• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include "ufshcd.h"
20 #include "ufs_quirks.h"
21 #include "unipro.h"
22 #include "ufs-sysfs.h"
23 #include "ufs_bsg.h"
24 #include "ufshcd-crypto.h"
25 #include <asm/unaligned.h>
26 #include <linux/blkdev.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/ufs.h>
30 
31 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
32 				 UTP_TASK_REQ_COMPL |\
33 				 UFSHCD_ERROR_MASK)
34 /* UIC command timeout, unit: ms */
35 #define UIC_CMD_TIMEOUT	500
36 
37 /* NOP OUT retries waiting for NOP IN response */
38 #define NOP_OUT_RETRIES    10
39 /* Timeout after 50 msecs if NOP OUT hangs without response */
40 #define NOP_OUT_TIMEOUT    50 /* msecs */
41 
42 /* Query request retries */
43 #define QUERY_REQ_RETRIES 3
44 /* Query request timeout */
45 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
46 
47 /* Task management command timeout */
48 #define TM_CMD_TIMEOUT	100 /* msecs */
49 
50 /* maximum number of retries for a general UIC command  */
51 #define UFS_UIC_COMMAND_RETRIES 3
52 
53 /* maximum number of link-startup retries */
54 #define DME_LINKSTARTUP_RETRIES 3
55 
56 /* Maximum retries for Hibern8 enter */
57 #define UIC_HIBERN8_ENTER_RETRIES 3
58 
59 /* maximum number of reset retries before giving up */
60 #define MAX_HOST_RESET_RETRIES 5
61 
62 /* Expose the flag value from utp_upiu_query.value */
63 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
64 
65 /* Interrupt aggregation default timeout, unit: 40us */
66 #define INT_AGGR_DEF_TO	0x02
67 
68 /* default delay of autosuspend: 2000 ms */
69 #define RPM_AUTOSUSPEND_DELAY_MS 2000
70 
71 /* Default delay of RPM device flush delayed work */
72 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
73 
74 /* Default value of wait time before gating device ref clock */
75 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
76 
77 /* Polling time to wait for fDeviceInit */
78 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
79 
80 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
81 	({                                                              \
82 		int _ret;                                               \
83 		if (_on)                                                \
84 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
85 		else                                                    \
86 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
87 		_ret;                                                   \
88 	})
89 
90 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
91 	size_t __len = (len);                                            \
92 	print_hex_dump(KERN_ERR, prefix_str,                             \
93 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
94 		       16, 4, buf, __len, false);                        \
95 } while (0)
96 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)97 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
98 		     const char *prefix)
99 {
100 	u32 *regs;
101 	size_t pos;
102 
103 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
104 		return -EINVAL;
105 
106 	regs = kzalloc(len, GFP_ATOMIC);
107 	if (!regs)
108 		return -ENOMEM;
109 
110 	for (pos = 0; pos < len; pos += 4)
111 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
112 
113 	ufshcd_hex_dump(prefix, regs, len);
114 	kfree(regs);
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
119 
120 enum {
121 	UFSHCD_MAX_CHANNEL	= 0,
122 	UFSHCD_MAX_ID		= 1,
123 	UFSHCD_CMD_PER_LUN	= 32,
124 	UFSHCD_CAN_QUEUE	= 32,
125 };
126 
127 /* UFSHCD states */
128 enum {
129 	UFSHCD_STATE_RESET,
130 	UFSHCD_STATE_ERROR,
131 	UFSHCD_STATE_OPERATIONAL,
132 	UFSHCD_STATE_EH_SCHEDULED_FATAL,
133 	UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
134 };
135 
136 /* UFSHCD error handling flags */
137 enum {
138 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
139 };
140 
141 /* UFSHCD UIC layer error flags */
142 enum {
143 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
144 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
145 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
146 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
147 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
148 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
149 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
150 };
151 
152 #define ufshcd_set_eh_in_progress(h) \
153 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
154 #define ufshcd_eh_in_progress(h) \
155 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
156 #define ufshcd_clear_eh_in_progress(h) \
157 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
158 
159 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
160 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
161 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
162 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
163 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
164 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
165 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
166 };
167 
168 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)169 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
170 {
171 	return ufs_pm_lvl_states[lvl].dev_state;
172 }
173 
174 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)175 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
176 {
177 	return ufs_pm_lvl_states[lvl].link_state;
178 }
179 
180 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)181 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
182 					enum uic_link_state link_state)
183 {
184 	enum ufs_pm_level lvl;
185 
186 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
187 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
188 			(ufs_pm_lvl_states[lvl].link_state == link_state))
189 			return lvl;
190 	}
191 
192 	/* if no match found, return the level 0 */
193 	return UFS_PM_LVL_0;
194 }
195 
196 static struct ufs_dev_fix ufs_fixups[] = {
197 	/* UFS cards deviations table */
198 	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
199 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
200 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
201 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
202 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
203 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
204 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
205 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
206 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
207 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
208 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
209 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
210 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
211 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
212 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
213 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
214 	END_FIX
215 };
216 
217 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
218 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
219 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
220 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
222 static void ufshcd_hba_exit(struct ufs_hba *hba);
223 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
224 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
225 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
226 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
227 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
228 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
229 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
230 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
231 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
232 static irqreturn_t ufshcd_intr(int irq, void *__hba);
233 static int ufshcd_change_power_mode(struct ufs_hba *hba,
234 			     struct ufs_pa_layer_attr *pwr_mode);
235 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
236 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
237 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
238 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
239 					 struct ufs_vreg *vreg);
240 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
241 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
242 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
243 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
244 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
245 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
246 
ufshcd_valid_tag(struct ufs_hba * hba,int tag)247 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
248 {
249 	return tag >= 0 && tag < hba->nutrs;
250 }
251 
ufshcd_enable_irq(struct ufs_hba * hba)252 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
253 {
254 	if (!hba->is_irq_enabled) {
255 		enable_irq(hba->irq);
256 		hba->is_irq_enabled = true;
257 	}
258 }
259 
ufshcd_disable_irq(struct ufs_hba * hba)260 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
261 {
262 	if (hba->is_irq_enabled) {
263 		disable_irq(hba->irq);
264 		hba->is_irq_enabled = false;
265 	}
266 }
267 
ufshcd_wb_config(struct ufs_hba * hba)268 static inline void ufshcd_wb_config(struct ufs_hba *hba)
269 {
270 	int ret;
271 
272 	if (!ufshcd_is_wb_allowed(hba))
273 		return;
274 
275 	ret = ufshcd_wb_ctrl(hba, true);
276 	if (ret)
277 		dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
278 	else
279 		dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
280 	ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
281 	if (ret)
282 		dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
283 			__func__, ret);
284 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
285 		ufshcd_wb_toggle_flush(hba, true);
286 }
287 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)288 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
289 {
290 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
291 		scsi_unblock_requests(hba->host);
292 }
293 
ufshcd_scsi_block_requests(struct ufs_hba * hba)294 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
295 {
296 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
297 		scsi_block_requests(hba->host);
298 }
299 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)300 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
301 		const char *str)
302 {
303 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
304 
305 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
306 }
307 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)308 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
309 		const char *str)
310 {
311 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
312 
313 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
314 }
315 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)316 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
317 		const char *str)
318 {
319 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
320 
321 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
322 			&descp->input_param1);
323 }
324 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)325 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
326 					 struct uic_command *ucmd,
327 					 const char *str)
328 {
329 	u32 cmd;
330 
331 	if (!trace_ufshcd_uic_command_enabled())
332 		return;
333 
334 	if (!strcmp(str, "send"))
335 		cmd = ucmd->command;
336 	else
337 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
338 
339 	trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
340 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
341 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
342 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
343 }
344 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)345 static void ufshcd_add_command_trace(struct ufs_hba *hba,
346 		unsigned int tag, const char *str)
347 {
348 	sector_t lba = -1;
349 	u8 opcode = 0;
350 	u32 intr, doorbell;
351 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
352 	struct scsi_cmnd *cmd = lrbp->cmd;
353 	int transfer_len = -1;
354 
355 	if (!trace_ufshcd_command_enabled()) {
356 		/* trace UPIU W/O tracing command */
357 		if (cmd)
358 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
359 		return;
360 	}
361 
362 	if (cmd) { /* data phase exists */
363 		/* trace UPIU also */
364 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
365 		opcode = cmd->cmnd[0];
366 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
367 			/*
368 			 * Currently we only fully trace read(10) and write(10)
369 			 * commands
370 			 */
371 			if (cmd->request && cmd->request->bio)
372 				lba = cmd->request->bio->bi_iter.bi_sector;
373 			transfer_len = be32_to_cpu(
374 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
375 		}
376 	}
377 
378 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
379 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
380 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
381 				doorbell, transfer_len, intr, lba, opcode);
382 }
383 
ufshcd_print_clk_freqs(struct ufs_hba * hba)384 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
385 {
386 	struct ufs_clk_info *clki;
387 	struct list_head *head = &hba->clk_list_head;
388 
389 	if (list_empty(head))
390 		return;
391 
392 	list_for_each_entry(clki, head, list) {
393 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
394 				clki->max_freq)
395 			dev_err(hba->dev, "clk: %s, rate: %u\n",
396 					clki->name, clki->curr_freq);
397 	}
398 }
399 
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)400 static void ufshcd_print_err_hist(struct ufs_hba *hba,
401 				  struct ufs_err_reg_hist *err_hist,
402 				  char *err_name)
403 {
404 	int i;
405 	bool found = false;
406 
407 	for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
408 		int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
409 
410 		if (err_hist->tstamp[p] == 0)
411 			continue;
412 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
413 			err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
414 		found = true;
415 	}
416 
417 	if (!found)
418 		dev_err(hba->dev, "No record of %s\n", err_name);
419 }
420 
ufshcd_print_host_regs(struct ufs_hba * hba)421 static void ufshcd_print_host_regs(struct ufs_hba *hba)
422 {
423 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
424 
425 	ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
426 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
427 	ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
428 	ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
429 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
430 	ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
431 			      "auto_hibern8_err");
432 	ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
433 	ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
434 			      "link_startup_fail");
435 	ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
436 	ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
437 			      "suspend_fail");
438 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
439 	ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
440 	ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
441 
442 	ufshcd_vops_dbg_register_dump(hba);
443 }
444 
445 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)446 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
447 {
448 	struct ufshcd_lrb *lrbp;
449 	int prdt_length;
450 	int tag;
451 
452 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
453 		lrbp = &hba->lrb[tag];
454 
455 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
456 				tag, ktime_to_us(lrbp->issue_time_stamp));
457 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
458 				tag, ktime_to_us(lrbp->compl_time_stamp));
459 		dev_err(hba->dev,
460 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
461 			tag, (u64)lrbp->utrd_dma_addr);
462 
463 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
464 				sizeof(struct utp_transfer_req_desc));
465 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
466 			(u64)lrbp->ucd_req_dma_addr);
467 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
468 				sizeof(struct utp_upiu_req));
469 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
470 			(u64)lrbp->ucd_rsp_dma_addr);
471 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
472 				sizeof(struct utp_upiu_rsp));
473 
474 		prdt_length = le16_to_cpu(
475 			lrbp->utr_descriptor_ptr->prd_table_length);
476 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
477 			prdt_length /= sizeof(struct ufshcd_sg_entry);
478 
479 		dev_err(hba->dev,
480 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
481 			tag, prdt_length,
482 			(u64)lrbp->ucd_prdt_dma_addr);
483 
484 		if (pr_prdt)
485 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
486 				sizeof(struct ufshcd_sg_entry) * prdt_length);
487 	}
488 }
489 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)490 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
491 {
492 	int tag;
493 
494 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
495 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
496 
497 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
498 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
499 	}
500 }
501 
ufshcd_print_host_state(struct ufs_hba * hba)502 static void ufshcd_print_host_state(struct ufs_hba *hba)
503 {
504 	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
505 
506 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
507 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
508 		hba->outstanding_reqs, hba->outstanding_tasks);
509 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
510 		hba->saved_err, hba->saved_uic_err);
511 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
512 		hba->curr_dev_pwr_mode, hba->uic_link_state);
513 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
514 		hba->pm_op_in_progress, hba->is_sys_suspended);
515 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
516 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
517 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
518 	dev_err(hba->dev,
519 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
520 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
521 		hba->ufs_stats.hibern8_exit_cnt);
522 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
523 		ktime_to_us(hba->ufs_stats.last_intr_ts),
524 		hba->ufs_stats.last_intr_status);
525 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
526 		hba->eh_flags, hba->req_abort_count);
527 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
528 		hba->ufs_version, hba->capabilities, hba->caps);
529 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
530 		hba->dev_quirks);
531 	if (sdev_ufs)
532 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
533 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
534 
535 	ufshcd_print_clk_freqs(hba);
536 }
537 
538 /**
539  * ufshcd_print_pwr_info - print power params as saved in hba
540  * power info
541  * @hba: per-adapter instance
542  */
ufshcd_print_pwr_info(struct ufs_hba * hba)543 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
544 {
545 	static const char * const names[] = {
546 		"INVALID MODE",
547 		"FAST MODE",
548 		"SLOW_MODE",
549 		"INVALID MODE",
550 		"FASTAUTO_MODE",
551 		"SLOWAUTO_MODE",
552 		"INVALID MODE",
553 	};
554 
555 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
556 		 __func__,
557 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
558 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
559 		 names[hba->pwr_info.pwr_rx],
560 		 names[hba->pwr_info.pwr_tx],
561 		 hba->pwr_info.hs_rate);
562 }
563 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)564 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
565 {
566 	if (!us)
567 		return;
568 
569 	if (us < 10)
570 		udelay(us);
571 	else
572 		usleep_range(us, us + tolerance);
573 }
574 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
575 
576 /**
577  * ufshcd_wait_for_register - wait for register value to change
578  * @hba: per-adapter interface
579  * @reg: mmio register offset
580  * @mask: mask to apply to the read register value
581  * @val: value to wait for
582  * @interval_us: polling interval in microseconds
583  * @timeout_ms: timeout in milliseconds
584  *
585  * Return:
586  * -ETIMEDOUT on error, zero on success.
