• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 
62 #include "cpu.h"
63 
64 u32 elf_hwcap2 __read_mostly;
65 
66 /* all of these masks are initialized in setup_cpu_local_masks() */
67 cpumask_var_t cpu_initialized_mask;
68 cpumask_var_t cpu_callout_mask;
69 cpumask_var_t cpu_callin_mask;
70 
71 /* representing cpus for which sibling maps can be computed */
72 cpumask_var_t cpu_sibling_setup_mask;
73 
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77 
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80 
81 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)82 void __init setup_cpu_local_masks(void)
83 {
84 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
85 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
86 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
87 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
88 }
89 
default_init(struct cpuinfo_x86 * c)90 static void default_init(struct cpuinfo_x86 *c)
91 {
92 #ifdef CONFIG_X86_64
93 	cpu_detect_cache_sizes(c);
94 #else
95 	/* Not much we can do here... */
96 	/* Check if at least it has cpuid */
97 	if (c->cpuid_level == -1) {
98 		/* No cpuid. It must be an ancient CPU */
99 		if (c->x86 == 4)
100 			strcpy(c->x86_model_id, "486");
101 		else if (c->x86 == 3)
102 			strcpy(c->x86_model_id, "386");
103 	}
104 #endif
105 }
106 
107 static const struct cpu_dev default_cpu = {
108 	.c_init		= default_init,
109 	.c_vendor	= "Unknown",
110 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
111 };
112 
113 static const struct cpu_dev *this_cpu = &default_cpu;
114 
115 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
116 #ifdef CONFIG_X86_64
117 	/*
118 	 * We need valid kernel segments for data and code in long mode too
119 	 * IRET will check the segment types  kkeil 2000/10/28
120 	 * Also sysret mandates a special GDT layout
121 	 *
122 	 * TLS descriptors are currently at a different place compared to i386.
123 	 * Hopefully nobody expects them at a fixed place (Wine?)
124 	 */
125 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
126 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
127 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
129 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
130 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
131 #else
132 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
133 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
135 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
136 	/*
137 	 * Segments used for calling PnP BIOS have byte granularity.
138 	 * They code segments and data segments have fixed 64k limits,
139 	 * the transfer segment sizes are set at run time.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* 16-bit data */
146 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
147 	/* 16-bit data */
148 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
149 	/* 16-bit data */
150 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
151 	/*
152 	 * The APM segments have byte granularity and their bases
153 	 * are set at run time.  All have 64k limits.
154 	 */
155 	/* 32-bit code */
156 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
157 	/* 16-bit code */
158 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
159 	/* data */
160 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
161 
162 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 	GDT_STACK_CANARY_INIT
165 #endif
166 } };
167 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168 
169 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)170 static int __init x86_nopcid_setup(char *s)
171 {
172 	/* nopcid doesn't accept parameters */
173 	if (s)
174 		return -EINVAL;
175 
176 	/* do not emit a message if the feature is not present */
177 	if (!boot_cpu_has(X86_FEATURE_PCID))
178 		return 0;
179 
180 	setup_clear_cpu_cap(X86_FEATURE_PCID);
181 	pr_info("nopcid: PCID feature disabled\n");
182 	return 0;
183 }
184 early_param("nopcid", x86_nopcid_setup);
185 #endif
186 
x86_noinvpcid_setup(char * s)187 static int __init x86_noinvpcid_setup(char *s)
188 {
189 	/* noinvpcid doesn't accept parameters */
190 	if (s)
191 		return -EINVAL;
192 
193 	/* do not emit a message if the feature is not present */
194 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 		return 0;
196 
197 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 	pr_info("noinvpcid: INVPCID feature disabled\n");
199 	return 0;
200 }
201 early_param("noinvpcid", x86_noinvpcid_setup);
202 
203 #ifdef CONFIG_X86_32
204 static int cachesize_override = -1;
205 static int disable_x86_serial_nr = 1;
206 
cachesize_setup(char * str)207 static int __init cachesize_setup(char *str)
208 {
209 	get_option(&str, &cachesize_override);
210 	return 1;
211 }
212 __setup("cachesize=", cachesize_setup);
213 
x86_sep_setup(char * s)214 static int __init x86_sep_setup(char *s)
215 {
216 	setup_clear_cpu_cap(X86_FEATURE_SEP);
217 	return 1;
218 }
219 __setup("nosep", x86_sep_setup);
220 
221 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)222 static inline int flag_is_changeable_p(u32 flag)
223 {
224 	u32 f1, f2;
225 
226 	/*
227 	 * Cyrix and IDT cpus allow disabling of CPUID
228 	 * so the code below may return different results
229 	 * when it is executed before and after enabling
230 	 * the CPUID. Add "volatile" to not allow gcc to
231 	 * optimize the subsequent calls to this function.
232 	 */
233 	asm volatile ("pushfl		\n\t"
234 		      "pushfl		\n\t"
235 		      "popl %0		\n\t"
236 		      "movl %0, %1	\n\t"
237 		      "xorl %2, %0	\n\t"
238 		      "pushl %0		\n\t"
239 		      "popfl		\n\t"
240 		      "pushfl		\n\t"
241 		      "popl %0		\n\t"
242 		      "popfl		\n\t"
243 
244 		      : "=&r" (f1), "=&r" (f2)
245 		      : "ir" (flag));
246 
247 	return ((f1^f2) & flag) != 0;
248 }
249 
250 /* Probe for the CPUID instruction */
have_cpuid_p(void)251 int have_cpuid_p(void)
252 {
253 	return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)256 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257 {
258 	unsigned long lo, hi;
259 
260 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 		return;
262 
263 	/* Disable processor serial number: */
264 
265 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 	lo |= 0x200000;
267 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 
269 	pr_notice("CPU serial number disabled.\n");
270 	clear_cpu_cap(c, X86_FEATURE_PN);
271 
272 	/* Disabling the serial number may affect the cpuid level */
273 	c->cpuid_level = cpuid_eax(0);
274 }
275 
x86_serial_nr_setup(char * s)276 static int __init x86_serial_nr_setup(char *s)
277 {
278 	disable_x86_serial_nr = 0;
279 	return 1;
280 }
281 __setup("serialnumber", x86_serial_nr_setup);
282 #else
flag_is_changeable_p(u32 flag)283 static inline int flag_is_changeable_p(u32 flag)
284 {
285 	return 1;
286 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)287 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288 {
289 }
290 #endif
291 
setup_disable_smep(char * arg)292 static __init int setup_disable_smep(char *arg)
293 {
294 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 	return 1;
296 }
297 __setup("nosmep", setup_disable_smep);
298 
setup_smep(struct cpuinfo_x86 * c)299 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300 {
301 	if (cpu_has(c, X86_FEATURE_SMEP))
302 		cr4_set_bits(X86_CR4_SMEP);
303 }
304 
setup_disable_smap(char * arg)305 static __init int setup_disable_smap(char *arg)
306 {
307 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 	return 1;
309 }
310 __setup("nosmap", setup_disable_smap);
311 
setup_smap(struct cpuinfo_x86 * c)312 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313 {
314 	unsigned long eflags = native_save_fl();
315 
316 	/* This should have been cleared long ago */
317 	BUG_ON(eflags & X86_EFLAGS_AC);
318 
319 	if (cpu_has(c, X86_FEATURE_SMAP)) {
320 #ifdef CONFIG_X86_SMAP
321 		cr4_set_bits(X86_CR4_SMAP);
322 #else
323 		clear_cpu_cap(c, X86_FEATURE_SMAP);
324 		cr4_clear_bits(X86_CR4_SMAP);
325 #endif
326 	}
327 }
328 
setup_umip(struct cpuinfo_x86 * c)329 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
330 {
331 	/* Check the boot processor, plus build option for UMIP. */
332 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
333 		goto out;
334 
335 	/* Check the current processor's cpuid bits. */
336 	if (!cpu_has(c, X86_FEATURE_UMIP))
337 		goto out;
338 
339 	cr4_set_bits(X86_CR4_UMIP);
340 
341 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
342 
343 	return;
344 
345 out:
346 	/*
347 	 * Make sure UMIP is disabled in case it was enabled in a
348 	 * previous boot (e.g., via kexec).
