1 /*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
9 *
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
14 *
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
18 *
19 * Model
20 *
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
24 *
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
28 *
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
32 *
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
36 *
37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
38 *
39 * SOME = nr_delayed_tasks != 0
40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
41 *
42 * The percentage of wallclock time spent in those compound stall
43 * states gives pressure numbers between 0 and 100 for each resource,
44 * where the SOME percentage indicates workload slowdowns and the FULL
45 * percentage indicates reduced CPU utilization:
46 *
47 * %SOME = time(SOME) / period
48 * %FULL = time(FULL) / period
49 *
50 * Multiple CPUs
51 *
52 * The more tasks and available CPUs there are, the more work can be
53 * performed concurrently. This means that the potential that can go
54 * unrealized due to resource contention *also* scales with non-idle
55 * tasks and CPUs.
56 *
57 * Consider a scenario where 257 number crunching tasks are trying to
58 * run concurrently on 256 CPUs. If we simply aggregated the task
59 * states, we would have to conclude a CPU SOME pressure number of
60 * 100%, since *somebody* is waiting on a runqueue at all
61 * times. However, that is clearly not the amount of contention the
62 * workload is experiencing: only one out of 256 possible exceution
63 * threads will be contended at any given time, or about 0.4%.
64 *
65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66 * given time *one* of the tasks is delayed due to a lack of memory.
67 * Again, looking purely at the task state would yield a memory FULL
68 * pressure number of 0%, since *somebody* is always making forward
69 * progress. But again this wouldn't capture the amount of execution
70 * potential lost, which is 1 out of 4 CPUs, or 25%.
71 *
72 * To calculate wasted potential (pressure) with multiple processors,
73 * we have to base our calculation on the number of non-idle tasks in
74 * conjunction with the number of available CPUs, which is the number
75 * of potential execution threads. SOME becomes then the proportion of
76 * delayed tasks to possibe threads, and FULL is the share of possible
77 * threads that are unproductive due to delays:
78 *
79 * threads = min(nr_nonidle_tasks, nr_cpus)
80 * SOME = min(nr_delayed_tasks / threads, 1)
81 * FULL = (threads - min(nr_running_tasks, threads)) / threads
82 *
83 * For the 257 number crunchers on 256 CPUs, this yields:
84 *
85 * threads = min(257, 256)
86 * SOME = min(1 / 256, 1) = 0.4%
87 * FULL = (256 - min(257, 256)) / 256 = 0%
88 *
89 * For the 1 out of 4 memory-delayed tasks, this yields:
90 *
91 * threads = min(4, 4)
92 * SOME = min(1 / 4, 1) = 25%
93 * FULL = (4 - min(3, 4)) / 4 = 25%
94 *
95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
96 * extension of the single-CPU model. ]
97 *
98 * Implementation
99 *
100 * To assess the precise time spent in each such state, we would have
101 * to freeze the system on task changes and start/stop the state
102 * clocks accordingly. Obviously that doesn't scale in practice.
103 *
104 * Because the scheduler aims to distribute the compute load evenly
105 * among the available CPUs, we can track task state locally to each
106 * CPU and, at much lower frequency, extrapolate the global state for
107 * the cumulative stall times and the running averages.
108 *
109 * For each runqueue, we track:
110 *
111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
114 *
115 * and then periodically aggregate:
116 *
117 * tNONIDLE = sum(tNONIDLE[i])
118 *
119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
121 *
122 * %SOME = tSOME / period
123 * %FULL = tFULL / period
124 *
125 * This gives us an approximation of pressure that is practical
126 * cost-wise, yet way more sensitive and accurate than periodic
127 * sampling of the aggregate task states would be.
128 */
129
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
143 #include "sched.h"
144
145 static int psi_bug __read_mostly;
146
147 DEFINE_STATIC_KEY_FALSE(psi_disabled);
148
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
setup_psi(char * str)154 static int __init setup_psi(char *str)
155 {
156 return kstrtobool(str, &psi_enable) == 0;
157 }
158 __setup("psi=", setup_psi);
159
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s 1981 /* 1/exp(2s/60s) */
164 #define EXP_300s 2034 /* 1/exp(2s/300s) */
165
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
170
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly;
173
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
176 struct psi_group psi_system = {
177 .pcpu = &system_group_pcpu,
178 };
179
180 static void psi_avgs_work(struct work_struct *work);
181
182 static void poll_timer_fn(struct timer_list *t);
183
group_init(struct psi_group * group)184 static void group_init(struct psi_group *group)
185 {
186 int cpu;
187
188 for_each_possible_cpu(cpu)
189 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
190 group->avg_last_update = sched_clock();
191 group->avg_next_update = group->avg_last_update + psi_period;
192 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
193 mutex_init(&group->avgs_lock);
194 /* Init trigger-related members */
195 mutex_init(&group->trigger_lock);
196 INIT_LIST_HEAD(&group->triggers);
197 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
198 group->poll_states = 0;