587  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)588 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
589 				u32 val, unsigned long interval_us,
590 				unsigned long timeout_ms)
591 {
592 	int err = 0;
593 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
594 
595 	/* ignore bits that we don't intend to wait on */
596 	val = val & mask;
597 
598 	while ((ufshcd_readl(hba, reg) & mask) != val) {
599 		usleep_range(interval_us, interval_us + 50);
600 		if (time_after(jiffies, timeout)) {
601 			if ((ufshcd_readl(hba, reg) & mask) != val)
602 				err = -ETIMEDOUT;
603 			break;
604 		}
605 	}
606 
607 	return err;
608 }
609 
610 /**
611  * ufshcd_get_intr_mask - Get the interrupt bit mask
612  * @hba: Pointer to adapter instance
613  *
614  * Returns interrupt bit mask per version
615  */
ufshcd_get_intr_mask(struct ufs_hba * hba)616 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
617 {
618 	u32 intr_mask = 0;
619 
620 	switch (hba->ufs_version) {
621 	case UFSHCI_VERSION_10:
622 		intr_mask = INTERRUPT_MASK_ALL_VER_10;
623 		break;
624 	case UFSHCI_VERSION_11:
625 	case UFSHCI_VERSION_20:
626 		intr_mask = INTERRUPT_MASK_ALL_VER_11;
627 		break;
628 	case UFSHCI_VERSION_21:
629 	default:
630 		intr_mask = INTERRUPT_MASK_ALL_VER_21;
631 		break;
632 	}
633 
634 	return intr_mask;
635 }
636 
637 /**
638  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
639  * @hba: Pointer to adapter instance
640  *
641  * Returns UFSHCI version supported by the controller
642  */
ufshcd_get_ufs_version(struct ufs_hba * hba)643 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
644 {
645 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
646 		return ufshcd_vops_get_ufs_hci_version(hba);
647 
648 	return ufshcd_readl(hba, REG_UFS_VERSION);
649 }
650 
651 /**
652  * ufshcd_is_device_present - Check if any device connected to
653  *			      the host controller
654  * @hba: pointer to adapter instance
655  *
656  * Returns true if device present, false if no device detected
657  */
ufshcd_is_device_present(struct ufs_hba * hba)658 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
659 {
660 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
661 						DEVICE_PRESENT) ? true : false;
662 }
663 
664 /**
665  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
666  * @lrbp: pointer to local command reference block
667  *
668  * This function is used to get the OCS field from UTRD
669  * Returns the OCS field in the UTRD
670  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)671 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
672 {
673 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
674 }
675 
676 /**
677  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
678  * @hba: per adapter instance
679  * @pos: position of the bit to be cleared
680  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)681 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
682 {
683 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
684 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
685 	else
686 		ufshcd_writel(hba, ~(1 << pos),
687 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
688 }
689 
690 /**
691  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
692  * @hba: per adapter instance
693  * @pos: position of the bit to be cleared
694  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)695 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
696 {
697 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
698 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
699 	else
700 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
701 }
702 
703 /**
704  * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
705  * @hba: per adapter instance
706  * @tag: position of the bit to be cleared
707  */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)708 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
709 {
710 	__clear_bit(tag, &hba->outstanding_reqs);
711 }
712 
713 /**
714  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
715  * @reg: Register value of host controller status
716  *
717  * Returns integer, 0 on Success and positive value if failed
718  */
ufshcd_get_lists_status(u32 reg)719 static inline int ufshcd_get_lists_status(u32 reg)
720 {
721 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
722 }
723 
724 /**
725  * ufshcd_get_uic_cmd_result - Get the UIC command result
726  * @hba: Pointer to adapter instance
727  *
728  * This function gets the result of UIC command completion
729  * Returns 0 on success, non zero value on error
730  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)731 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
732 {
733 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
734 	       MASK_UIC_COMMAND_RESULT;
735 }
736 
737 /**
738  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
739  * @hba: Pointer to adapter instance
740  *
741  * This function gets UIC command argument3
742  * Returns 0 on success, non zero value on error
743  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)744 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
745 {
746 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
747 }
748 
749 /**
750  * ufshcd_get_req_rsp - returns the TR response transaction type
751  * @ucd_rsp_ptr: pointer to response UPIU
752  */
753 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)754 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
755 {
756 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
757 }
758 
759 /**
760  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
761  * @ucd_rsp_ptr: pointer to response UPIU
762  *
763  * This function gets the response status and scsi_status from response UPIU
764  * Returns the response result code.
765  */
766 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)767 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
768 {
769 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
770 }
771 
772 /*
773  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
774  *				from response UPIU
775  * @ucd_rsp_ptr: pointer to response UPIU
776  *
777  * Return the data segment length.
778  */
779 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)780 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
781 {
782 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
783 		MASK_RSP_UPIU_DATA_SEG_LEN;
784 }
785 
786 /**
787  * ufshcd_is_exception_event - Check if the device raised an exception event
788  * @ucd_rsp_ptr: pointer to response UPIU
789  *
790  * The function checks if the device raised an exception event indicated in
791  * the Device Information field of response UPIU.
792  *
793  * Returns true if exception is raised, false otherwise.
794  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)795 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
796 {
797 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
798 			MASK_RSP_EXCEPTION_EVENT ? true : false;
799 }
800 
801 /**
802  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
803  * @hba: per adapter instance
804  */
805 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)806 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
807 {
808 	ufshcd_writel(hba, INT_AGGR_ENABLE |
809 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
810 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
811 }
812 
813 /**
814  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
815  * @hba: per adapter instance
816  * @cnt: Interrupt aggregation counter threshold
817  * @tmout: Interrupt aggregation timeout value
818  */
819 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)820 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
821 {
822 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
823 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
824 		      INT_AGGR_TIMEOUT_VAL(tmout),
825 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
826 }
827 
828 /**
829  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
830  * @hba: per adapter instance
831  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)832 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
833 {
834 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
835 }
836 
837 /**
838  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
839  *			When run-stop registers are set to 1, it indicates the
840  *			host controller that it can process the requests
841  * @hba: per adapter instance
842  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)843 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
844 {
845 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
846 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
847 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
848 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
849 }
850 
851 /**
852  * ufshcd_hba_start - Start controller initialization sequence
853  * @hba: per adapter instance
854  */
ufshcd_hba_start(struct ufs_hba * hba)855 static inline void ufshcd_hba_start(struct ufs_hba *hba)
856 {
857 	u32 val = CONTROLLER_ENABLE;
858 
859 	if (ufshcd_crypto_enable(hba))
860 		val |= CRYPTO_GENERAL_ENABLE;
861 
862 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
863 }
864 
865 /**
866  * ufshcd_is_hba_active - Get controller state
867  * @hba: per adapter instance
868  *
869  * Returns false if controller is active, true otherwise
870  */
ufshcd_is_hba_active(struct ufs_hba * hba)871 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
872 {
873 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
874 		? false : true;
875 }
876 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)877 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
878 {
879 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
880 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
881 	    (hba->ufs_version == UFSHCI_VERSION_11))
882 		return UFS_UNIPRO_VER_1_41;
883 	else
884 		return UFS_UNIPRO_VER_1_6;
885 }
886 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
887 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)888 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
889 {
890 	/*
891 	 * If both host and device support UniPro ver1.6 or later, PA layer
892 	 * parameters tuning happens during link startup itself.
893 	 *
894 	 * We can manually tune PA layer parameters if either host or device
895 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
896 	 * logic simple, we will only do manual tuning if local unipro version
897 	 * doesn't support ver1.6 or later.
898 	 */
899 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
900 		return true;
901 	else
902 		return false;
903 }
904 
905 /**
906  * ufshcd_set_clk_freq - set UFS controller clock frequencies
907  * @hba: per adapter instance
908  * @scale_up: If True, set max possible frequency othewise set low frequency
909  *
910  * Returns 0 if successful
911  * Returns < 0 for any other errors
912  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)913 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
914 {
915 	int ret = 0;
916 	struct ufs_clk_info *clki;
917 	struct list_head *head = &hba->clk_list_head;
918 
919 	if (list_empty(head))
920 		goto out;
921 
922 	list_for_each_entry(clki, head, list) {
923 		if (!IS_ERR_OR_NULL(clki->clk)) {
924 			if (scale_up && clki->max_freq) {
925 				if (clki->curr_freq == clki->max_freq)
926 					continue;
927 
928 				ret = clk_set_rate(clki->clk, clki->max_freq);
929 				if (ret) {
930 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
931 						__func__, clki->name,
932 						clki->max_freq, ret);
933 					break;
934 				}
935 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
936 						"scaled up", clki->name,
937 						clki->curr_freq,
938 						clki->max_freq);
939 
940 				clki->curr_freq = clki->max_freq;
941 
942 			} else if (!scale_up && clki->min_freq) {
943 				if (clki->curr_freq == clki->min_freq)
944 					continue;
945 
946 				ret = clk_set_rate(clki->clk, clki->min_freq);
947 				if (ret) {
948 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
949 						__func__, clki->name,
950 						clki->min_freq, ret);
951 					break;
952 				}
953 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
954 						"scaled down", clki->name,
955 						clki->curr_freq,
956 						clki->min_freq);
957 				clki->curr_freq = clki->min_freq;
958 			}
959 		}
960 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
961 				clki->name, clk_get_rate(clki->clk));
962 	}
963 
964 out:
965 	return ret;
966 }
967 
968 /**
969  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
970  * @hba: per adapter instance
971  * @scale_up: True if scaling up and false if scaling down
972  *
973  * Returns 0 if successful
974  * Returns < 0 for any other errors
975  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)976 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
977 {
978 	int ret = 0;
979 	ktime_t start = ktime_get();
980 
981 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
982 	if (ret)
983 		goto out;
984 
985 	ret = ufshcd_set_clk_freq(hba, scale_up);
986 	if (ret)
987 		goto out;
988 
989 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
990 	if (ret)
991 		ufshcd_set_clk_freq(hba, !scale_up);
992 
993 out:
994 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
995 			(scale_up ? "up" : "down"),
996 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
997 	return ret;
998 }
999 
1000 /**
1001  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1002  * @hba: per adapter instance
1003  * @scale_up: True if scaling up and false if scaling down
1004  *
1005  * Returns true if scaling is required, false otherwise.
