1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 * Zoltan Sogor
11 */
12
13 /*
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
21 *
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
31 *
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
41 *
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
47 *
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
53 *
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
56 *
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
59 */
60
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64
65 /**
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
69 */
ubifs_ro_mode(struct ubifs_info * c,int err)70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72 if (!c->ro_error) {
73 c->ro_error = 1;
74 c->no_chk_data_crc = 0;
75 c->vfs_sb->s_flags |= SB_RDONLY;
76 ubifs_warn(c, "switched to read-only mode, error %d", err);
77 dump_stack();
78 }
79 }
80
81 /*
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
85 */
86
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 int len, int even_ebadmsg)
89 {
90 int err;
91
92 err = ubi_read(c->ubi, lnum, buf, offs, len);
93 /*
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
96 */
97 if (err && (err != -EBADMSG || even_ebadmsg)) {
98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 len, lnum, offs, err);
100 dump_stack();
101 }
102 return err;
103 }
104
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106 int len)
107 {
108 int err;
109
110 ubifs_assert(c, !c->ro_media && !c->ro_mount);
111 if (c->ro_error)
112 return -EROFS;
113 if (!dbg_is_tst_rcvry(c))
114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115 else
116 err = dbg_leb_write(c, lnum, buf, offs, len);
117 if (err) {
118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 len, lnum, offs, err);
120 ubifs_ro_mode(c, err);
121 dump_stack();
122 }
123 return err;
124 }
125
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128 int err;
129
130 ubifs_assert(c, !c->ro_media && !c->ro_mount);
131 if (c->ro_error)
132 return -EROFS;
133 if (!dbg_is_tst_rcvry(c))
134 err = ubi_leb_change(c->ubi, lnum, buf, len);
135 else
136 err = dbg_leb_change(c, lnum, buf, len);
137 if (err) {
138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139 len, lnum, err);
140 ubifs_ro_mode(c, err);
141 dump_stack();
142 }
143 return err;
144 }
145
ubifs_leb_unmap(struct ubifs_info * c,int lnum)146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148 int err;
149
150 ubifs_assert(c, !c->ro_media && !c->ro_mount);
151 if (c->ro_error)
152 return -EROFS;
153 if (!dbg_is_tst_rcvry(c))
154 err = ubi_leb_unmap(c->ubi, lnum);
155 else
156 err = dbg_leb_unmap(c, lnum);
157 if (err) {
158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 ubifs_ro_mode(c, err);
160 dump_stack();
161 }
162 return err;
163 }
164
ubifs_leb_map(struct ubifs_info * c,int lnum)165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167 int err;
168
169 ubifs_assert(c, !c->ro_media && !c->ro_mount);
170 if (c->ro_error)
171 return -EROFS;
172 if (!dbg_is_tst_rcvry(c))
173 err = ubi_leb_map(c->ubi, lnum);
174 else
175 err = dbg_leb_map(c, lnum);
176 if (err) {
177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 ubifs_ro_mode(c, err);
179 dump_stack();
180 }
181 return err;
182 }
183
ubifs_is_mapped(const struct ubifs_info * c,int lnum)184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186 int err;
187
188 err = ubi_is_mapped(c->ubi, lnum);
189 if (err < 0) {
190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191 lnum, err);
192 dump_stack();
193 }
194 return err;
195 }
196
197 /**
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
201 * @len: node length
202 * @lnum: logical eraseblock number
203 * @offs: offset within the logical eraseblock
204 * @quiet: print no messages
205 * @must_chk_crc: indicates whether to always check the CRC
206 *
207 * This function checks node magic number and CRC checksum. This function also
208 * validates node length to prevent UBIFS from becoming crazy when an attacker
209 * feeds it a file-system image with incorrect nodes. For example, too large
210 * node length in the common header could cause UBIFS to read memory outside of
211 * allocated buffer when checking the CRC checksum.
212 *
213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
214 * true, which is controlled by corresponding UBIFS mount option. However, if
215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
218 * is checked. This is because during mounting or re-mounting from R/O mode to
219 * R/W mode we may read journal nodes (when replying the journal or doing the
220 * recovery) and the journal nodes may potentially be corrupted, so checking is
221 * required.
222 *
223 * This function returns zero in case of success and %-EUCLEAN in case of bad
224 * CRC or magic.
