1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
33
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40 };
41
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43
44 /*
45 * The most important data for readout fits into a single 64 byte
46 * cache line.
47 */
48 static struct {
49 seqcount_raw_spinlock_t seq;
50 struct timekeeper timekeeper;
51 } tk_core ____cacheline_aligned = {
52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54
55 static struct timekeeper shadow_timekeeper;
56
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59
60 /**
61 * struct tk_fast - NMI safe timekeeper
62 * @seq: Sequence counter for protecting updates. The lowest bit
63 * is the index for the tk_read_base array
64 * @base: tk_read_base array. Access is indexed by the lowest bit of
65 * @seq.
66 *
67 * See @update_fast_timekeeper() below.
68 */
69 struct tk_fast {
70 seqcount_latch_t seq;
71 struct tk_read_base base[2];
72 };
73
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76
dummy_clock_read(struct clocksource * cs)77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 if (timekeeping_suspended)
80 return cycles_at_suspend;
81 return local_clock();
82 }
83
84 static struct clocksource dummy_clock = {
85 .read = dummy_clock_read,
86 };
87
88 /*
89 * Boot time initialization which allows local_clock() to be utilized
90 * during early boot when clocksources are not available. local_clock()
91 * returns nanoseconds already so no conversion is required, hence mult=1
92 * and shift=0. When the first proper clocksource is installed then
93 * the fast time keepers are updated with the correct values.
94 */
95 #define FAST_TK_INIT \
96 { \
97 .clock = &dummy_clock, \
98 .mask = CLOCKSOURCE_MASK(64), \
99 .mult = 1, \
100 .shift = 0, \
101 }
102
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 .base[0] = FAST_TK_INIT,
106 .base[1] = FAST_TK_INIT,
107 };
108
109 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 .base[0] = FAST_TK_INIT,
112 .base[1] = FAST_TK_INIT,
113 };
114
tk_normalize_xtime(struct timekeeper * tk)115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 tk->xtime_sec++;
120 }
121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 tk->raw_sec++;
124 }
125 }
126
tk_xtime(const struct timekeeper * tk)127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 struct timespec64 ts;
130
131 ts.tv_sec = tk->xtime_sec;
132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 return ts;
134 }
135
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 tk->xtime_sec = ts->tv_sec;
139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 tk->xtime_sec += ts->tv_sec;
145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 tk_normalize_xtime(tk);
147 }
148
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 struct timespec64 tmp;
152
153 /*
154 * Verify consistency of: offset_real = -wall_to_monotonic
155 * before modifying anything
156 */
157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 -tk->wall_to_monotonic.tv_nsec);
159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 tk->wall_to_monotonic = wtm;
161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 tk->offs_real = timespec64_to_ktime(tmp);
163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 /*
170 * Timespec representation for VDSO update to avoid 64bit division
171 * on every update.
172 */
173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175
176 /*
177 * tk_clock_read - atomic clocksource read() helper
178 *
179 * This helper is necessary to use in the read paths because, while the
180 * seqcount ensures we don't return a bad value while structures are updated,
181 * it doesn't protect from potential crashes. There is the possibility that
182 * the tkr's clocksource may change between the read reference, and the
183 * clock reference passed to the read function. This can cause crashes if
184 * the wrong clocksource is passed to the wrong read function.
185 * This isn't necessary to use when holding the timekeeper_lock or doing
186 * a read of the fast-timekeeper tkrs (which is protected by its own locking
187 * and update logic).
188 */
tk_clock_read(const struct tk_read_base * tkr)189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 struct clocksource *clock = READ_ONCE(tkr->clock);
192
193 return clock->read(clock);
194 }
195
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198
timekeeping_check_update(struct timekeeper * tk,u64 offset)199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201
202 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 const char *name = tk->tkr_mono.clock->name;
204
205 if (offset > max_cycles) {
206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 offset, name, max_cycles);
208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 } else {
210 if (offset > (max_cycles >> 1)) {
211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 offset, name, max_cycles >> 1);
213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 }
215 }
216
217 if (tk->underflow_seen) {
218 if (jiffies - tk->last_warning > WARNING_FREQ) {
219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
221 printk_deferred(" Your kernel is probably still fine.\n");
222 tk->last_warning = jiffies;
223 }
224 tk->underflow_seen = 0;
225 }
226
227 if (tk->overflow_seen) {
228 if (jiffies - tk->last_warning > WARNING_FREQ) {
229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
231 printk_deferred(" Your kernel is probably still fine.\n");
232 tk->last_warning = jiffies;
233 }
234 tk->overflow_seen = 0;
235 }
236 }
237
timekeeping_get_delta(const struct tk_read_base * tkr)238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 struct timekeeper *tk = &tk_core.timekeeper;
241 u64 now, last, mask, max, delta;
242 unsigned int seq;
243
244 /*
245 * Since we're called holding a seqcount, the data may shift
246 * under us while we're doing the calculation. This can cause
247 * false positives, since we'd note a problem but throw the
248 * results away. So nest another seqcount here to atomically
249 * grab the points we are checking with.
250 */
251 do {
252 seq = read_seqcount_begin(&tk_core.seq);
253 now = tk_clock_read(tkr);
254 last = tkr->cycle_last;
255 mask = tkr->mask;
256 max = tkr->clock->max_cycles;
257 } while (read_seqcount_retry(&tk_core.seq, seq));
258
259 delta = clocksource_delta(now, last, mask);
260
261 /*
262 * Try to catch underflows by checking if we are seeing small
263 * mask-relative negative values.
264 */
265 if (unlikely((~delta & mask) < (mask >> 3))) {
266 tk->underflow_seen = 1;
267 delta = 0;
268 }
269
270 /* Cap delta value to the max_cycles values to avoid mult overflows */
271 if (unlikely(delta > max)) {
272 tk->overflow_seen = 1;
273 delta = tkr->clock->max_cycles;
274 }
275
276 return delta;
277 }
278 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
timekeeping_get_delta(const struct tk_read_base * tkr)282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 u64 cycle_now, delta;
285
286 /* read clocksource */
287 cycle_now = tk_clock_read(tkr);
288
289 /* calculate the delta since the last update_wall_time */
290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291
292 return delta;
293 }
294 #endif
295
296 /**
297 * tk_setup_internals - Set up internals to use clocksource clock.
298 *
299 * @tk: The target timekeeper to setup.
300 * @clock: Pointer to clocksource.
301 *
302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303 * pair and interval request.
304 *
305 * Unless you're the timekeeping code, you should not be using this!
306 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 u64 interval;
310 u64 tmp, ntpinterval;
311 struct clocksource *old_clock;
312
313 ++tk->cs_was_changed_seq;
314 old_clock = tk->tkr_mono.clock;
315 tk->tkr_mono.clock = clock;
316 tk->tkr_mono.mask = clock->mask;
317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318
319 tk->tkr_raw.clock = clock;
320 tk->tkr_raw.mask = clock->mask;
321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322
323 /* Do the ns -> cycle conversion first, using original mult */
324 tmp = NTP_INTERVAL_LENGTH;
325 tmp <<= clock->shift;
326 ntpinterval = tmp;
327 tmp += clock->mult/2;
328 do_div(tmp, clock->mult);
329 if (tmp == 0)
330 tmp = 1;
331
332 interval = (u64) tmp;
333 tk->cycle_interval = interval;
334
335 /* Go back from cycles -> shifted ns */
336 tk->xtime_interval = interval * clock->mult;
337 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 tk->raw_interval = interval * clock->mult;
339
340 /* if changing clocks, convert xtime_nsec shift units */
341 if (old_clock) {
342 int shift_change = clock->shift - old_clock->shift;
343 if (shift_change < 0) {
344 tk->tkr_mono.xtime_nsec >>= -shift_change;
345 tk->tkr_raw.xtime_nsec >>= -shift_change;
346 } else {
347 tk->tkr_mono.xtime_nsec <<= shift_change;
348 tk->tkr_raw.xtime_nsec <<= shift_change;
349 }
350 }
351
352 tk->tkr_mono.shift = clock->shift;
353 tk->tkr_raw.shift = clock->shift;
354
355 tk->ntp_error = 0;
356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358
359 /*
360 * The timekeeper keeps its own mult values for the currently
361 * active clocksource. These value will be adjusted via NTP
362 * to counteract clock drifting.
363 */
364 tk->tkr_mono.mult = clock->mult;
365 tk->tkr_raw.mult = clock->mult;
366 tk->ntp_err_mult = 0;
367 tk->skip_second_overflow = 0;
368 }
369
370 /* Timekeeper helper functions. */
371
372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)373 static u32 default_arch_gettimeoffset(void) { return 0; }
374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
375 #else
arch_gettimeoffset(void)376 static inline u32 arch_gettimeoffset(void) { return 0; }
377 #endif
378
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
380 {
381 u64 nsec;
382
383 nsec = delta * tkr->mult + tkr->xtime_nsec;
384 nsec >>= tkr->shift;
385
386 /* If arch requires, add in get_arch_timeoffset() */
387 return nsec + arch_gettimeoffset();
388 }
389
timekeeping_get_ns(const struct tk_read_base * tkr)390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
391 {
392 u64 delta;
393
394 delta = timekeeping_get_delta(tkr);
395 return timekeeping_delta_to_ns(tkr, delta);
396 }
397
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
399 {
400 u64 delta;
401
402 /* calculate the delta since the last update_wall_time */
403 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
404 return timekeeping_delta_to_ns(tkr, delta);
405 }
406
407 /**
408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409 * @tkr: Timekeeping readout base from which we take the update
410 *
411 * We want to use this from any context including NMI and tracing /
412 * instrumenting the timekeeping code itself.