1006  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1007 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1008 					       bool scale_up)
1009 {
1010 	struct ufs_clk_info *clki;
1011 	struct list_head *head = &hba->clk_list_head;
1012 
1013 	if (list_empty(head))
1014 		return false;
1015 
1016 	list_for_each_entry(clki, head, list) {
1017 		if (!IS_ERR_OR_NULL(clki->clk)) {
1018 			if (scale_up && clki->max_freq) {
1019 				if (clki->curr_freq == clki->max_freq)
1020 					continue;
1021 				return true;
1022 			} else if (!scale_up && clki->min_freq) {
1023 				if (clki->curr_freq == clki->min_freq)
1024 					continue;
1025 				return true;
1026 			}
1027 		}
1028 	}
1029 
1030 	return false;
1031 }
1032 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1033 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1034 					u64 wait_timeout_us)
1035 {
1036 	unsigned long flags;
1037 	int ret = 0;
1038 	u32 tm_doorbell;
1039 	u32 tr_doorbell;
1040 	bool timeout = false, do_last_check = false;
1041 	ktime_t start;
1042 
1043 	ufshcd_hold(hba, false);
1044 	spin_lock_irqsave(hba->host->host_lock, flags);
1045 	/*
1046 	 * Wait for all the outstanding tasks/transfer requests.
1047 	 * Verify by checking the doorbell registers are clear.
1048 	 */
1049 	start = ktime_get();
1050 	do {
1051 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1052 			ret = -EBUSY;
1053 			goto out;
1054 		}
1055 
1056 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1057 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1058 		if (!tm_doorbell && !tr_doorbell) {
1059 			timeout = false;
1060 			break;
1061 		} else if (do_last_check) {
1062 			break;
1063 		}
1064 
1065 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1066 		schedule();
1067 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1068 		    wait_timeout_us) {
1069 			timeout = true;
1070 			/*
1071 			 * We might have scheduled out for long time so make
1072 			 * sure to check if doorbells are cleared by this time
1073 			 * or not.
1074 			 */
1075 			do_last_check = true;
1076 		}
1077 		spin_lock_irqsave(hba->host->host_lock, flags);
1078 	} while (tm_doorbell || tr_doorbell);
1079 
1080 	if (timeout) {
1081 		dev_err(hba->dev,
1082 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1083 			__func__, tm_doorbell, tr_doorbell);
1084 		ret = -EBUSY;
1085 	}
1086 out:
1087 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1088 	ufshcd_release(hba);
1089 	return ret;
1090 }
1091 
1092 /**
1093  * ufshcd_scale_gear - scale up/down UFS gear
1094  * @hba: per adapter instance
1095  * @scale_up: True for scaling up gear and false for scaling down
1096  *
1097  * Returns 0 for success,
1098  * Returns -EBUSY if scaling can't happen at this time
1099  * Returns non-zero for any other errors
1100  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1101 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1102 {
1103 	#define UFS_MIN_GEAR_TO_SCALE_DOWN	UFS_HS_G1
1104 	int ret = 0;
1105 	struct ufs_pa_layer_attr new_pwr_info;
1106 
1107 	if (scale_up) {
1108 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1109 		       sizeof(struct ufs_pa_layer_attr));
1110 	} else {
1111 		memcpy(&new_pwr_info, &hba->pwr_info,
1112 		       sizeof(struct ufs_pa_layer_attr));
1113 
1114 		if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1115 		    || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1116 			/* save the current power mode */
1117 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1118 				&hba->pwr_info,
1119 				sizeof(struct ufs_pa_layer_attr));
1120 
1121 			/* scale down gear */
1122 			new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1123 			new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1124 		}
1125 	}
1126 
1127 	/* check if the power mode needs to be changed or not? */
1128 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1129 	if (ret)
1130 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1131 			__func__, ret,
1132 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1133 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1134 
1135 	return ret;
1136 }
1137 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1138 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1139 {
1140 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1141 	int ret = 0;
1142 	/*
1143 	 * make sure that there are no outstanding requests when
1144 	 * clock scaling is in progress
1145 	 */
1146 	ufshcd_scsi_block_requests(hba);
1147 	down_write(&hba->clk_scaling_lock);
1148 	if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1149 		ret = -EBUSY;
1150 		up_write(&hba->clk_scaling_lock);
1151 		ufshcd_scsi_unblock_requests(hba);
1152 	}
1153 
1154 	return ret;
1155 }
1156 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1157 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1158 {
1159 	up_write(&hba->clk_scaling_lock);
1160 	ufshcd_scsi_unblock_requests(hba);
1161 }
1162 
1163 /**
1164  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1165  * @hba: per adapter instance
1166  * @scale_up: True for scaling up and false for scalin down
1167  *
1168  * Returns 0 for success,
1169  * Returns -EBUSY if scaling can't happen at this time
1170  * Returns non-zero for any other errors
1171  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1172 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1173 {
1174 	int ret = 0;
1175 
1176 	/* let's not get into low power until clock scaling is completed */
1177 	ufshcd_hold(hba, false);
1178 
1179 	ret = ufshcd_clock_scaling_prepare(hba);
1180 	if (ret)
1181 		goto out;
1182 
1183 	/* scale down the gear before scaling down clocks */
1184 	if (!scale_up) {
1185 		ret = ufshcd_scale_gear(hba, false);
1186 		if (ret)
1187 			goto out_unprepare;
1188 	}
1189 
1190 	ret = ufshcd_scale_clks(hba, scale_up);
1191 	if (ret) {
1192 		if (!scale_up)
1193 			ufshcd_scale_gear(hba, true);
1194 		goto out_unprepare;
1195 	}
1196 
1197 	/* scale up the gear after scaling up clocks */
1198 	if (scale_up) {
1199 		ret = ufshcd_scale_gear(hba, true);
1200 		if (ret) {
1201 			ufshcd_scale_clks(hba, false);
1202 			goto out_unprepare;
1203 		}
1204 	}
1205 
1206 	/* Enable Write Booster if we have scaled up else disable it */
1207 	up_write(&hba->clk_scaling_lock);
1208 	ufshcd_wb_ctrl(hba, scale_up);
1209 	down_write(&hba->clk_scaling_lock);
1210 
1211 out_unprepare:
1212 	ufshcd_clock_scaling_unprepare(hba);
1213 out:
1214 	ufshcd_release(hba);
1215 	return ret;
1216 }
1217 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1218 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1219 {
1220 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1221 					   clk_scaling.suspend_work);
1222 	unsigned long irq_flags;
1223 
1224 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1225 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1226 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1227 		return;
1228 	}
1229 	hba->clk_scaling.is_suspended = true;
1230 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1231 
1232 	__ufshcd_suspend_clkscaling(hba);
1233 }
1234 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1235 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1236 {
1237 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1238 					   clk_scaling.resume_work);
1239 	unsigned long irq_flags;
1240 
1241 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1242 	if (!hba->clk_scaling.is_suspended) {
1243 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1244 		return;
1245 	}
1246 	hba->clk_scaling.is_suspended = false;
1247 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1248 
1249 	devfreq_resume_device(hba->devfreq);
1250 }
1251 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1252 static int ufshcd_devfreq_target(struct device *dev,
1253 				unsigned long *freq, u32 flags)
1254 {
1255 	int ret = 0;
1256 	struct ufs_hba *hba = dev_get_drvdata(dev);
1257 	ktime_t start;
1258 	bool scale_up, sched_clk_scaling_suspend_work = false;
1259 	struct list_head *clk_list = &hba->clk_list_head;
1260 	struct ufs_clk_info *clki;
1261 	unsigned long irq_flags;
1262 
1263 	if (!ufshcd_is_clkscaling_supported(hba))
1264 		return -EINVAL;
1265 
1266 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1267 	/* Override with the closest supported frequency */
1268 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1269 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1270 	if (ufshcd_eh_in_progress(hba)) {
1271 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1272 		return 0;
1273 	}
1274 
1275 	if (!hba->clk_scaling.active_reqs)
1276 		sched_clk_scaling_suspend_work = true;
1277 
1278 	if (list_empty(clk_list)) {
1279 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1280 		goto out;
1281 	}
1282 
1283 	/* Decide based on the rounded-off frequency and update */
1284 	scale_up = (*freq == clki->max_freq) ? true : false;
1285 	if (!scale_up)
1286 		*freq = clki->min_freq;
1287 	/* Update the frequency */
1288 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1289 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1290 		ret = 0;
1291 		goto out; /* no state change required */
1292 	}
1293 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1294 
1295 	pm_runtime_get_noresume(hba->dev);
1296 	if (!pm_runtime_active(hba->dev)) {
1297 		pm_runtime_put_noidle(hba->dev);
1298 		ret = -EAGAIN;
1299 		goto out;
1300 	}
1301 	start = ktime_get();
1302 	ret = ufshcd_devfreq_scale(hba, scale_up);
1303 	pm_runtime_put(hba->dev);
1304 
1305 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1306 		(scale_up ? "up" : "down"),
1307 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1308 
1309 out:
1310 	if (sched_clk_scaling_suspend_work)
1311 		queue_work(hba->clk_scaling.workq,
1312 			   &hba->clk_scaling.suspend_work);
1313 
1314 	return ret;
1315 }
1316 
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1317 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1318 {
1319 	int *busy = priv;
1320 
1321 	WARN_ON_ONCE(reserved);
1322 	(*busy)++;
1323 	return false;
1324 }
1325 
1326 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1327 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1328 {
1329 	struct request_queue *q = hba->cmd_queue;
1330 	int busy = 0;
1331 
1332 	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1333 	return busy;
1334 }
1335 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1336 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1337 		struct devfreq_dev_status *stat)
1338 {
1339 	struct ufs_hba *hba = dev_get_drvdata(dev);
1340 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1341 	unsigned long flags;
1342 	struct list_head *clk_list = &hba->clk_list_head;
1343 	struct ufs_clk_info *clki;
1344 	ktime_t curr_t;
1345 
1346 	if (!ufshcd_is_clkscaling_supported(hba))
1347 		return -EINVAL;
1348 
1349 	memset(stat, 0, sizeof(*stat));
1350 
1351 	spin_lock_irqsave(hba->host->host_lock, flags);
1352 	curr_t = ktime_get();
1353 	if (!scaling->window_start_t)
1354 		goto start_window;
1355 
1356 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1357 	/*
1358 	 * If current frequency is 0, then the ondemand governor considers
1359 	 * there's no initial frequency set. And it always requests to set
1360 	 * to max. frequency.