225 */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int len,int lnum,int offs,int quiet,int must_chk_crc)226 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
227 int lnum, int offs, int quiet, int must_chk_crc)
228 {
229 int err = -EINVAL, type, node_len;
230 uint32_t crc, node_crc, magic;
231 const struct ubifs_ch *ch = buf;
232
233 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
234 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
235
236 magic = le32_to_cpu(ch->magic);
237 if (magic != UBIFS_NODE_MAGIC) {
238 if (!quiet)
239 ubifs_err(c, "bad magic %#08x, expected %#08x",
240 magic, UBIFS_NODE_MAGIC);
241 err = -EUCLEAN;
242 goto out;
243 }
244
245 type = ch->node_type;
246 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
247 if (!quiet)
248 ubifs_err(c, "bad node type %d", type);
249 goto out;
250 }
251
252 node_len = le32_to_cpu(ch->len);
253 if (node_len + offs > c->leb_size)
254 goto out_len;
255
256 if (c->ranges[type].max_len == 0) {
257 if (node_len != c->ranges[type].len)
258 goto out_len;
259 } else if (node_len < c->ranges[type].min_len ||
260 node_len > c->ranges[type].max_len)
261 goto out_len;
262
263 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
264 !c->remounting_rw && c->no_chk_data_crc)
265 return 0;
266
267 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
268 node_crc = le32_to_cpu(ch->crc);
269 if (crc != node_crc) {
270 if (!quiet)
271 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
272 crc, node_crc);
273 err = -EUCLEAN;
274 goto out;
275 }
276
277 return 0;
278
279 out_len:
280 if (!quiet)
281 ubifs_err(c, "bad node length %d", node_len);
282 out:
283 if (!quiet) {
284 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
285 ubifs_dump_node(c, buf, len);
286 dump_stack();
287 }
288 return err;
289 }
290
291 /**
292 * ubifs_pad - pad flash space.
293 * @c: UBIFS file-system description object
294 * @buf: buffer to put padding to
295 * @pad: how many bytes to pad
296 *
297 * The flash media obliges us to write only in chunks of %c->min_io_size and
298 * when we have to write less data we add padding node to the write-buffer and
299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
300 * media is being scanned. If the amount of wasted space is not enough to fit a
301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
302 * pattern (%UBIFS_PADDING_BYTE).
303 *
304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
305 * used.
306 */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)307 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
308 {
309 uint32_t crc;
310
311 ubifs_assert(c, pad >= 0);
312
313 if (pad >= UBIFS_PAD_NODE_SZ) {
314 struct ubifs_ch *ch = buf;
315 struct ubifs_pad_node *pad_node = buf;
316
317 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
318 ch->node_type = UBIFS_PAD_NODE;
319 ch->group_type = UBIFS_NO_NODE_GROUP;
320 ch->padding[0] = ch->padding[1] = 0;
321 ch->sqnum = 0;
322 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
323 pad -= UBIFS_PAD_NODE_SZ;
324 pad_node->pad_len = cpu_to_le32(pad);
325 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
326 ch->crc = cpu_to_le32(crc);
327 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
328 } else if (pad > 0)
329 /* Too little space, padding node won't fit */
330 memset(buf, UBIFS_PADDING_BYTE, pad);
331 }
332
333 /**
334 * next_sqnum - get next sequence number.
335 * @c: UBIFS file-system description object
336 */
next_sqnum(struct ubifs_info * c)337 static unsigned long long next_sqnum(struct ubifs_info *c)
338 {
339 unsigned long long sqnum;
340
341 spin_lock(&c->cnt_lock);
342 sqnum = ++c->max_sqnum;
343 spin_unlock(&c->cnt_lock);
344
345 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
346 if (sqnum >= SQNUM_WATERMARK) {
347 ubifs_err(c, "sequence number overflow %llu, end of life",
348 sqnum);
349 ubifs_ro_mode(c, -EINVAL);
350 }
351 ubifs_warn(c, "running out of sequence numbers, end of life soon");
352 }
353
354 return sqnum;
355 }
356
ubifs_init_node(struct ubifs_info * c,void * node,int len,int pad)357 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
358 {
359 struct ubifs_ch *ch = node;
360 unsigned long long sqnum = next_sqnum(c);
361
362 ubifs_assert(c, len >= UBIFS_CH_SZ);
363
364 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
365 ch->len = cpu_to_le32(len);
366 ch->group_type = UBIFS_NO_NODE_GROUP;
367 ch->sqnum = cpu_to_le64(sqnum);
368 ch->padding[0] = ch->padding[1] = 0;
369
370 if (pad) {
371 len = ALIGN(len, 8);
372 pad = ALIGN(len, c->min_io_size) - len;
373 ubifs_pad(c, node + len, pad);
374 }
375 }
376
ubifs_crc_node(struct ubifs_info * c,void * node,int len)377 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
378 {
379 struct ubifs_ch *ch = node;
380 uint32_t crc;
381
382 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
383 ch->crc = cpu_to_le32(crc);
384 }
385
386 /**
387 * ubifs_prepare_node_hmac - prepare node to be written to flash.