199 group->poll_min_period = U32_MAX;
200 memset(group->polling_total, 0, sizeof(group->polling_total));
201 group->polling_next_update = ULLONG_MAX;
202 group->polling_until = 0;
203 init_waitqueue_head(&group->poll_wait);
204 timer_setup(&group->poll_timer, poll_timer_fn, 0);
205 rcu_assign_pointer(group->poll_task, NULL);
206 }
207
psi_init(void)208 void __init psi_init(void)
209 {
210 if (!psi_enable) {
211 static_branch_enable(&psi_disabled);
212 return;
213 }
214
215 psi_period = jiffies_to_nsecs(PSI_FREQ);
216 group_init(&psi_system);
217 }
218
test_state(unsigned int * tasks,enum psi_states state)219 static bool test_state(unsigned int *tasks, enum psi_states state)
220 {
221 switch (state) {
222 case PSI_IO_SOME:
223 return tasks[NR_IOWAIT];
224 case PSI_IO_FULL:
225 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
226 case PSI_MEM_SOME:
227 return tasks[NR_MEMSTALL];
228 case PSI_MEM_FULL:
229 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
230 case PSI_CPU_SOME:
231 return tasks[NR_RUNNING] > tasks[NR_ONCPU];
232 case PSI_NONIDLE:
233 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
234 tasks[NR_RUNNING];
235 default:
236 return false;
237 }
238 }
239
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)240 static void get_recent_times(struct psi_group *group, int cpu,
241 enum psi_aggregators aggregator, u32 *times,
242 u32 *pchanged_states)
243 {
244 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
245 u64 now, state_start;
246 enum psi_states s;
247 unsigned int seq;
248 u32 state_mask;
249
250 *pchanged_states = 0;
251
252 /* Snapshot a coherent view of the CPU state */
253 do {
254 seq = read_seqcount_begin(&groupc->seq);
255 now = cpu_clock(cpu);
256 memcpy(times, groupc->times, sizeof(groupc->times));
257 state_mask = groupc->state_mask;
258 state_start = groupc->state_start;
259 } while (read_seqcount_retry(&groupc->seq, seq));
260
261 /* Calculate state time deltas against the previous snapshot */
262 for (s = 0; s < NR_PSI_STATES; s++) {
263 u32 delta;
264 /*
265 * In addition to already concluded states, we also
266 * incorporate currently active states on the CPU,
267 * since states may last for many sampling periods.
268 *
269 * This way we keep our delta sampling buckets small
270 * (u32) and our reported pressure close to what's
271 * actually happening.
272 */
273 if (state_mask & (1 << s))
274 times[s] += now - state_start;
275
276 delta = times[s] - groupc->times_prev[aggregator][s];
277 groupc->times_prev[aggregator][s] = times[s];
278
279 times[s] = delta;
280 if (delta)
281 *pchanged_states |= (1 << s);
282 }
283 }
284
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)285 static void calc_avgs(unsigned long avg[3], int missed_periods,
286 u64 time, u64 period)
287 {
288 unsigned long pct;
289
290 /* Fill in zeroes for periods of no activity */
291 if (missed_periods) {
292 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
293 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
294 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
295 }
296
297 /* Sample the most recent active period */
298 pct = div_u64(time * 100, period);
299 pct *= FIXED_1;
300 avg[0] = calc_load(avg[0], EXP_10s, pct);
301 avg[1] = calc_load(avg[1], EXP_60s, pct);
302 avg[2] = calc_load(avg[2], EXP_300s, pct);
303 }
304
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)305 static void collect_percpu_times(struct psi_group *group,
306 enum psi_aggregators aggregator,
307 u32 *pchanged_states)
308 {
309 u64 deltas[NR_PSI_STATES - 1] = { 0, };
310 unsigned long nonidle_total = 0;
311 u32 changed_states = 0;
312 int cpu;
313 int s;
314
315 /*
316 * Collect the per-cpu time buckets and average them into a
317 * single time sample that is normalized to wallclock time.
318 *
319 * For averaging, each CPU is weighted by its non-idle time in
320 * the sampling period. This eliminates artifacts from uneven
321 * loading, or even entirely idle CPUs.
322 */
323 for_each_possible_cpu(cpu) {
324 u32 times[NR_PSI_STATES];
325 u32 nonidle;
326 u32 cpu_changed_states;
327
328 get_recent_times(group, cpu, aggregator, times,
329 &cpu_changed_states);
330 changed_states |= cpu_changed_states;
331
332 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
333 nonidle_total += nonidle;
334
335 for (s = 0; s < PSI_NONIDLE; s++)
336 deltas[s] += (u64)times[s] * nonidle;
337 }
338
339 /*
340 * Integrate the sample into the running statistics that are
341 * reported to userspace: the cumulative stall times and the
342 * decaying averages.
343 *
344 * Pressure percentages are sampled at PSI_FREQ. We might be
345 * called more often when the user polls more frequently than
346 * that; we might be called less often when there is no task
347 * activity, thus no data, and clock ticks are sporadic. The
348 * below handles both.
349 */
350
351 /* total= */
352 for (s = 0; s < NR_PSI_STATES - 1; s++)
353 group->total[aggregator][s] +=
354 div_u64(deltas[s], max(nonidle_total, 1UL));
355
356 if (pchanged_states)
357 *pchanged_states = changed_states;
358 }
359
update_averages(struct psi_group * group,u64 now)360 static u64 update_averages(struct psi_group *group, u64 now)
361 {
362 unsigned long missed_periods = 0;
363 u64 expires, period;
364 u64 avg_next_update;
365 int s;
366
367 /* avgX= */
368 expires = group->avg_next_update;
369 if (now - expires >= psi_period)
370 missed_periods = div_u64(now - expires, psi_period);
371
372 /*
373 * The periodic clock tick can get delayed for various
374 * reasons, especially on loaded systems. To avoid clock
375 * drift, we schedule the clock in fixed psi_period intervals.