413 *
414 * Employ the latch technique; see @raw_write_seqcount_latch.
415 *
416 * So if a NMI hits the update of base[0] then it will use base[1]
417 * which is still consistent. In the worst case this can result is a
418 * slightly wrong timestamp (a few nanoseconds). See
419 * @ktime_get_mono_fast_ns.
420 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)421 static void update_fast_timekeeper(const struct tk_read_base *tkr,
422 struct tk_fast *tkf)
423 {
424 struct tk_read_base *base = tkf->base;
425
426 /* Force readers off to base[1] */
427 raw_write_seqcount_latch(&tkf->seq);
428
429 /* Update base[0] */
430 memcpy(base, tkr, sizeof(*base));
431
432 /* Force readers back to base[0] */
433 raw_write_seqcount_latch(&tkf->seq);
434
435 /* Update base[1] */
436 memcpy(base + 1, base, sizeof(*base));
437 }
438
439 /**
440 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
441 *
442 * This timestamp is not guaranteed to be monotonic across an update.
443 * The timestamp is calculated by:
444 *
445 * now = base_mono + clock_delta * slope
446 *
447 * So if the update lowers the slope, readers who are forced to the
448 * not yet updated second array are still using the old steeper slope.
449 *
450 * tmono
451 * ^
452 * | o n
453 * | o n
454 * | u
455 * | o
456 * |o
457 * |12345678---> reader order
458 *
459 * o = old slope
460 * u = update
461 * n = new slope
462 *
463 * So reader 6 will observe time going backwards versus reader 5.
464 *
465 * While other CPUs are likely to be able observe that, the only way
466 * for a CPU local observation is when an NMI hits in the middle of
467 * the update. Timestamps taken from that NMI context might be ahead
468 * of the following timestamps. Callers need to be aware of that and
469 * deal with it.
470 */
__ktime_get_fast_ns(struct tk_fast * tkf)471 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
472 {
473 struct tk_read_base *tkr;
474 unsigned int seq;
475 u64 now;
476
477 do {
478 seq = raw_read_seqcount_latch(&tkf->seq);
479 tkr = tkf->base + (seq & 0x01);
480 now = ktime_to_ns(tkr->base);
481
482 now += timekeeping_delta_to_ns(tkr,
483 clocksource_delta(
484 tk_clock_read(tkr),
485 tkr->cycle_last,
486 tkr->mask));
487 } while (read_seqcount_latch_retry(&tkf->seq, seq));
488
489 return now;
490 }
491
ktime_get_mono_fast_ns(void)492 u64 ktime_get_mono_fast_ns(void)
493 {
494 return __ktime_get_fast_ns(&tk_fast_mono);
495 }
496 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
497
ktime_get_raw_fast_ns(void)498 u64 ktime_get_raw_fast_ns(void)
499 {
500 return __ktime_get_fast_ns(&tk_fast_raw);
501 }
502 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
503
504 /**
505 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
506 *
507 * To keep it NMI safe since we're accessing from tracing, we're not using a
508 * separate timekeeper with updates to monotonic clock and boot offset
509 * protected with seqcounts. This has the following minor side effects:
510 *
511 * (1) Its possible that a timestamp be taken after the boot offset is updated
512 * but before the timekeeper is updated. If this happens, the new boot offset
513 * is added to the old timekeeping making the clock appear to update slightly
514 * earlier:
515 * CPU 0 CPU 1
516 * timekeeping_inject_sleeptime64()
517 * __timekeeping_inject_sleeptime(tk, delta);
518 * timestamp();
519 * timekeeping_update(tk, TK_CLEAR_NTP...);
520 *
521 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
522 * partially updated. Since the tk->offs_boot update is a rare event, this
523 * should be a rare occurrence which postprocessing should be able to handle.
524 */
ktime_get_boot_fast_ns(void)525 u64 notrace ktime_get_boot_fast_ns(void)
526 {
527 struct timekeeper *tk = &tk_core.timekeeper;
528
529 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
530 }
531 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
532
533 /*
534 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
535 */
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)536 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
537 {
538 struct tk_read_base *tkr;
539 u64 basem, baser, delta;
540 unsigned int seq;
541
542 do {
543 seq = raw_read_seqcount_latch(&tkf->seq);
544 tkr = tkf->base + (seq & 0x01);
545 basem = ktime_to_ns(tkr->base);
546 baser = ktime_to_ns(tkr->base_real);
547
548 delta = timekeeping_delta_to_ns(tkr,
549 clocksource_delta(tk_clock_read(tkr),
550 tkr->cycle_last, tkr->mask));
551 } while (read_seqcount_latch_retry(&tkf->seq, seq));
552
553 if (mono)
554 *mono = basem + delta;
555 return baser + delta;
556 }
557
558 /**
559 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
560 */
ktime_get_real_fast_ns(void)561 u64 ktime_get_real_fast_ns(void)
562 {
563 return __ktime_get_real_fast(&tk_fast_mono, NULL);
564 }
565 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
566
567 /**
568 * ktime_get_fast_timestamps: - NMI safe timestamps
569 * @snapshot: Pointer to timestamp storage
570 *
571 * Stores clock monotonic, boottime and realtime timestamps.
572 *
573 * Boot time is a racy access on 32bit systems if the sleep time injection
574 * happens late during resume and not in timekeeping_resume(). That could
575 * be avoided by expanding struct tk_read_base with boot offset for 32bit
576 * and adding more overhead to the update. As this is a hard to observe
577 * once per resume event which can be filtered with reasonable effort using
578 * the accurate mono/real timestamps, it's probably not worth the trouble.
579 *
580 * Aside of that it might be possible on 32 and 64 bit to observe the
581 * following when the sleep time injection happens late:
582 *
583 * CPU 0 CPU 1
584 * timekeeping_resume()
585 * ktime_get_fast_timestamps()
586 * mono, real = __ktime_get_real_fast()
587 * inject_sleep_time()
588 * update boot offset
589 * boot = mono + bootoffset;
590 *
591 * That means that boot time already has the sleep time adjustment, but
592 * real time does not. On the next readout both are in sync again.
593 *
594 * Preventing this for 64bit is not really feasible without destroying the
595 * careful cache layout of the timekeeper because the sequence count and
596 * struct tk_read_base would then need two cache lines instead of one.
597 *
598 * Access to the time keeper clock source is disabled accross the innermost
599 * steps of suspend/resume. The accessors still work, but the timestamps
600 * are frozen until time keeping is resumed which happens very early.
601 *
602 * For regular suspend/resume there is no observable difference vs. sched
603 * clock, but it might affect some of the nasty low level debug printks.
604 *
605 * OTOH, access to sched clock is not guaranteed accross suspend/resume on
606 * all systems either so it depends on the hardware in use.
607 *
608 * If that turns out to be a real problem then this could be mitigated by
609 * using sched clock in a similar way as during early boot. But it's not as
610 * trivial as on early boot because it needs some careful protection
611 * against the clock monotonic timestamp jumping backwards on resume.
612 */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)613 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
614 {
615 struct timekeeper *tk = &tk_core.timekeeper;
616
617 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
618 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
619 }
620
621 /**
622 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
623 * @tk: Timekeeper to snapshot.
624 *
625 * It generally is unsafe to access the clocksource after timekeeping has been
626 * suspended, so take a snapshot of the readout base of @tk and use it as the
627 * fast timekeeper's readout base while suspended. It will return the same
628 * number of cycles every time until timekeeping is resumed at which time the
629 * proper readout base for the fast timekeeper will be restored automatically.
630 */
halt_fast_timekeeper(const struct timekeeper * tk)631 static void halt_fast_timekeeper(const struct timekeeper *tk)
632 {
633 static struct tk_read_base tkr_dummy;
634 const struct tk_read_base *tkr = &tk->tkr_mono;
635
636 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
637 cycles_at_suspend = tk_clock_read(tkr);
638 tkr_dummy.clock = &dummy_clock;
639 tkr_dummy.base_real = tkr->base + tk->offs_real;
640 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
641
642 tkr = &tk->tkr_raw;
643 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
644 tkr_dummy.clock = &dummy_clock;
645 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
646 }
647
648 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
649
update_pvclock_gtod(struct timekeeper * tk,bool was_set)650 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
651 {
652 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
653 }
654
655 /**
656 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
657 */
pvclock_gtod_register_notifier(struct notifier_block * nb)658 int pvclock_gtod_register_notifier(struct notifier_block *nb)
659 {
660 struct timekeeper *tk = &tk_core.timekeeper;
661 unsigned long flags;
662 int ret;
663
664 raw_spin_lock_irqsave(&timekeeper_lock, flags);
665 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
666 update_pvclock_gtod(tk, true);
667 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
668
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
672
673 /**
674 * pvclock_gtod_unregister_notifier - unregister a pvclock
675 * timedata update listener
676 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)677 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
678 {
679 unsigned long flags;
680 int ret;
681
682 raw_spin_lock_irqsave(&timekeeper_lock, flags);
683 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
684 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
685
686 return ret;
687 }
688 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
689
690 /*
691 * tk_update_leap_state - helper to update the next_leap_ktime
692 */
tk_update_leap_state(struct timekeeper * tk)693 static inline void tk_update_leap_state(struct timekeeper *tk)
694 {
695 tk->next_leap_ktime = ntp_get_next_leap();
696 if (tk->next_leap_ktime != KTIME_MAX)
697 /* Convert to monotonic time */
698 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
699 }
700
701 /*
702 * Update the ktime_t based scalar nsec members of the timekeeper
703 */
tk_update_ktime_data(struct timekeeper * tk)704 static inline void tk_update_ktime_data(struct timekeeper *tk)
705 {
706 u64 seconds;
707 u32 nsec;
708
709 /*
710 * The xtime based monotonic readout is:
711 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
712 * The ktime based monotonic readout is:
713 * nsec = base_mono + now();
714 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
715 */
716 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
717 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
718 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
719
720 /*
721 * The sum of the nanoseconds portions of xtime and
722 * wall_to_monotonic can be greater/equal one second. Take
723 * this into account before updating tk->ktime_sec.