388 * @c: UBIFS file-system description object
389 * @node: the node to pad
390 * @len: node length
391 * @hmac_offs: offset of the HMAC in the node
392 * @pad: if the buffer has to be padded
393 *
394 * This function prepares node at @node to be written to the media - it
395 * calculates node CRC, fills the common header, and adds proper padding up to
396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
397 * a HMAC is inserted into the node at the given offset.
398 *
399 * This function returns 0 for success or a negative error code otherwise.
400 */
ubifs_prepare_node_hmac(struct ubifs_info * c,void * node,int len,int hmac_offs,int pad)401 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
402 int hmac_offs, int pad)
403 {
404 int err;
405
406 ubifs_init_node(c, node, len, pad);
407
408 if (hmac_offs > 0) {
409 err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
410 if (err)
411 return err;
412 }
413
414 ubifs_crc_node(c, node, len);
415
416 return 0;
417 }
418
419 /**
420 * ubifs_prepare_node - prepare node to be written to flash.
421 * @c: UBIFS file-system description object
422 * @node: the node to pad
423 * @len: node length
424 * @pad: if the buffer has to be padded
425 *
426 * This function prepares node at @node to be written to the media - it
427 * calculates node CRC, fills the common header, and adds proper padding up to
428 * the next minimum I/O unit if @pad is not zero.
429 */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)430 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
431 {
432 /*
433 * Deliberately ignore return value since this function can only fail
434 * when a hmac offset is given.
435 */
436 ubifs_prepare_node_hmac(c, node, len, 0, pad);
437 }
438
439 /**
440 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
441 * @c: UBIFS file-system description object
442 * @node: the node to pad
443 * @len: node length
444 * @last: indicates the last node of the group
445 *
446 * This function prepares node at @node to be written to the media - it
447 * calculates node CRC and fills the common header.
448 */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)449 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
450 {
451 uint32_t crc;
452 struct ubifs_ch *ch = node;
453 unsigned long long sqnum = next_sqnum(c);
454
455 ubifs_assert(c, len >= UBIFS_CH_SZ);
456
457 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
458 ch->len = cpu_to_le32(len);
459 if (last)
460 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
461 else
462 ch->group_type = UBIFS_IN_NODE_GROUP;
463 ch->sqnum = cpu_to_le64(sqnum);
464 ch->padding[0] = ch->padding[1] = 0;
465 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
466 ch->crc = cpu_to_le32(crc);
467 }
468
469 /**
470 * wbuf_timer_callback - write-buffer timer callback function.
471 * @timer: timer data (write-buffer descriptor)
472 *
473 * This function is called when the write-buffer timer expires.
474 */
wbuf_timer_callback_nolock(struct hrtimer * timer)475 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
476 {
477 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
478
479 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
480 wbuf->need_sync = 1;
481 wbuf->c->need_wbuf_sync = 1;
482 ubifs_wake_up_bgt(wbuf->c);
483 return HRTIMER_NORESTART;
484 }
485
486 /**
487 * new_wbuf_timer - start new write-buffer timer.
488 * @c: UBIFS file-system description object
489 * @wbuf: write-buffer descriptor
490 */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)491 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
492 {
493 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
494 unsigned long long delta = dirty_writeback_interval;
495
496 /* centi to milli, milli to nano, then 10% */
497 delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
498
499 ubifs_assert(c, !hrtimer_active(&wbuf->timer));
500 ubifs_assert(c, delta <= ULONG_MAX);
501
502 if (wbuf->no_timer)
503 return;
504 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
505 dbg_jhead(wbuf->jhead),
506 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
507 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
508 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
509 HRTIMER_MODE_REL);
510 }
511
512 /**
513 * cancel_wbuf_timer - cancel write-buffer timer.