376 * But the deltas we sample out of the per-cpu buckets above
377 * are based on the actual time elapsing between clock ticks.
378 */
379 avg_next_update = expires + ((1 + missed_periods) * psi_period);
380 period = now - (group->avg_last_update + (missed_periods * psi_period));
381 group->avg_last_update = now;
382
383 for (s = 0; s < NR_PSI_STATES - 1; s++) {
384 u32 sample;
385
386 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
387 /*
388 * Due to the lockless sampling of the time buckets,
389 * recorded time deltas can slip into the next period,
390 * which under full pressure can result in samples in
391 * excess of the period length.
392 *
393 * We don't want to report non-sensical pressures in
394 * excess of 100%, nor do we want to drop such events
395 * on the floor. Instead we punt any overage into the
396 * future until pressure subsides. By doing this we
397 * don't underreport the occurring pressure curve, we
398 * just report it delayed by one period length.
399 *
400 * The error isn't cumulative. As soon as another
401 * delta slips from a period P to P+1, by definition
402 * it frees up its time T in P.
403 */
404 if (sample > period)
405 sample = period;
406 group->avg_total[s] += sample;
407 calc_avgs(group->avg[s], missed_periods, sample, period);
408 }
409
410 return avg_next_update;
411 }
412
psi_avgs_work(struct work_struct * work)413 static void psi_avgs_work(struct work_struct *work)
414 {
415 struct delayed_work *dwork;
416 struct psi_group *group;
417 u32 changed_states;
418 bool nonidle;
419 u64 now;
420
421 dwork = to_delayed_work(work);
422 group = container_of(dwork, struct psi_group, avgs_work);
423
424 mutex_lock(&group->avgs_lock);
425
426 now = sched_clock();
427
428 collect_percpu_times(group, PSI_AVGS, &changed_states);
429 nonidle = changed_states & (1 << PSI_NONIDLE);
430 /*
431 * If there is task activity, periodically fold the per-cpu
432 * times and feed samples into the running averages. If things
433 * are idle and there is no data to process, stop the clock.
434 * Once restarted, we'll catch up the running averages in one
435 * go - see calc_avgs() and missed_periods.
436 */
437 if (now >= group->avg_next_update)
438 group->avg_next_update = update_averages(group, now);
439
440 if (nonidle) {
441 schedule_delayed_work(dwork, nsecs_to_jiffies(
442 group->avg_next_update - now) + 1);
443 }
444
445 mutex_unlock(&group->avgs_lock);
446 }
447
448 /* Trigger tracking window manupulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)449 static void window_reset(struct psi_window *win, u64 now, u64 value,
450 u64 prev_growth)
451 {
452 win->start_time = now;
453 win->start_value = value;
454 win->prev_growth = prev_growth;
455 }
456
457 /*
458 * PSI growth tracking window update and growth calculation routine.
459 *
460 * This approximates a sliding tracking window by interpolating
461 * partially elapsed windows using historical growth data from the
462 * previous intervals. This minimizes memory requirements (by not storing
463 * all the intermediate values in the previous window) and simplifies
464 * the calculations. It works well because PSI signal changes only in
465 * positive direction and over relatively small window sizes the growth
466 * is close to linear.
467 */
window_update(struct psi_window * win,u64 now,u64 value)468 static u64 window_update(struct psi_window *win, u64 now, u64 value)
469 {
470 u64 elapsed;
471 u64 growth;
472
473 elapsed = now - win->start_time;
474 growth = value - win->start_value;
475 /*
476 * After each tracking window passes win->start_value and
477 * win->start_time get reset and win->prev_growth stores
478 * the average per-window growth of the previous window.
479 * win->prev_growth is then used to interpolate additional
480 * growth from the previous window assuming it was linear.
481 */
482 if (elapsed > win->size)
483 window_reset(win, now, value, growth);
484 else {
485 u32 remaining;
486
487 remaining = win->size - elapsed;
488 growth += div64_u64(win->prev_growth * remaining, win->size);
489 }
490
491 return growth;
492 }
493
init_triggers(struct psi_group * group,u64 now)494 static void init_triggers(struct psi_group *group, u64 now)
495 {
496 struct psi_trigger *t;
497
498 list_for_each_entry(t, &group->triggers, node)
499 window_reset(&t->win, now,
500 group->total[PSI_POLL][t->state], 0);
501 memcpy(group->polling_total, group->total[PSI_POLL],
502 sizeof(group->polling_total));
503 group->polling_next_update = now + group->poll_min_period;
504 }
505
update_triggers(struct psi_group * group,u64 now)506 static u64 update_triggers(struct psi_group *group, u64 now)
507 {
508 struct psi_trigger *t;
509 bool new_stall = false;
510 u64 *total = group->total[PSI_POLL];
511
512 /*
513 * On subsequent updates, calculate growth deltas and let
514 * watchers know when their specified thresholds are exceeded.
515 */
516 list_for_each_entry(t, &group->triggers, node) {
517 u64 growth;
518
519 /* Check for stall activity */
520 if (group->polling_total[t->state] == total[t->state])
521 continue;
522
523 /*
524 * Multiple triggers might be looking at the same state,
525 * remember to update group->polling_total[] once we've
526 * been through all of them. Also remember to extend the
527 * polling time if we see new stall activity.