724 */
725 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
726 if (nsec >= NSEC_PER_SEC)
727 seconds++;
728 tk->ktime_sec = seconds;
729
730 /* Update the monotonic raw base */
731 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
732 }
733
734 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)735 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
736 {
737 if (action & TK_CLEAR_NTP) {
738 tk->ntp_error = 0;
739 ntp_clear();
740 }
741
742 tk_update_leap_state(tk);
743 tk_update_ktime_data(tk);
744
745 update_vsyscall(tk);
746 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
747
748 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
749 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
750 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
751
752 if (action & TK_CLOCK_WAS_SET)
753 tk->clock_was_set_seq++;
754 /*
755 * The mirroring of the data to the shadow-timekeeper needs
756 * to happen last here to ensure we don't over-write the
757 * timekeeper structure on the next update with stale data
758 */
759 if (action & TK_MIRROR)
760 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
761 sizeof(tk_core.timekeeper));
762 }
763
764 /**
765 * timekeeping_forward_now - update clock to the current time
766 *
767 * Forward the current clock to update its state since the last call to
768 * update_wall_time(). This is useful before significant clock changes,
769 * as it avoids having to deal with this time offset explicitly.
770 */
timekeeping_forward_now(struct timekeeper * tk)771 static void timekeeping_forward_now(struct timekeeper *tk)
772 {
773 u64 cycle_now, delta;
774
775 cycle_now = tk_clock_read(&tk->tkr_mono);
776 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
777 tk->tkr_mono.cycle_last = cycle_now;
778 tk->tkr_raw.cycle_last = cycle_now;
779
780 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
781
782 /* If arch requires, add in get_arch_timeoffset() */
783 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
784
785
786 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
787
788 /* If arch requires, add in get_arch_timeoffset() */
789 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
790
791 tk_normalize_xtime(tk);
792 }
793
794 /**
795 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
796 * @ts: pointer to the timespec to be set
797 *
798 * Returns the time of day in a timespec64 (WARN if suspended).
799 */
ktime_get_real_ts64(struct timespec64 * ts)800 void ktime_get_real_ts64(struct timespec64 *ts)
801 {
802 struct timekeeper *tk = &tk_core.timekeeper;
803 unsigned int seq;
804 u64 nsecs;
805
806 WARN_ON(timekeeping_suspended);
807
808 do {
809 seq = read_seqcount_begin(&tk_core.seq);
810
811 ts->tv_sec = tk->xtime_sec;
812 nsecs = timekeeping_get_ns(&tk->tkr_mono);
813
814 } while (read_seqcount_retry(&tk_core.seq, seq));
815
816 ts->tv_nsec = 0;
817 timespec64_add_ns(ts, nsecs);
818 }
819 EXPORT_SYMBOL(ktime_get_real_ts64);
820
ktime_get(void)821 ktime_t ktime_get(void)
822 {
823 struct timekeeper *tk = &tk_core.timekeeper;
824 unsigned int seq;
825 ktime_t base;
826 u64 nsecs;
827
828 WARN_ON(timekeeping_suspended);
829
830 do {
831 seq = read_seqcount_begin(&tk_core.seq);
832 base = tk->tkr_mono.base;
833 nsecs = timekeeping_get_ns(&tk->tkr_mono);
834
835 } while (read_seqcount_retry(&tk_core.seq, seq));
836
837 return ktime_add_ns(base, nsecs);
838 }
839 EXPORT_SYMBOL_GPL(ktime_get);
840
ktime_get_resolution_ns(void)841 u32 ktime_get_resolution_ns(void)
842 {
843 struct timekeeper *tk = &tk_core.timekeeper;
844 unsigned int seq;
845 u32 nsecs;
846
847 WARN_ON(timekeeping_suspended);
848
849 do {
850 seq = read_seqcount_begin(&tk_core.seq);
851 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
852 } while (read_seqcount_retry(&tk_core.seq, seq));
853
854 return nsecs;
855 }
856 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
857
858 static ktime_t *offsets[TK_OFFS_MAX] = {
859 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
860 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
861 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
862 };
863
ktime_get_with_offset(enum tk_offsets offs)864 ktime_t ktime_get_with_offset(enum tk_offsets offs)
865 {
866 struct timekeeper *tk = &tk_core.timekeeper;
867 unsigned int seq;
868 ktime_t base, *offset = offsets[offs];
869 u64 nsecs;
870
871 WARN_ON(timekeeping_suspended);
872
873 do {
874 seq = read_seqcount_begin(&tk_core.seq);
875 base = ktime_add(tk->tkr_mono.base, *offset);
876 nsecs = timekeeping_get_ns(&tk->tkr_mono);
877
878 } while (read_seqcount_retry(&tk_core.seq, seq));
879
880 return ktime_add_ns(base, nsecs);
881
882 }
883 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
884
ktime_get_coarse_with_offset(enum tk_offsets offs)885 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
886 {
887 struct timekeeper *tk = &tk_core.timekeeper;
888 unsigned int seq;
889 ktime_t base, *offset = offsets[offs];
890 u64 nsecs;
891
892 WARN_ON(timekeeping_suspended);
893
894 do {
895 seq = read_seqcount_begin(&tk_core.seq);
896 base = ktime_add(tk->tkr_mono.base, *offset);
897 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
898
899 } while (read_seqcount_retry(&tk_core.seq, seq));
900
901 return ktime_add_ns(base, nsecs);
902 }
903 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
904
905 /**
906 * ktime_mono_to_any() - convert mononotic time to any other time
907 * @tmono: time to convert.
908 * @offs: which offset to use
909 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)910 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
911 {
912 ktime_t *offset = offsets[offs];
913 unsigned int seq;
914 ktime_t tconv;
915
916 do {
917 seq = read_seqcount_begin(&tk_core.seq);
918 tconv = ktime_add(tmono, *offset);
919 } while (read_seqcount_retry(&tk_core.seq, seq));
920
921 return tconv;
922 }
923 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
924
925 /**
926 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
927 */
ktime_get_raw(void)928 ktime_t ktime_get_raw(void)
929 {
930 struct timekeeper *tk = &tk_core.timekeeper;
931 unsigned int seq;
932 ktime_t base;
933 u64 nsecs;
934
935 do {
936 seq = read_seqcount_begin(&tk_core.seq);
937 base = tk->tkr_raw.base;
938 nsecs = timekeeping_get_ns(&tk->tkr_raw);
939
940 } while (read_seqcount_retry(&tk_core.seq, seq));
941
942 return ktime_add_ns(base, nsecs);
943 }
944 EXPORT_SYMBOL_GPL(ktime_get_raw);
945
946 /**
947 * ktime_get_ts64 - get the monotonic clock in timespec64 format
948 * @ts: pointer to timespec variable
949 *
950 * The function calculates the monotonic clock from the realtime
951 * clock and the wall_to_monotonic offset and stores the result
952 * in normalized timespec64 format in the variable pointed to by @ts.
953 */
ktime_get_ts64(struct timespec64 * ts)954 void ktime_get_ts64(struct timespec64 *ts)
955 {
956 struct timekeeper *tk = &tk_core.timekeeper;
957 struct timespec64 tomono;
958 unsigned int seq;
959 u64 nsec;
960
961 WARN_ON(timekeeping_suspended);
962
963 do {
964 seq = read_seqcount_begin(&tk_core.seq);
965 ts->tv_sec = tk->xtime_sec;
966 nsec = timekeeping_get_ns(&tk->tkr_mono);
967 tomono = tk->wall_to_monotonic;
968
969 } while (read_seqcount_retry(&tk_core.seq, seq));
970
971 ts->tv_sec += tomono.tv_sec;
972 ts->tv_nsec = 0;
973 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
974 }
975 EXPORT_SYMBOL_GPL(ktime_get_ts64);
976
977 /**
978 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
979 *
980 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
981 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
982 * works on both 32 and 64 bit systems. On 32 bit systems the readout
983 * covers ~136 years of uptime which should be enough to prevent
984 * premature wrap arounds.
985 */
ktime_get_seconds(void)986 time64_t ktime_get_seconds(void)
987 {
988 struct timekeeper *tk = &tk_core.timekeeper;
989
990 WARN_ON(timekeeping_suspended);
991 return tk->ktime_sec;
992 }
993 EXPORT_SYMBOL_GPL(ktime_get_seconds);
994
995 /**
996 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
997 *
998 * Returns the wall clock seconds since 1970. This replaces the
999 * get_seconds() interface which is not y2038 safe on 32bit systems.
1000 *
1001 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1002 * 32bit systems the access must be protected with the sequence
1003 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1004 * value.
