engine * engine)269 static void release_engine(struct refill_engine *engine)
270 {
271 unsigned long flags;
272
273 spin_lock_irqsave(&list_lock, flags);
274 list_add(&engine->idle_node, &omap_dmm->idle_head);
275 spin_unlock_irqrestore(&list_lock, flags);
276
277 atomic_inc(&omap_dmm->engine_counter);
278 wake_up_interruptible(&omap_dmm->engine_queue);
279 }
280
omap_dmm_irq_handler(int irq,void * arg)281 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
282 {
283 struct dmm *dmm = arg;
284 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
285 int i;
286
287 /* ack IRQ */
288 dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
289
290 for (i = 0; i < dmm->num_engines; i++) {
291 if (status & DMM_IRQSTAT_ERR_MASK)
292 dev_err(dmm->dev,
293 "irq error(engine%d): IRQSTAT 0x%02x\n",
294 i, status & 0xff);
295
296 if (status & DMM_IRQSTAT_LST) {
297 if (dmm->engines[i].async)
298 release_engine(&dmm->engines[i]);
299
300 complete(&dmm->engines[i].compl);
301 }
302
303 status >>= 8;
304 }
305
306 return IRQ_HANDLED;
307 }
308
309 /**
310 * Get a handle for a DMM transaction
311 */
dmm_txn_init(struct dmm * dmm,struct tcm * tcm)312 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
313 {
314 struct dmm_txn *txn = NULL;
315 struct refill_engine *engine = NULL;
316 int ret;
317 unsigned long flags;
318
319
320 /* wait until an engine is available */
321 ret = wait_event_interruptible(omap_dmm->engine_queue,
322 atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
323 if (ret)
324 return ERR_PTR(ret);
325
326 /* grab an idle engine */
327 spin_lock_irqsave(&list_lock, flags);
328 if (!list_empty(&dmm->idle_head)) {
329 engine = list_entry(dmm->idle_head.next, struct refill_engine,
330 idle_node);
331 list_del(&engine->idle_node);
332 }
333 spin_unlock_irqrestore(&list_lock, flags);
334
335 BUG_ON(!engine);
336
337 txn = &engine->txn;
338 engine->tcm = tcm;
339 txn->engine_handle = engine;
340 txn->last_pat = NULL;
341 txn->current_va = engine->refill_va;
342 txn->current_pa = engine->refill_pa;
343
344 return txn;
345 }
346
347 /**
348 * Add region to DMM transaction. If pages or pages[i] is NULL, then the
349 * corresponding slot is cleared (ie. dummy_pa is programmed)
350 */
dmm_txn_append(struct dmm_txn * txn,struct pat_area * area,struct page ** pages,u32 npages,u32 roll)351 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
352 struct page **pages, u32 npages, u32 roll)
353 {
354 dma_addr_t pat_pa = 0, data_pa = 0;
355 u32 *data;
356 struct pat *pat;
357 struct refill_engine *engine = txn->engine_handle;
358 int columns = (1 + area->x1 - area->x0);
359 int rows = (1 + area->y1 - area->y0);
360 int i = columns*rows;
361
362 pat = alloc_dma(txn, sizeof(*pat), &pat_pa);
363
364 if (txn->last_pat)
365 txn->last_pat->next_pa = (u32)pat_pa;
366
367 pat->area = *area;
368
369 /* adjust Y coordinates based off of container parameters */
370 pat->area.y0 += engine->tcm->y_offset;
371 pat->area.y1 += engine->tcm->y_offset;
372
373 pat->ctrl = (struct pat_ctrl){
374 .start = 1,
375 .lut_id = engine->tcm->lut_id,
376 };
377
378 data = alloc_dma(txn, 4*i, &data_pa);
379 /* FIXME: what if data_pa is more than 32-bit ? */
380 pat->data_pa = data_pa;
381
382 while (i--) {
383 int n = i + roll;
384 if (n >= npages)
385 n -= npages;
386 data[i] = (pages && pages[n]) ?