528 */
529 new_stall = true;
530
531 /* Calculate growth since last update */
532 growth = window_update(&t->win, now, total[t->state]);
533 if (growth < t->threshold)
534 continue;
535
536 /* Limit event signaling to once per window */
537 if (now < t->last_event_time + t->win.size)
538 continue;
539
540 /* Generate an event */
541 if (cmpxchg(&t->event, 0, 1) == 0)
542 wake_up_interruptible(&t->event_wait);
543 t->last_event_time = now;
544 }
545
546 if (new_stall)
547 memcpy(group->polling_total, total,
548 sizeof(group->polling_total));
549
550 return now + group->poll_min_period;
551 }
552
553 /* Schedule polling if it's not already scheduled. */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)554 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
555 {
556 struct task_struct *task;
557
558 /*
559 * Do not reschedule if already scheduled.
560 * Possible race with a timer scheduled after this check but before
561 * mod_timer below can be tolerated because group->polling_next_update
562 * will keep updates on schedule.
563 */
564 if (timer_pending(&group->poll_timer))
565 return;
566
567 rcu_read_lock();
568
569 task = rcu_dereference(group->poll_task);
570 /*
571 * kworker might be NULL in case psi_trigger_destroy races with
572 * psi_task_change (hotpath) which can't use locks
573 */
574 if (likely(task))
575 mod_timer(&group->poll_timer, jiffies + delay);
576
577 rcu_read_unlock();
578 }
579
psi_poll_work(struct psi_group * group)580 static void psi_poll_work(struct psi_group *group)
581 {
582 u32 changed_states;
583 u64 now;
584
585 mutex_lock(&group->trigger_lock);
586
587 now = sched_clock();
588
589 collect_percpu_times(group, PSI_POLL, &changed_states);
590
591 if (changed_states & group->poll_states) {
592 /* Initialize trigger windows when entering polling mode */
593 if (now > group->polling_until)
594 init_triggers(group, now);
595
596 /*
597 * Keep the monitor active for at least the duration of the
598 * minimum tracking window as long as monitor states are
599 * changing.
600 */
601 group->polling_until = now +
602 group->poll_min_period * UPDATES_PER_WINDOW;
603 }
604
605 if (now > group->polling_until) {
606 group->polling_next_update = ULLONG_MAX;
607 goto out;
608 }
609
610 if (now >= group->polling_next_update)
611 group->polling_next_update = update_triggers(group, now);
612
613 psi_schedule_poll_work(group,
614 nsecs_to_jiffies(group->polling_next_update - now) + 1);
615
616 out:
617 mutex_unlock(&group->trigger_lock);
618 }
619
psi_poll_worker(void * data)620 static int psi_poll_worker(void *data)
621 {
622 struct psi_group *group = (struct psi_group *)data;
623
624 sched_set_fifo_low(current);
625
626 while (true) {
627 wait_event_interruptible(group->poll_wait,
628 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
629 kthread_should_stop());
630 if (kthread_should_stop())
631 break;
632
633 psi_poll_work(group);
634 }
635 return 0;
636 }
637
poll_timer_fn(struct timer_list * t)638 static void poll_timer_fn(struct timer_list *t)
639 {
640 struct psi_group *group = from_timer(group, t, poll_timer);
641
642 atomic_set(&group->poll_wakeup, 1);
643 wake_up_interruptible(&group->poll_wait);
644 }
645
record_times(struct psi_group_cpu * groupc,int cpu,bool memstall_tick)646 static void record_times(struct psi_group_cpu *groupc, int cpu,
647 bool memstall_tick)
648 {
649 u32 delta;
650 u64 now;
651
652 now = cpu_clock(cpu);
653 delta = now - groupc->state_start;
654 groupc->state_start = now;
655
656 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
657 groupc->times[PSI_IO_SOME] += delta;
658 if (groupc->state_mask & (1 << PSI_IO_FULL))
659 groupc->times[PSI_IO_FULL] += delta;
660 }
661
662 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
663 groupc->times[PSI_MEM_SOME] += delta;
664 if (groupc->state_mask & (1 << PSI_MEM_FULL))
665 groupc->times[PSI_MEM_FULL] += delta;
666 else if (memstall_tick) {
667 u32 sample;
668 /*
669 * Since we care about lost potential, a
670 * memstall is FULL when there are no other
671 * working tasks, but also when the CPU is
672 * actively reclaiming and nothing productive
673 * could run even if it were runnable.
674 *
675 * When the timer tick sees a reclaiming CPU,
676 * regardless of runnable tasks, sample a FULL
677 * tick (or less if it hasn't been a full tick
678 * since the last state change).
679 */
680 sample = min(delta, (u32)jiffies_to_nsecs(1));
681 groupc->times[PSI_MEM_FULL] += sample;
682 }
683 }
684
685 if (groupc->state_mask & (1 << PSI_CPU_SOME))
686 groupc->times[PSI_CPU_SOME] += delta;
687
688 if (groupc->state_mask & (1 << PSI_NONIDLE))
689 groupc->times[PSI_NONIDLE] += delta;
690 }
691
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,bool wake_clock)692 static void psi_group_change(struct psi_group *group, int cpu,
693 unsigned int clear, unsigned int set,
694 bool wake_clock)
695 {
696 struct psi_group_cpu *groupc;
697 u32 state_mask = 0;
698 unsigned int t, m;
699 enum psi_states s;
700
701 groupc = per_cpu_ptr(group->pcpu, cpu);
702
703 /*
704 * First we assess the aggregate resource states this CPU's
705 * tasks have been in since the last change, and account any
706 * SOME and FULL time these may have resulted in.