1005 */
ktime_get_real_seconds(void)1006 time64_t ktime_get_real_seconds(void)
1007 {
1008 struct timekeeper *tk = &tk_core.timekeeper;
1009 time64_t seconds;
1010 unsigned int seq;
1011
1012 if (IS_ENABLED(CONFIG_64BIT))
1013 return tk->xtime_sec;
1014
1015 do {
1016 seq = read_seqcount_begin(&tk_core.seq);
1017 seconds = tk->xtime_sec;
1018
1019 } while (read_seqcount_retry(&tk_core.seq, seq));
1020
1021 return seconds;
1022 }
1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1024
1025 /**
1026 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1027 * but without the sequence counter protect. This internal function
1028 * is called just when timekeeping lock is already held.
1029 */
__ktime_get_real_seconds(void)1030 noinstr time64_t __ktime_get_real_seconds(void)
1031 {
1032 struct timekeeper *tk = &tk_core.timekeeper;
1033
1034 return tk->xtime_sec;
1035 }
1036
1037 /**
1038 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1039 * @systime_snapshot: pointer to struct receiving the system time snapshot
1040 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1041 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1042 {
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 unsigned int seq;
1045 ktime_t base_raw;
1046 ktime_t base_real;
1047 u64 nsec_raw;
1048 u64 nsec_real;
1049 u64 now;
1050
1051 WARN_ON_ONCE(timekeeping_suspended);
1052
1053 do {
1054 seq = read_seqcount_begin(&tk_core.seq);
1055 now = tk_clock_read(&tk->tkr_mono);
1056 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1057 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1058 base_real = ktime_add(tk->tkr_mono.base,
1059 tk_core.timekeeper.offs_real);
1060 base_raw = tk->tkr_raw.base;
1061 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1062 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1063 } while (read_seqcount_retry(&tk_core.seq, seq));
1064
1065 systime_snapshot->cycles = now;
1066 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1067 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1068 }
1069 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1070
1071 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1072 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1073 {
1074 u64 tmp, rem;
1075
1076 tmp = div64_u64_rem(*base, div, &rem);
1077
1078 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1079 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1080 return -EOVERFLOW;
1081 tmp *= mult;
1082
1083 rem = div64_u64(rem * mult, div);
1084 *base = tmp + rem;
1085 return 0;
1086 }
1087
1088 /**
1089 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1090 * @history: Snapshot representing start of history
1091 * @partial_history_cycles: Cycle offset into history (fractional part)
1092 * @total_history_cycles: Total history length in cycles
1093 * @discontinuity: True indicates clock was set on history period
1094 * @ts: Cross timestamp that should be adjusted using
1095 * partial/total ratio
1096 *
1097 * Helper function used by get_device_system_crosststamp() to correct the
1098 * crosstimestamp corresponding to the start of the current interval to the
1099 * system counter value (timestamp point) provided by the driver. The
1100 * total_history_* quantities are the total history starting at the provided
1101 * reference point and ending at the start of the current interval. The cycle
1102 * count between the driver timestamp point and the start of the current
1103 * interval is partial_history_cycles.
1104 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1105 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1106 u64 partial_history_cycles,
1107 u64 total_history_cycles,
1108 bool discontinuity,
1109 struct system_device_crosststamp *ts)
1110 {
1111 struct timekeeper *tk = &tk_core.timekeeper;
1112 u64 corr_raw, corr_real;
1113 bool interp_forward;
1114 int ret;
1115
1116 if (total_history_cycles == 0 || partial_history_cycles == 0)
1117 return 0;
1118
1119 /* Interpolate shortest distance from beginning or end of history */
1120 interp_forward = partial_history_cycles > total_history_cycles / 2;
1121 partial_history_cycles = interp_forward ?
1122 total_history_cycles - partial_history_cycles :
1123 partial_history_cycles;
1124
1125 /*
1126 * Scale the monotonic raw time delta by:
1127 * partial_history_cycles / total_history_cycles
1128 */
1129 corr_raw = (u64)ktime_to_ns(
1130 ktime_sub(ts->sys_monoraw, history->raw));
1131 ret = scale64_check_overflow(partial_history_cycles,
1132 total_history_cycles, &corr_raw);
1133 if (ret)
1134 return ret;
1135
1136 /*
1137 * If there is a discontinuity in the history, scale monotonic raw
1138 * correction by:
1139 * mult(real)/mult(raw) yielding the realtime correction
1140 * Otherwise, calculate the realtime correction similar to monotonic
1141 * raw calculation
1142 */
1143 if (discontinuity) {
1144 corr_real = mul_u64_u32_div
1145 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1146 } else {
1147 corr_real = (u64)ktime_to_ns(
1148 ktime_sub(ts->sys_realtime, history->real));
1149 ret = scale64_check_overflow(partial_history_cycles,
1150 total_history_cycles, &corr_real);
1151 if (ret)
1152 return ret;
1153 }
1154
1155 /* Fixup monotonic raw and real time time values */
1156 if (interp_forward) {
1157 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1158 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1159 } else {
1160 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1161 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1162 }
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * cycle_between - true if test occurs chronologically between before and after
1169 */
cycle_between(u64 before,u64 test,u64 after)1170 static bool cycle_between(u64 before, u64 test, u64 after)
1171 {
1172 if (test > before && test < after)
1173 return true;
1174 if (test < before && before > after)
1175 return true;
1176 return false;
1177 }
1178
1179 /**
1180 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1181 * @get_time_fn: Callback to get simultaneous device time and
1182 * system counter from the device driver
1183 * @ctx: Context passed to get_time_fn()
1184 * @history_begin: Historical reference point used to interpolate system
1185 * time when counter provided by the driver is before the current interval
1186 * @xtstamp: Receives simultaneously captured system and device time
1187 *
1188 * Reads a timestamp from a device and correlates it to system time
1189 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1190 int get_device_system_crosststamp(int (*get_time_fn)
1191 (ktime_t *device_time,
1192 struct system_counterval_t *sys_counterval,
1193 void *ctx),
1194 void *ctx,
1195 struct system_time_snapshot *history_begin,
1196 struct system_device_crosststamp *xtstamp)
1197 {
1198 struct system_counterval_t system_counterval;
1199 struct timekeeper *tk = &tk_core.timekeeper;
1200 u64 cycles, now, interval_start;
1201 unsigned int clock_was_set_seq = 0;
1202 ktime_t base_real, base_raw;
1203 u64 nsec_real, nsec_raw;
1204 u8 cs_was_changed_seq;
1205 unsigned int seq;
1206 bool do_interp;
1207 int ret;
1208
1209 do {
1210 seq = read_seqcount_begin(&tk_core.seq);
1211 /*
1212 * Try to synchronously capture device time and a system
1213 * counter value calling back into the device driver
1214 */
1215 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1216 if (ret)
1217 return ret;
1218
1219 /*
1220 * Verify that the clocksource associated with the captured
1221 * system counter value is the same as the currently installed
1222 * timekeeper clocksource
1223 */
1224 if (tk->tkr_mono.clock != system_counterval.cs)
1225 return -ENODEV;
1226 cycles = system_counterval.cycles;
1227
1228 /*
1229 * Check whether the system counter value provided by the
1230 * device driver is on the current timekeeping interval.
1231 */
1232 now = tk_clock_read(&tk->tkr_mono);
1233 interval_start = tk->tkr_mono.cycle_last;
1234 if (!cycle_between(interval_start, cycles, now)) {
1235 clock_was_set_seq = tk->clock_was_set_seq;
1236 cs_was_changed_seq = tk->cs_was_changed_seq;
1237 cycles = interval_start;
1238 do_interp = true;
1239 } else {
1240 do_interp = false;
1241 }
1242
1243 base_real = ktime_add(tk->tkr_mono.base,
1244 tk_core.timekeeper.offs_real);
1245 base_raw = tk->tkr_raw.base;
1246
1247 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1248 system_counterval.cycles);
1249 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1250 system_counterval.cycles);
1251 } while (read_seqcount_retry(&tk_core.seq, seq));
1252
1253 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1254 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1255
1256 /*
1257 * Interpolate if necessary, adjusting back from the start of the
1258 * current interval
1259 */
1260 if (do_interp) {
1261 u64 partial_history_cycles, total_history_cycles;
1262 bool discontinuity;
1263
1264 /*
1265 * Check that the counter value occurs after the provided
1266 * history reference and that the history doesn't cross a
1267 * clocksource change
1268 */
1269 if (!history_begin ||
1270 !cycle_between(history_begin->cycles,
1271 system_counterval.cycles, cycles) ||
1272 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1273 return -EINVAL;
1274 partial_history_cycles = cycles - system_counterval.cycles;
1275 total_history_cycles = cycles - history_begin->cycles;
1276 discontinuity =
1277 history_begin->clock_was_set_seq != clock_was_set_seq;
1278
1279 ret = adjust_historical_crosststamp(history_begin,
1280 partial_history_cycles,
1281 total_history_cycles,
1282 discontinuity, xtstamp);
1283 if (ret)
1284 return ret;
1285 }
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1290
1291 /**
1292 * do_settimeofday64 - Sets the time of day.