387 page_to_phys(pages[n]) : engine->dmm->dummy_pa;
388 }
389
390 txn->last_pat = pat;
391
392 return;
393 }
394
395 /**
396 * Commit the DMM transaction.
397 */
dmm_txn_commit(struct dmm_txn * txn,bool wait)398 static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
399 {
400 int ret = 0;
401 struct refill_engine *engine = txn->engine_handle;
402 struct dmm *dmm = engine->dmm;
403
404 if (!txn->last_pat) {
405 dev_err(engine->dmm->dev, "need at least one txn\n");
406 ret = -EINVAL;
407 goto cleanup;
408 }
409
410 txn->last_pat->next_pa = 0;
411 /* ensure that the written descriptors are visible to DMM */
412 wmb();
413
414 /*
415 * NOTE: the wmb() above should be enough, but there seems to be a bug
416 * in OMAP's memory barrier implementation, which in some rare cases may
417 * cause the writes not to be observable after wmb().
418 */
419
420 /* read back to ensure the data is in RAM */
421 readl(&txn->last_pat->next_pa);
422
423 /* write to PAT_DESCR to clear out any pending transaction */
424 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
425
426 /* wait for engine ready: */
427 ret = wait_status(engine, DMM_PATSTATUS_READY);
428 if (ret) {
429 ret = -EFAULT;
430 goto cleanup;
431 }
432
433 /* mark whether it is async to denote list management in IRQ handler */
434 engine->async = wait ? false : true;
435 reinit_completion(&engine->compl);
436 /* verify that the irq handler sees the 'async' and completion value */
437 smp_mb();
438
439 /* kick reload */
440 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
441
442 if (wait) {
443 if (!wait_for_completion_timeout(&engine->compl,
444 msecs_to_jiffies(100))) {
445 dev_err(dmm->dev, "timed out waiting for done\n");
446 ret = -ETIMEDOUT;
447 goto cleanup;
448 }
449
450 /* Check the engine status before continue */
451 ret = wait_status(engine, DMM_PATSTATUS_READY |
452 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE);
453 }
454
455 cleanup:
456 /* only place engine back on list if we are done with it */
457 if (ret || wait)
458 release_engine(engine);
459
460 return ret;
461 }
462
463 /*
464 * DMM programming
465 */
fill(struct tcm_area * area,struct page ** pages,u32 npages,u32 roll,bool wait)466 static int fill(struct tcm_area *area, struct page **pages,
467 u32 npages, u32 roll, bool wait)
468 {
469 int ret = 0;
470 struct tcm_area slice, area_s;
471 struct dmm_txn *txn;
472
473 /*
474 * FIXME
475 *
476 * Asynchronous fill does not work reliably, as the driver does not
477 * handle errors in the async code paths. The fill operation may
478 * silently fail, leading to leaking DMM engines, which may eventually
479 * lead to deadlock if we run out of DMM engines.
480 *
481 * For now, always set 'wait' so that we only use sync fills. Async
482 * fills should be fixed, or alternatively we could decide to only
483 * support sync fills and so the whole async code path could be removed.