349 	 */
350 	cr4_clear_bits(X86_CR4_UMIP);
351 }
352 
353 /* These bits should not change their value after CPU init is finished. */
354 static const unsigned long cr4_pinned_mask =
355 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
356 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
357 static unsigned long cr4_pinned_bits __ro_after_init;
358 
native_write_cr0(unsigned long val)359 void native_write_cr0(unsigned long val)
360 {
361 	unsigned long bits_missing = 0;
362 
363 set_register:
364 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
365 
366 	if (static_branch_likely(&cr_pinning)) {
367 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
368 			bits_missing = X86_CR0_WP;
369 			val |= bits_missing;
370 			goto set_register;
371 		}
372 		/* Warn after we've set the missing bits. */
373 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
374 	}
375 }
376 EXPORT_SYMBOL(native_write_cr0);
377 
native_write_cr4(unsigned long val)378 void native_write_cr4(unsigned long val)
379 {
380 	unsigned long bits_changed = 0;
381 
382 set_register:
383 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
384 
385 	if (static_branch_likely(&cr_pinning)) {
386 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
387 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
388 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
389 			goto set_register;
390 		}
391 		/* Warn after we've corrected the changed bits. */
392 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
393 			  bits_changed);
394 	}
395 }
396 #if IS_MODULE(CONFIG_LKDTM)
397 EXPORT_SYMBOL_GPL(native_write_cr4);
398 #endif
399 
cr4_update_irqsoff(unsigned long set,unsigned long clear)400 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
401 {
402 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
403 
404 	lockdep_assert_irqs_disabled();
405 
406 	newval = (cr4 & ~clear) | set;
407 	if (newval != cr4) {
408 		this_cpu_write(cpu_tlbstate.cr4, newval);
409 		__write_cr4(newval);
410 	}
411 }
412 EXPORT_SYMBOL(cr4_update_irqsoff);
413 
414 /* Read the CR4 shadow. */
cr4_read_shadow(void)415 unsigned long cr4_read_shadow(void)
416 {
417 	return this_cpu_read(cpu_tlbstate.cr4);
418 }
419 EXPORT_SYMBOL_GPL(cr4_read_shadow);
420 
cr4_init(void)421 void cr4_init(void)
422 {
423 	unsigned long cr4 = __read_cr4();
424 
425 	if (boot_cpu_has(X86_FEATURE_PCID))
426 		cr4 |= X86_CR4_PCIDE;
427 	if (static_branch_likely(&cr_pinning))
428 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
429 
430 	__write_cr4(cr4);
431 
432 	/* Initialize cr4 shadow for this CPU. */
433 	this_cpu_write(cpu_tlbstate.cr4, cr4);
434 }
435 
436 /*
437  * Once CPU feature detection is finished (and boot params have been
438  * parsed), record any of the sensitive CR bits that are set, and
439  * enable CR pinning.
440  */
setup_cr_pinning(void)441 static void __init setup_cr_pinning(void)
442 {
443 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
444 	static_key_enable(&cr_pinning.key);
445 }
446 
x86_nofsgsbase_setup(char * arg)447 static __init int x86_nofsgsbase_setup(char *arg)
448 {
449 	/* Require an exact match without trailing characters. */
450 	if (strlen(arg))
451 		return 0;
452 
453 	/* Do not emit a message if the feature is not present. */
454 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
455 		return 1;
456 
457 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
458 	pr_info("FSGSBASE disabled via kernel command line\n");
459 	return 1;
460 }
461 __setup("nofsgsbase", x86_nofsgsbase_setup);
462 
463 /*
464  * Protection Keys are not available in 32-bit mode.
465  */
466 static bool pku_disabled;
467 
setup_pku(struct cpuinfo_x86 * c)468 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
469 {
470 	struct pkru_state *pk;
471 
472 	/* check the boot processor, plus compile options for PKU: */
473 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
474 		return;
475 	/* checks the actual processor's cpuid bits: */
476 	if (!cpu_has(c, X86_FEATURE_PKU))
477 		return;
478 	if (pku_disabled)
479 		return;
480 
481 	cr4_set_bits(X86_CR4_PKE);
482 	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
483 	if (pk)
484 		pk->pkru = init_pkru_value;
485 	/*
486 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
487 	 * cpuid bit to be set.  We need to ensure that we
488 	 * update that bit in this CPU's "cpu_info".
489 	 */
490 	set_cpu_cap(c, X86_FEATURE_OSPKE);
491 }
492 
493 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)494 static __init int setup_disable_pku(char *arg)
495 {
496 	/*
497 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
498 	 * runtime checks are against OSPKE so clearing the
499 	 * bit does nothing.
500 	 *
501 	 * This way, we will see "pku" in cpuinfo, but not
502 	 * "ospke", which is exactly what we want.  It shows
503 	 * that the CPU has PKU, but the OS has not enabled it.
504 	 * This happens to be exactly how a system would look
505 	 * if we disabled the config option.
506 	 */
507 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
508 	pku_disabled = true;
509 	return 1;
510 }
511 __setup("nopku", setup_disable_pku);
512 #endif /* CONFIG_X86_64 */
513 
514 /*
515  * Some CPU features depend on higher CPUID levels, which may not always
516  * be available due to CPUID level capping or broken virtualization
517  * software.  Add those features to this table to auto-disable them.
518  */
519 struct cpuid_dependent_feature {
520 	u32 feature;
521 	u32 level;
522 };
523 
524 static const struct cpuid_dependent_feature
525 cpuid_dependent_features[] = {
526 	{ X86_FEATURE_MWAIT,		0x00000005 },
527 	{ X86_FEATURE_DCA,		0x00000009 },
528 	{ X86_FEATURE_XSAVE,		0x0000000d },
529 	{ 0, 0 }
530 };
531 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)532 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
533 {
534 	const struct cpuid_dependent_feature *df;
535 
536 	for (df = cpuid_dependent_features; df->feature; df++) {
537 
538 		if (!cpu_has(c, df->feature))
539 			continue;
540 		/*
541 		 * Note: cpuid_level is set to -1 if unavailable, but
542 		 * extended_extended_level is set to 0 if unavailable
543 		 * and the legitimate extended levels are all negative
544 		 * when signed; hence the weird messing around with
545 		 * signs here...
546 		 */
547 		if (!((s32)df->level < 0 ?