1293 * @ts: pointer to the timespec64 variable containing the new time
1294 *
1295 * Sets the time of day to the new time and update NTP and notify hrtimers
1296 */
do_settimeofday64(const struct timespec64 * ts)1297 int do_settimeofday64(const struct timespec64 *ts)
1298 {
1299 struct timekeeper *tk = &tk_core.timekeeper;
1300 struct timespec64 ts_delta, xt;
1301 unsigned long flags;
1302 int ret = 0;
1303
1304 if (!timespec64_valid_settod(ts))
1305 return -EINVAL;
1306
1307 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1308 write_seqcount_begin(&tk_core.seq);
1309
1310 timekeeping_forward_now(tk);
1311
1312 xt = tk_xtime(tk);
1313 ts_delta = timespec64_sub(*ts, xt);
1314
1315 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1316 ret = -EINVAL;
1317 goto out;
1318 }
1319
1320 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1321
1322 tk_set_xtime(tk, ts);
1323 out:
1324 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1325
1326 write_seqcount_end(&tk_core.seq);
1327 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1328
1329 /* signal hrtimers about time change */
1330 clock_was_set();
1331
1332 if (!ret)
1333 audit_tk_injoffset(ts_delta);
1334
1335 return ret;
1336 }
1337 EXPORT_SYMBOL(do_settimeofday64);
1338
1339 /**
1340 * timekeeping_inject_offset - Adds or subtracts from the current time.
1341 * @tv: pointer to the timespec variable containing the offset
1342 *
1343 * Adds or subtracts an offset value from the current time.
1344 */
timekeeping_inject_offset(const struct timespec64 * ts)1345 static int timekeeping_inject_offset(const struct timespec64 *ts)
1346 {
1347 struct timekeeper *tk = &tk_core.timekeeper;
1348 unsigned long flags;
1349 struct timespec64 tmp;
1350 int ret = 0;
1351
1352 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1353 return -EINVAL;
1354
1355 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1356 write_seqcount_begin(&tk_core.seq);
1357
1358 timekeeping_forward_now(tk);
1359
1360 /* Make sure the proposed value is valid */
1361 tmp = timespec64_add(tk_xtime(tk), *ts);
1362 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1363 !timespec64_valid_settod(&tmp)) {
1364 ret = -EINVAL;
1365 goto error;
1366 }
1367
1368 tk_xtime_add(tk, ts);
1369 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1370
1371 error: /* even if we error out, we forwarded the time, so call update */
1372 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1373
1374 write_seqcount_end(&tk_core.seq);
1375 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1376
1377 /* signal hrtimers about time change */
1378 clock_was_set();
1379
1380 return ret;
1381 }
1382
1383 /*
1384 * Indicates if there is an offset between the system clock and the hardware
1385 * clock/persistent clock/rtc.
1386 */
1387 int persistent_clock_is_local;
1388
1389 /*
1390 * Adjust the time obtained from the CMOS to be UTC time instead of
1391 * local time.
1392 *
1393 * This is ugly, but preferable to the alternatives. Otherwise we
1394 * would either need to write a program to do it in /etc/rc (and risk
1395 * confusion if the program gets run more than once; it would also be
1396 * hard to make the program warp the clock precisely n hours) or
1397 * compile in the timezone information into the kernel. Bad, bad....
1398 *
1399 * - TYT, 1992-01-01
1400 *
1401 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1402 * as real UNIX machines always do it. This avoids all headaches about
1403 * daylight saving times and warping kernel clocks.
1404 */
timekeeping_warp_clock(void)1405 void timekeeping_warp_clock(void)
1406 {
1407 if (sys_tz.tz_minuteswest != 0) {
1408 struct timespec64 adjust;
1409
1410 persistent_clock_is_local = 1;
1411 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1412 adjust.tv_nsec = 0;
1413 timekeeping_inject_offset(&adjust);
1414 }
1415 }
1416
1417 /**
1418 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1419 *
1420 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1421 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1422 {
1423 tk->tai_offset = tai_offset;
1424 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1425 }
1426
1427 /**
1428 * change_clocksource - Swaps clocksources if a new one is available
1429 *
1430 * Accumulates current time interval and initializes new clocksource
1431 */
change_clocksource(void * data)1432 static int change_clocksource(void *data)
1433 {
1434 struct timekeeper *tk = &tk_core.timekeeper;
1435 struct clocksource *new, *old;
1436 unsigned long flags;
1437
1438 new = (struct clocksource *) data;
1439
1440 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1441 write_seqcount_begin(&tk_core.seq);
1442
1443 timekeeping_forward_now(tk);
1444 /*
1445 * If the cs is in module, get a module reference. Succeeds
1446 * for built-in code (owner == NULL) as well.
1447 */
1448 if (try_module_get(new->owner)) {
1449 if (!new->enable || new->enable(new) == 0) {
1450 old = tk->tkr_mono.clock;
1451 tk_setup_internals(tk, new);
1452 if (old->disable)
1453 old->disable(old);
1454 module_put(old->owner);
1455 } else {
1456 module_put(new->owner);
1457 }
1458 }
1459 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1460
1461 write_seqcount_end(&tk_core.seq);
1462 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * timekeeping_notify - Install a new clock source
1469 * @clock: pointer to the clock source
1470 *
1471 * This function is called from clocksource.c after a new, better clock
1472 * source has been registered. The caller holds the clocksource_mutex.
1473 */
timekeeping_notify(struct clocksource * clock)1474 int timekeeping_notify(struct clocksource *clock)
1475 {
1476 struct timekeeper *tk = &tk_core.timekeeper;
1477
1478 if (tk->tkr_mono.clock == clock)
1479 return 0;
1480 stop_machine(change_clocksource, clock, NULL);
1481 tick_clock_notify();
1482 return tk->tkr_mono.clock == clock ? 0 : -1;
1483 }
1484
1485 /**
1486 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1487 * @ts: pointer to the timespec64 to be set
1488 *
1489 * Returns the raw monotonic time (completely un-modified by ntp)
1490 */
ktime_get_raw_ts64(struct timespec64 * ts)1491 void ktime_get_raw_ts64(struct timespec64 *ts)
1492 {
1493 struct timekeeper *tk = &tk_core.timekeeper;
1494 unsigned int seq;
1495 u64 nsecs;
1496
1497 do {
1498 seq = read_seqcount_begin(&tk_core.seq);
1499 ts->tv_sec = tk->raw_sec;
1500 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1501
1502 } while (read_seqcount_retry(&tk_core.seq, seq));
1503
1504 ts->tv_nsec = 0;
1505 timespec64_add_ns(ts, nsecs);
1506 }
1507 EXPORT_SYMBOL(ktime_get_raw_ts64);
1508
1509
1510 /**
1511 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1512 */
timekeeping_valid_for_hres(void)1513 int timekeeping_valid_for_hres(void)
1514 {
1515 struct timekeeper *tk = &tk_core.timekeeper;
1516 unsigned int seq;
1517 int ret;
1518
1519 do {
1520 seq = read_seqcount_begin(&tk_core.seq);
1521
1522 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1523
1524 } while (read_seqcount_retry(&tk_core.seq, seq));
1525
1526 return ret;
1527 }
1528
1529 /**
1530 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1531 */
timekeeping_max_deferment(void)1532 u64 timekeeping_max_deferment(void)
1533 {
1534 struct timekeeper *tk = &tk_core.timekeeper;
1535 unsigned int seq;
1536 u64 ret;
1537
1538 do {
1539 seq = read_seqcount_begin(&tk_core.seq);
1540
1541 ret = tk->tkr_mono.clock->max_idle_ns;
1542
1543 } while (read_seqcount_retry(&tk_core.seq, seq));
1544
1545 return ret;
1546 }
1547
1548 /**
1549 * read_persistent_clock64 - Return time from the persistent clock.
1550 *
1551 * Weak dummy function for arches that do not yet support it.
1552 * Reads the time from the battery backed persistent clock.
1553 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1554 *
1555 * XXX - Do be sure to remove it once all arches implement it.
1556 */
read_persistent_clock64(struct timespec64 * ts)1557 void __weak read_persistent_clock64(struct timespec64 *ts)
1558 {
1559 ts->tv_sec = 0;
1560 ts->tv_nsec = 0;
1561 }
1562
1563 /**
1564 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1565 * from the boot.
1566 *
1567 * Weak dummy function for arches that do not yet support it.
1568 * wall_time - current time as returned by persistent clock
1569 * boot_offset - offset that is defined as wall_time - boot_time
1570 * The default function calculates offset based on the current value of
1571 * local_clock(). This way architectures that support sched_clock() but don't
1572 * support dedicated boot time clock will provide the best estimate of the
1573 * boot time.
1574 */
1575 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1576 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1577 struct timespec64 *boot_offset)
1578 {
1579 read_persistent_clock64(wall_time);
1580 *boot_offset = ns_to_timespec64(local_clock());
1581 }
1582
1583 /*
1584 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1585 *
1586 * The flag starts of false and is only set when a suspend reaches
1587 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1588 * timekeeper clocksource is not stopping across suspend and has been
1589 * used to update sleep time. If the timekeeper clocksource has stopped
1590 * then the flag stays true and is used by the RTC resume code to decide
1591 * whether sleeptime must be injected and if so the flag gets false then.
1592 *
1593 * If a suspend fails before reaching timekeeping_resume() then the flag
1594 * stays false and prevents erroneous sleeptime injection.