707 *
708 * Then we update the task counts according to the state
709 * change requested through the @clear and @set bits.
710 */
711 write_seqcount_begin(&groupc->seq);
712
713 record_times(groupc, cpu, false);
714
715 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
716 if (!(m & (1 << t)))
717 continue;
718 if (groupc->tasks[t]) {
719 groupc->tasks[t]--;
720 } else if (!psi_bug) {
721 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
722 cpu, t, groupc->tasks[0],
723 groupc->tasks[1], groupc->tasks[2],
724 groupc->tasks[3], clear, set);
725 psi_bug = 1;
726 }
727 }
728
729 for (t = 0; set; set &= ~(1 << t), t++)
730 if (set & (1 << t))
731 groupc->tasks[t]++;
732
733 /* Calculate state mask representing active states */
734 for (s = 0; s < NR_PSI_STATES; s++) {
735 if (test_state(groupc->tasks, s))
736 state_mask |= (1 << s);
737 }
738 groupc->state_mask = state_mask;
739
740 write_seqcount_end(&groupc->seq);
741
742 if (state_mask & group->poll_states)
743 psi_schedule_poll_work(group, 1);
744
745 if (wake_clock && !delayed_work_pending(&group->avgs_work))
746 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
747 }
748
iterate_groups(struct task_struct * task,void ** iter)749 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
750 {
751 #ifdef CONFIG_CGROUPS
752 struct cgroup *cgroup = NULL;
753
754 if (!*iter)
755 cgroup = task->cgroups->dfl_cgrp;
756 else if (*iter == &psi_system)
757 return NULL;
758 else
759 cgroup = cgroup_parent(*iter);
760
761 if (cgroup && cgroup_parent(cgroup)) {
762 *iter = cgroup;
763 return cgroup_psi(cgroup);
764 }
765 #else
766 if (*iter)
767 return NULL;
768 #endif
769 *iter = &psi_system;
770 return &psi_system;
771 }
772
psi_flags_change(struct task_struct * task,int clear,int set)773 static void psi_flags_change(struct task_struct *task, int clear, int set)
774 {
775 if (((task->psi_flags & set) ||
776 (task->psi_flags & clear) != clear) &&
777 !psi_bug) {
778 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
779 task->pid, task->comm, task_cpu(task),
780 task->psi_flags, clear, set);
781 psi_bug = 1;
782 }
783
784 task->psi_flags &= ~clear;
785 task->psi_flags |= set;
786 }
787
psi_task_change(struct task_struct * task,int clear,int set)788 void psi_task_change(struct task_struct *task, int clear, int set)
789 {
790 int cpu = task_cpu(task);
791 struct psi_group *group;
792 bool wake_clock = true;
793 void *iter = NULL;
794
795 if (!task->pid)
796 return;
797
798 psi_flags_change(task, clear, set);
799
800 /*
801 * Periodic aggregation shuts off if there is a period of no
802 * task changes, so we wake it back up if necessary. However,
803 * don't do this if the task change is the aggregation worker
804 * itself going to sleep, or we'll ping-pong forever.
805 */
806 if (unlikely((clear & TSK_RUNNING) &&
807 (task->flags & PF_WQ_WORKER) &&
808 wq_worker_last_func(task) == psi_avgs_work))
809 wake_clock = false;
810
811 while ((group = iterate_groups(task, &iter)))
812 psi_group_change(group, cpu, clear, set, wake_clock);
813 }
814
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)815 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
816 bool sleep)
817 {
818 struct psi_group *group, *common = NULL;
819 int cpu = task_cpu(prev);
820 void *iter;
821
822 if (next->pid) {
823 psi_flags_change(next, 0, TSK_ONCPU);
824 /*
825 * When moving state between tasks, the group that
826 * contains them both does not change: we can stop
827 * updating the tree once we reach the first common
828 * ancestor. Iterate @next's ancestors until we
829 * encounter @prev's state.
830 */
831 iter = NULL;
832 while ((group = iterate_groups(next, &iter))) {
833 if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
834 common = group;
835 break;
836 }
837
838 psi_group_change(group, cpu, 0, TSK_ONCPU, true);
839 }
840 }
841
842 /*
843 * If this is a voluntary sleep, dequeue will have taken care
844 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
845 * only need to deal with it during preemption.
846 */
847 if (sleep)
848 return;
849
850 if (prev->pid) {
851 psi_flags_change(prev, TSK_ONCPU, 0);
852
853 iter = NULL;
854 while ((group = iterate_groups(prev, &iter)) && group != common)
855 psi_group_change(group, cpu, TSK_ONCPU, 0, true);
856 }
857 }
858
psi_memstall_tick(struct task_struct * task,int cpu)859 void psi_memstall_tick(struct task_struct *task, int cpu)
860 {
861 struct psi_group *group;
862 void *iter = NULL;
863
864 while ((group = iterate_groups(task, &iter))) {
865 struct psi_group_cpu *groupc;
866
867 groupc = per_cpu_ptr(group->pcpu, cpu);
868 write_seqcount_begin(&groupc->seq);
869 record_times(groupc, cpu, true);
870 write_seqcount_end(&groupc->seq);
871 }
872 }
873
874 /**
875 * psi_memstall_enter - mark the beginning of a memory stall section
876 * @flags: flags to handle nested sections
877 *
878 * Marks the calling task as being stalled due to a lack of memory,
879 * such as waiting for a refault or performing reclaim.