548 		     (u32)df->level > (u32)c->extended_cpuid_level :
549 		     (s32)df->level > (s32)c->cpuid_level))
550 			continue;
551 
552 		clear_cpu_cap(c, df->feature);
553 		if (!warn)
554 			continue;
555 
556 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
557 			x86_cap_flag(df->feature), df->level);
558 	}
559 }
560 
561 /*
562  * Naming convention should be: <Name> [(<Codename>)]
563  * This table only is used unless init_<vendor>() below doesn't set it;
564  * in particular, if CPUID levels 0x80000002..4 are supported, this
565  * isn't used
566  */
567 
568 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)569 static const char *table_lookup_model(struct cpuinfo_x86 *c)
570 {
571 #ifdef CONFIG_X86_32
572 	const struct legacy_cpu_model_info *info;
573 
574 	if (c->x86_model >= 16)
575 		return NULL;	/* Range check */
576 
577 	if (!this_cpu)
578 		return NULL;
579 
580 	info = this_cpu->legacy_models;
581 
582 	while (info->family) {
583 		if (info->family == c->x86)
584 			return info->model_names[c->x86_model];
585 		info++;
586 	}
587 #endif
588 	return NULL;		/* Not found */
589 }
590 
591 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
592 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594 
load_percpu_segment(int cpu)595 void load_percpu_segment(int cpu)
596 {
597 #ifdef CONFIG_X86_32
598 	loadsegment(fs, __KERNEL_PERCPU);
599 #else
600 	__loadsegment_simple(gs, 0);
601 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
602 #endif
603 	load_stack_canary_segment();
604 }
605 
606 #ifdef CONFIG_X86_32
607 /* The 32-bit entry code needs to find cpu_entry_area. */
608 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
609 #endif
610 
611 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)612 void load_direct_gdt(int cpu)
613 {
614 	struct desc_ptr gdt_descr;
615 
616 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
617 	gdt_descr.size = GDT_SIZE - 1;
618 	load_gdt(&gdt_descr);
619 }
620 EXPORT_SYMBOL_GPL(load_direct_gdt);
621 
622 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)623 void load_fixmap_gdt(int cpu)
624 {
625 	struct desc_ptr gdt_descr;
626 
627 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
628 	gdt_descr.size = GDT_SIZE - 1;
629 	load_gdt(&gdt_descr);
630 }
631 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
632 
633 /*
634  * Current gdt points %fs at the "master" per-cpu area: after this,
635  * it's on the real one.
636  */
switch_to_new_gdt(int cpu)637 void switch_to_new_gdt(int cpu)
638 {
639 	/* Load the original GDT */
640 	load_direct_gdt(cpu);
641 	/* Reload the per-cpu base */
642 	load_percpu_segment(cpu);
643 }
644 
645 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
646 
get_model_name(struct cpuinfo_x86 * c)647 static void get_model_name(struct cpuinfo_x86 *c)
648 {
649 	unsigned int *v;
650 	char *p, *q, *s;
651 
652 	if (c->extended_cpuid_level < 0x80000004)
653 		return;
654 
655 	v = (unsigned int *)c->x86_model_id;
656 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
657 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
658 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
659 	c->x86_model_id[48] = 0;
660 
661 	/* Trim whitespace */
662 	p = q = s = &c->x86_model_id[0];
663 
664 	while (*p == ' ')
665 		p++;
666 
667 	while (*p) {
668 		/* Note the last non-whitespace index */
669 		if (!isspace(*p))
670 			s = q;
671 
672 		*q++ = *p++;
673 	}
674 
675 	*(s + 1) = '\0';
676 }
677 
detect_num_cpu_cores(struct cpuinfo_x86 * c)678 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
679 {
680 	unsigned int eax, ebx, ecx, edx;
681 
682 	c->x86_max_cores = 1;
683 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
684 		return;
685 
686 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
687 	if (eax & 0x1f)
688 		c->x86_max_cores = (eax >> 26) + 1;
689 }
690 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)691 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
692 {
693 	unsigned int n, dummy, ebx, ecx, edx, l2size;
694 
695 	n = c->extended_cpuid_level;
696 
697 	if (n >= 0x80000005) {
698 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
699 		c->x86_cache_size = (ecx>>24) + (edx>>24);
700 #ifdef CONFIG_X86_64
701 		/* On K8 L1 TLB is inclusive, so don't count it */
702 		c->x86_tlbsize = 0;
703 #endif
704 	}
705 
706 	if (n < 0x80000006)	/* Some chips just has a large L1. */
707 		return;
708 
709 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
710 	l2size = ecx >> 16;
711 
712 #ifdef CONFIG_X86_64
713 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
714 #else
715 	/* do processor-specific cache resizing */
716 	if (this_cpu->legacy_cache_size)
717 		l2size = this_cpu->legacy_cache_size(c, l2size);
718 
719 	/* Allow user to override all this if necessary. */
720 	if (cachesize_override != -1)
721 		l2size = cachesize_override;
722 
723 	if (l2size == 0)
724 		return;		/* Again, no L2 cache is possible */
725 #endif
726 
727 	c->x86_cache_size = l2size;
728 }
729 
730 u16 __read_mostly tlb_lli_4k[NR_INFO];
731 u16 __read_mostly tlb_lli_2m[NR_INFO];
732 u16 __read_mostly tlb_lli_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_4k[NR_INFO];
734 u16 __read_mostly tlb_lld_2m[NR_INFO];
735 u16 __read_mostly tlb_lld_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_1g[NR_INFO];
737 
cpu_detect_tlb(struct cpuinfo_x86 * c)738 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
739 {
740 	if (this_cpu->c_detect_tlb)
741 		this_cpu->c_detect_tlb(c);
742 
743 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
744 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
745 		tlb_lli_4m[ENTRIES]);
746 
747 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
748 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
749 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
750 }
751 
detect_ht_early(struct cpuinfo_x86 * c)752 int detect_ht_early(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_SMP
755 	u32 eax, ebx, ecx, edx;
756 
757 	if (!cpu_has(c, X86_FEATURE_HT))
758 		return -1;
759 
760 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
761 		return -1;
762 
763 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
764 		return -1;
765 
766 	cpuid(1, &eax, &ebx, &ecx, &edx);
767 
768 	smp_num_siblings = (ebx & 0xff0000) >> 16;
769 	if (smp_num_siblings == 1)
770 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
771 #endif
772 	return 0;
773 }
774 
detect_ht(struct cpuinfo_x86 * c)775 void detect_ht(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_SMP
778 	int index_msb, core_bits;
779 
780 	if (detect_ht_early(c) < 0)
781 		return;
782 
783 	index_msb = get_count_order(smp_num_siblings);
784 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
785 
786 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
787 
788 	index_msb = get_count_order(smp_num_siblings);
789 
790 	core_bits = get_count_order(c->x86_max_cores);
791 
792 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
793 				       ((1 << core_bits) - 1);
794 #endif
795 }
796 
get_cpu_vendor(struct cpuinfo_x86 * c)797 static void get_cpu_vendor(struct cpuinfo_x86 *c)
798 {
799 	char *v = c->x86_vendor_id;
800 	int i;
801 
802 	for (i = 0; i < X86_VENDOR_NUM; i++) {
803 		if (!cpu_devs[i])
804 			break;
805 
806 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
807 		    (cpu_devs[i]->c_ident[1] &&
808 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
809 
810 			this_cpu = cpu_devs[i];
811 			c->x86_vendor = this_cpu->c_x86_vendor;
812 			return;
813 		}
814 	}
815 
816 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
817 		    "CPU: Your system may be unstable.\n", v);
818 
819 	c->x86_vendor = X86_VENDOR_UNKNOWN;
820 	this_cpu = &default_cpu;
821 }
822 
cpu_detect(struct cpuinfo_x86 * c)823 void cpu_detect(struct cpuinfo_x86 *c)
824 {
825 	/* Get vendor name */
826 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
827 	      (unsigned int *)&c->x86_vendor_id[0],
828 	      (unsigned int *)&c->x86_vendor_id[8],
829 	      (unsigned int *)&c->x86_vendor_id[4]);
830 
831 	c->x86 = 4;
832 	/* Intel-defined flags: level 0x00000001 */
833 	if (c->cpuid_level >= 0x00000001) {
834 		u32 junk, tfms, cap0, misc;
835 
836 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
837 		c->x86		= x86_family(tfms);
838 		c->x86_model	= x86_model(tfms);
839 		c->x86_stepping	= x86_stepping(tfms);
840 
841 		if (cap0 & (1<<19)) {
842 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
843 			c->x86_cache_alignment = c->x86_clflush_size;
844 		}
845 	}
846 }
847 
apply_forced_caps(struct cpuinfo_x86 * c)848 static void apply_forced_caps(struct cpuinfo_x86 *c)
849 {
850 	int i;
851 
852 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
853 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
854 		c->x86_capability[i] |= cpu_caps_set[i];
855 	}
856 }
857 
init_speculation_control(struct cpuinfo_x86 * c)858 static void init_speculation_control(struct cpuinfo_x86 *c)
859 {
860 	/*
861 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
862 	 * and they also have a different bit for STIBP support. Also,
863 	 * a hypervisor might have set the individual AMD bits even on
864 	 * Intel CPUs, for finer-grained selection of what's available.