514 * @wbuf: write-buffer descriptor
515 */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)516 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
517 {
518 if (wbuf->no_timer)
519 return;
520 wbuf->need_sync = 0;
521 hrtimer_cancel(&wbuf->timer);
522 }
523
524 /**
525 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
526 * @wbuf: write-buffer to synchronize
527 *
528 * This function synchronizes write-buffer @buf and returns zero in case of
529 * success or a negative error code in case of failure.
530 *
531 * Note, although write-buffers are of @c->max_write_size, this function does
532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
533 * if the write-buffer is only partially filled with data, only the used part
534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
535 * This way we waste less space.
536 */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)537 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
538 {
539 struct ubifs_info *c = wbuf->c;
540 int err, dirt, sync_len;
541
542 cancel_wbuf_timer_nolock(wbuf);
543 if (!wbuf->used || wbuf->lnum == -1)
544 /* Write-buffer is empty or not seeked */
545 return 0;
546
547 dbg_io("LEB %d:%d, %d bytes, jhead %s",
548 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
549 ubifs_assert(c, !(wbuf->avail & 7));
550 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
551 ubifs_assert(c, wbuf->size >= c->min_io_size);
552 ubifs_assert(c, wbuf->size <= c->max_write_size);
553 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
554 ubifs_assert(c, !c->ro_media && !c->ro_mount);
555 if (c->leb_size - wbuf->offs >= c->max_write_size)
556 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
557
558 if (c->ro_error)
559 return -EROFS;
560
561 /*
562 * Do not write whole write buffer but write only the minimum necessary
563 * amount of min. I/O units.
564 */
565 sync_len = ALIGN(wbuf->used, c->min_io_size);
566 dirt = sync_len - wbuf->used;
567 if (dirt)
568 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
569 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
570 if (err)
571 return err;
572
573 spin_lock(&wbuf->lock);
574 wbuf->offs += sync_len;
575 /*
576 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
577 * But our goal is to optimize writes and make sure we write in
578 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
579 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
580 * sure that @wbuf->offs + @wbuf->size is aligned to
581 * @c->max_write_size. This way we make sure that after next
582 * write-buffer flush we are again at the optimal offset (aligned to
583 * @c->max_write_size).
584 */
585 if (c->leb_size - wbuf->offs < c->max_write_size)
586 wbuf->size = c->leb_size - wbuf->offs;
587 else if (wbuf->offs & (c->max_write_size - 1))
588 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
589 else
590 wbuf->size = c->max_write_size;
591 wbuf->avail = wbuf->size;
592 wbuf->used = 0;
593 wbuf->next_ino = 0;
594 spin_unlock(&wbuf->lock);
595
596 if (wbuf->sync_callback)
597 err = wbuf->sync_callback(c, wbuf->lnum,
598 c->leb_size - wbuf->offs, dirt);
599 return err;
600 }
601
602 /**
603 * ubifs_wbuf_seek_nolock - seek write-buffer.
604 * @wbuf: write-buffer
605 * @lnum: logical eraseblock number to seek to
606 * @offs: logical eraseblock offset to seek to
607 *
608 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
609 * The write-buffer has to be empty. Returns zero in case of success and a
610 * negative error code in case of failure.
611 */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)612 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
613 {
614 const struct ubifs_info *c = wbuf->c;
615
616 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
617 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
618 ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
619 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
620 ubifs_assert(c, lnum != wbuf->lnum);
621 ubifs_assert(c, wbuf->used == 0);
622
623 spin_lock(&wbuf->lock);
624 wbuf->lnum = lnum;
625 wbuf->offs = offs;
626 if (c->leb_size - wbuf->offs < c->max_write_size)
627 wbuf->size = c->leb_size - wbuf->offs;
628 else if (wbuf->offs & (c->max_write_size - 1))
629 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
630 else
631 wbuf->size = c->max_write_size;
632 wbuf->avail = wbuf->size;
633 wbuf->used = 0;
634 spin_unlock(&wbuf->lock);
635
636 return 0;
637 }
638
639 /**
640 * ubifs_bg_wbufs_sync - synchronize write-buffers.
641 * @c: UBIFS file-system description object
642 *
643 * This function is called by background thread to synchronize write-buffers.