484 */
485
486 wait = true;
487
488 txn = dmm_txn_init(omap_dmm, area->tcm);
489 if (IS_ERR_OR_NULL(txn))
490 return -ENOMEM;
491
492 tcm_for_each_slice(slice, *area, area_s) {
493 struct pat_area p_area = {
494 .x0 = slice.p0.x, .y0 = slice.p0.y,
495 .x1 = slice.p1.x, .y1 = slice.p1.y,
496 };
497
498 dmm_txn_append(txn, &p_area, pages, npages, roll);
499
500 roll += tcm_sizeof(slice);
501 }
502
503 ret = dmm_txn_commit(txn, wait);
504
505 return ret;
506 }
507
508 /*
509 * Pin/unpin
510 */
511
512 /* note: slots for which pages[i] == NULL are filled w/ dummy page
513 */
tiler_pin(struct tiler_block * block,struct page ** pages,u32 npages,u32 roll,bool wait)514 int tiler_pin(struct tiler_block *block, struct page **pages,
515 u32 npages, u32 roll, bool wait)
516 {
517 int ret;
518
519 ret = fill(&block->area, pages, npages, roll, wait);
520
521 if (ret)
522 tiler_unpin(block);
523
524 return ret;
525 }
526
tiler_unpin(struct tiler_block * block)527 int tiler_unpin(struct tiler_block *block)
528 {
529 return fill(&block->area, NULL, 0, 0, false);
530 }
531
532 /*
533 * Reserve/release
534 */
tiler_reserve_2d(enum tiler_fmt fmt,u16 w,u16 h,u16 align)535 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w,
536 u16 h, u16 align)
537 {
538 struct tiler_block *block;
539 u32 min_align = 128;
540 int ret;
541 unsigned long flags;
542 u32 slot_bytes;
543
544 block = kzalloc(sizeof(*block), GFP_KERNEL);
545 if (!block)
546 return ERR_PTR(-ENOMEM);
547
548 BUG_ON(!validfmt(fmt));
549
550 /* convert width/height to slots */
551 w = DIV_ROUND_UP(w, geom[fmt].slot_w);
552 h = DIV_ROUND_UP(h, geom[fmt].slot_h);
553
554 /* convert alignment to slots */
555 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
556 min_align = max(min_align, slot_bytes);
557 align = (align > min_align) ? ALIGN(align, min_align) : min_align;
558 align /= slot_bytes;
559
560 block->fmt = fmt;
561
562 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
563 &block->area);
564 if (ret) {
565 kfree(block);
566 return ERR_PTR(-ENOMEM);
567 }
568
569 /* add to allocation list */
570 spin_lock_irqsave(&list_lock, flags);
571 list_add(&block->alloc_node, &omap_dmm->alloc_head);
572 spin_unlock_irqrestore(&list_lock, flags);
573
574 return block;
575 }
576
tiler_reserve_1d(size_t size)577 struct tiler_block *tiler_reserve_1d(size_t size)
578 {
579 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
580 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
581 unsigned long flags;
582
583 if (!block)
584 return ERR_PTR(-ENOMEM);
585
586 block->fmt = TILFMT_PAGE;
587
588 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
589 &block->area)) {
590 kfree(block);
591 return ERR_PTR(-ENOMEM);
592 }
593
594 spin_lock_irqsave(&list_lock, flags);
595 list_add(&block->alloc_node, &omap_dmm->alloc_head);
596 spin_unlock_irqrestore(&list_lock, flags);
597
598 return block;
599 }
600
601 /* note: if you have pin'd pages, you should have already unpin'd first! */
tiler_release(struct tiler_block * block)602 int tiler_release(struct tiler_block *block)
603 {
604 int ret = tcm_free(&block->area);
605 unsigned long flags;
606
607 if (block->area.tcm)
608 dev_err(omap_dmm->dev, "failed to release block\n");
609
610 spin_lock_irqsave(&list_lock, flags);
611 list_del(&block->alloc_node);
612 spin_unlock_irqrestore(&list_lock, flags);
613
614 kfree(block);
615 return ret;
616 }
617
618 /*
619 * Utils
620 */
621
622 /* calculate the tiler space address of a pixel in a view orientation...
623 * below description copied from the display subsystem section of TRM:
624 *
625 * When the TILER is addressed, the bits:
626 * [28:27] = 0x0 for 8-bit tiled
627 * 0x1 for 16-bit tiled
628 * 0x2 for 32-bit tiled
629 * 0x3 for page mode
630 * [31:29] = 0x0 for 0-degree view
631 * 0x1 for 180-degree view + mirroring
632 * 0x2 for 0-degree view + mirroring
633 * 0x3 for 180-degree view
634 * 0x4 for 270-degree view + mirroring
635 * 0x5 for 270-degree view
636 * 0x6 for 90-degree view
637 * 0x7 for 90-degree view + mirroring
638 * Otherwise the bits indicated the corresponding bit address to access
639 * the SDRAM.