865 	 */
866 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
867 		set_cpu_cap(c, X86_FEATURE_IBRS);
868 		set_cpu_cap(c, X86_FEATURE_IBPB);
869 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
870 	}
871 
872 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
873 		set_cpu_cap(c, X86_FEATURE_STIBP);
874 
875 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
876 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
877 		set_cpu_cap(c, X86_FEATURE_SSBD);
878 
879 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
880 		set_cpu_cap(c, X86_FEATURE_IBRS);
881 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
882 	}
883 
884 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
885 		set_cpu_cap(c, X86_FEATURE_IBPB);
886 
887 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
888 		set_cpu_cap(c, X86_FEATURE_STIBP);
889 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
890 	}
891 
892 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
893 		set_cpu_cap(c, X86_FEATURE_SSBD);
894 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
895 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
896 	}
897 }
898 
get_cpu_cap(struct cpuinfo_x86 * c)899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901 	u32 eax, ebx, ecx, edx;
902 
903 	/* Intel-defined flags: level 0x00000001 */
904 	if (c->cpuid_level >= 0x00000001) {
905 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906 
907 		c->x86_capability[CPUID_1_ECX] = ecx;
908 		c->x86_capability[CPUID_1_EDX] = edx;
909 	}
910 
911 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 	if (c->cpuid_level >= 0x00000006)
913 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914 
915 	/* Additional Intel-defined flags: level 0x00000007 */
916 	if (c->cpuid_level >= 0x00000007) {
917 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 		c->x86_capability[CPUID_7_0_EBX] = ebx;
919 		c->x86_capability[CPUID_7_ECX] = ecx;
920 		c->x86_capability[CPUID_7_EDX] = edx;
921 
922 		/* Check valid sub-leaf index before accessing it */
923 		if (eax >= 1) {
924 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 			c->x86_capability[CPUID_7_1_EAX] = eax;
926 		}
927 	}
928 
929 	/* Extended state features: level 0x0000000d */
930 	if (c->cpuid_level >= 0x0000000d) {
931 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932 
933 		c->x86_capability[CPUID_D_1_EAX] = eax;
934 	}
935 
936 	/* AMD-defined flags: level 0x80000001 */
937 	eax = cpuid_eax(0x80000000);
938 	c->extended_cpuid_level = eax;
939 
940 	if ((eax & 0xffff0000) == 0x80000000) {
941 		if (eax >= 0x80000001) {
942 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943 
944 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 		}
947 	}
948 
949 	if (c->extended_cpuid_level >= 0x80000007) {
950 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951 
952 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 		c->x86_power = edx;
954 	}
955 
956 	if (c->extended_cpuid_level >= 0x80000008) {
957 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 	}
960 
961 	if (c->extended_cpuid_level >= 0x8000000a)
962 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963 
964 	init_scattered_cpuid_features(c);
965 	init_speculation_control(c);
966 
967 	/*
968 	 * Clear/Set all flags overridden by options, after probe.
969 	 * This needs to happen each time we re-probe, which may happen
970 	 * several times during CPU initialization.
971 	 */
972 	apply_forced_caps(c);
973 }
974 
get_cpu_address_sizes(struct cpuinfo_x86 * c)975 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
976 {
977 	u32 eax, ebx, ecx, edx;
978 
979 	if (c->extended_cpuid_level >= 0x80000008) {
980 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
981 
982 		c->x86_virt_bits = (eax >> 8) & 0xff;
983 		c->x86_phys_bits = eax & 0xff;
984 	}
985 #ifdef CONFIG_X86_32
986 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
987 		c->x86_phys_bits = 36;
988 #endif
989 	c->x86_cache_bits = c->x86_phys_bits;
990 }
991 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)992 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
993 {
994 #ifdef CONFIG_X86_32
995 	int i;
996 
997 	/*
998 	 * First of all, decide if this is a 486 or higher
999 	 * It's a 486 if we can modify the AC flag
1000 	 */
1001 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1002 		c->x86 = 4;
1003 	else
1004 		c->x86 = 3;
1005 
1006 	for (i = 0; i < X86_VENDOR_NUM; i++)
1007 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1008 			c->x86_vendor_id[0] = 0;
1009 			cpu_devs[i]->c_identify(c);
1010 			if (c->x86_vendor_id[0]) {
1011 				get_cpu_vendor(c);
1012 				break;
1013 			}
1014 		}
1015 #endif
1016 }
1017 
1018 #define NO_SPECULATION		BIT(0)
1019 #define NO_MELTDOWN		BIT(1)
1020 #define NO_SSB			BIT(2)
1021 #define NO_L1TF			BIT(3)
1022 #define NO_MDS			BIT(4)
1023 #define MSBDS_ONLY		BIT(5)
1024 #define NO_SWAPGS		BIT(6)
1025 #define NO_ITLB_MULTIHIT	BIT(7)
1026 #define NO_SPECTRE_V2		BIT(8)
1027 #define NO_EIBRS_PBRSB		BIT(9)
1028 
1029 #define VULNWL(vendor, family, model, whitelist)	\
1030 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1031 
1032 #define VULNWL_INTEL(model, whitelist)		\
1033 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1034 
1035 #define VULNWL_AMD(family, whitelist)		\
1036 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1037 
1038 #define VULNWL_HYGON(family, whitelist)		\
1039 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1040 
1041 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1042 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1043 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1044 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1045 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1046 
1047 	/* Intel Family 6 */
1048 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1052 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1053 
1054 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 
1061 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1062 
1063 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 
1066 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1069 
1070 	/*
1071 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1072 	 * being documented as such in the APM).  But according to AMD, %gs is
1073 	 * updated non-speculatively, and the issuing of %gs-relative memory
1074 	 * operands will be blocked until the %gs update completes, which is
1075 	 * good enough for our purposes.