644 * Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
ubifs_bg_wbufs_sync(struct ubifs_info * c)647 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
648 {
649 int err, i;
650
651 ubifs_assert(c, !c->ro_media && !c->ro_mount);
652 if (!c->need_wbuf_sync)
653 return 0;
654 c->need_wbuf_sync = 0;
655
656 if (c->ro_error) {
657 err = -EROFS;
658 goto out_timers;
659 }
660
661 dbg_io("synchronize");
662 for (i = 0; i < c->jhead_cnt; i++) {
663 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
664
665 cond_resched();
666
667 /*
668 * If the mutex is locked then wbuf is being changed, so
669 * synchronization is not necessary.
670 */
671 if (mutex_is_locked(&wbuf->io_mutex))
672 continue;
673
674 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
675 if (!wbuf->need_sync) {
676 mutex_unlock(&wbuf->io_mutex);
677 continue;
678 }
679
680 err = ubifs_wbuf_sync_nolock(wbuf);
681 mutex_unlock(&wbuf->io_mutex);
682 if (err) {
683 ubifs_err(c, "cannot sync write-buffer, error %d", err);
684 ubifs_ro_mode(c, err);
685 goto out_timers;
686 }
687 }
688
689 return 0;
690
691 out_timers:
692 /* Cancel all timers to prevent repeated errors */
693 for (i = 0; i < c->jhead_cnt; i++) {
694 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
695
696 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
697 cancel_wbuf_timer_nolock(wbuf);
698 mutex_unlock(&wbuf->io_mutex);
699 }
700 return err;
701 }
702
703 /**
704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
705 * @wbuf: write-buffer
706 * @buf: node to write
707 * @len: node length
708 *
709 * This function writes data to flash via write-buffer @wbuf. This means that
710 * the last piece of the node won't reach the flash media immediately if it
711 * does not take whole max. write unit (@c->max_write_size). Instead, the node
712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
713 * because more data are appended to the write-buffer).
714 *
715 * This function returns zero in case of success and a negative error code in
716 * case of failure. If the node cannot be written because there is no more
717 * space in this logical eraseblock, %-ENOSPC is returned.
718 */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)719 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
720 {
721 struct ubifs_info *c = wbuf->c;
722 int err, n, written = 0, aligned_len = ALIGN(len, 8);
723
724 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
725 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
726 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
727 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
728 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
729 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
730 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
731 ubifs_assert(c, wbuf->size >= c->min_io_size);
732 ubifs_assert(c, wbuf->size <= c->max_write_size);
733 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
734 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
735 ubifs_assert(c, !c->ro_media && !c->ro_mount);
736 ubifs_assert(c, !c->space_fixup);
737 if (c->leb_size - wbuf->offs >= c->max_write_size)
738 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
739
740 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
741 err = -ENOSPC;
742 goto out;
743 }
744
745 cancel_wbuf_timer_nolock(wbuf);
746
747 if (c->ro_error)
748 return -EROFS;
749
750 if (aligned_len <= wbuf->avail) {
751 /*
752 * The node is not very large and fits entirely within
753 * write-buffer.
754 */
755 memcpy(wbuf->buf + wbuf->used, buf, len);
756 if (aligned_len > len) {
757 ubifs_assert(c, aligned_len - len < 8);
758 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
759 }
760
761 if (aligned_len == wbuf->avail) {
762 dbg_io("flush jhead %s wbuf to LEB %d:%d",
763 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
764 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
765 wbuf->offs, wbuf->size);
766 if (err)
767 goto out;
768
769 spin_lock(&wbuf->lock);
770 wbuf->offs += wbuf->size;
771 if (c->leb_size - wbuf->offs >= c->max_write_size)
772 wbuf->size = c->max_write_size;
773 else
774 wbuf->size = c->leb_size - wbuf->offs;
775 wbuf->avail = wbuf->size;
776 wbuf->used = 0;
777 wbuf->next_ino = 0;
778 spin_unlock(&wbuf->lock);
779 } else {
780 spin_lock(&wbuf->lock);
781 wbuf->avail -= aligned_len;
782 wbuf->used += aligned_len;
783 spin_unlock(&wbuf->lock);
784 }
785
786 goto exit;
787 }
788
789 if (wbuf->used) {
790 /*
791 * The node is large enough and does not fit entirely within
792 * current available space. We have to fill and flush
793 * write-buffer and switch to the next max. write unit.