1361 	 */
1362 	stat->current_frequency = clki->curr_freq;
1363 	if (scaling->is_busy_started)
1364 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1365 				scaling->busy_start_t);
1366 
1367 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1368 	stat->busy_time = scaling->tot_busy_t;
1369 start_window:
1370 	scaling->window_start_t = curr_t;
1371 	scaling->tot_busy_t = 0;
1372 
1373 	if (hba->outstanding_reqs) {
1374 		scaling->busy_start_t = curr_t;
1375 		scaling->is_busy_started = true;
1376 	} else {
1377 		scaling->busy_start_t = 0;
1378 		scaling->is_busy_started = false;
1379 	}
1380 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1381 	return 0;
1382 }
1383 
ufshcd_devfreq_init(struct ufs_hba * hba)1384 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1385 {
1386 	struct list_head *clk_list = &hba->clk_list_head;
1387 	struct ufs_clk_info *clki;
1388 	struct devfreq *devfreq;
1389 	int ret;
1390 
1391 	/* Skip devfreq if we don't have any clocks in the list */
1392 	if (list_empty(clk_list))
1393 		return 0;
1394 
1395 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1396 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1397 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1398 
1399 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1400 					 &hba->vps->ondemand_data);
1401 	devfreq = devfreq_add_device(hba->dev,
1402 			&hba->vps->devfreq_profile,
1403 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1404 			&hba->vps->ondemand_data);
1405 	if (IS_ERR(devfreq)) {
1406 		ret = PTR_ERR(devfreq);
1407 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1408 
1409 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1410 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1411 		return ret;
1412 	}
1413 
1414 	hba->devfreq = devfreq;
1415 
1416 	return 0;
1417 }
1418 
ufshcd_devfreq_remove(struct ufs_hba * hba)1419 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1420 {
1421 	struct list_head *clk_list = &hba->clk_list_head;
1422 	struct ufs_clk_info *clki;
1423 
1424 	if (!hba->devfreq)
1425 		return;
1426 
1427 	devfreq_remove_device(hba->devfreq);
1428 	hba->devfreq = NULL;
1429 
1430 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1431 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1432 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1433 }
1434 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1435 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1436 {
1437 	unsigned long flags;
1438 
1439 	devfreq_suspend_device(hba->devfreq);
1440 	spin_lock_irqsave(hba->host->host_lock, flags);
1441 	hba->clk_scaling.window_start_t = 0;
1442 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1443 }
1444 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1445 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1446 {
1447 	unsigned long flags;
1448 	bool suspend = false;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return;
1452 
1453 	spin_lock_irqsave(hba->host->host_lock, flags);
1454 	if (!hba->clk_scaling.is_suspended) {
1455 		suspend = true;
1456 		hba->clk_scaling.is_suspended = true;
1457 	}
1458 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1459 
1460 	if (suspend)
1461 		__ufshcd_suspend_clkscaling(hba);
1462 }
1463 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1464 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1465 {
1466 	unsigned long flags;
1467 	bool resume = false;
1468 
1469 	if (!ufshcd_is_clkscaling_supported(hba))
1470 		return;
1471 
1472 	spin_lock_irqsave(hba->host->host_lock, flags);
1473 	if (hba->clk_scaling.is_suspended) {
1474 		resume = true;
1475 		hba->clk_scaling.is_suspended = false;
1476 	}
1477 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1478 
1479 	if (resume)
1480 		devfreq_resume_device(hba->devfreq);
1481 }
1482 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1483 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1484 		struct device_attribute *attr, char *buf)
1485 {
1486 	struct ufs_hba *hba = dev_get_drvdata(dev);
1487 
1488 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1489 }
1490 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1491 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1492 		struct device_attribute *attr, const char *buf, size_t count)
1493 {
1494 	struct ufs_hba *hba = dev_get_drvdata(dev);
1495 	u32 value;
1496 	int err;
1497 
1498 	if (kstrtou32(buf, 0, &value))
1499 		return -EINVAL;
1500 
1501 	value = !!value;
1502 	if (value == hba->clk_scaling.is_allowed)
1503 		goto out;
1504 
1505 	pm_runtime_get_sync(hba->dev);
1506 	ufshcd_hold(hba, false);
1507 
1508 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1509 	cancel_work_sync(&hba->clk_scaling.resume_work);
1510 
1511 	hba->clk_scaling.is_allowed = value;
1512 
1513 	if (value) {
1514 		ufshcd_resume_clkscaling(hba);
1515 	} else {
1516 		ufshcd_suspend_clkscaling(hba);
1517 		err = ufshcd_devfreq_scale(hba, true);
1518 		if (err)
1519 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1520 					__func__, err);
1521 	}
1522 
1523 	ufshcd_release(hba);
1524 	pm_runtime_put_sync(hba->dev);
1525 out:
1526 	return count;
1527 }
1528 
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1529 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1530 {
1531 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1532 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1533 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1534 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1535 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1536 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1537 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1538 }
1539 
ufshcd_ungate_work(struct work_struct * work)1540 static void ufshcd_ungate_work(struct work_struct *work)
1541 {
1542 	int ret;
1543 	unsigned long flags;
1544 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1545 			clk_gating.ungate_work);
1546 
1547 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1548 
1549 	spin_lock_irqsave(hba->host->host_lock, flags);
1550 	if (hba->clk_gating.state == CLKS_ON) {
1551 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1552 		goto unblock_reqs;
1553 	}
1554 
1555 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1556 	ufshcd_setup_clocks(hba, true);
1557 
1558 	ufshcd_enable_irq(hba);
1559 
1560 	/* Exit from hibern8 */
1561 	if (ufshcd_can_hibern8_during_gating(hba)) {
1562 		/* Prevent gating in this path */
1563 		hba->clk_gating.is_suspended = true;
1564 		if (ufshcd_is_link_hibern8(hba)) {
1565 			ret = ufshcd_uic_hibern8_exit(hba);
1566 			if (ret)
1567 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1568 					__func__, ret);
1569 			else
1570 				ufshcd_set_link_active(hba);
1571 		}
1572 		hba->clk_gating.is_suspended = false;
1573 	}
1574 unblock_reqs:
1575 	ufshcd_scsi_unblock_requests(hba);
1576 }
1577 
1578 /**
1579  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1580  * Also, exit from hibern8 mode and set the link as active.
1581  * @hba: per adapter instance
1582  * @async: This indicates whether caller should ungate clocks asynchronously.
1583  */
ufshcd_hold(struct ufs_hba * hba,bool async)1584 int ufshcd_hold(struct ufs_hba *hba, bool async)
1585 {
1586 	int rc = 0;
1587 	bool flush_result;
1588 	unsigned long flags;
1589 
1590 	if (!ufshcd_is_clkgating_allowed(hba))
1591 		goto out;
1592 	spin_lock_irqsave(hba->host->host_lock, flags);
1593 	hba->clk_gating.active_reqs++;
1594 
1595 start:
1596 	switch (hba->clk_gating.state) {
1597 	case CLKS_ON:
1598 		/*
1599 		 * Wait for the ungate work to complete if in progress.
1600 		 * Though the clocks may be in ON state, the link could
1601 		 * still be in hibner8 state if hibern8 is allowed
1602 		 * during clock gating.
1603 		 * Make sure we exit hibern8 state also in addition to
1604 		 * clocks being ON.
1605 		 */
1606 		if (ufshcd_can_hibern8_during_gating(hba) &&
1607 		    ufshcd_is_link_hibern8(hba)) {
1608 			if (async) {
1609 				rc = -EAGAIN;
1610 				hba->clk_gating.active_reqs--;
1611 				break;
1612 			}
1613 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1614 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1615 			if (hba->clk_gating.is_suspended && !flush_result)
1616 				goto out;
1617 			spin_lock_irqsave(hba->host->host_lock, flags);
1618 			goto start;
1619 		}
1620 		break;
1621 	case REQ_CLKS_OFF:
1622 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1623 			hba->clk_gating.state = CLKS_ON;
1624 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1625 						hba->clk_gating.state);
1626 			break;
1627 		}
1628 		/*
1629 		 * If we are here, it means gating work is either done or
1630 		 * currently running. Hence, fall through to cancel gating
1631 		 * work and to enable clocks.
1632 		 */
1633 		fallthrough;
1634 	case CLKS_OFF:
1635 		hba->clk_gating.state = REQ_CLKS_ON;
1636 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1637 					hba->clk_gating.state);
1638 		if (queue_work(hba->clk_gating.clk_gating_workq,
1639 			       &hba->clk_gating.ungate_work))
1640 			ufshcd_scsi_block_requests(hba);
1641 		/*
1642 		 * fall through to check if we should wait for this
1643 		 * work to be done or not.
1644 		 */
1645 		fallthrough;
1646 	case REQ_CLKS_ON:
1647 		if (async) {
1648 			rc = -EAGAIN;
1649 			hba->clk_gating.active_reqs--;
1650 			break;
1651 		}
1652 
1653 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1654 		flush_work(&hba->clk_gating.ungate_work);
1655 		/* Make sure state is CLKS_ON before returning */
1656 		spin_lock_irqsave(hba->host->host_lock, flags);
1657 		goto start;
1658 	default:
1659 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1660 				__func__, hba->clk_gating.state);
1661 		break;
1662 	}
1663 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1664 out:
1665 	return rc;
1666 }
1667 EXPORT_SYMBOL_GPL(ufshcd_hold);
1668 
ufshcd_gate_work(struct work_struct * work)1669 static void ufshcd_gate_work(struct work_struct *work)
1670 {
1671 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1672 			clk_gating.gate_work.work);
1673 	unsigned long flags;
1674 	int ret;
1675 
1676 	spin_lock_irqsave(hba->host->host_lock, flags);
1677 	/*
1678 	 * In case you are here to cancel this work the gating state
1679 	 * would be marked as REQ_CLKS_ON. In this case save time by
1680 	 * skipping the gating work and exit after changing the clock
1681 	 * state to CLKS_ON.
1682 	 */
1683 	if (hba->clk_gating.is_suspended ||
1684 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1685 		hba->clk_gating.state = CLKS_ON;
1686 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1687 					hba->clk_gating.state);
1688 		goto rel_lock;
1689 	}
1690 
1691 	if (hba->clk_gating.active_reqs
1692 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1693 		|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1694 		|| hba->active_uic_cmd || hba->uic_async_done)
1695 		goto rel_lock;
1696 
1697 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1698 
1699 	/* put the link into hibern8 mode before turning off clocks */
1700 	if (ufshcd_can_hibern8_during_gating(hba)) {
1701 		ret = ufshcd_uic_hibern8_enter(hba);
1702 		if (ret) {
1703 			hba->clk_gating.state = CLKS_ON;
1704 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1705 					__func__, ret);
1706 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1707 						hba->clk_gating.state);
1708 			goto out;
1709 		}
1710 		ufshcd_set_link_hibern8(hba);
1711 	}
1712 
1713 	ufshcd_disable_irq(hba);
1714 
1715 	ufshcd_setup_clocks(hba, false);
1716 
1717 	/*
1718 	 * In case you are here to cancel this work the gating state
1719 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1720 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1721 	 * and a request to turn them on is pending. By doing this way,
1722 	 * we keep the state machine in tact and this would ultimately
1723 	 * prevent from doing cancel work multiple times when there are
1724 	 * new requests arriving before the current cancel work is done.