1076 	 */
1077 
1078 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1079 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1080 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1081 
1082 	/* AMD Family 0xf - 0x12 */
1083 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 
1088 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1089 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091 
1092 	/* Zhaoxin Family 7 */
1093 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1094 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1095 	{}
1096 };
1097 
1098 #define VULNBL(vendor, family, model, blacklist)	\
1099 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1100 
1101 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1102 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1103 					    INTEL_FAM6_##model, steppings, \
1104 					    X86_FEATURE_ANY, issues)
1105 
1106 #define VULNBL_AMD(family, blacklist)		\
1107 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1108 
1109 #define VULNBL_HYGON(family, blacklist)		\
1110 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1111 
1112 #define SRBDS		BIT(0)
1113 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1114 #define MMIO		BIT(1)
1115 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1116 #define MMIO_SBDS	BIT(2)
1117 /* CPU is affected by RETbleed, speculating where you would not expect it */
1118 #define RETBLEED	BIT(3)
1119 
1120 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1121 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1122 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1123 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1124 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1125 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1126 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1127 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1128 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1129 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1130 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1131 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED),
1132 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1133 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1134 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1135 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1136 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1137 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO),
1138 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO),
1139 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1140 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1141 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1142 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1143 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED),
1144 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1145 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1146 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1147 
1148 	VULNBL_AMD(0x15, RETBLEED),
1149 	VULNBL_AMD(0x16, RETBLEED),
1150 	VULNBL_AMD(0x17, RETBLEED),
1151 	VULNBL_HYGON(0x18, RETBLEED),
1152 	{}
1153 };
1154 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1155 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1156 {
1157 	const struct x86_cpu_id *m = x86_match_cpu(table);
1158 
1159 	return m && !!(m->driver_data & which);
1160 }
1161 
x86_read_arch_cap_msr(void)1162 u64 x86_read_arch_cap_msr(void)
1163 {
1164 	u64 ia32_cap = 0;
1165 
1166 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1167 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1168 
1169 	return ia32_cap;
1170 }
1171 
arch_cap_mmio_immune(u64 ia32_cap)1172 static bool arch_cap_mmio_immune(u64 ia32_cap)
1173 {
1174 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1175 		ia32_cap & ARCH_CAP_PSDP_NO &&
1176 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1177 }
1178 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1179 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1180 {
1181 	u64 ia32_cap = x86_read_arch_cap_msr();
1182 
1183 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1184 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1185 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1186 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1187 
1188 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1189 		return;
1190 
1191 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1192 
1193 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1194 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1195 
1196 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1197 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1198 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1199 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1200 
1201 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1202 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1203 
1204 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1205 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1206 		setup_force_cpu_bug(X86_BUG_MDS);
1207 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1208 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1209 	}
1210 
1211 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1212 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1213 
1214 	/*
1215 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1216 	 *	- TSX is supported or
1217 	 *	- TSX_CTRL is present
1218 	 *
1219 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1220 	 * the kernel boot e.g. kexec.
1221 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1222 	 * update is not present or running as guest that don't get TSX_CTRL.
1223 	 */
1224 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1225 	    (cpu_has(c, X86_FEATURE_RTM) ||
1226 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1227 		setup_force_cpu_bug(X86_BUG_TAA);
1228 
1229 	/*
1230 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1231 	 * in the vulnerability blacklist.
1232 	 *
1233 	 * Some of the implications and mitigation of Shared Buffers Data
1234 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1235 	 * SRBDS.
1236 	 */
1237 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1238 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1239 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1240 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1241 
1242 	/*
1243 	 * Processor MMIO Stale Data bug enumeration
1244 	 *
1245 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1246 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1247 	 * not want the guest to enumerate the bug.
1248 	 */
1249 	if (cpu_matches(cpu_vuln_blacklist, MMIO) &&
1250 	    !arch_cap_mmio_immune(ia32_cap))
1251 		setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1252 
1253 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1254 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1255 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1256 	}
1257 
1258 	if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1259 	    !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1260 	    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1261 		setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1262 
1263 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1264 		return;
1265 
1266 	/* Rogue Data Cache Load? No! */
1267 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1268 		return;
1269 
1270 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1271 
1272 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1273 		return;
1274 
1275 	setup_force_cpu_bug(X86_BUG_L1TF);
1276 }
1277 
1278 /*
1279  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1280  * unfortunately, that's not true in practice because of early VIA
1281  * chips and (more importantly) broken virtualizers that are not easy
1282  * to detect. In the latter case it doesn't even *fail* reliably, so
1283  * probing for it doesn't even work. Disable it completely on 32-bit
1284  * unless we can find a reliable way to detect all the broken cases.
1285  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1286  */
detect_nopl(void)1287 static void detect_nopl(void)
1288 {
1289 #ifdef CONFIG_X86_32
1290 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1291 #else
1292 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1293 #endif
1294 }
1295 
1296 /*
1297  * We parse cpu parameters early because fpu__init_system() is executed
1298  * before parse_early_param().
1299  */
cpu_parse_early_param(void)1300 static void __init cpu_parse_early_param(void)
1301 {
1302 	char arg[128];
1303 	char *argptr = arg;
1304 	int arglen, res, bit;
1305 
1306 #ifdef CONFIG_X86_32
1307 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1308 #ifdef CONFIG_MATH_EMULATION
1309 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1310 #else
1311 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1312 #endif
1313 
1314 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1315 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1316 #endif
1317 
1318 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1319 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1320 
1321 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1322 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1323 
1324 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1325 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1326 
1327 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1328 	if (arglen <= 0)
1329 		return;
1330 
1331 	pr_info("Clearing CPUID bits:");
1332 	do {
1333 		res = get_option(&argptr, &bit);
1334 		if (res == 0 || res == 3)
1335 			break;
1336 
1337 		/* If the argument was too long, the last bit may be cut off */
1338 		if (res == 1 && arglen >= sizeof(arg))
1339 			break;
1340 
1341 		if (bit >= 0 && bit < NCAPINTS * 32) {
1342 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1343 			setup_clear_cpu_cap(bit);
1344 		}
1345 	} while (res == 2);
1346 	pr_cont("\n");
1347 }
1348 
1349 /*
1350  * Do minimum CPU detection early.
1351  * Fields really needed: vendor, cpuid_level, family, model, mask,
1352  * cache alignment.
1353  * The others are not touched to avoid unwanted side effects.
1354  *
1355  * WARNING: this function is only called on the boot CPU.  Don't add code
1356  * here that is supposed to run on all CPUs.
1357  */
early_identify_cpu(struct cpuinfo_x86 * c)1358 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1359 {
1360 #ifdef CONFIG_X86_64
1361 	c->x86_clflush_size = 64;
1362 	c->x86_phys_bits = 36;
1363 	c->x86_virt_bits = 48;
1364 #else
1365 	c->x86_clflush_size = 32;
1366 	c->x86_phys_bits = 32;
1367 	c->x86_virt_bits = 32;
1368 #endif
1369 	c->x86_cache_alignment = c->x86_clflush_size;
1370 
1371 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1372 	c->extended_cpuid_level = 0;
1373 
1374 	if (!have_cpuid_p())
1375 		identify_cpu_without_cpuid(c);
1376 
1377 	/* cyrix could have cpuid enabled via c_identify()*/
1378 	if (have_cpuid_p()) {
1379 		cpu_detect(c);
1380 		get_cpu_vendor(c);
1381 		get_cpu_cap(c);
1382 		get_cpu_address_sizes(c);
1383 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1384 		cpu_parse_early_param();
1385 
1386 		if (this_cpu->c_early_init)
1387 			this_cpu->c_early_init(c);
1388 
1389 		c->cpu_index = 0;
1390 		filter_cpuid_features(c, false);
1391 
1392 		if (this_cpu->c_bsp_init)
1393 			this_cpu->c_bsp_init(c);
1394 	} else {
1395 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1396 	}
1397 
1398 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1399 
1400 	cpu_set_bug_bits(c);
1401 
1402 	cpu_set_core_cap_bits(c);
1403 
1404 	fpu__init_system(c);
1405 
1406 #ifdef CONFIG_X86_32
1407 	/*
1408 	 * Regardless of whether PCID is enumerated, the SDM says
1409 	 * that it can't be enabled in 32-bit mode.
1410 	 */
1411 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1412 #endif
1413 
1414 	/*
1415 	 * Later in the boot process pgtable_l5_enabled() relies on
1416 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1417 	 * enabled by this point we need to clear the feature bit to avoid
1418 	 * false-positives at the later stage.