640 */
tiler_get_address(enum tiler_fmt fmt,u32 orient,u32 x,u32 y)641 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
642 {
643 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
644
645 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
646 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
647 alignment = geom[fmt].x_shft + geom[fmt].y_shft;
648
649 /* validate coordinate */
650 x_mask = MASK(x_bits);
651 y_mask = MASK(y_bits);
652
653 if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
654 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
655 x, x, x_mask, y, y, y_mask);
656 return 0;
657 }
658
659 /* account for mirroring */
660 if (orient & MASK_X_INVERT)
661 x ^= x_mask;
662 if (orient & MASK_Y_INVERT)
663 y ^= y_mask;
664
665 /* get coordinate address */
666 if (orient & MASK_XY_FLIP)
667 tmp = ((x << y_bits) + y);
668 else
669 tmp = ((y << x_bits) + x);
670
671 return TIL_ADDR((tmp << alignment), orient, fmt);
672 }
673
tiler_ssptr(struct tiler_block * block)674 dma_addr_t tiler_ssptr(struct tiler_block *block)
675 {
676 BUG_ON(!validfmt(block->fmt));
677
678 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
679 block->area.p0.x * geom[block->fmt].slot_w,
680 block->area.p0.y * geom[block->fmt].slot_h);
681 }
682
tiler_tsptr(struct tiler_block * block,u32 orient,u32 x,u32 y)683 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient,
684 u32 x, u32 y)
685 {
686 struct tcm_pt *p = &block->area.p0;
687 BUG_ON(!validfmt(block->fmt));
688
689 return tiler_get_address(block->fmt, orient,
690 (p->x * geom[block->fmt].slot_w) + x,
691 (p->y * geom[block->fmt].slot_h) + y);
692 }
693
tiler_align(enum tiler_fmt fmt,u16 * w,u16 * h)694 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h)
695 {
696 BUG_ON(!validfmt(fmt));
697 *w = round_up(*w, geom[fmt].slot_w);
698 *h = round_up(*h, geom[fmt].slot_h);
699 }
700
tiler_stride(enum tiler_fmt fmt,u32 orient)701 u32 tiler_stride(enum tiler_fmt fmt, u32 orient)
702 {
703 BUG_ON(!validfmt(fmt));
704
705 if (orient & MASK_XY_FLIP)
706 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
707 else
708 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
709 }
710
tiler_size(enum tiler_fmt fmt,u16 w,u16 h)711 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h)
712 {
713 tiler_align(fmt, &w, &h);
714 return geom[fmt].cpp * w * h;
715 }
716
tiler_vsize(enum tiler_fmt fmt,u16 w,u16 h)717 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h)
718 {
719 BUG_ON(!validfmt(fmt));
720 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
721 }
722
tiler_get_cpu_cache_flags(void)723 u32 tiler_get_cpu_cache_flags(void)
724 {
725 return omap_dmm->plat_data->cpu_cache_flags;
726 }
727
dmm_is_available(void)728 bool dmm_is_available(void)
729 {
730 return omap_dmm ? true : false;
731 }
732