1725 	 */
1726 	spin_lock_irqsave(hba->host->host_lock, flags);
1727 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1728 		hba->clk_gating.state = CLKS_OFF;
1729 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1730 					hba->clk_gating.state);
1731 	}
1732 rel_lock:
1733 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1734 out:
1735 	return;
1736 }
1737 
1738 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1739 static void __ufshcd_release(struct ufs_hba *hba)
1740 {
1741 	if (!ufshcd_is_clkgating_allowed(hba))
1742 		return;
1743 
1744 	hba->clk_gating.active_reqs--;
1745 
1746 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1747 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1748 	    hba->outstanding_tasks ||
1749 	    hba->active_uic_cmd || hba->uic_async_done ||
1750 	    hba->clk_gating.state == CLKS_OFF)
1751 		return;
1752 
1753 	hba->clk_gating.state = REQ_CLKS_OFF;
1754 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1755 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1756 			   &hba->clk_gating.gate_work,
1757 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1758 }
1759 
ufshcd_release(struct ufs_hba * hba)1760 void ufshcd_release(struct ufs_hba *hba)
1761 {
1762 	unsigned long flags;
1763 
1764 	spin_lock_irqsave(hba->host->host_lock, flags);
1765 	__ufshcd_release(hba);
1766 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1767 }
1768 EXPORT_SYMBOL_GPL(ufshcd_release);
1769 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1770 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1771 		struct device_attribute *attr, char *buf)
1772 {
1773 	struct ufs_hba *hba = dev_get_drvdata(dev);
1774 
1775 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1776 }
1777 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1778 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1779 		struct device_attribute *attr, const char *buf, size_t count)
1780 {
1781 	struct ufs_hba *hba = dev_get_drvdata(dev);
1782 	unsigned long flags, value;
1783 
1784 	if (kstrtoul(buf, 0, &value))
1785 		return -EINVAL;
1786 
1787 	spin_lock_irqsave(hba->host->host_lock, flags);
1788 	hba->clk_gating.delay_ms = value;
1789 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1790 	return count;
1791 }
1792 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1793 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1794 		struct device_attribute *attr, char *buf)
1795 {
1796 	struct ufs_hba *hba = dev_get_drvdata(dev);
1797 
1798 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1799 }
1800 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1801 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1802 		struct device_attribute *attr, const char *buf, size_t count)
1803 {
1804 	struct ufs_hba *hba = dev_get_drvdata(dev);
1805 	unsigned long flags;
1806 	u32 value;
1807 
1808 	if (kstrtou32(buf, 0, &value))
1809 		return -EINVAL;
1810 
1811 	value = !!value;
1812 	if (value == hba->clk_gating.is_enabled)
1813 		goto out;
1814 
1815 	if (value) {
1816 		ufshcd_release(hba);
1817 	} else {
1818 		spin_lock_irqsave(hba->host->host_lock, flags);
1819 		hba->clk_gating.active_reqs++;
1820 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1821 	}
1822 
1823 	hba->clk_gating.is_enabled = value;
1824 out:
1825 	return count;
1826 }
1827 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1828 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1829 {
1830 	char wq_name[sizeof("ufs_clkscaling_00")];
1831 
1832 	if (!ufshcd_is_clkscaling_supported(hba))
1833 		return;
1834 
1835 	INIT_WORK(&hba->clk_scaling.suspend_work,
1836 		  ufshcd_clk_scaling_suspend_work);
1837 	INIT_WORK(&hba->clk_scaling.resume_work,
1838 		  ufshcd_clk_scaling_resume_work);
1839 
1840 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1841 		 hba->host->host_no);
1842 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1843 
1844 	ufshcd_clkscaling_init_sysfs(hba);
1845 }
1846 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1847 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1848 {
1849 	if (!ufshcd_is_clkscaling_supported(hba))
1850 		return;
1851 
1852 	destroy_workqueue(hba->clk_scaling.workq);
1853 	ufshcd_devfreq_remove(hba);
1854 }
1855 
ufshcd_init_clk_gating(struct ufs_hba * hba)1856 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1857 {
1858 	char wq_name[sizeof("ufs_clk_gating_00")];
1859 
1860 	if (!ufshcd_is_clkgating_allowed(hba))
1861 		return;
1862 
1863 	hba->clk_gating.state = CLKS_ON;
1864 
1865 	hba->clk_gating.delay_ms = 150;
1866 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1867 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1868 
1869 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1870 		 hba->host->host_no);
1871 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1872 							   WQ_MEM_RECLAIM);
1873 
1874 	hba->clk_gating.is_enabled = true;
1875 
1876 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1877 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1878 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1879 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1880 	hba->clk_gating.delay_attr.attr.mode = 0644;
1881 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1882 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1883 
1884 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1885 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1886 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1887 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1888 	hba->clk_gating.enable_attr.attr.mode = 0644;
1889 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1890 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1891 }
1892 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1893 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1894 {
1895 	if (!ufshcd_is_clkgating_allowed(hba))
1896 		return;
1897 	device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1898 	device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1899 	cancel_work_sync(&hba->clk_gating.ungate_work);
1900 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1901 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1902 }
1903 
1904 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1905 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1906 {
1907 	bool queue_resume_work = false;
1908 	ktime_t curr_t = ktime_get();
1909 
1910 	if (!ufshcd_is_clkscaling_supported(hba))
1911 		return;
1912 
1913 	if (!hba->clk_scaling.active_reqs++)
1914 		queue_resume_work = true;
1915 
1916 	if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1917 		return;
1918 
1919 	if (queue_resume_work)
1920 		queue_work(hba->clk_scaling.workq,
1921 			   &hba->clk_scaling.resume_work);
1922 
1923 	if (!hba->clk_scaling.window_start_t) {
1924 		hba->clk_scaling.window_start_t = curr_t;
1925 		hba->clk_scaling.tot_busy_t = 0;
1926 		hba->clk_scaling.is_busy_started = false;
1927 	}
1928 
1929 	if (!hba->clk_scaling.is_busy_started) {
1930 		hba->clk_scaling.busy_start_t = curr_t;
1931 		hba->clk_scaling.is_busy_started = true;
1932 	}
1933 }
1934 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1935 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1936 {
1937 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1938 
1939 	if (!ufshcd_is_clkscaling_supported(hba))
1940 		return;
1941 
1942 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1943 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1944 					scaling->busy_start_t));
1945 		scaling->busy_start_t = 0;
1946 		scaling->is_busy_started = false;
1947 	}
1948 }
1949 /**
1950  * ufshcd_send_command - Send SCSI or device management commands
1951  * @hba: per adapter instance
1952  * @task_tag: Task tag of the command
1953  */
1954 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1955 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1956 {
1957 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
1958 
1959 	lrbp->issue_time_stamp = ktime_get();
1960 	lrbp->compl_time_stamp = ktime_set(0, 0);
1961 	ufshcd_vops_setup_xfer_req(hba, task_tag, (lrbp->cmd ? true : false));
1962 	ufshcd_add_command_trace(hba, task_tag, "send");
1963 	ufshcd_clk_scaling_start_busy(hba);
1964 	__set_bit(task_tag, &hba->outstanding_reqs);
1965 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1966 	/* Make sure that doorbell is committed immediately */
1967 	wmb();
1968 }
1969 
1970 /**
1971  * ufshcd_copy_sense_data - Copy sense data in case of check condition
1972  * @lrbp: pointer to local reference block
1973  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1974 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1975 {
1976 	int len;
1977 	if (lrbp->sense_buffer &&
1978 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1979 		int len_to_copy;
1980 
1981 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1982 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1983 
1984 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1985 		       len_to_copy);
1986 	}
1987 }
1988 
1989 /**
1990  * ufshcd_copy_query_response() - Copy the Query Response and the data
1991  * descriptor
1992  * @hba: per adapter instance
1993  * @lrbp: pointer to local reference block
1994  */
1995 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)1996 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
1997 {
1998 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
1999 
2000 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2001 
2002 	/* Get the descriptor */
2003 	if (hba->dev_cmd.query.descriptor &&
2004 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2005 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2006 				GENERAL_UPIU_REQUEST_SIZE;
2007 		u16 resp_len;
2008 		u16 buf_len;
2009 
2010 		/* data segment length */
2011 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2012 						MASK_QUERY_DATA_SEG_LEN;
2013 		buf_len = be16_to_cpu(
2014 				hba->dev_cmd.query.request.upiu_req.length);
2015 		if (likely(buf_len >= resp_len)) {
2016 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2017 		} else {
2018 			dev_warn(hba->dev,
2019 				 "%s: rsp size %d is bigger than buffer size %d",
2020 				 __func__, resp_len, buf_len);
2021 			return -EINVAL;
2022 		}
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 /**
2029  * ufshcd_hba_capabilities - Read controller capabilities
2030  * @hba: per adapter instance
2031  *
2032  * Return: 0 on success, negative on error.
2033  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2034 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2035 {
2036 	int err;
2037 
2038 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2039 
2040 	/* nutrs and nutmrs are 0 based values */
2041 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2042 	hba->nutmrs =
2043 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2044 
2045 	/* Read crypto capabilities */
2046 	err = ufshcd_hba_init_crypto_capabilities(hba);
2047 	if (err)
2048 		dev_err(hba->dev, "crypto setup failed\n");
2049 
2050 	return err;
2051 }
2052 
2053 /**
2054  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2055  *                            to accept UIC commands
2056  * @hba: per adapter instance
2057  * Return true on success, else false
2058  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2059 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2060 {
2061 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2062 		return true;
2063 	else
2064 		return false;
2065 }
2066 
2067 /**
2068  * ufshcd_get_upmcrs - Get the power mode change request status
2069  * @hba: Pointer to adapter instance
2070  *
2071  * This function gets the UPMCRS field of HCS register
2072  * Returns value of UPMCRS field
2073  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2074 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2075 {
2076 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2077 }
2078 
2079 /**
2080  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2081  * @hba: per adapter instance
2082  * @uic_cmd: UIC command
2083  *
2084  * Mutex must be held.
2085  */
2086 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2087 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2088 {
2089 	WARN_ON(hba->active_uic_cmd);
2090 
2091 	hba->active_uic_cmd = uic_cmd;
2092 
2093 	/* Write Args */
2094 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2095 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2096 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2097 
2098 	ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2099 
2100 	/* Write UIC Cmd */
2101 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2102 		      REG_UIC_COMMAND);
2103 }
2104 
2105 /**
2106  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2107  * @hba: per adapter instance
2108  * @uic_cmd: UIC command
2109  *
2110  * Must be called with mutex held.
2111  * Returns 0 only if success.
2112  */
2113 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2114 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2115 {
2116 	int ret;
2117 	unsigned long flags;
2118 
2119 	if (wait_for_completion_timeout(&uic_cmd->done,
2120 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2121 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2122 	} else {
2123 		ret = -ETIMEDOUT;
2124 		dev_err(hba->dev,
2125 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2126 			uic_cmd->command, uic_cmd->argument3);
2127 
2128 		if (!uic_cmd->cmd_active) {
2129 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2130 				__func__);
2131 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2132 		}
2133 	}
2134 
2135 	spin_lock_irqsave(hba->host->host_lock, flags);
2136 	hba->active_uic_cmd = NULL;
2137 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2138 
2139 	return ret;
2140 }
2141 
2142 /**
2143  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2144  * @hba: per adapter instance
2145  * @uic_cmd: UIC command
2146  * @completion: initialize the completion only if this is set to true
2147  *
2148  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2149  * with mutex held and host_lock locked.
2150  * Returns 0 only if success.
2151  */
2152 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2153 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2154 		      bool completion)
2155 {
2156 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2157 		dev_err(hba->dev,
2158 			"Controller not ready to accept UIC commands\n");
2159 		return -EIO;
2160 	}
2161 
2162 	if (completion)
2163 		init_completion(&uic_cmd->done);
2164 
2165 	uic_cmd->cmd_active = 1;
2166 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2167 
2168 	return 0;
2169 }
2170 
2171 /**
2172  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2173  * @hba: per adapter instance
2174  * @uic_cmd: UIC command
2175  *
2176  * Returns 0 only if success.