1419 	 *
1420 	 * pgtable_l5_enabled() can be false here for several reasons:
1421 	 *  - 5-level paging is disabled compile-time;
1422 	 *  - it's 32-bit kernel;
1423 	 *  - machine doesn't support 5-level paging;
1424 	 *  - user specified 'no5lvl' in kernel command line.
1425 	 */
1426 	if (!pgtable_l5_enabled())
1427 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1428 
1429 	detect_nopl();
1430 }
1431 
early_cpu_init(void)1432 void __init early_cpu_init(void)
1433 {
1434 	const struct cpu_dev *const *cdev;
1435 	int count = 0;
1436 
1437 #ifdef CONFIG_PROCESSOR_SELECT
1438 	pr_info("KERNEL supported cpus:\n");
1439 #endif
1440 
1441 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1442 		const struct cpu_dev *cpudev = *cdev;
1443 
1444 		if (count >= X86_VENDOR_NUM)
1445 			break;
1446 		cpu_devs[count] = cpudev;
1447 		count++;
1448 
1449 #ifdef CONFIG_PROCESSOR_SELECT
1450 		{
1451 			unsigned int j;
1452 
1453 			for (j = 0; j < 2; j++) {
1454 				if (!cpudev->c_ident[j])
1455 					continue;
1456 				pr_info("  %s %s\n", cpudev->c_vendor,
1457 					cpudev->c_ident[j]);
1458 			}
1459 		}
1460 #endif
1461 	}
1462 	early_identify_cpu(&boot_cpu_data);
1463 }
1464 
detect_null_seg_behavior(void)1465 static bool detect_null_seg_behavior(void)
1466 {
1467 	/*
1468 	 * Empirically, writing zero to a segment selector on AMD does
1469 	 * not clear the base, whereas writing zero to a segment
1470 	 * selector on Intel does clear the base.  Intel's behavior
1471 	 * allows slightly faster context switches in the common case
1472 	 * where GS is unused by the prev and next threads.
1473 	 *
1474 	 * Since neither vendor documents this anywhere that I can see,
1475 	 * detect it directly instead of hardcoding the choice by
1476 	 * vendor.
1477 	 *
1478 	 * I've designated AMD's behavior as the "bug" because it's
1479 	 * counterintuitive and less friendly.
1480 	 */
1481 
1482 	unsigned long old_base, tmp;
1483 	rdmsrl(MSR_FS_BASE, old_base);
1484 	wrmsrl(MSR_FS_BASE, 1);
1485 	loadsegment(fs, 0);
1486 	rdmsrl(MSR_FS_BASE, tmp);
1487 	wrmsrl(MSR_FS_BASE, old_base);
1488 	return tmp == 0;
1489 }
1490 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1491 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1492 {
1493 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1494 	if (!IS_ENABLED(CONFIG_X86_64))
1495 		return;
1496 
1497 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1498 	if (c->extended_cpuid_level >= 0x80000021 &&
1499 	    cpuid_eax(0x80000021) & BIT(6))
1500 		return;
1501 
1502 	/*
1503 	 * CPUID bit above wasn't set. If this kernel is still running
1504 	 * as a HV guest, then the HV has decided not to advertize
1505 	 * that CPUID bit for whatever reason.	For example, one
1506 	 * member of the migration pool might be vulnerable.  Which
1507 	 * means, the bug is present: set the BUG flag and return.
1508 	 */
1509 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1510 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1516 	 * 0x18 is the respective family for Hygon.
1517 	 */
1518 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1519 	    detect_null_seg_behavior())
1520 		return;
1521 
1522 	/* All the remaining ones are affected */
1523 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1524 }
1525 
generic_identify(struct cpuinfo_x86 * c)1526 static void generic_identify(struct cpuinfo_x86 *c)
1527 {
1528 	c->extended_cpuid_level = 0;
1529 
1530 	if (!have_cpuid_p())
1531 		identify_cpu_without_cpuid(c);
1532 
1533 	/* cyrix could have cpuid enabled via c_identify()*/
1534 	if (!have_cpuid_p())
1535 		return;
1536 
1537 	cpu_detect(c);
1538 
1539 	get_cpu_vendor(c);
1540 
1541 	get_cpu_cap(c);
1542 
1543 	get_cpu_address_sizes(c);
1544 
1545 	if (c->cpuid_level >= 0x00000001) {
1546 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1547 #ifdef CONFIG_X86_32
1548 # ifdef CONFIG_SMP
1549 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1550 # else
1551 		c->apicid = c->initial_apicid;
1552 # endif
1553 #endif
1554 		c->phys_proc_id = c->initial_apicid;
1555 	}
1556 
1557 	get_model_name(c); /* Default name */
1558 
1559 	/*
1560 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1561 	 * systems that run Linux at CPL > 0 may or may not have the
1562 	 * issue, but, even if they have the issue, there's absolutely
1563 	 * nothing we can do about it because we can't use the real IRET
1564 	 * instruction.
1565 	 *
1566 	 * NB: For the time being, only 32-bit kernels support
1567 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1568 	 * whether to apply espfix using paravirt hooks.  If any
1569 	 * non-paravirt system ever shows up that does *not* have the
1570 	 * ESPFIX issue, we can change this.
1571 	 */
1572 #ifdef CONFIG_X86_32
1573 	set_cpu_bug(c, X86_BUG_ESPFIX);
1574 #endif
1575 }
1576 
1577 /*
1578  * Validate that ACPI/mptables have the same information about the
1579  * effective APIC id and update the package map.
1580  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1581 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1582 {
1583 #ifdef CONFIG_SMP
1584 	unsigned int apicid, cpu = smp_processor_id();
1585 
1586 	apicid = apic->cpu_present_to_apicid(cpu);
1587 
1588 	if (apicid != c->apicid) {
1589 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1590 		       cpu, apicid, c->initial_apicid);
1591 	}
1592 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1593 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1594 #else
1595 	c->logical_proc_id = 0;
1596 #endif
1597 }
1598 
1599 /*
1600  * This does the hard work of actually picking apart the CPU stuff...
1601  */
identify_cpu(struct cpuinfo_x86 * c)1602 static void identify_cpu(struct cpuinfo_x86 *c)
1603 {
1604 	int i;
1605 
1606 	c->loops_per_jiffy = loops_per_jiffy;
1607 	c->x86_cache_size = 0;
1608 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1609 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1610 	c->x86_vendor_id[0] = '\0'; /* Unset */
1611 	c->x86_model_id[0] = '\0';  /* Unset */
1612 	c->x86_max_cores = 1;
1613 	c->x86_coreid_bits = 0;
1614 	c->cu_id = 0xff;
1615 #ifdef CONFIG_X86_64
1616 	c->x86_clflush_size = 64;
1617 	c->x86_phys_bits = 36;
1618 	c->x86_virt_bits = 48;
1619 #else
1620 	c->cpuid_level = -1;	/* CPUID not detected */
1621 	c->x86_clflush_size = 32;
1622 	c->x86_phys_bits = 32;
1623 	c->x86_virt_bits = 32;
1624 #endif
1625 	c->x86_cache_alignment = c->x86_clflush_size;
1626 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1627 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1628 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1629 #endif
1630 
1631 	generic_identify(c);
1632 
1633 	if (this_cpu->c_identify)
1634 		this_cpu->c_identify(c);
1635 
1636 	/* Clear/Set all flags overridden by options, after probe */
1637 	apply_forced_caps(c);
1638 
1639 #ifdef CONFIG_X86_64
1640 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1641 #endif
1642 
1643 	/*
1644 	 * Vendor-specific initialization.  In this section we
1645 	 * canonicalize the feature flags, meaning if there are
1646 	 * features a certain CPU supports which CPUID doesn't
1647 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1648 	 * we handle them here.