880 */
psi_memstall_enter(unsigned long * flags)881 void psi_memstall_enter(unsigned long *flags)
882 {
883 struct rq_flags rf;
884 struct rq *rq;
885
886 if (static_branch_likely(&psi_disabled))
887 return;
888
889 *flags = current->in_memstall;
890 if (*flags)
891 return;
892 /*
893 * in_memstall setting & accounting needs to be atomic wrt
894 * changes to the task's scheduling state, otherwise we can
895 * race with CPU migration.
896 */
897 rq = this_rq_lock_irq(&rf);
898
899 current->in_memstall = 1;
900 psi_task_change(current, 0, TSK_MEMSTALL);
901
902 rq_unlock_irq(rq, &rf);
903 }
904
905 /**
906 * psi_memstall_leave - mark the end of an memory stall section
907 * @flags: flags to handle nested memdelay sections
908 *
909 * Marks the calling task as no longer stalled due to lack of memory.
910 */
psi_memstall_leave(unsigned long * flags)911 void psi_memstall_leave(unsigned long *flags)
912 {
913 struct rq_flags rf;
914 struct rq *rq;
915
916 if (static_branch_likely(&psi_disabled))
917 return;
918
919 if (*flags)
920 return;
921 /*
922 * in_memstall clearing & accounting needs to be atomic wrt
923 * changes to the task's scheduling state, otherwise we could
924 * race with CPU migration.
925 */
926 rq = this_rq_lock_irq(&rf);
927
928 current->in_memstall = 0;
929 psi_task_change(current, TSK_MEMSTALL, 0);
930
931 rq_unlock_irq(rq, &rf);
932 }
933
934 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)935 int psi_cgroup_alloc(struct cgroup *cgroup)
936 {
937 if (static_branch_likely(&psi_disabled))
938 return 0;
939
940 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
941 if (!cgroup->psi.pcpu)
942 return -ENOMEM;
943 group_init(&cgroup->psi);
944 return 0;
945 }
946
psi_cgroup_free(struct cgroup * cgroup)947 void psi_cgroup_free(struct cgroup *cgroup)
948 {
949 if (static_branch_likely(&psi_disabled))
950 return;
951
952 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
953 free_percpu(cgroup->psi.pcpu);
954 /* All triggers must be removed by now */
955 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
956 }
957
958 /**
959 * cgroup_move_task - move task to a different cgroup
960 * @task: the task
961 * @to: the target css_set
962 *
963 * Move task to a new cgroup and safely migrate its associated stall
964 * state between the different groups.
965 *
966 * This function acquires the task's rq lock to lock out concurrent
967 * changes to the task's scheduling state and - in case the task is
968 * running - concurrent changes to its stall state.
969 */
cgroup_move_task(struct task_struct * task,struct css_set * to)970 void cgroup_move_task(struct task_struct *task, struct css_set *to)
971 {
972 unsigned int task_flags = 0;
973 struct rq_flags rf;
974 struct rq *rq;
975
976 if (static_branch_likely(&psi_disabled)) {
977 /*
978 * Lame to do this here, but the scheduler cannot be locked
979 * from the outside, so we move cgroups from inside sched/.
980 */
981 rcu_assign_pointer(task->cgroups, to);
982 return;
983 }
984
985 rq = task_rq_lock(task, &rf);
986
987 if (task_on_rq_queued(task)) {
988 task_flags = TSK_RUNNING;
989 if (task_current(rq, task))
990 task_flags |= TSK_ONCPU;
991 } else if (task->in_iowait)
992 task_flags = TSK_IOWAIT;
993
994 if (task->in_memstall)
995 task_flags |= TSK_MEMSTALL;
996
997 if (task_flags)
998 psi_task_change(task, task_flags, 0);
999
1000 /* See comment above */
1001 rcu_assign_pointer(task->cgroups, to);
1002
1003 if (task_flags)
1004 psi_task_change(task, 0, task_flags);
1005
1006 task_rq_unlock(rq, task, &rf);
1007 }
1008 #endif /* CONFIG_CGROUPS */
1009
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1010 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1011 {
1012 int full;
1013 u64 now;
1014
1015 if (static_branch_likely(&psi_disabled))
1016 return -EOPNOTSUPP;
1017
1018 /* Update averages before reporting them */
1019 mutex_lock(&group->avgs_lock);
1020 now = sched_clock();
1021 collect_percpu_times(group, PSI_AVGS, NULL);
1022 if (now >= group->avg_next_update)
1023 group->avg_next_update = update_averages(group, now);
1024 mutex_unlock(&group->avgs_lock);
1025
1026 for (full = 0; full < 2 - (res == PSI_CPU); full++) {
1027 unsigned long avg[3];
1028 u64 total;
1029 int w;
1030
1031 for (w = 0; w < 3; w++)
1032 avg[w] = group->avg[res * 2 + full][w];
1033 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1034 NSEC_PER_USEC);
1035
1036 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1037 full ? "full" : "some",
1038 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1039 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1040 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1041 total);
1042 }
1043
1044 return 0;
1045 }
1046