2177  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2178 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2179 {
2180 	int ret;
2181 	unsigned long flags;
2182 
2183 	ufshcd_hold(hba, false);
2184 	mutex_lock(&hba->uic_cmd_mutex);
2185 	ufshcd_add_delay_before_dme_cmd(hba);
2186 
2187 	spin_lock_irqsave(hba->host->host_lock, flags);
2188 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2189 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2190 	if (!ret)
2191 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2192 
2193 	mutex_unlock(&hba->uic_cmd_mutex);
2194 
2195 	ufshcd_release(hba);
2196 	return ret;
2197 }
2198 
2199 /**
2200  * ufshcd_map_sg - Map scatter-gather list to prdt
2201  * @hba: per adapter instance
2202  * @lrbp: pointer to local reference block
2203  *
2204  * Returns 0 in case of success, non-zero value in case of failure
2205  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2206 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2207 {
2208 	struct ufshcd_sg_entry *prd_table;
2209 	struct scatterlist *sg;
2210 	struct scsi_cmnd *cmd;
2211 	int sg_segments;
2212 	int i;
2213 
2214 	cmd = lrbp->cmd;
2215 	sg_segments = scsi_dma_map(cmd);
2216 	if (sg_segments < 0)
2217 		return sg_segments;
2218 
2219 	if (sg_segments) {
2220 
2221 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2222 			lrbp->utr_descriptor_ptr->prd_table_length =
2223 				cpu_to_le16((sg_segments *
2224 					sizeof(struct ufshcd_sg_entry)));
2225 		else
2226 			lrbp->utr_descriptor_ptr->prd_table_length =
2227 				cpu_to_le16((u16) (sg_segments));
2228 
2229 		prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2230 
2231 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2232 			prd_table[i].size  =
2233 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2234 			prd_table[i].base_addr =
2235 				cpu_to_le32(lower_32_bits(sg->dma_address));
2236 			prd_table[i].upper_addr =
2237 				cpu_to_le32(upper_32_bits(sg->dma_address));
2238 			prd_table[i].reserved = 0;
2239 		}
2240 	} else {
2241 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /**
2248  * ufshcd_enable_intr - enable interrupts
2249  * @hba: per adapter instance
2250  * @intrs: interrupt bits
2251  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2252 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2253 {
2254 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2255 
2256 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2257 		u32 rw;
2258 		rw = set & INTERRUPT_MASK_RW_VER_10;
2259 		set = rw | ((set ^ intrs) & intrs);
2260 	} else {
2261 		set |= intrs;
2262 	}
2263 
2264 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2265 }
2266 
2267 /**
2268  * ufshcd_disable_intr - disable interrupts
2269  * @hba: per adapter instance
2270  * @intrs: interrupt bits
2271  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2272 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2273 {
2274 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2275 
2276 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2277 		u32 rw;
2278 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2279 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2280 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2281 
2282 	} else {
2283 		set &= ~intrs;
2284 	}
2285 
2286 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2287 }
2288 
2289 /**
2290  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2291  * descriptor according to request
2292  * @lrbp: pointer to local reference block
2293  * @upiu_flags: flags required in the header
2294  * @cmd_dir: requests data direction
2295  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2296 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2297 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2298 {
2299 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2300 	u32 data_direction;
2301 	u32 dword_0;
2302 	u32 dword_1 = 0;
2303 	u32 dword_3 = 0;
2304 
2305 	if (cmd_dir == DMA_FROM_DEVICE) {
2306 		data_direction = UTP_DEVICE_TO_HOST;
2307 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2308 	} else if (cmd_dir == DMA_TO_DEVICE) {
2309 		data_direction = UTP_HOST_TO_DEVICE;
2310 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2311 	} else {
2312 		data_direction = UTP_NO_DATA_TRANSFER;
2313 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2314 	}
2315 
2316 	dword_0 = data_direction | (lrbp->command_type
2317 				<< UPIU_COMMAND_TYPE_OFFSET);
2318 	if (lrbp->intr_cmd)
2319 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2320 
2321 	/* Prepare crypto related dwords */
2322 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2323 
2324 	/* Transfer request descriptor header fields */
2325 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2326 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2327 	/*
2328 	 * assigning invalid value for command status. Controller
2329 	 * updates OCS on command completion, with the command
2330 	 * status
2331 	 */
2332 	req_desc->header.dword_2 =
2333 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2334 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2335 
2336 	req_desc->prd_table_length = 0;
2337 }
2338 
2339 /**
2340  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2341  * for scsi commands
2342  * @lrbp: local reference block pointer
2343  * @upiu_flags: flags
2344  */
2345 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2346 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2347 {
2348 	struct scsi_cmnd *cmd = lrbp->cmd;
2349 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2350 	unsigned short cdb_len;
2351 
2352 	/* command descriptor fields */
2353 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2354 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2355 				lrbp->lun, lrbp->task_tag);
2356 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2357 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2358 
2359 	/* Total EHS length and Data segment length will be zero */
2360 	ucd_req_ptr->header.dword_2 = 0;
2361 
2362 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2363 
2364 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2365 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2366 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2367 
2368 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2369 }
2370 
2371 /**
2372  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2373  * for query requsts
2374  * @hba: UFS hba
2375  * @lrbp: local reference block pointer
2376  * @upiu_flags: flags
2377  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2378 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2379 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2380 {
2381 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2382 	struct ufs_query *query = &hba->dev_cmd.query;
2383 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2384 
2385 	/* Query request header */
2386 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2387 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2388 			lrbp->lun, lrbp->task_tag);
2389 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2390 			0, query->request.query_func, 0, 0);
2391 
2392 	/* Data segment length only need for WRITE_DESC */
2393 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2394 		ucd_req_ptr->header.dword_2 =
2395 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2396 	else
2397 		ucd_req_ptr->header.dword_2 = 0;
2398 
2399 	/* Copy the Query Request buffer as is */
2400 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2401 			QUERY_OSF_SIZE);
2402 
2403 	/* Copy the Descriptor */
2404 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2405 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2406 
2407 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2408 }
2409 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2410 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2411 {
2412 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2413 
2414 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2415 
2416 	/* command descriptor fields */
2417 	ucd_req_ptr->header.dword_0 =
2418 		UPIU_HEADER_DWORD(
2419 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2420 	/* clear rest of the fields of basic header */
2421 	ucd_req_ptr->header.dword_1 = 0;
2422 	ucd_req_ptr->header.dword_2 = 0;
2423 
2424 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2425 }
2426 
2427 /**
2428  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2429  *			     for Device Management Purposes
2430  * @hba: per adapter instance
2431  * @lrbp: pointer to local reference block
2432  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2433 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2434 				      struct ufshcd_lrb *lrbp)
2435 {
2436 	u8 upiu_flags;
2437 	int ret = 0;
2438 
2439 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2440 	    (hba->ufs_version == UFSHCI_VERSION_11))
2441 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2442 	else
2443 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2444 
2445 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2446 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2447 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2448 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2449 		ufshcd_prepare_utp_nop_upiu(lrbp);
2450 	else
2451 		ret = -EINVAL;
2452 
2453 	return ret;
2454 }
2455 
2456 /**
2457  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2458  *			   for SCSI Purposes
2459  * @hba: per adapter instance
2460  * @lrbp: pointer to local reference block
2461  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2462 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2463 {
2464 	u8 upiu_flags;
2465 	int ret = 0;
2466 
2467 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2468 	    (hba->ufs_version == UFSHCI_VERSION_11))
2469 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2470 	else
2471 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2472 
2473 	if (likely(lrbp->cmd)) {
2474 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2475 						lrbp->cmd->sc_data_direction);
2476 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2477 	} else {
2478 		ret = -EINVAL;
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 /**
2485  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2486  * @upiu_wlun_id: UPIU W-LUN id
2487  *
2488  * Returns SCSI W-LUN id
2489  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2490 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2491 {
2492 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2493 }
2494 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2495 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2496 {
2497 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2498 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2499 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2500 		i * sizeof(struct utp_transfer_cmd_desc);
2501 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2502 				       response_upiu);
2503 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2504 
2505 	lrb->utr_descriptor_ptr = utrdlp + i;
2506 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2507 		i * sizeof(struct utp_transfer_req_desc);
2508 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2509 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2510 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2511 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2512 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
2513 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2514 }
2515 
2516 /**
2517  * ufshcd_queuecommand - main entry point for SCSI requests
2518  * @host: SCSI host pointer
2519  * @cmd: command from SCSI Midlayer
2520  *
2521  * Returns 0 for success, non-zero in case of failure
2522  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2523 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2524 {
2525 	struct ufshcd_lrb *lrbp;
2526 	struct ufs_hba *hba;
2527 	unsigned long flags;
2528 	int tag;
2529 	int err = 0;
2530 
2531 	hba = shost_priv(host);
2532 
2533 	tag = cmd->request->tag;
2534 	if (!ufshcd_valid_tag(hba, tag)) {
2535 		dev_err(hba->dev,
2536 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2537 			__func__, tag, cmd, cmd->request);
2538 		BUG();
2539 	}
2540 
2541 	if (!down_read_trylock(&hba->clk_scaling_lock))
2542 		return SCSI_MLQUEUE_HOST_BUSY;
2543 
2544 	hba->req_abort_count = 0;
2545 
2546 	err = ufshcd_hold(hba, true);
2547 	if (err) {
2548 		err = SCSI_MLQUEUE_HOST_BUSY;
2549 		goto out;
2550 	}
2551 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2552 		(hba->clk_gating.state != CLKS_ON));
2553 
2554 	lrbp = &hba->lrb[tag];
2555 
2556 	WARN_ON(lrbp->cmd);
2557 	lrbp->cmd = cmd;
2558 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2559 	lrbp->sense_buffer = cmd->sense_buffer;
2560 	lrbp->task_tag = tag;
2561 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2562 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2563 
2564 	ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2565 
2566 	lrbp->req_abort_skip = false;
2567 
2568 	ufshcd_comp_scsi_upiu(hba, lrbp);
2569 
2570 	err = ufshcd_map_sg(hba, lrbp);
2571 	if (err) {
2572 		lrbp->cmd = NULL;
2573 		ufshcd_release(hba);
2574 		goto out;
2575 	}
2576 	/* Make sure descriptors are ready before ringing the doorbell */
2577 	wmb();
2578 
2579 	spin_lock_irqsave(hba->host->host_lock, flags);
2580 	switch (hba->ufshcd_state) {
2581 	case UFSHCD_STATE_OPERATIONAL:
2582 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2583 		break;
2584 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2585 		/*
2586 		 * pm_runtime_get_sync() is used at error handling preparation
2587 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2588 		 * PM ops, it can never be finished if we let SCSI layer keep
2589 		 * retrying it, which gets err handler stuck forever. Neither
2590 		 * can we let the scsi cmd pass through, because UFS is in bad
2591 		 * state, the scsi cmd may eventually time out, which will get
2592 		 * err handler blocked for too long. So, just fail the scsi cmd
2593 		 * sent from PM ops, err handler can recover PM error anyways.
2594 		 */
2595 		if (hba->pm_op_in_progress) {
2596 			hba->force_reset = true;
2597 			set_host_byte(cmd, DID_BAD_TARGET);
2598 			goto out_compl_cmd;
2599 		}
2600 		fallthrough;
2601 	case UFSHCD_STATE_RESET:
2602 		err = SCSI_MLQUEUE_HOST_BUSY;
2603 		goto out_compl_cmd;
2604 	case UFSHCD_STATE_ERROR:
2605 		set_host_byte(cmd, DID_ERROR);
2606 		goto out_compl_cmd;
2607 	default:
2608 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2609 				__func__, hba->ufshcd_state);
2610 		set_host_byte(cmd, DID_BAD_TARGET);
2611 		goto out_compl_cmd;
2612 	}
2613 	ufshcd_send_command(hba, tag);
2614 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2615 	goto out;
2616 
2617 out_compl_cmd:
2618 	scsi_dma_unmap(lrbp->cmd);
2619 	lrbp->cmd = NULL;
2620 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2621 	ufshcd_release(hba);
2622 	if (!err)
2623 		cmd->scsi_done(cmd);
2624 out:
2625 	up_read(&hba->clk_scaling_lock);
2626 	return err;
2627 }
2628 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2629 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2630 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2631 {
2632 	lrbp->cmd = NULL;
2633 	lrbp->sense_bufflen = 0;
2634 	lrbp->sense_buffer = NULL;
2635 	lrbp->task_tag = tag;
2636 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2637 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2638 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2639 	hba->dev_cmd.type = cmd_type;
2640 
2641 	return ufshcd_compose_devman_upiu(hba, lrbp);
2642 }
2643 
2644 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2645 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2646 {
2647 	int err = 0;
2648 	unsigned long flags;
2649 	u32 mask = 1 << tag;
2650 
2651 	/* clear outstanding transaction before retry */
2652 	spin_lock_irqsave(hba->host->host_lock, flags);
2653 	ufshcd_utrl_clear(hba, tag);
2654 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2655 
2656 	/*
2657 	 * wait for for h/w to clear corresponding bit in door-bell.