omap_dmm_remove(struct platform_device * dev)733 static int omap_dmm_remove(struct platform_device *dev)
734 {
735 struct tiler_block *block, *_block;
736 int i;
737 unsigned long flags;
738
739 if (omap_dmm) {
740 /* Disable all enabled interrupts */
741 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR);
742 free_irq(omap_dmm->irq, omap_dmm);
743
744 /* free all area regions */
745 spin_lock_irqsave(&list_lock, flags);
746 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
747 alloc_node) {
748 list_del(&block->alloc_node);
749 kfree(block);
750 }
751 spin_unlock_irqrestore(&list_lock, flags);
752
753 for (i = 0; i < omap_dmm->num_lut; i++)
754 if (omap_dmm->tcm && omap_dmm->tcm[i])
755 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
756 kfree(omap_dmm->tcm);
757
758 kfree(omap_dmm->engines);
759 if (omap_dmm->refill_va)
760 dma_free_wc(omap_dmm->dev,
761 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
762 omap_dmm->refill_va, omap_dmm->refill_pa);
763 if (omap_dmm->dummy_page)
764 __free_page(omap_dmm->dummy_page);
765
766 if (omap_dmm->dmm_workaround)
767 dmm_workaround_uninit(omap_dmm);
768
769 iounmap(omap_dmm->base);
770 kfree(omap_dmm);
771 omap_dmm = NULL;
772 }
773
774 return 0;
775 }
776
omap_dmm_probe(struct platform_device * dev)777 static int omap_dmm_probe(struct platform_device *dev)
778 {
779 int ret = -EFAULT, i;
780 struct tcm_area area = {0};
781 u32 hwinfo, pat_geom;
782 struct resource *mem;
783
784 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
785 if (!omap_dmm)
786 goto fail;
787
788 /* initialize lists */
789 INIT_LIST_HEAD(&omap_dmm->alloc_head);
790 INIT_LIST_HEAD(&omap_dmm->idle_head);
791
792 init_waitqueue_head(&omap_dmm->engine_queue);
793
794 if (dev->dev.of_node) {
795 const struct of_device_id *match;
796
797 match = of_match_node(dmm_of_match, dev->dev.of_node);
798 if (!match) {
799 dev_err(&dev->dev, "failed to find matching device node\n");
800 ret = -ENODEV;
801 goto fail;
802 }
803
804 omap_dmm->plat_data = match->data;
805 }
806
807 /* lookup hwmod data - base address and irq */
808 mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
809 if (!mem) {
810 dev_err(&dev->dev, "failed to get base address resource\n");
811 goto fail;
812 }
813
814 omap_dmm->phys_base = mem->start;
815 omap_dmm->base = ioremap(mem->start, SZ_2K);
816
817 if (!omap_dmm->base) {
818 dev_err(&dev->dev, "failed to get dmm base address\n");
819 goto fail;
820 }
821
822 omap_dmm->irq = platform_get_irq(dev, 0);
823 if (omap_dmm->irq < 0) {
824 dev_err(&dev->dev, "failed to get IRQ resource\n");
825 goto fail;
826 }
827
828 omap_dmm->dev = &dev->dev;
829
830 if (of_machine_is_compatible("ti,dra7")) {
831 /*
832 * DRA7 Errata i878 says that MPU should not be used to access
833 * RAM and DMM at the same time. As it's not possible to prevent
834 * MPU accessing RAM, we need to access DMM via a proxy.