psi_io_show(struct seq_file * m,void * v)1047 static int psi_io_show(struct seq_file *m, void *v)
1048 {
1049 return psi_show(m, &psi_system, PSI_IO);
1050 }
1051
psi_memory_show(struct seq_file * m,void * v)1052 static int psi_memory_show(struct seq_file *m, void *v)
1053 {
1054 return psi_show(m, &psi_system, PSI_MEM);
1055 }
1056
psi_cpu_show(struct seq_file * m,void * v)1057 static int psi_cpu_show(struct seq_file *m, void *v)
1058 {
1059 return psi_show(m, &psi_system, PSI_CPU);
1060 }
1061
psi_io_open(struct inode * inode,struct file * file)1062 static int psi_io_open(struct inode *inode, struct file *file)
1063 {
1064 return single_open(file, psi_io_show, NULL);
1065 }
1066
psi_memory_open(struct inode * inode,struct file * file)1067 static int psi_memory_open(struct inode *inode, struct file *file)
1068 {
1069 return single_open(file, psi_memory_show, NULL);
1070 }
1071
psi_cpu_open(struct inode * inode,struct file * file)1072 static int psi_cpu_open(struct inode *inode, struct file *file)
1073 {
1074 return single_open(file, psi_cpu_show, NULL);
1075 }
1076
psi_trigger_create(struct psi_group * group,char * buf,size_t nbytes,enum psi_res res)1077 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1078 char *buf, size_t nbytes, enum psi_res res)
1079 {
1080 struct psi_trigger *t;
1081 enum psi_states state;
1082 u32 threshold_us;
1083 u32 window_us;
1084
1085 if (static_branch_likely(&psi_disabled))
1086 return ERR_PTR(-EOPNOTSUPP);
1087
1088 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1089 state = PSI_IO_SOME + res * 2;
1090 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1091 state = PSI_IO_FULL + res * 2;
1092 else
1093 return ERR_PTR(-EINVAL);
1094
1095 if (state >= PSI_NONIDLE)
1096 return ERR_PTR(-EINVAL);
1097
1098 if (window_us < WINDOW_MIN_US ||
1099 window_us > WINDOW_MAX_US)
1100 return ERR_PTR(-EINVAL);
1101
1102 /* Check threshold */
1103 if (threshold_us == 0 || threshold_us > window_us)
1104 return ERR_PTR(-EINVAL);
1105
1106 t = kmalloc(sizeof(*t), GFP_KERNEL);
1107 if (!t)
1108 return ERR_PTR(-ENOMEM);
1109
1110 t->group = group;
1111 t->state = state;
1112 t->threshold = threshold_us * NSEC_PER_USEC;
1113 t->win.size = window_us * NSEC_PER_USEC;
1114 window_reset(&t->win, 0, 0, 0);
1115
1116 t->event = 0;
1117 t->last_event_time = 0;
1118 init_waitqueue_head(&t->event_wait);
1119
1120 mutex_lock(&group->trigger_lock);
1121
1122 if (!rcu_access_pointer(group->poll_task)) {
1123 struct task_struct *task;
1124
1125 task = kthread_create(psi_poll_worker, group, "psimon");
1126 if (IS_ERR(task)) {
1127 kfree(t);
1128 mutex_unlock(&group->trigger_lock);
1129 return ERR_CAST(task);
1130 }
1131 atomic_set(&group->poll_wakeup, 0);
1132 wake_up_process(task);
1133 rcu_assign_pointer(group->poll_task, task);
1134 }
1135
1136 list_add(&t->node, &group->triggers);
1137 group->poll_min_period = min(group->poll_min_period,
1138 div_u64(t->win.size, UPDATES_PER_WINDOW));
1139 group->nr_triggers[t->state]++;
1140 group->poll_states |= (1 << t->state);
1141
1142 mutex_unlock(&group->trigger_lock);
1143
1144 return t;
1145 }
1146
psi_trigger_destroy(struct psi_trigger * t)1147 void psi_trigger_destroy(struct psi_trigger *t)
1148 {
1149 struct psi_group *group;
1150 struct task_struct *task_to_destroy = NULL;
1151
1152 /*
1153 * We do not check psi_disabled since it might have been disabled after
1154 * the trigger got created.
1155 */
1156 if (!t)
1157 return;
1158
1159 group = t->group;
1160 /*
1161 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1162 * from under a polling process.
1163 */
1164 wake_up_interruptible(&t->event_wait);
1165
1166 mutex_lock(&group->trigger_lock);
1167
1168 if (!list_empty(&t->node)) {
1169 struct psi_trigger *tmp;
1170 u64 period = ULLONG_MAX;
1171
1172 list_del(&t->node);
1173 group->nr_triggers[t->state]--;
1174 if (!group->nr_triggers[t->state])
1175 group->poll_states &= ~(1 << t->state);
1176 /* reset min update period for the remaining triggers */
1177 list_for_each_entry(tmp, &group->triggers, node)
1178 period = min(period, div_u64(tmp->win.size,
1179 UPDATES_PER_WINDOW));
1180 group->poll_min_period = period;
1181 /* Destroy poll_task when the last trigger is destroyed */
1182 if (group->poll_states == 0) {
1183 group->polling_until = 0;
1184 task_to_destroy = rcu_dereference_protected(
1185 group->poll_task,
1186 lockdep_is_held(&group->trigger_lock));
1187 rcu_assign_pointer(group->poll_task, NULL);
1188 del_timer(&group->poll_timer);
1189 }
1190 }
1191
1192 mutex_unlock(&group->trigger_lock);
1193
1194 /*
1195 * Wait for psi_schedule_poll_work RCU to complete its read-side
1196 * critical section before destroying the trigger and optionally the
1197 * poll_task.