2658 	 * max. wait is 1 sec.
2659 	 */
2660 	err = ufshcd_wait_for_register(hba,
2661 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2662 			mask, ~mask, 1000, 1000);
2663 
2664 	return err;
2665 }
2666 
2667 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2668 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2669 {
2670 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2671 
2672 	/* Get the UPIU response */
2673 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2674 				UPIU_RSP_CODE_OFFSET;
2675 	return query_res->response;
2676 }
2677 
2678 /**
2679  * ufshcd_dev_cmd_completion() - handles device management command responses
2680  * @hba: per adapter instance
2681  * @lrbp: pointer to local reference block
2682  */
2683 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2684 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2685 {
2686 	int resp;
2687 	int err = 0;
2688 
2689 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2690 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2691 
2692 	switch (resp) {
2693 	case UPIU_TRANSACTION_NOP_IN:
2694 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2695 			err = -EINVAL;
2696 			dev_err(hba->dev, "%s: unexpected response %x\n",
2697 					__func__, resp);
2698 		}
2699 		break;
2700 	case UPIU_TRANSACTION_QUERY_RSP:
2701 		err = ufshcd_check_query_response(hba, lrbp);
2702 		if (!err)
2703 			err = ufshcd_copy_query_response(hba, lrbp);
2704 		break;
2705 	case UPIU_TRANSACTION_REJECT_UPIU:
2706 		/* TODO: handle Reject UPIU Response */
2707 		err = -EPERM;
2708 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2709 				__func__);
2710 		break;
2711 	default:
2712 		err = -EINVAL;
2713 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2714 				__func__, resp);
2715 		break;
2716 	}
2717 
2718 	return err;
2719 }
2720 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2721 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2722 		struct ufshcd_lrb *lrbp, int max_timeout)
2723 {
2724 	int err = 0;
2725 	unsigned long time_left;
2726 	unsigned long flags;
2727 
2728 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2729 			msecs_to_jiffies(max_timeout));
2730 
2731 	/* Make sure descriptors are ready before ringing the doorbell */
2732 	wmb();
2733 	spin_lock_irqsave(hba->host->host_lock, flags);
2734 	hba->dev_cmd.complete = NULL;
2735 	if (likely(time_left)) {
2736 		err = ufshcd_get_tr_ocs(lrbp);
2737 		if (!err)
2738 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2739 	}
2740 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2741 
2742 	if (!time_left) {
2743 		err = -ETIMEDOUT;
2744 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2745 			__func__, lrbp->task_tag);
2746 		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2747 			/* successfully cleared the command, retry if needed */
2748 			err = -EAGAIN;
2749 		/*
2750 		 * in case of an error, after clearing the doorbell,
2751 		 * we also need to clear the outstanding_request
2752 		 * field in hba
2753 		 */
2754 		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2755 	}
2756 
2757 	return err;
2758 }
2759 
2760 /**
2761  * ufshcd_exec_dev_cmd - API for sending device management requests
2762  * @hba: UFS hba
2763  * @cmd_type: specifies the type (NOP, Query...)
2764  * @timeout: timeout in milliseconds
2765  *
2766  * NOTE: Since there is only one available tag for device management commands,
2767  * it is expected you hold the hba->dev_cmd.lock mutex.
2768  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2769 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2770 		enum dev_cmd_type cmd_type, int timeout)
2771 {
2772 	struct request_queue *q = hba->cmd_queue;
2773 	struct request *req;
2774 	struct ufshcd_lrb *lrbp;
2775 	int err;
2776 	int tag;
2777 	struct completion wait;
2778 	unsigned long flags;
2779 
2780 	down_read(&hba->clk_scaling_lock);
2781 
2782 	/*
2783 	 * Get free slot, sleep if slots are unavailable.
2784 	 * Even though we use wait_event() which sleeps indefinitely,
2785 	 * the maximum wait time is bounded by SCSI request timeout.
2786 	 */
2787 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
2788 	if (IS_ERR(req)) {
2789 		err = PTR_ERR(req);
2790 		goto out_unlock;
2791 	}
2792 	tag = req->tag;
2793 	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
2794 	/* Set the timeout such that the SCSI error handler is not activated. */
2795 	req->timeout = msecs_to_jiffies(2 * timeout);
2796 	blk_mq_start_request(req);
2797 
2798 	init_completion(&wait);
2799 	lrbp = &hba->lrb[tag];
2800 	WARN_ON(lrbp->cmd);
2801 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2802 	if (unlikely(err))
2803 		goto out_put_tag;
2804 
2805 	hba->dev_cmd.complete = &wait;
2806 
2807 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2808 	/* Make sure descriptors are ready before ringing the doorbell */
2809 	wmb();
2810 	spin_lock_irqsave(hba->host->host_lock, flags);
2811 	ufshcd_send_command(hba, tag);
2812 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2813 
2814 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2815 
2816 	ufshcd_add_query_upiu_trace(hba, tag,
2817 			err ? "query_complete_err" : "query_complete");
2818 
2819 out_put_tag:
2820 	blk_put_request(req);
2821 out_unlock:
2822 	up_read(&hba->clk_scaling_lock);
2823 	return err;
2824 }
2825 
2826 /**
2827  * ufshcd_init_query() - init the query response and request parameters
2828  * @hba: per-adapter instance
2829  * @request: address of the request pointer to be initialized
2830  * @response: address of the response pointer to be initialized
2831  * @opcode: operation to perform
2832  * @idn: flag idn to access
2833  * @index: LU number to access
2834  * @selector: query/flag/descriptor further identification
2835  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2836 static inline void ufshcd_init_query(struct ufs_hba *hba,
2837 		struct ufs_query_req **request, struct ufs_query_res **response,
2838 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2839 {
2840 	*request = &hba->dev_cmd.query.request;
2841 	*response = &hba->dev_cmd.query.response;
2842 	memset(*request, 0, sizeof(struct ufs_query_req));
2843 	memset(*response, 0, sizeof(struct ufs_query_res));
2844 	(*request)->upiu_req.opcode = opcode;
2845 	(*request)->upiu_req.idn = idn;
2846 	(*request)->upiu_req.index = index;
2847 	(*request)->upiu_req.selector = selector;
2848 }
2849 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2850 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2851 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
2852 {
2853 	int ret;
2854 	int retries;
2855 
2856 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2857 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
2858 		if (ret)
2859 			dev_dbg(hba->dev,
2860 				"%s: failed with error %d, retries %d\n",
2861 				__func__, ret, retries);
2862 		else
2863 			break;
2864 	}
2865 
2866 	if (ret)
2867 		dev_err(hba->dev,
2868 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2869 			__func__, opcode, idn, ret, retries);
2870 	return ret;
2871 }
2872 
2873 /**
2874  * ufshcd_query_flag() - API function for sending flag query requests
2875  * @hba: per-adapter instance
2876  * @opcode: flag query to perform
2877  * @idn: flag idn to access
2878  * @index: flag index to access
2879  * @flag_res: the flag value after the query request completes
2880  *
2881  * Returns 0 for success, non-zero in case of failure
2882  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2883 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2884 			enum flag_idn idn, u8 index, bool *flag_res)
2885 {
2886 	struct ufs_query_req *request = NULL;
2887 	struct ufs_query_res *response = NULL;
2888 	int err, selector = 0;
2889 	int timeout = QUERY_REQ_TIMEOUT;
2890 
2891 	BUG_ON(!hba);
2892 
2893 	ufshcd_hold(hba, false);
2894 	mutex_lock(&hba->dev_cmd.lock);
2895 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2896 			selector);
2897 
2898 	switch (opcode) {
2899 	case UPIU_QUERY_OPCODE_SET_FLAG:
2900 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2901 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2902 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2903 		break;
2904 	case UPIU_QUERY_OPCODE_READ_FLAG:
2905 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2906 		if (!flag_res) {
2907 			/* No dummy reads */
2908 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
2909 					__func__);
2910 			err = -EINVAL;
2911 			goto out_unlock;
2912 		}
2913 		break;
2914 	default:
2915 		dev_err(hba->dev,
2916 			"%s: Expected query flag opcode but got = %d\n",
2917 			__func__, opcode);
2918 		err = -EINVAL;
2919 		goto out_unlock;
2920 	}
2921 
2922 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2923 
2924 	if (err) {
2925 		dev_err(hba->dev,
2926 			"%s: Sending flag query for idn %d failed, err = %d\n",
2927 			__func__, idn, err);
2928 		goto out_unlock;
2929 	}
2930 
2931 	if (flag_res)
2932 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
2933 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2934 
2935 out_unlock:
2936 	mutex_unlock(&hba->dev_cmd.lock);
2937 	ufshcd_release(hba);
2938 	return err;
2939 }
2940 
2941 /**
2942  * ufshcd_query_attr - API function for sending attribute requests
2943  * @hba: per-adapter instance
2944  * @opcode: attribute opcode
2945  * @idn: attribute idn to access
2946  * @index: index field
2947  * @selector: selector field
2948  * @attr_val: the attribute value after the query request completes
2949  *
2950  * Returns 0 for success, non-zero in case of failure
2951 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2952 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2953 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2954 {
2955 	struct ufs_query_req *request = NULL;
2956 	struct ufs_query_res *response = NULL;
2957 	int err;
2958 
2959 	BUG_ON(!hba);
2960 
2961 	ufshcd_hold(hba, false);
2962 	if (!attr_val) {
2963 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2964 				__func__, opcode);
2965 		err = -EINVAL;
2966 		goto out;
2967 	}
2968 
2969 	mutex_lock(&hba->dev_cmd.lock);
2970 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2971 			selector);
2972 
2973 	switch (opcode) {
2974 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
2975 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2976 		request->upiu_req.value = cpu_to_be32(*attr_val);
2977 		break;
2978 	case UPIU_QUERY_OPCODE_READ_ATTR:
2979 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2980 		break;
2981 	default:
2982 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2983 				__func__, opcode);
2984 		err = -EINVAL;
2985 		goto out_unlock;
2986 	}
2987 
2988 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2989 
2990 	if (err) {
2991 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2992 				__func__, opcode, idn, index, err);
2993 		goto out_unlock;
2994 	}
2995 
2996 	*attr_val = be32_to_cpu(response->upiu_res.value);
2997 
2998 out_unlock:
2999 	mutex_unlock(&hba->dev_cmd.lock);
3000 out:
3001 	ufshcd_release(hba);
3002 	return err;
3003 }
3004 
3005 /**
3006  * ufshcd_query_attr_retry() - API function for sending query
3007  * attribute with retries
3008  * @hba: per-adapter instance
3009  * @opcode: attribute opcode
3010  * @idn: attribute idn to access
3011  * @index: index field
3012  * @selector: selector field
3013  * @attr_val: the attribute value after the query request
3014  * completes
3015  *
3016  * Returns 0 for success, non-zero in case of failure
3017 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3018 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
3019 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3020 	u32 *attr_val)
3021 {
3022 	int ret = 0;
3023 	u32 retries;
3024 
3025 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3026 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3027 						selector, attr_val);
3028 		if (ret)
3029 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3030 				__func__, ret, retries);
3031 		else
3032 			break;
3033 	}
3034 
3035 	if (ret)
3036 		dev_err(hba->dev,
3037 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3038 			__func__, idn, ret, QUERY_REQ_RETRIES);
3039 	return ret;
3040 }
3041 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3042 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3043 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3044 			u8 selector, u8 *desc_buf, int *buf_len)
3045 {
3046 	struct ufs_query_req *request = NULL;
3047 	struct ufs_query_res *response = NULL;
3048 	int err;
3049 
3050 	BUG_ON(!hba);
3051 
3052 	ufshcd_hold(hba, false);
3053 	if (!desc_buf) {
3054 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3055 				__func__, opcode);
3056 		err = -EINVAL;
3057 		goto out;
3058 	}
3059 
3060 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3061 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3062 				__func__, *buf_len);
3063 		err = -EINVAL;
3064 		goto out;
3065 	}
3066 
3067 	mutex_lock(&hba->dev_cmd.lock);
3068 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3069 			selector);
3070 	hba->dev_cmd.query.descriptor = desc_buf;
3071 	request->upiu_req.length = cpu_to_be16(*buf_len);
3072 
3073 	switch (opcode) {
3074 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3075 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3076 		break;
3077 	case UPIU_QUERY_OPCODE_READ_DESC:
3078 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3079 		break;
3080 	default:
3081 		dev_err(hba->dev,
3082 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3083 				__func__, opcode);
3084 		err = -EINVAL;
3085 		goto out_unlock;
3086 	}
3087 
3088 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3089 
3090 	if (err) {
3091 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3092 				__func__, opcode, idn, index, err);
3093 		goto out_unlock;
3094 	}
3095 
3096 	*buf_len = be16_to_cpu(response->upiu_res.length);
3097 
3098 out_unlock:
3099 	hba->dev_cmd.query.descriptor = NULL;
3100 	mutex_unlock(&hba->dev_cmd.lock);
3101 out:
3102 	ufshcd_release(hba);
3103 	return err;
3104 }
3105 
3106 /**
3107  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3108  * @hba: per-adapter instance
3109  * @opcode: attribute opcode
3110  * @idn: attribute idn to access
3111  * @index: index field
3112  * @selector: selector field
3113  * @desc_buf: the buffer that contains the descriptor
3114  * @buf_len: length parameter passed to the device
3115  *
3116  * Returns 0 for success, non-zero in case of failure.