1595 */
1596 static bool suspend_timing_needed;
1597
1598 /* Flag for if there is a persistent clock on this platform */
1599 static bool persistent_clock_exists;
1600
1601 /*
1602 * timekeeping_init - Initializes the clocksource and common timekeeping values
1603 */
timekeeping_init(void)1604 void __init timekeeping_init(void)
1605 {
1606 struct timespec64 wall_time, boot_offset, wall_to_mono;
1607 struct timekeeper *tk = &tk_core.timekeeper;
1608 struct clocksource *clock;
1609 unsigned long flags;
1610
1611 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1612 if (timespec64_valid_settod(&wall_time) &&
1613 timespec64_to_ns(&wall_time) > 0) {
1614 persistent_clock_exists = true;
1615 } else if (timespec64_to_ns(&wall_time) != 0) {
1616 pr_warn("Persistent clock returned invalid value");
1617 wall_time = (struct timespec64){0};
1618 }
1619
1620 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1621 boot_offset = (struct timespec64){0};
1622
1623 /*
1624 * We want set wall_to_mono, so the following is true:
1625 * wall time + wall_to_mono = boot time
1626 */
1627 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1628
1629 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1630 write_seqcount_begin(&tk_core.seq);
1631 ntp_init();
1632
1633 clock = clocksource_default_clock();
1634 if (clock->enable)
1635 clock->enable(clock);
1636 tk_setup_internals(tk, clock);
1637
1638 tk_set_xtime(tk, &wall_time);
1639 tk->raw_sec = 0;
1640
1641 tk_set_wall_to_mono(tk, wall_to_mono);
1642
1643 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1644
1645 write_seqcount_end(&tk_core.seq);
1646 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1647 }
1648
1649 /* time in seconds when suspend began for persistent clock */
1650 static struct timespec64 timekeeping_suspend_time;
1651
1652 /**
1653 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1654 * @delta: pointer to a timespec delta value
1655 *
1656 * Takes a timespec offset measuring a suspend interval and properly
1657 * adds the sleep offset to the timekeeping variables.
1658 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1659 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1660 const struct timespec64 *delta)
1661 {
1662 if (!timespec64_valid_strict(delta)) {
1663 printk_deferred(KERN_WARNING
1664 "__timekeeping_inject_sleeptime: Invalid "
1665 "sleep delta value!\n");
1666 return;
1667 }
1668 tk_xtime_add(tk, delta);
1669 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1670 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1671 tk_debug_account_sleep_time(delta);
1672 }
1673
1674 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1675 /**
1676 * We have three kinds of time sources to use for sleep time
1677 * injection, the preference order is:
1678 * 1) non-stop clocksource
1679 * 2) persistent clock (ie: RTC accessible when irqs are off)
1680 * 3) RTC
1681 *
1682 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1683 * If system has neither 1) nor 2), 3) will be used finally.
1684 *
1685 *
1686 * If timekeeping has injected sleeptime via either 1) or 2),
1687 * 3) becomes needless, so in this case we don't need to call
1688 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1689 * means.
1690 */
timekeeping_rtc_skipresume(void)1691 bool timekeeping_rtc_skipresume(void)
1692 {
1693 return !suspend_timing_needed;
1694 }
1695
1696 /**
1697 * 1) can be determined whether to use or not only when doing
1698 * timekeeping_resume() which is invoked after rtc_suspend(),
1699 * so we can't skip rtc_suspend() surely if system has 1).
1700 *
1701 * But if system has 2), 2) will definitely be used, so in this
1702 * case we don't need to call rtc_suspend(), and this is what
1703 * timekeeping_rtc_skipsuspend() means.
1704 */
timekeeping_rtc_skipsuspend(void)1705 bool timekeeping_rtc_skipsuspend(void)
1706 {
1707 return persistent_clock_exists;
1708 }
1709
1710 /**
1711 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1712 * @delta: pointer to a timespec64 delta value
1713 *
1714 * This hook is for architectures that cannot support read_persistent_clock64
1715 * because their RTC/persistent clock is only accessible when irqs are enabled.
1716 * and also don't have an effective nonstop clocksource.
1717 *
1718 * This function should only be called by rtc_resume(), and allows
1719 * a suspend offset to be injected into the timekeeping values.
1720 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1721 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1722 {
1723 struct timekeeper *tk = &tk_core.timekeeper;
1724 unsigned long flags;
1725
1726 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1727 write_seqcount_begin(&tk_core.seq);
1728
1729 suspend_timing_needed = false;
1730
1731 timekeeping_forward_now(tk);
1732
1733 __timekeeping_inject_sleeptime(tk, delta);
1734
1735 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1736
1737 write_seqcount_end(&tk_core.seq);
1738 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1739
1740 /* signal hrtimers about time change */
1741 clock_was_set();
1742 }
1743 #endif
1744
1745 /**
1746 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1747 */
timekeeping_resume(void)1748 void timekeeping_resume(void)
1749 {
1750 struct timekeeper *tk = &tk_core.timekeeper;
1751 struct clocksource *clock = tk->tkr_mono.clock;
1752 unsigned long flags;
1753 struct timespec64 ts_new, ts_delta;
1754 u64 cycle_now, nsec;
1755 bool inject_sleeptime = false;
1756
1757 read_persistent_clock64(&ts_new);
1758
1759 clockevents_resume();
1760 clocksource_resume();
1761
1762 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1763 write_seqcount_begin(&tk_core.seq);
1764
1765 /*
1766 * After system resumes, we need to calculate the suspended time and
1767 * compensate it for the OS time. There are 3 sources that could be
1768 * used: Nonstop clocksource during suspend, persistent clock and rtc
1769 * device.
1770 *
1771 * One specific platform may have 1 or 2 or all of them, and the
1772 * preference will be:
1773 * suspend-nonstop clocksource -> persistent clock -> rtc
1774 * The less preferred source will only be tried if there is no better
1775 * usable source. The rtc part is handled separately in rtc core code.
1776 */
1777 cycle_now = tk_clock_read(&tk->tkr_mono);
1778 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1779 if (nsec > 0) {
1780 ts_delta = ns_to_timespec64(nsec);
1781 inject_sleeptime = true;
1782 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1783 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1784 inject_sleeptime = true;
1785 }
1786
1787 if (inject_sleeptime) {
1788 suspend_timing_needed = false;
1789 __timekeeping_inject_sleeptime(tk, &ts_delta);
1790 }
1791
1792 /* Re-base the last cycle value */
1793 tk->tkr_mono.cycle_last = cycle_now;
1794 tk->tkr_raw.cycle_last = cycle_now;
1795
1796 tk->ntp_error = 0;
1797 timekeeping_suspended = 0;
1798 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1799 write_seqcount_end(&tk_core.seq);
1800 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1801
1802 touch_softlockup_watchdog();
1803
1804 tick_resume();
1805 hrtimers_resume();
1806 }
1807
timekeeping_suspend(void)1808 int timekeeping_suspend(void)
1809 {
1810 struct timekeeper *tk = &tk_core.timekeeper;
1811 unsigned long flags;
1812 struct timespec64 delta, delta_delta;
1813 static struct timespec64 old_delta;
1814 struct clocksource *curr_clock;
1815 u64 cycle_now;
1816
1817 read_persistent_clock64(&timekeeping_suspend_time);
1818
1819 /*
1820 * On some systems the persistent_clock can not be detected at
1821 * timekeeping_init by its return value, so if we see a valid
1822 * value returned, update the persistent_clock_exists flag.
1823 */
1824 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1825 persistent_clock_exists = true;
1826
1827 suspend_timing_needed = true;
1828
1829 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1830 write_seqcount_begin(&tk_core.seq);
1831 timekeeping_forward_now(tk);
1832 timekeeping_suspended = 1;
1833
1834 /*
1835 * Since we've called forward_now, cycle_last stores the value
1836 * just read from the current clocksource. Save this to potentially
1837 * use in suspend timing.
1838 */
1839 curr_clock = tk->tkr_mono.clock;
1840 cycle_now = tk->tkr_mono.cycle_last;
1841 clocksource_start_suspend_timing(curr_clock, cycle_now);
1842
1843 if (persistent_clock_exists) {
1844 /*
1845 * To avoid drift caused by repeated suspend/resumes,
1846 * which each can add ~1 second drift error,
1847 * try to compensate so the difference in system time
1848 * and persistent_clock time stays close to constant.
1849 */
1850 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1851 delta_delta = timespec64_sub(delta, old_delta);
1852 if (abs(delta_delta.tv_sec) >= 2) {
1853 /*
1854 * if delta_delta is too large, assume time correction
1855 * has occurred and set old_delta to the current delta.
1856 */
1857 old_delta = delta;
1858 } else {
1859 /* Otherwise try to adjust old_system to compensate */
1860 timekeeping_suspend_time =
1861 timespec64_add(timekeeping_suspend_time, delta_delta);
1862 }
1863 }
1864
1865 timekeeping_update(tk, TK_MIRROR);
1866 halt_fast_timekeeper(tk);
1867 write_seqcount_end(&tk_core.seq);
1868 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1869
1870 tick_suspend();
1871 clocksource_suspend();
1872 clockevents_suspend();
1873
1874 return 0;
1875 }
1876
1877 /* sysfs resume/suspend bits for timekeeping */
1878 static struct syscore_ops timekeeping_syscore_ops = {
1879 .resume = timekeeping_resume,
1880 .suspend = timekeeping_suspend,
1881 };
1882
timekeeping_init_ops(void)1883 static int __init timekeeping_init_ops(void)
1884 {
1885 register_syscore_ops(&timekeeping_syscore_ops);
1886 return 0;
1887 }
1888 device_initcall(timekeeping_init_ops);
1889
1890 /*
1891 * Apply a multiplier adjustment to the timekeeper
1892 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1893 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1894 s64 offset,
1895 s32 mult_adj)
1896 {
1897 s64 interval = tk->cycle_interval;
1898
1899 if (mult_adj == 0) {
1900 return;
1901 } else if (mult_adj == -1) {
1902 interval = -interval;
1903 offset = -offset;
1904 } else if (mult_adj != 1) {
1905 interval *= mult_adj;
1906 offset *= mult_adj;
1907 }
1908
1909 /*
1910 * So the following can be confusing.