835 */
836 if (!dmm_workaround_init(omap_dmm)) {
837 omap_dmm->dmm_workaround = true;
838 dev_info(&dev->dev,
839 "workaround for errata i878 in use\n");
840 } else {
841 dev_warn(&dev->dev,
842 "failed to initialize work-around for i878\n");
843 }
844 }
845
846 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
847 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
848 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
849 omap_dmm->container_width = 256;
850 omap_dmm->container_height = 128;
851
852 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
853
854 /* read out actual LUT width and height */
855 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
856 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
857 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
858
859 /* increment LUT by one if on OMAP5 */
860 /* LUT has twice the height, and is split into a separate container */
861 if (omap_dmm->lut_height != omap_dmm->container_height)
862 omap_dmm->num_lut++;
863
864 /* initialize DMM registers */
865 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
866 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
867 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
868 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
869 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
870 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
871
872 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
873 if (!omap_dmm->dummy_page) {
874 dev_err(&dev->dev, "could not allocate dummy page\n");
875 ret = -ENOMEM;
876 goto fail;
877 }
878
879 /* set dma mask for device */
880 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
881 if (ret)
882 goto fail;
883
884 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
885
886 /* alloc refill memory */
887 omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
888 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
889 &omap_dmm->refill_pa, GFP_KERNEL);
890 if (!omap_dmm->refill_va) {
891 dev_err(&dev->dev, "could not allocate refill memory\n");
892 ret = -ENOMEM;
893 goto fail;
894 }
895
896 /* alloc engines */
897 omap_dmm->engines = kcalloc(omap_dmm->num_engines,
898 sizeof(*omap_dmm->engines), GFP_KERNEL);
899 if (!omap_dmm->engines) {
900 ret = -ENOMEM;
901 goto fail;
902 }
903
904 for (i = 0; i < omap_dmm->num_engines; i++) {
905 omap_dmm->engines[i].id = i;
906 omap_dmm->engines[i].dmm = omap_dmm;
907 omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
908 (REFILL_BUFFER_SIZE * i);
909 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
910 (REFILL_BUFFER_SIZE * i);
911 init_completion(&omap_dmm->engines[i].compl);
912
913 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
914 }
915
916 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
917 GFP_KERNEL);
918 if (!omap_dmm->tcm) {
919 ret = -ENOMEM;
920 goto fail;
921 }
922
923 /* init containers */
924 /* Each LUT is associated with a TCM (container manager). We use the
925 lut_id to denote the lut_id used to identify the correct LUT for
926 programming during reill operations */
927 for (i = 0; i < omap_dmm->num_lut; i++) {
928 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
929 omap_dmm->container_height);
930
931 if (!omap_dmm->tcm[i]) {
932 dev_err(&dev->dev, "failed to allocate container\n");
933 ret = -ENOMEM;
934 goto fail;
935 }
936
937 omap_dmm->tcm[i]->lut_id = i;
938 }
939
940 /* assign access mode containers to applicable tcm container */
941 /* OMAP 4 has 1 container for all 4 views */
942 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
943 containers[TILFMT_8BIT] = omap_dmm->tcm[0];
944 containers[TILFMT_16BIT] = omap_dmm->tcm[0];
945 containers[TILFMT_32BIT] = omap_dmm->tcm[0];
946
947 if (omap_dmm->container_height != omap_dmm->lut_height) {
948 /* second LUT is used for PAGE mode. Programming must use
949 y offset that is added to all y coordinates. LUT id is still
950 0, because it is the same LUT, just the upper 128 lines */
951 containers[TILFMT_PAGE] = omap_dmm->tcm[1];
952 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
953 omap_dmm->tcm[1]->lut_id = 0;
954 } else {
955 containers[TILFMT_PAGE] = omap_dmm->tcm[0];
956 }
957
958 area = (struct tcm_area) {
959 .tcm = NULL,
960 .p1.x = omap_dmm->container_width - 1,
961 .p1.y = omap_dmm->container_height - 1,
962 };
963
964 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
965 "omap_dmm_irq_handler", omap_dmm);
966
967 if (ret) {
968 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
969 omap_dmm->irq, ret);
970 omap_dmm->irq = -1;
971 goto fail;
972 }
973
974 /* Enable all interrupts for each refill engine except
975 * ERR_LUT_MISS<n> (which is just advisory, and we don't care
976 * about because we want to be able to refill live scanout
977 * buffers for accelerated pan/scroll) and FILL_DSC<n> which
978 * we just generally don't care about.