794 */
795 dbg_io("flush jhead %s wbuf to LEB %d:%d",
796 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
797 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
798 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
799 wbuf->size);
800 if (err)
801 goto out;
802
803 wbuf->offs += wbuf->size;
804 len -= wbuf->avail;
805 aligned_len -= wbuf->avail;
806 written += wbuf->avail;
807 } else if (wbuf->offs & (c->max_write_size - 1)) {
808 /*
809 * The write-buffer offset is not aligned to
810 * @c->max_write_size and @wbuf->size is less than
811 * @c->max_write_size. Write @wbuf->size bytes to make sure the
812 * following writes are done in optimal @c->max_write_size
813 * chunks.
814 */
815 dbg_io("write %d bytes to LEB %d:%d",
816 wbuf->size, wbuf->lnum, wbuf->offs);
817 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
818 wbuf->size);
819 if (err)
820 goto out;
821
822 wbuf->offs += wbuf->size;
823 len -= wbuf->size;
824 aligned_len -= wbuf->size;
825 written += wbuf->size;
826 }
827
828 /*
829 * The remaining data may take more whole max. write units, so write the
830 * remains multiple to max. write unit size directly to the flash media.
831 * We align node length to 8-byte boundary because we anyway flash wbuf
832 * if the remaining space is less than 8 bytes.
833 */
834 n = aligned_len >> c->max_write_shift;
835 if (n) {
836 int m = n - 1;
837
838 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
839 wbuf->offs);
840
841 if (m) {
842 /* '(n-1)<<c->max_write_shift < len' is always true. */
843 m <<= c->max_write_shift;
844 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
845 wbuf->offs, m);
846 if (err)
847 goto out;
848 wbuf->offs += m;
849 aligned_len -= m;
850 len -= m;
851 written += m;
852 }
853
854 /*
855 * The non-written len of buf may be less than 'n' because
856 * parameter 'len' is not 8 bytes aligned, so here we read
857 * min(len, n) bytes from buf.
858 */
859 n = 1 << c->max_write_shift;
860 memcpy(wbuf->buf, buf + written, min(len, n));
861 if (n > len) {
862 ubifs_assert(c, n - len < 8);
863 ubifs_pad(c, wbuf->buf + len, n - len);
864 }
865
866 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
867 if (err)
868 goto out;
869 wbuf->offs += n;
870 aligned_len -= n;
871 len -= min(len, n);
872 written += n;
873 }
874
875 spin_lock(&wbuf->lock);
876 if (aligned_len) {
877 /*
878 * And now we have what's left and what does not take whole
879 * max. write unit, so write it to the write-buffer and we are
880 * done.
881 */
882 memcpy(wbuf->buf, buf + written, len);
883 if (aligned_len > len) {
884 ubifs_assert(c, aligned_len - len < 8);
885 ubifs_pad(c, wbuf->buf + len, aligned_len - len);
886 }
887 }
888
889 if (c->leb_size - wbuf->offs >= c->max_write_size)
890 wbuf->size = c->max_write_size;
891 else
892 wbuf->size = c->leb_size - wbuf->offs;
893 wbuf->avail = wbuf->size - aligned_len;
894 wbuf->used = aligned_len;
895 wbuf->next_ino = 0;
896 spin_unlock(&wbuf->lock);
897
898 exit:
899 if (wbuf->sync_callback) {
900 int free = c->leb_size - wbuf->offs - wbuf->used;
901
902 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
903 if (err)
904 goto out;
905 }
906
907 if (wbuf->used)
908 new_wbuf_timer_nolock(c, wbuf);
909
910 return 0;
911
912 out:
913 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
914 len, wbuf->lnum, wbuf->offs, err);
915 ubifs_dump_node(c, buf, written + len);
916 dump_stack();
917 ubifs_dump_leb(c, wbuf->lnum);
918 return err;
919 }
920
921 /**
922 * ubifs_write_node_hmac - write node to the media.
923 * @c: UBIFS file-system description object
924 * @buf: the node to write
925 * @len: node length
926 * @lnum: logical eraseblock number
927 * @offs: offset within the logical eraseblock
928 * @hmac_offs: offset of the HMAC within the node
929 *
930 * This function automatically fills node magic number, assigns sequence
931 * number, and calculates node CRC checksum. The length of the @buf buffer has
932 * to be aligned to the minimal I/O unit size. This function automatically
933 * appends padding node and padding bytes if needed. Returns zero in case of
934 * success and a negative error code in case of failure.