1911 *
1912 * To keep things simple, lets assume mult_adj == 1 for now.
1913 *
1914 * When mult_adj != 1, remember that the interval and offset values
1915 * have been appropriately scaled so the math is the same.
1916 *
1917 * The basic idea here is that we're increasing the multiplier
1918 * by one, this causes the xtime_interval to be incremented by
1919 * one cycle_interval. This is because:
1920 * xtime_interval = cycle_interval * mult
1921 * So if mult is being incremented by one:
1922 * xtime_interval = cycle_interval * (mult + 1)
1923 * Its the same as:
1924 * xtime_interval = (cycle_interval * mult) + cycle_interval
1925 * Which can be shortened to:
1926 * xtime_interval += cycle_interval
1927 *
1928 * So offset stores the non-accumulated cycles. Thus the current
1929 * time (in shifted nanoseconds) is:
1930 * now = (offset * adj) + xtime_nsec
1931 * Now, even though we're adjusting the clock frequency, we have
1932 * to keep time consistent. In other words, we can't jump back
1933 * in time, and we also want to avoid jumping forward in time.
1934 *
1935 * So given the same offset value, we need the time to be the same
1936 * both before and after the freq adjustment.
1937 * now = (offset * adj_1) + xtime_nsec_1
1938 * now = (offset * adj_2) + xtime_nsec_2
1939 * So:
1940 * (offset * adj_1) + xtime_nsec_1 =
1941 * (offset * adj_2) + xtime_nsec_2
1942 * And we know:
1943 * adj_2 = adj_1 + 1
1944 * So:
1945 * (offset * adj_1) + xtime_nsec_1 =
1946 * (offset * (adj_1+1)) + xtime_nsec_2
1947 * (offset * adj_1) + xtime_nsec_1 =
1948 * (offset * adj_1) + offset + xtime_nsec_2
1949 * Canceling the sides:
1950 * xtime_nsec_1 = offset + xtime_nsec_2
1951 * Which gives us:
1952 * xtime_nsec_2 = xtime_nsec_1 - offset
1953 * Which simplfies to:
1954 * xtime_nsec -= offset
1955 */
1956 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1957 /* NTP adjustment caused clocksource mult overflow */
1958 WARN_ON_ONCE(1);
1959 return;
1960 }
1961
1962 tk->tkr_mono.mult += mult_adj;
1963 tk->xtime_interval += interval;
1964 tk->tkr_mono.xtime_nsec -= offset;
1965 }
1966
1967 /*
1968 * Adjust the timekeeper's multiplier to the correct frequency
1969 * and also to reduce the accumulated error value.
1970 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1971 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1972 {
1973 u32 mult;
1974
1975 /*
1976 * Determine the multiplier from the current NTP tick length.
1977 * Avoid expensive division when the tick length doesn't change.
1978 */
1979 if (likely(tk->ntp_tick == ntp_tick_length())) {
1980 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1981 } else {
1982 tk->ntp_tick = ntp_tick_length();
1983 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1984 tk->xtime_remainder, tk->cycle_interval);
1985 }
1986
1987 /*
1988 * If the clock is behind the NTP time, increase the multiplier by 1
1989 * to catch up with it. If it's ahead and there was a remainder in the
1990 * tick division, the clock will slow down. Otherwise it will stay
1991 * ahead until the tick length changes to a non-divisible value.
1992 */
1993 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1994 mult += tk->ntp_err_mult;
1995
1996 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1997
1998 if (unlikely(tk->tkr_mono.clock->maxadj &&
1999 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2000 > tk->tkr_mono.clock->maxadj))) {
2001 printk_once(KERN_WARNING
2002 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2003 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2004 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2005 }
2006
2007 /*
2008 * It may be possible that when we entered this function, xtime_nsec
2009 * was very small. Further, if we're slightly speeding the clocksource
2010 * in the code above, its possible the required corrective factor to
2011 * xtime_nsec could cause it to underflow.
2012 *
2013 * Now, since we have already accumulated the second and the NTP
2014 * subsystem has been notified via second_overflow(), we need to skip
2015 * the next update.
2016 */
2017 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2018 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2019 tk->tkr_mono.shift;
2020 tk->xtime_sec--;
2021 tk->skip_second_overflow = 1;
2022 }
2023 }
2024
2025 /**
2026 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2027 *
2028 * Helper function that accumulates the nsecs greater than a second
2029 * from the xtime_nsec field to the xtime_secs field.
2030 * It also calls into the NTP code to handle leapsecond processing.
2031 *
2032 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2033 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2034 {
2035 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2036 unsigned int clock_set = 0;
2037
2038 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2039 int leap;
2040
2041 tk->tkr_mono.xtime_nsec -= nsecps;
2042 tk->xtime_sec++;
2043
2044 /*
2045 * Skip NTP update if this second was accumulated before,
2046 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2047 */
2048 if (unlikely(tk->skip_second_overflow)) {
2049 tk->skip_second_overflow = 0;
2050 continue;
2051 }
2052
2053 /* Figure out if its a leap sec and apply if needed */
2054 leap = second_overflow(tk->xtime_sec);
2055 if (unlikely(leap)) {
2056 struct timespec64 ts;
2057
2058 tk->xtime_sec += leap;
2059
2060 ts.tv_sec = leap;
2061 ts.tv_nsec = 0;
2062 tk_set_wall_to_mono(tk,
2063 timespec64_sub(tk->wall_to_monotonic, ts));
2064
2065 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2066
2067 clock_set = TK_CLOCK_WAS_SET;
2068 }
2069 }
2070 return clock_set;
2071 }
2072
2073 /**
2074 * logarithmic_accumulation - shifted accumulation of cycles
2075 *
2076 * This functions accumulates a shifted interval of cycles into
2077 * a shifted interval nanoseconds. Allows for O(log) accumulation
2078 * loop.
2079 *
2080 * Returns the unconsumed cycles.
2081 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2082 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2083 u32 shift, unsigned int *clock_set)
2084 {
2085 u64 interval = tk->cycle_interval << shift;
2086 u64 snsec_per_sec;
2087
2088 /* If the offset is smaller than a shifted interval, do nothing */
2089 if (offset < interval)
2090 return offset;
2091
2092 /* Accumulate one shifted interval */
2093 offset -= interval;
2094 tk->tkr_mono.cycle_last += interval;
2095 tk->tkr_raw.cycle_last += interval;
2096
2097 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2098 *clock_set |= accumulate_nsecs_to_secs(tk);
2099
2100 /* Accumulate raw time */
2101 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2102 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2103 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2104 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2105 tk->raw_sec++;
2106 }
2107
2108 /* Accumulate error between NTP and clock interval */
2109 tk->ntp_error += tk->ntp_tick << shift;
2110 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2111 (tk->ntp_error_shift + shift);
2112
2113 return offset;
2114 }
2115
2116 /*
2117 * timekeeping_advance - Updates the timekeeper to the current time and
2118 * current NTP tick length
2119 */
timekeeping_advance(enum timekeeping_adv_mode mode)2120 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2121 {
2122 struct timekeeper *real_tk = &tk_core.timekeeper;
2123 struct timekeeper *tk = &shadow_timekeeper;
2124 u64 offset;
2125 int shift = 0, maxshift;
2126 unsigned int clock_set = 0;
2127 unsigned long flags;
2128
2129 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2130
2131 /* Make sure we're fully resumed: */
2132 if (unlikely(timekeeping_suspended))
2133 goto out;
2134
2135 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2136 offset = real_tk->cycle_interval;
2137
2138 if (mode != TK_ADV_TICK)
2139 goto out;
2140 #else
2141 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2142 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2143
2144 /* Check if there's really nothing to do */
2145 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2146 goto out;
2147 #endif
2148
2149 /* Do some additional sanity checking */
2150 timekeeping_check_update(tk, offset);
2151
2152 /*
2153 * With NO_HZ we may have to accumulate many cycle_intervals
2154 * (think "ticks") worth of time at once. To do this efficiently,
2155 * we calculate the largest doubling multiple of cycle_intervals
2156 * that is smaller than the offset. We then accumulate that
2157 * chunk in one go, and then try to consume the next smaller
2158 * doubled multiple.
2159 */
2160 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2161 shift = max(0, shift);
2162 /* Bound shift to one less than what overflows tick_length */
2163 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2164 shift = min(shift, maxshift);
2165 while (offset >= tk->cycle_interval) {
2166 offset = logarithmic_accumulation(tk, offset, shift,
2167 &clock_set);
2168 if (offset < tk->cycle_interval<<shift)
2169 shift--;
2170 }
2171
2172 /* Adjust the multiplier to correct NTP error */
2173 timekeeping_adjust(tk, offset);
2174
2175 /*
2176 * Finally, make sure that after the rounding
2177 * xtime_nsec isn't larger than NSEC_PER_SEC
2178 */
2179 clock_set |= accumulate_nsecs_to_secs(tk);
2180
2181 write_seqcount_begin(&tk_core.seq);
2182 /*
2183 * Update the real timekeeper.
2184 *
2185 * We could avoid this memcpy by switching pointers, but that
2186 * requires changes to all other timekeeper usage sites as
2187 * well, i.e. move the timekeeper pointer getter into the
2188 * spinlocked/seqcount protected sections. And we trade this
2189 * memcpy under the tk_core.seq against one before we start
2190 * updating.