979 */
980 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
981
982 /* initialize all LUTs to dummy page entries */
983 for (i = 0; i < omap_dmm->num_lut; i++) {
984 area.tcm = omap_dmm->tcm[i];
985 if (fill(&area, NULL, 0, 0, true))
986 dev_err(omap_dmm->dev, "refill failed");
987 }
988
989 dev_info(omap_dmm->dev, "initialized all PAT entries\n");
990
991 return 0;
992
993 fail:
994 if (omap_dmm_remove(dev))
995 dev_err(&dev->dev, "cleanup failed\n");
996 return ret;
997 }
998
999 /*
1000 * debugfs support
1001 */
1002
1003 #ifdef CONFIG_DEBUG_FS
1004
1005 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
1006 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
1007 static const char *special = ".,:;'\"`~!^-+";
1008
fill_map(char ** map,int xdiv,int ydiv,struct tcm_area * a,char c,bool ovw)1009 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
1010 char c, bool ovw)
1011 {
1012 int x, y;
1013 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
1014 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
1015 if (map[y][x] == ' ' || ovw)
1016 map[y][x] = c;
1017 }
1018
fill_map_pt(char ** map,int xdiv,int ydiv,struct tcm_pt * p,char c)1019 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
1020 char c)
1021 {
1022 map[p->y / ydiv][p->x / xdiv] = c;
1023 }
1024
read_map_pt(char ** map,int xdiv,int ydiv,struct tcm_pt * p)1025 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
1026 {
1027 return map[p->y / ydiv][p->x / xdiv];
1028 }
1029
map_width(int xdiv,int x0,int x1)1030 static int map_width(int xdiv, int x0, int x1)
1031 {
1032 return (x1 / xdiv) - (x0 / xdiv) + 1;
1033 }
1034
text_map(char ** map,int xdiv,char * nice,int yd,int x0,int x1)1035 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
1036 {
1037 char *p = map[yd] + (x0 / xdiv);
1038 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
1039 if (w >= 0) {
1040 p += w;
1041 while (*nice)
1042 *p++ = *nice++;
1043 }
1044 }
1045
map_1d_info(char ** map,int xdiv,int ydiv,char * nice,struct tcm_area * a)1046 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
1047 struct tcm_area *a)
1048 {
1049 sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
1050 if (a->p0.y + 1 < a->p1.y) {
1051 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
1052 256 - 1);
1053 } else if (a->p0.y < a->p1.y) {
1054 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
1055 text_map(map, xdiv, nice, a->p0.y / ydiv,
1056 a->p0.x + xdiv, 256 - 1);
1057 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
1058 text_map(map, xdiv, nice, a->p1.y / ydiv,
1059 0, a->p1.y - xdiv);
1060 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
1061 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
1062 }
1063 }
1064
map_2d_info(char ** map,int xdiv,int ydiv,char * nice,struct tcm_area * a)1065 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
1066 struct tcm_area *a)
1067 {
1068 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
1069 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
1070 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
1071 a->p0.x, a->p1.x);
1072 }
1073
tiler_map_show(struct seq_file * s,void * arg)1074 int tiler_map_show(struct seq_file *s, void *arg)
1075 {
1076 int xdiv = 2, ydiv = 1;
1077 char **map = NULL, *global_map;
1078 struct tiler_block *block;
1079 struct tcm_area a, p;
1080 int i;
1081 const char *m2d = alphabet;
1082 const char *a2d = special;
1083 const char *m2dp = m2d, *a2dp = a2d;
1084 char nice[128];
1085 int h_adj;
1086 int w_adj;
1087 unsigned long flags;
1088 int lut_idx;
1089
1090
1091 if (!omap_dmm) {
1092 /* early return if dmm/tiler device is not initialized */
1093 return 0;
1094 }
1095
1096 h_adj = omap_dmm->container_height / ydiv;