935 */
ubifs_write_node_hmac(struct ubifs_info * c,void * buf,int len,int lnum,int offs,int hmac_offs)936 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
937 int offs, int hmac_offs)
938 {
939 int err, buf_len = ALIGN(len, c->min_io_size);
940
941 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
942 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
943 buf_len);
944 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
945 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
946 ubifs_assert(c, !c->ro_media && !c->ro_mount);
947 ubifs_assert(c, !c->space_fixup);
948
949 if (c->ro_error)
950 return -EROFS;
951
952 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
953 if (err)
954 return err;
955
956 err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
957 if (err)
958 ubifs_dump_node(c, buf, len);
959
960 return err;
961 }
962
963 /**
964 * ubifs_write_node - write node to the media.
965 * @c: UBIFS file-system description object
966 * @buf: the node to write
967 * @len: node length
968 * @lnum: logical eraseblock number
969 * @offs: offset within the logical eraseblock
970 *
971 * This function automatically fills node magic number, assigns sequence
972 * number, and calculates node CRC checksum. The length of the @buf buffer has
973 * to be aligned to the minimal I/O unit size. This function automatically
974 * appends padding node and padding bytes if needed. Returns zero in case of
975 * success and a negative error code in case of failure.
976 */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)977 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
978 int offs)
979 {
980 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
981 }
982
983 /**
984 * ubifs_read_node_wbuf - read node from the media or write-buffer.
985 * @wbuf: wbuf to check for un-written data
986 * @buf: buffer to read to
987 * @type: node type
988 * @len: node length
989 * @lnum: logical eraseblock number
990 * @offs: offset within the logical eraseblock
991 *
992 * This function reads a node of known type and length, checks it and stores
993 * in @buf. If the node partially or fully sits in the write-buffer, this
994 * function takes data from the buffer, otherwise it reads the flash media.
995 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
996 * error code in case of failure.
997 */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)998 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
999 int lnum, int offs)
1000 {
1001 const struct ubifs_info *c = wbuf->c;
1002 int err, rlen, overlap;
1003 struct ubifs_ch *ch = buf;
1004
1005 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1006 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1007 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1008 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1009 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1010
1011 spin_lock(&wbuf->lock);
1012 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1013 if (!overlap) {
1014 /* We may safely unlock the write-buffer and read the data */
1015 spin_unlock(&wbuf->lock);
1016 return ubifs_read_node(c, buf, type, len, lnum, offs);
1017 }
1018
1019 /* Don't read under wbuf */
1020 rlen = wbuf->offs - offs;
1021 if (rlen < 0)
1022 rlen = 0;
1023
1024 /* Copy the rest from the write-buffer */
1025 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1026 spin_unlock(&wbuf->lock);
1027
1028 if (rlen > 0) {
1029 /* Read everything that goes before write-buffer */
1030 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1031 if (err && err != -EBADMSG)
1032 return err;
1033 }
1034
1035 if (type != ch->node_type) {
1036 ubifs_err(c, "bad node type (%d but expected %d)",
1037 ch->node_type, type);
1038 goto out;
1039 }
1040
1041 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1042 if (err) {
1043 ubifs_err(c, "expected node type %d", type);
1044 return err;
1045 }
1046
1047 rlen = le32_to_cpu(ch->len);
1048 if (rlen != len) {
1049 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1050 goto out;
1051 }
1052
1053 return 0;
1054
1055 out:
1056 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1057 ubifs_dump_node(c, buf, len);
1058 dump_stack();
1059 return -EINVAL;
1060 }
1061
1062 /**
1063 * ubifs_read_node - read node.
1064 * @c: UBIFS file-system description object
1065 * @buf: buffer to read to
1066 * @type: node type
1067 * @len: node length (not aligned)
1068 * @lnum: logical eraseblock number
1069 * @offs: offset within the logical eraseblock
1070 *
1071 * This function reads a node of known type and and length, checks it and
1072 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1073 * and a negative error code in case of failure.