2191 */
2192 timekeeping_update(tk, clock_set);
2193 memcpy(real_tk, tk, sizeof(*tk));
2194 /* The memcpy must come last. Do not put anything here! */
2195 write_seqcount_end(&tk_core.seq);
2196 out:
2197 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2198 if (clock_set)
2199 /* Have to call _delayed version, since in irq context*/
2200 clock_was_set_delayed();
2201 }
2202
2203 /**
2204 * update_wall_time - Uses the current clocksource to increment the wall time
2205 *
2206 */
update_wall_time(void)2207 void update_wall_time(void)
2208 {
2209 timekeeping_advance(TK_ADV_TICK);
2210 }
2211
2212 /**
2213 * getboottime64 - Return the real time of system boot.
2214 * @ts: pointer to the timespec64 to be set
2215 *
2216 * Returns the wall-time of boot in a timespec64.
2217 *
2218 * This is based on the wall_to_monotonic offset and the total suspend
2219 * time. Calls to settimeofday will affect the value returned (which
2220 * basically means that however wrong your real time clock is at boot time,
2221 * you get the right time here).
2222 */
getboottime64(struct timespec64 * ts)2223 void getboottime64(struct timespec64 *ts)
2224 {
2225 struct timekeeper *tk = &tk_core.timekeeper;
2226 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2227
2228 *ts = ktime_to_timespec64(t);
2229 }
2230 EXPORT_SYMBOL_GPL(getboottime64);
2231
ktime_get_coarse_real_ts64(struct timespec64 * ts)2232 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2233 {
2234 struct timekeeper *tk = &tk_core.timekeeper;
2235 unsigned int seq;
2236
2237 do {
2238 seq = read_seqcount_begin(&tk_core.seq);
2239
2240 *ts = tk_xtime(tk);
2241 } while (read_seqcount_retry(&tk_core.seq, seq));
2242 }
2243 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2244
ktime_get_coarse_ts64(struct timespec64 * ts)2245 void ktime_get_coarse_ts64(struct timespec64 *ts)
2246 {
2247 struct timekeeper *tk = &tk_core.timekeeper;
2248 struct timespec64 now, mono;
2249 unsigned int seq;
2250
2251 do {
2252 seq = read_seqcount_begin(&tk_core.seq);
2253
2254 now = tk_xtime(tk);
2255 mono = tk->wall_to_monotonic;
2256 } while (read_seqcount_retry(&tk_core.seq, seq));
2257
2258 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2259 now.tv_nsec + mono.tv_nsec);
2260 }
2261 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2262
2263 /*
2264 * Must hold jiffies_lock
2265 */
do_timer(unsigned long ticks)2266 void do_timer(unsigned long ticks)
2267 {
2268 jiffies_64 += ticks;
2269 calc_global_load();
2270 }
2271
2272 /**
2273 * ktime_get_update_offsets_now - hrtimer helper
2274 * @cwsseq: pointer to check and store the clock was set sequence number
2275 * @offs_real: pointer to storage for monotonic -> realtime offset
2276 * @offs_boot: pointer to storage for monotonic -> boottime offset
2277 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2278 *
2279 * Returns current monotonic time and updates the offsets if the
2280 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2281 * different.
2282 *
2283 * Called from hrtimer_interrupt() or retrigger_next_event()
2284 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2285 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2286 ktime_t *offs_boot, ktime_t *offs_tai)
2287 {
2288 struct timekeeper *tk = &tk_core.timekeeper;
2289 unsigned int seq;
2290 ktime_t base;
2291 u64 nsecs;
2292
2293 do {
2294 seq = read_seqcount_begin(&tk_core.seq);
2295
2296 base = tk->tkr_mono.base;
2297 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2298 base = ktime_add_ns(base, nsecs);
2299
2300 if (*cwsseq != tk->clock_was_set_seq) {
2301 *cwsseq = tk->clock_was_set_seq;
2302 *offs_real = tk->offs_real;
2303 *offs_boot = tk->offs_boot;
2304 *offs_tai = tk->offs_tai;
2305 }
2306
2307 /* Handle leapsecond insertion adjustments */
2308 if (unlikely(base >= tk->next_leap_ktime))
2309 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2310
2311 } while (read_seqcount_retry(&tk_core.seq, seq));
2312
2313 return base;
2314 }
2315
2316 /**
2317 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2318 */
timekeeping_validate_timex(const struct __kernel_timex * txc)2319 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2320 {
2321 if (txc->modes & ADJ_ADJTIME) {
2322 /* singleshot must not be used with any other mode bits */
2323 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2324 return -EINVAL;
2325 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2326 !capable(CAP_SYS_TIME))
2327 return -EPERM;
2328 } else {
2329 /* In order to modify anything, you gotta be super-user! */
2330 if (txc->modes && !capable(CAP_SYS_TIME))
2331 return -EPERM;
2332 /*
2333 * if the quartz is off by more than 10% then
2334 * something is VERY wrong!
2335 */
2336 if (txc->modes & ADJ_TICK &&
2337 (txc->tick < 900000/USER_HZ ||
2338 txc->tick > 1100000/USER_HZ))
2339 return -EINVAL;
2340 }
2341
2342 if (txc->modes & ADJ_SETOFFSET) {
2343 /* In order to inject time, you gotta be super-user! */
2344 if (!capable(CAP_SYS_TIME))
2345 return -EPERM;
2346
2347 /*
2348 * Validate if a timespec/timeval used to inject a time
2349 * offset is valid. Offsets can be postive or negative, so
2350 * we don't check tv_sec. The value of the timeval/timespec
2351 * is the sum of its fields,but *NOTE*:
2352 * The field tv_usec/tv_nsec must always be non-negative and
2353 * we can't have more nanoseconds/microseconds than a second.
2354 */
2355 if (txc->time.tv_usec < 0)
2356 return -EINVAL;
2357
2358 if (txc->modes & ADJ_NANO) {
2359 if (txc->time.tv_usec >= NSEC_PER_SEC)
2360 return -EINVAL;
2361 } else {
2362 if (txc->time.tv_usec >= USEC_PER_SEC)
2363 return -EINVAL;
2364 }
2365 }
2366
2367 /*
2368 * Check for potential multiplication overflows that can
2369 * only happen on 64-bit systems:
2370 */
2371 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2372 if (LLONG_MIN / PPM_SCALE > txc->freq)
2373 return -EINVAL;
2374 if (LLONG_MAX / PPM_SCALE < txc->freq)
2375 return -EINVAL;
2376 }
2377
2378 return 0;
2379 }
2380
2381
2382 /**
2383 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2384 */
do_adjtimex(struct __kernel_timex * txc)2385 int do_adjtimex(struct __kernel_timex *txc)
2386 {
2387 struct timekeeper *tk = &tk_core.timekeeper;
2388 struct audit_ntp_data ad;
2389 unsigned long flags;
2390 struct timespec64 ts;
2391 s32 orig_tai, tai;
2392 int ret;
2393
2394 /* Validate the data before disabling interrupts */
2395 ret = timekeeping_validate_timex(txc);
2396 if (ret)
2397 return ret;
2398
2399 if (txc->modes & ADJ_SETOFFSET) {
2400 struct timespec64 delta;
2401 delta.tv_sec = txc->time.tv_sec;
2402 delta.tv_nsec = txc->time.tv_usec;
2403 if (!(txc->modes & ADJ_NANO))
2404 delta.tv_nsec *= 1000;
2405 ret = timekeeping_inject_offset(&delta);
2406 if (ret)
2407 return ret;
2408
2409 audit_tk_injoffset(delta);
2410 }
2411
2412 audit_ntp_init(&ad);
2413
2414 ktime_get_real_ts64(&ts);
2415
2416 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2417 write_seqcount_begin(&tk_core.seq);
2418
2419 orig_tai = tai = tk->tai_offset;
2420 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2421
2422 if (tai != orig_tai) {
2423 __timekeeping_set_tai_offset(tk, tai);
2424 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2425 }
2426 tk_update_leap_state(tk);
2427
2428 write_seqcount_end(&tk_core.seq);
2429 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2430
2431 audit_ntp_log(&ad);
2432
2433 /* Update the multiplier immediately if frequency was set directly */
2434 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2435 timekeeping_advance(TK_ADV_FREQ);
2436
2437 if (tai != orig_tai)
2438 clock_was_set();
2439
2440 ntp_notify_cmos_timer();
2441
2442 return ret;
2443 }
2444
2445 #ifdef CONFIG_NTP_PPS
2446 /**
2447 * hardpps() - Accessor function to NTP __hardpps function
2448 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2449 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2450 {
2451 unsigned long flags;
2452
2453 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2454 write_seqcount_begin(&tk_core.seq);
2455
2456 __hardpps(phase_ts, raw_ts);
2457
2458 write_seqcount_end(&tk_core.seq);
2459 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2460 }
2461 EXPORT_SYMBOL(hardpps);
2462 #endif /* CONFIG_NTP_PPS */
2463
2464 /**
2465 * xtime_update() - advances the timekeeping infrastructure
2466 * @ticks: number of ticks, that have elapsed since the last call.
2467 *
2468 * Must be called with interrupts disabled.
2469 */
xtime_update(unsigned long ticks)2470 void xtime_update(unsigned long ticks)
2471 {
2472 raw_spin_lock(&jiffies_lock);
2473 write_seqcount_begin(&jiffies_seq);
2474 do_timer(ticks);
2475 write_seqcount_end(&jiffies_seq);
2476 raw_spin_unlock(&jiffies_lock);
2477 update_wall_time();
2478 }
2479