1198 */
1199 synchronize_rcu();
1200 /*
1201 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1202 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1203 */
1204 if (task_to_destroy) {
1205 /*
1206 * After the RCU grace period has expired, the worker
1207 * can no longer be found through group->poll_task.
1208 */
1209 kthread_stop(task_to_destroy);
1210 }
1211 kfree(t);
1212 }
1213
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1214 __poll_t psi_trigger_poll(void **trigger_ptr,
1215 struct file *file, poll_table *wait)
1216 {
1217 __poll_t ret = DEFAULT_POLLMASK;
1218 struct psi_trigger *t;
1219
1220 if (static_branch_likely(&psi_disabled))
1221 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1222
1223 t = smp_load_acquire(trigger_ptr);
1224 if (!t)
1225 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1226
1227 poll_wait(file, &t->event_wait, wait);
1228
1229 if (cmpxchg(&t->event, 1, 0) == 1)
1230 ret |= EPOLLPRI;
1231
1232 return ret;
1233 }
1234
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1235 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1236 size_t nbytes, enum psi_res res)
1237 {
1238 char buf[32];
1239 size_t buf_size;
1240 struct seq_file *seq;
1241 struct psi_trigger *new;
1242
1243 if (static_branch_likely(&psi_disabled))
1244 return -EOPNOTSUPP;
1245
1246 if (!nbytes)
1247 return -EINVAL;
1248
1249 buf_size = min(nbytes, sizeof(buf));
1250 if (copy_from_user(buf, user_buf, buf_size))
1251 return -EFAULT;
1252
1253 buf[buf_size - 1] = '\0';
1254
1255 seq = file->private_data;
1256
1257 /* Take seq->lock to protect seq->private from concurrent writes */
1258 mutex_lock(&seq->lock);
1259
1260 /* Allow only one trigger per file descriptor */
1261 if (seq->private) {
1262 mutex_unlock(&seq->lock);
1263 return -EBUSY;
1264 }
1265
1266 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1267 if (IS_ERR(new)) {
1268 mutex_unlock(&seq->lock);
1269 return PTR_ERR(new);
1270 }
1271
1272 smp_store_release(&seq->private, new);
1273 mutex_unlock(&seq->lock);
1274
1275 return nbytes;
1276 }
1277
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1278 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1279 size_t nbytes, loff_t *ppos)
1280 {
1281 return psi_write(file, user_buf, nbytes, PSI_IO);
1282 }
1283
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1284 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1285 size_t nbytes, loff_t *ppos)
1286 {
1287 return psi_write(file, user_buf, nbytes, PSI_MEM);
1288 }
1289
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1290 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1291 size_t nbytes, loff_t *ppos)
1292 {
1293 return psi_write(file, user_buf, nbytes, PSI_CPU);
1294 }
1295
psi_fop_poll(struct file * file,poll_table * wait)1296 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1297 {
1298 struct seq_file *seq = file->private_data;
1299
1300 return psi_trigger_poll(&seq->private, file, wait);
1301 }
1302
psi_fop_release(struct inode * inode,struct file * file)1303 static int psi_fop_release(struct inode *inode, struct file *file)
1304 {
1305 struct seq_file *seq = file->private_data;
1306
1307 psi_trigger_destroy(seq->private);
1308 return single_release(inode, file);
1309 }
1310
1311 static const struct proc_ops psi_io_proc_ops = {
1312 .proc_open = psi_io_open,
1313 .proc_read = seq_read,
1314 .proc_lseek = seq_lseek,
1315 .proc_write = psi_io_write,
1316 .proc_poll = psi_fop_poll,
1317 .proc_release = psi_fop_release,
1318 };
1319
1320 static const struct proc_ops psi_memory_proc_ops = {
1321 .proc_open = psi_memory_open,
1322 .proc_read = seq_read,
1323 .proc_lseek = seq_lseek,
1324 .proc_write = psi_memory_write,
1325 .proc_poll = psi_fop_poll,
1326 .proc_release = psi_fop_release,
1327 };
1328
1329 static const struct proc_ops psi_cpu_proc_ops = {
1330 .proc_open = psi_cpu_open,
1331 .proc_read = seq_read,
1332 .proc_lseek = seq_lseek,
1333 .proc_write = psi_cpu_write,
1334 .proc_poll = psi_fop_poll,
1335 .proc_release = psi_fop_release,
1336 };
1337
psi_proc_init(void)1338 static int __init psi_proc_init(void)
1339 {
1340 if (psi_enable) {
1341 proc_mkdir("pressure", NULL);
1342 proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1343 proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1344 proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1345 }
1346 return 0;
1347 }
1348 module_init(psi_proc_init);
1349