1097 w_adj = omap_dmm->container_width / xdiv;
1098
1099 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL);
1100 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL);
1101
1102 if (!map || !global_map)
1103 goto error;
1104
1105 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
1106 memset(map, 0, h_adj * sizeof(*map));
1107 memset(global_map, ' ', (w_adj + 1) * h_adj);
1108
1109 for (i = 0; i < omap_dmm->container_height; i++) {
1110 map[i] = global_map + i * (w_adj + 1);
1111 map[i][w_adj] = 0;
1112 }
1113
1114 spin_lock_irqsave(&list_lock, flags);
1115
1116 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
1117 if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
1118 if (block->fmt != TILFMT_PAGE) {
1119 fill_map(map, xdiv, ydiv, &block->area,
1120 *m2dp, true);
1121 if (!*++a2dp)
1122 a2dp = a2d;
1123 if (!*++m2dp)
1124 m2dp = m2d;
1125 map_2d_info(map, xdiv, ydiv, nice,
1126 &block->area);
1127 } else {
1128 bool start = read_map_pt(map, xdiv,
1129 ydiv, &block->area.p0) == ' ';
1130 bool end = read_map_pt(map, xdiv, ydiv,
1131 &block->area.p1) == ' ';
1132
1133 tcm_for_each_slice(a, block->area, p)
1134 fill_map(map, xdiv, ydiv, &a,
1135 '=', true);
1136 fill_map_pt(map, xdiv, ydiv,
1137 &block->area.p0,
1138 start ? '<' : 'X');
1139 fill_map_pt(map, xdiv, ydiv,
1140 &block->area.p1,
1141 end ? '>' : 'X');
1142 map_1d_info(map, xdiv, ydiv, nice,
1143 &block->area);
1144 }
1145 }
1146 }
1147
1148 spin_unlock_irqrestore(&list_lock, flags);
1149
1150 if (s) {
1151 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
1152 for (i = 0; i < 128; i++)
1153 seq_printf(s, "%03d:%s\n", i, map[i]);
1154 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
1155 } else {
1156 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
1157 lut_idx);
1158 for (i = 0; i < 128; i++)
1159 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
1160 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
1161 lut_idx);
1162 }
1163 }
1164
1165 error:
1166 kfree(map);
1167 kfree(global_map);
1168
1169 return 0;
1170 }
1171 #endif
1172
1173 #ifdef CONFIG_PM_SLEEP
omap_dmm_resume(struct device * dev)1174 static int omap_dmm_resume(struct device *dev)
1175 {
1176 struct tcm_area area;
1177 int i;
1178
1179 if (!omap_dmm)
1180 return -ENODEV;
1181
1182 area = (struct tcm_area) {
1183 .tcm = NULL,
1184 .p1.x = omap_dmm->container_width - 1,
1185 .p1.y = omap_dmm->container_height - 1,
1186 };
1187
1188 /* initialize all LUTs to dummy page entries */
1189 for (i = 0; i < omap_dmm->num_lut; i++) {
1190 area.tcm = omap_dmm->tcm[i];
1191 if (fill(&area, NULL, 0, 0, true))
1192 dev_err(dev, "refill failed");
1193 }
1194
1195 return 0;
1196 }
1197 #endif
1198
1199 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
1200
1201 #if defined(CONFIG_OF)
1202 static const struct dmm_platform_data dmm_omap4_platform_data = {
1203 .cpu_cache_flags = OMAP_BO_WC,
1204 };
1205
1206 static const struct dmm_platform_data dmm_omap5_platform_data = {
1207 .cpu_cache_flags = OMAP_BO_UNCACHED,
1208 };
1209
1210 static const struct of_device_id dmm_of_match[] = {
1211 {
1212 .compatible = "ti,omap4-dmm",
1213 .data = &dmm_omap4_platform_data,
1214 },
1215 {
1216 .compatible = "ti,omap5-dmm",
1217 .data = &dmm_omap5_platform_data,
1218 },
1219 {},
1220 };
1221 #endif
1222
1223 struct platform_driver omap_dmm_driver = {
1224 .probe = omap_dmm_probe,
1225 .remove = omap_dmm_remove,
1226 .driver = {
1227 .owner = THIS_MODULE,
1228 .name = DMM_DRIVER_NAME,
1229 .of_match_table = of_match_ptr(dmm_of_match),
1230 .pm = &omap_dmm_pm_ops,
1231 },
1232 };
1233
1234 MODULE_LICENSE("GPL v2");
1235 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
1236 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
1237