1649 	 *
1650 	 * At the end of this section, c->x86_capability better
1651 	 * indicate the features this CPU genuinely supports!
1652 	 */
1653 	if (this_cpu->c_init)
1654 		this_cpu->c_init(c);
1655 
1656 	/* Disable the PN if appropriate */
1657 	squash_the_stupid_serial_number(c);
1658 
1659 	/* Set up SMEP/SMAP/UMIP */
1660 	setup_smep(c);
1661 	setup_smap(c);
1662 	setup_umip(c);
1663 
1664 	/* Enable FSGSBASE instructions if available. */
1665 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1666 		cr4_set_bits(X86_CR4_FSGSBASE);
1667 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1668 	}
1669 
1670 	/*
1671 	 * The vendor-specific functions might have changed features.
1672 	 * Now we do "generic changes."
1673 	 */
1674 
1675 	/* Filter out anything that depends on CPUID levels we don't have */
1676 	filter_cpuid_features(c, true);
1677 
1678 	/* If the model name is still unset, do table lookup. */
1679 	if (!c->x86_model_id[0]) {
1680 		const char *p;
1681 		p = table_lookup_model(c);
1682 		if (p)
1683 			strcpy(c->x86_model_id, p);
1684 		else
1685 			/* Last resort... */
1686 			sprintf(c->x86_model_id, "%02x/%02x",
1687 				c->x86, c->x86_model);
1688 	}
1689 
1690 #ifdef CONFIG_X86_64
1691 	detect_ht(c);
1692 #endif
1693 
1694 	x86_init_rdrand(c);
1695 	setup_pku(c);
1696 
1697 	/*
1698 	 * Clear/Set all flags overridden by options, need do it
1699 	 * before following smp all cpus cap AND.
1700 	 */
1701 	apply_forced_caps(c);
1702 
1703 	/*
1704 	 * On SMP, boot_cpu_data holds the common feature set between
1705 	 * all CPUs; so make sure that we indicate which features are
1706 	 * common between the CPUs.  The first time this routine gets
1707 	 * executed, c == &boot_cpu_data.
1708 	 */
1709 	if (c != &boot_cpu_data) {
1710 		/* AND the already accumulated flags with these */
1711 		for (i = 0; i < NCAPINTS; i++)
1712 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1713 
1714 		/* OR, i.e. replicate the bug flags */
1715 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1716 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1717 	}
1718 
1719 	/* Init Machine Check Exception if available. */
1720 	mcheck_cpu_init(c);
1721 
1722 	select_idle_routine(c);
1723 
1724 #ifdef CONFIG_NUMA
1725 	numa_add_cpu(smp_processor_id());
1726 #endif
1727 }
1728 
1729 /*
1730  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1731  * on 32-bit kernels:
1732  */
1733 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1734 void enable_sep_cpu(void)
1735 {
1736 	struct tss_struct *tss;
1737 	int cpu;
1738 
1739 	if (!boot_cpu_has(X86_FEATURE_SEP))
1740 		return;
1741 
1742 	cpu = get_cpu();
1743 	tss = &per_cpu(cpu_tss_rw, cpu);
1744 
1745 	/*
1746 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1747 	 * see the big comment in struct x86_hw_tss's definition.
1748 	 */
1749 
1750 	tss->x86_tss.ss1 = __KERNEL_CS;
1751 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1752 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1753 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1754 
1755 	put_cpu();
1756 }
1757 #endif
1758 
identify_boot_cpu(void)1759 void __init identify_boot_cpu(void)
1760 {
1761 	identify_cpu(&boot_cpu_data);
1762 #ifdef CONFIG_X86_32
1763 	sysenter_setup();
1764 	enable_sep_cpu();
1765 #endif
1766 	cpu_detect_tlb(&boot_cpu_data);
1767 	setup_cr_pinning();
1768 
1769 	tsx_init();
1770 }
1771 
identify_secondary_cpu(struct cpuinfo_x86 * c)1772 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1773 {
1774 	BUG_ON(c == &boot_cpu_data);
1775 	identify_cpu(c);
1776 #ifdef CONFIG_X86_32
1777 	enable_sep_cpu();
1778 #endif
1779 	mtrr_ap_init();
1780 	validate_apic_and_package_id(c);
1781 	x86_spec_ctrl_setup_ap();
1782 	update_srbds_msr();
1783 }
1784 
setup_noclflush(char * arg)1785 static __init int setup_noclflush(char *arg)
1786 {
1787 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1788 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1789 	return 1;
1790 }
1791 __setup("noclflush", setup_noclflush);
1792 
print_cpu_info(struct cpuinfo_x86 * c)1793 void print_cpu_info(struct cpuinfo_x86 *c)
1794 {
1795 	const char *vendor = NULL;
1796 
1797 	if (c->x86_vendor < X86_VENDOR_NUM) {
1798 		vendor = this_cpu->c_vendor;
1799 	} else {
1800 		if (c->cpuid_level >= 0)
1801 			vendor = c->x86_vendor_id;
1802 	}
1803 
1804 	if (vendor && !strstr(c->x86_model_id, vendor))
1805 		pr_cont("%s ", vendor);
1806 
1807 	if (c->x86_model_id[0])
1808 		pr_cont("%s", c->x86_model_id);
1809 	else
1810 		pr_cont("%d86", c->x86);
1811 
1812 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1813 
1814 	if (c->x86_stepping || c->cpuid_level >= 0)
1815 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1816 	else
1817 		pr_cont(")\n");
1818 }
1819 
1820 /*
1821  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1822  * But we need to keep a dummy __setup around otherwise it would
1823  * show up as an environment variable for init.
1824  */
setup_clearcpuid(char * arg)1825 static __init int setup_clearcpuid(char *arg)
1826 {
1827 	return 1;
1828 }
1829 __setup("clearcpuid=", setup_clearcpuid);
1830 
1831 #ifdef CONFIG_X86_64
1832 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1833 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1834 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1835 
1836 /*
1837  * The following percpu variables are hot.  Align current_task to
1838  * cacheline size such that they fall in the same cacheline.
1839  */
1840 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1841 	&init_task;
1842 EXPORT_PER_CPU_SYMBOL(current_task);
1843 
1844 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1845 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1846 
1847 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1848 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1849 
1850 /* May not be marked __init: used by software suspend */
syscall_init(void)1851 void syscall_init(void)
1852 {
1853 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1854 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1855 
1856 #ifdef CONFIG_IA32_EMULATION
1857 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1858 	/*
1859 	 * This only works on Intel CPUs.
1860 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1861 	 * This does not cause SYSENTER to jump to the wrong location, because
1862 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1863 	 */
1864 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1865 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1866 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1867 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1868 #else
1869 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1870 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1871 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1872 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1873 #endif
1874 
1875 	/* Flags to clear on syscall */
1876 	wrmsrl(MSR_SYSCALL_MASK,
1877 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1878 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1879 }
1880 
1881 #else	/* CONFIG_X86_64 */
1882 
1883 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1884 EXPORT_PER_CPU_SYMBOL(current_task);
1885 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1886 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1887 
1888 /*
1889  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1890  * the top of the kernel stack.  Use an extra percpu variable to track the
1891  * top of the kernel stack directly.
1892  */
1893 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1894 	(unsigned long)&init_thread_union + THREAD_SIZE;
1895 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1896 
1897 #ifdef CONFIG_STACKPROTECTOR
1898 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1899 #endif
1900 
1901 #endif	/* CONFIG_X86_64 */
1902 
1903 /*
1904  * Clear all 6 debug registers:
1905  */
clear_all_debug_regs(void)1906 static void clear_all_debug_regs(void)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < 8; i++) {
1911 		/* Ignore db4, db5 */
1912 		if ((i == 4) || (i == 5))
1913 			continue;
1914 
1915 		set_debugreg(0, i);
1916 	}
1917 }
1918 
1919 #ifdef CONFIG_KGDB
1920 /*
1921  * Restore debug regs if using kgdbwait and you have a kernel debugger
1922  * connection established.