1074 */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1075 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1076 int lnum, int offs)
1077 {
1078 int err, l;
1079 struct ubifs_ch *ch = buf;
1080
1081 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1082 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1083 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1084 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1085 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1086
1087 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1088 if (err && err != -EBADMSG)
1089 return err;
1090
1091 if (type != ch->node_type) {
1092 ubifs_errc(c, "bad node type (%d but expected %d)",
1093 ch->node_type, type);
1094 goto out;
1095 }
1096
1097 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1098 if (err) {
1099 ubifs_errc(c, "expected node type %d", type);
1100 return err;
1101 }
1102
1103 l = le32_to_cpu(ch->len);
1104 if (l != len) {
1105 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1106 goto out;
1107 }
1108
1109 return 0;
1110
1111 out:
1112 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1113 offs, ubi_is_mapped(c->ubi, lnum));
1114 if (!c->probing) {
1115 ubifs_dump_node(c, buf, len);
1116 dump_stack();
1117 }
1118 return -EINVAL;
1119 }
1120
1121 /**
1122 * ubifs_wbuf_init - initialize write-buffer.
1123 * @c: UBIFS file-system description object
1124 * @wbuf: write-buffer to initialize
1125 *
1126 * This function initializes write-buffer. Returns zero in case of success
1127 * %-ENOMEM in case of failure.
1128 */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1129 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1130 {
1131 size_t size;
1132
1133 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1134 if (!wbuf->buf)
1135 return -ENOMEM;
1136
1137 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1138 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1139 if (!wbuf->inodes) {
1140 kfree(wbuf->buf);
1141 wbuf->buf = NULL;
1142 return -ENOMEM;
1143 }
1144
1145 wbuf->used = 0;
1146 wbuf->lnum = wbuf->offs = -1;
1147 /*
1148 * If the LEB starts at the max. write size aligned address, then
1149 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1150 * set it to something smaller so that it ends at the closest max.
1151 * write size boundary.
1152 */
1153 size = c->max_write_size - (c->leb_start % c->max_write_size);
1154 wbuf->avail = wbuf->size = size;
1155 wbuf->sync_callback = NULL;
1156 mutex_init(&wbuf->io_mutex);
1157 spin_lock_init(&wbuf->lock);
1158 wbuf->c = c;
1159 wbuf->next_ino = 0;
1160
1161 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1162 wbuf->timer.function = wbuf_timer_callback_nolock;
1163 return 0;
1164 }
1165
1166 /**
1167 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1168 * @wbuf: the write-buffer where to add
1169 * @inum: the inode number
1170 *
1171 * This function adds an inode number to the inode array of the write-buffer.
1172 */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1173 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1174 {
1175 if (!wbuf->buf)
1176 /* NOR flash or something similar */
1177 return;
1178
1179 spin_lock(&wbuf->lock);
1180 if (wbuf->used)
1181 wbuf->inodes[wbuf->next_ino++] = inum;
1182 spin_unlock(&wbuf->lock);
1183 }
1184
1185 /**
1186 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1187 * @wbuf: the write-buffer
1188 * @inum: the inode number
1189 *
1190 * This function returns with %1 if the write-buffer contains some data from the
1191 * given inode otherwise it returns with %0.
1192 */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1193 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1194 {
1195 int i, ret = 0;
1196
1197 spin_lock(&wbuf->lock);
1198 for (i = 0; i < wbuf->next_ino; i++)
1199 if (inum == wbuf->inodes[i]) {
1200 ret = 1;
1201 break;
1202 }
1203 spin_unlock(&wbuf->lock);
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1210 * @c: UBIFS file-system description object
1211 * @inode: inode to synchronize
1212 *
1213 * This function synchronizes write-buffers which contain nodes belonging to
1214 * @inode. Returns zero in case of success and a negative error code in case of
1215 * failure.
1216 */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1217 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1218 {
1219 int i, err = 0;
1220
1221 for (i = 0; i < c->jhead_cnt; i++) {
1222 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1223
1224 if (i == GCHD)
1225 /*
1226 * GC head is special, do not look at it. Even if the
1227 * head contains something related to this inode, it is
1228 * a _copy_ of corresponding on-flash node which sits
1229 * somewhere else.
1230 */
1231 continue;
1232
1233 if (!wbuf_has_ino(wbuf, inode->i_ino))
1234 continue;
1235
1236 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1237 if (wbuf_has_ino(wbuf, inode->i_ino))
1238 err = ubifs_wbuf_sync_nolock(wbuf);
1239 mutex_unlock(&wbuf->io_mutex);
1240
1241 if (err) {
1242 ubifs_ro_mode(c, err);
1243 return err;
1244 }
1245 }
1246 return 0;
1247 }
1248