1923  */
dbg_restore_debug_regs(void)1924 static void dbg_restore_debug_regs(void)
1925 {
1926 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1927 		arch_kgdb_ops.correct_hw_break();
1928 }
1929 #else /* ! CONFIG_KGDB */
1930 #define dbg_restore_debug_regs()
1931 #endif /* ! CONFIG_KGDB */
1932 
wait_for_master_cpu(int cpu)1933 static void wait_for_master_cpu(int cpu)
1934 {
1935 #ifdef CONFIG_SMP
1936 	/*
1937 	 * wait for ACK from master CPU before continuing
1938 	 * with AP initialization
1939 	 */
1940 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1941 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1942 		cpu_relax();
1943 #endif
1944 }
1945 
1946 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1947 static inline void setup_getcpu(int cpu)
1948 {
1949 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1950 	struct desc_struct d = { };
1951 
1952 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1953 		write_rdtscp_aux(cpudata);
1954 
1955 	/* Store CPU and node number in limit. */
1956 	d.limit0 = cpudata;
1957 	d.limit1 = cpudata >> 16;
1958 
1959 	d.type = 5;		/* RO data, expand down, accessed */
1960 	d.dpl = 3;		/* Visible to user code */
1961 	d.s = 1;		/* Not a system segment */
1962 	d.p = 1;		/* Present */
1963 	d.d = 1;		/* 32-bit */
1964 
1965 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1966 }
1967 
ucode_cpu_init(int cpu)1968 static inline void ucode_cpu_init(int cpu)
1969 {
1970 	if (cpu)
1971 		load_ucode_ap();
1972 }
1973 
tss_setup_ist(struct tss_struct * tss)1974 static inline void tss_setup_ist(struct tss_struct *tss)
1975 {
1976 	/* Set up the per-CPU TSS IST stacks */
1977 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1978 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1979 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1980 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1981 	/* Only mapped when SEV-ES is active */
1982 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1983 }
1984 
1985 #else /* CONFIG_X86_64 */
1986 
setup_getcpu(int cpu)1987 static inline void setup_getcpu(int cpu) { }
1988 
ucode_cpu_init(int cpu)1989 static inline void ucode_cpu_init(int cpu)
1990 {
1991 	show_ucode_info_early();
1992 }
1993 
tss_setup_ist(struct tss_struct * tss)1994 static inline void tss_setup_ist(struct tss_struct *tss) { }
1995 
1996 #endif /* !CONFIG_X86_64 */
1997 
tss_setup_io_bitmap(struct tss_struct * tss)1998 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1999 {
2000 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2001 
2002 #ifdef CONFIG_X86_IOPL_IOPERM
2003 	tss->io_bitmap.prev_max = 0;
2004 	tss->io_bitmap.prev_sequence = 0;
2005 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2006 	/*
2007 	 * Invalidate the extra array entry past the end of the all
2008 	 * permission bitmap as required by the hardware.
2009 	 */
2010 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2011 #endif
2012 }
2013 
2014 /*
2015  * Setup everything needed to handle exceptions from the IDT, including the IST
2016  * exceptions which use paranoid_entry().
2017  */
cpu_init_exception_handling(void)2018 void cpu_init_exception_handling(void)
2019 {
2020 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2021 	int cpu = raw_smp_processor_id();
2022 
2023 	/* paranoid_entry() gets the CPU number from the GDT */
2024 	setup_getcpu(cpu);
2025 
2026 	/* IST vectors need TSS to be set up. */
2027 	tss_setup_ist(tss);
2028 	tss_setup_io_bitmap(tss);
2029 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2030 
2031 	load_TR_desc();
2032 
2033 	/* Finally load the IDT */
2034 	load_current_idt();
2035 }
2036 
2037 /*
2038  * cpu_init() initializes state that is per-CPU. Some data is already
2039  * initialized (naturally) in the bootstrap process, such as the GDT
2040  * and IDT. We reload them nevertheless, this function acts as a
2041  * 'CPU state barrier', nothing should get across.
2042  */
cpu_init(void)2043 void cpu_init(void)
2044 {
2045 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2046 	struct task_struct *cur = current;
2047 	int cpu = raw_smp_processor_id();
2048 
2049 	wait_for_master_cpu(cpu);
2050 
2051 	ucode_cpu_init(cpu);
2052 
2053 #ifdef CONFIG_NUMA
2054 	if (this_cpu_read(numa_node) == 0 &&
2055 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2056 		set_numa_node(early_cpu_to_node(cpu));
2057 #endif
2058 	setup_getcpu(cpu);
2059 
2060 	pr_debug("Initializing CPU#%d\n", cpu);
2061 
2062 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2063 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2064 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2065 
2066 	/*
2067 	 * Initialize the per-CPU GDT with the boot GDT,
2068 	 * and set up the GDT descriptor:
2069 	 */
2070 	switch_to_new_gdt(cpu);
2071 	load_current_idt();
2072 
2073 	if (IS_ENABLED(CONFIG_X86_64)) {
2074 		loadsegment(fs, 0);
2075 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2076 		syscall_init();
2077 
2078 		wrmsrl(MSR_FS_BASE, 0);
2079 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2080 		barrier();
2081 
2082 		x2apic_setup();
2083 	}
2084 
2085 	mmgrab(&init_mm);
2086 	cur->active_mm = &init_mm;
2087 	BUG_ON(cur->mm);
2088 	initialize_tlbstate_and_flush();
2089 	enter_lazy_tlb(&init_mm, cur);
2090 
2091 	/* Initialize the TSS. */
2092 	tss_setup_ist(tss);
2093 	tss_setup_io_bitmap(tss);
2094 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2095 
2096 	load_TR_desc();
2097 	/*
2098 	 * sp0 points to the entry trampoline stack regardless of what task
2099 	 * is running.
2100 	 */
2101 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2102 
2103 	load_mm_ldt(&init_mm);
2104 
2105 	clear_all_debug_regs();
2106 	dbg_restore_debug_regs();
2107 
2108 	doublefault_init_cpu_tss();
2109 
2110 	fpu__init_cpu();
2111 
2112 	if (is_uv_system())
2113 		uv_cpu_init();
2114 
2115 	load_fixmap_gdt(cpu);
2116 }
2117 
2118 /*
2119  * The microcode loader calls this upon late microcode load to recheck features,
2120  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2121  * hotplug lock.
2122  */
microcode_check(void)2123 void microcode_check(void)
2124 {
2125 	struct cpuinfo_x86 info;
2126 
2127 	perf_check_microcode();
2128 
2129 	/* Reload CPUID max function as it might've changed. */
2130 	info.cpuid_level = cpuid_eax(0);
2131 
2132 	/*
2133 	 * Copy all capability leafs to pick up the synthetic ones so that
2134 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2135 	 * get overwritten in get_cpu_cap().
2136 	 */
2137 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2138 
2139 	get_cpu_cap(&info);
2140 
2141 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2142 		return;
2143 
2144 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2145 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2146 }
2147 
2148 /*
2149  * Invoked from core CPU hotplug code after hotplug operations
2150  */
arch_smt_update(void)2151 void arch_smt_update(void)
2152 {
2153 	/* Handle the speculative execution misfeatures */
2154 	cpu_bugs_smt_update();
2155 	/* Check whether IPI broadcasting can be enabled */
2156 	apic_smt_update();
2157 }
2158