3117  * The buf_len parameter will contain, on return, the length parameter
3118  * received on the response.
3119  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3120 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3121 				  enum query_opcode opcode,
3122 				  enum desc_idn idn, u8 index,
3123 				  u8 selector,
3124 				  u8 *desc_buf, int *buf_len)
3125 {
3126 	int err;
3127 	int retries;
3128 
3129 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3130 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3131 						selector, desc_buf, buf_len);
3132 		if (!err || err == -EINVAL)
3133 			break;
3134 	}
3135 
3136 	return err;
3137 }
3138 
3139 /**
3140  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3141  * @hba: Pointer to adapter instance
3142  * @desc_id: descriptor idn value
3143  * @desc_len: mapped desc length (out)
3144  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3145 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3146 				  int *desc_len)
3147 {
3148 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3149 	    desc_id == QUERY_DESC_IDN_RFU_1)
3150 		*desc_len = 0;
3151 	else
3152 		*desc_len = hba->desc_size[desc_id];
3153 }
3154 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3155 
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3156 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3157 				      enum desc_idn desc_id, int desc_index,
3158 				      unsigned char desc_len)
3159 {
3160 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3161 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3162 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3163 		 * than the RPMB unit, however, both descriptors share the same
3164 		 * desc_idn, to cover both unit descriptors with one length, we
3165 		 * choose the normal unit descriptor length by desc_index.
3166 		 */
3167 		hba->desc_size[desc_id] = desc_len;
3168 }
3169 
3170 /**
3171  * ufshcd_read_desc_param - read the specified descriptor parameter
3172  * @hba: Pointer to adapter instance
3173  * @desc_id: descriptor idn value
3174  * @desc_index: descriptor index
3175  * @param_offset: offset of the parameter to read
3176  * @param_read_buf: pointer to buffer where parameter would be read
3177  * @param_size: sizeof(param_read_buf)
3178  *
3179  * Return 0 in case of success, non-zero otherwise
3180  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3181 int ufshcd_read_desc_param(struct ufs_hba *hba,
3182 			   enum desc_idn desc_id,
3183 			   int desc_index,
3184 			   u8 param_offset,
3185 			   u8 *param_read_buf,
3186 			   u8 param_size)
3187 {
3188 	int ret;
3189 	u8 *desc_buf;
3190 	int buff_len;
3191 	bool is_kmalloc = true;
3192 
3193 	/* Safety check */
3194 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3195 		return -EINVAL;
3196 
3197 	/* Get the length of descriptor */
3198 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3199 	if (!buff_len) {
3200 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3201 		return -EINVAL;
3202 	}
3203 
3204 	if (param_offset >= buff_len) {
3205 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3206 			__func__, param_offset, desc_id, buff_len);
3207 		return -EINVAL;
3208 	}
3209 
3210 	/* Check whether we need temp memory */
3211 	if (param_offset != 0 || param_size < buff_len) {
3212 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3213 		if (!desc_buf)
3214 			return -ENOMEM;
3215 	} else {
3216 		desc_buf = param_read_buf;
3217 		is_kmalloc = false;
3218 	}
3219 
3220 	/* Request for full descriptor */
3221 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3222 					desc_id, desc_index, 0,
3223 					desc_buf, &buff_len);
3224 
3225 	if (ret) {
3226 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3227 			__func__, desc_id, desc_index, param_offset, ret);
3228 		goto out;
3229 	}
3230 
3231 	/* Sanity check */
3232 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3233 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3234 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3235 		ret = -EINVAL;
3236 		goto out;
3237 	}
3238 
3239 	/* Update descriptor length */
3240 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3241 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3242 
3243 	if (is_kmalloc) {
3244 		/* Make sure we don't copy more data than available */
3245 		if (param_offset >= buff_len)
3246 			ret = -EINVAL;
3247 		else
3248 			memcpy(param_read_buf, &desc_buf[param_offset],
3249 			       min_t(u32, param_size, buff_len - param_offset));
3250 	}
3251 out:
3252 	if (is_kmalloc)
3253 		kfree(desc_buf);
3254 	return ret;
3255 }
3256 
3257 /**
3258  * struct uc_string_id - unicode string
3259  *
3260  * @len: size of this descriptor inclusive
3261  * @type: descriptor type
3262  * @uc: unicode string character
3263  */
3264 struct uc_string_id {
3265 	u8 len;
3266 	u8 type;
3267 	wchar_t uc[];
3268 } __packed;
3269 
3270 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3271 static inline char ufshcd_remove_non_printable(u8 ch)
3272 {
3273 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3274 }
3275 
3276 /**
3277  * ufshcd_read_string_desc - read string descriptor
3278  * @hba: pointer to adapter instance
3279  * @desc_index: descriptor index
3280  * @buf: pointer to buffer where descriptor would be read,
3281  *       the caller should free the memory.
3282  * @ascii: if true convert from unicode to ascii characters
3283  *         null terminated string.
3284  *
3285  * Return:
3286  * *      string size on success.
3287  * *      -ENOMEM: on allocation failure
3288  * *      -EINVAL: on a wrong parameter
3289  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3290 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3291 			    u8 **buf, bool ascii)
3292 {
3293 	struct uc_string_id *uc_str;
3294 	u8 *str;
3295 	int ret;
3296 
3297 	if (!buf)
3298 		return -EINVAL;
3299 
3300 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3301 	if (!uc_str)
3302 		return -ENOMEM;
3303 
3304 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3305 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3306 	if (ret < 0) {
3307 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3308 			QUERY_REQ_RETRIES, ret);
3309 		str = NULL;
3310 		goto out;
3311 	}
3312 
3313 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3314 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3315 		str = NULL;
3316 		ret = 0;
3317 		goto out;
3318 	}
3319 
3320 	if (ascii) {
3321 		ssize_t ascii_len;
3322 		int i;
3323 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3324 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3325 		str = kzalloc(ascii_len, GFP_KERNEL);
3326 		if (!str) {
3327 			ret = -ENOMEM;
3328 			goto out;
3329 		}
3330 
3331 		/*
3332 		 * the descriptor contains string in UTF16 format
3333 		 * we need to convert to utf-8 so it can be displayed
3334 		 */
3335 		ret = utf16s_to_utf8s(uc_str->uc,
3336 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3337 				      UTF16_BIG_ENDIAN, str, ascii_len);
3338 
3339 		/* replace non-printable or non-ASCII characters with spaces */
3340 		for (i = 0; i < ret; i++)
3341 			str[i] = ufshcd_remove_non_printable(str[i]);
3342 
3343 		str[ret++] = '\0';
3344 
3345 	} else {
3346 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3347 		if (!str) {
3348 			ret = -ENOMEM;
3349 			goto out;
3350 		}
3351 		ret = uc_str->len;
3352 	}
3353 out:
3354 	*buf = str;
3355 	kfree(uc_str);
3356 	return ret;
3357 }
3358 
3359 /**
3360  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3361  * @hba: Pointer to adapter instance
3362  * @lun: lun id
3363  * @param_offset: offset of the parameter to read
3364  * @param_read_buf: pointer to buffer where parameter would be read
3365  * @param_size: sizeof(param_read_buf)
3366  *
3367  * Return 0 in case of success, non-zero otherwise
3368  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3369 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3370 					      int lun,
3371 					      enum unit_desc_param param_offset,
3372 					      u8 *param_read_buf,
3373 					      u32 param_size)
3374 {
3375 	/*
3376 	 * Unit descriptors are only available for general purpose LUs (LUN id
3377 	 * from 0 to 7) and RPMB Well known LU.
3378 	 */
3379 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3380 		return -EOPNOTSUPP;
3381 
3382 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3383 				      param_offset, param_read_buf, param_size);
3384 }
3385 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3386 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3387 {
3388 	int err = 0;
3389 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3390 
3391 	if (hba->dev_info.wspecversion >= 0x300) {
3392 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3393 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3394 				&gating_wait);
3395 		if (err)
3396 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3397 					 err, gating_wait);
3398 
3399 		if (gating_wait == 0) {
3400 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3401 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3402 					 gating_wait);
3403 		}
3404 
3405 		hba->dev_info.clk_gating_wait_us = gating_wait;
3406 	}
3407 
3408 	return err;
3409 }
3410 
3411 /**
3412  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3413  * @hba: per adapter instance
3414  *
3415  * 1. Allocate DMA memory for Command Descriptor array
3416  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3417  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3418  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3419  *	(UTMRDL)
3420  * 4. Allocate memory for local reference block(lrb).
3421  *
3422  * Returns 0 for success, non-zero in case of failure
3423  */
ufshcd_memory_alloc(struct ufs_hba * hba)3424 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3425 {
3426 	size_t utmrdl_size, utrdl_size, ucdl_size;
3427 
3428 	/* Allocate memory for UTP command descriptors */
3429 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3430 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3431 						  ucdl_size,
3432 						  &hba->ucdl_dma_addr,
3433 						  GFP_KERNEL);
3434 
3435 	/*
3436 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3437 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3438 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3439 	 * be aligned to 128 bytes as well
3440 	 */
3441 	if (!hba->ucdl_base_addr ||
3442 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3443 		dev_err(hba->dev,
3444 			"Command Descriptor Memory allocation failed\n");
3445 		goto out;
3446 	}
3447 
3448 	/*
3449 	 * Allocate memory for UTP Transfer descriptors
3450 	 * UFSHCI requires 1024 byte alignment of UTRD
3451 	 */
3452 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3453 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3454 						   utrdl_size,
3455 						   &hba->utrdl_dma_addr,
3456 						   GFP_KERNEL);
3457 	if (!hba->utrdl_base_addr ||
3458 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3459 		dev_err(hba->dev,
3460 			"Transfer Descriptor Memory allocation failed\n");
3461 		goto out;
3462 	}
3463 
3464 	/*
3465 	 * Allocate memory for UTP Task Management descriptors
3466 	 * UFSHCI requires 1024 byte alignment of UTMRD
3467 	 */
3468 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3469 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3470 						    utmrdl_size,
3471 						    &hba->utmrdl_dma_addr,
3472 						    GFP_KERNEL);
3473 	if (!hba->utmrdl_base_addr ||
3474 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3475 		dev_err(hba->dev,
3476 		"Task Management Descriptor Memory allocation failed\n");
3477 		goto out;
3478 	}
3479 
3480 	/* Allocate memory for local reference block */
3481 	hba->lrb = devm_kcalloc(hba->dev,
3482 				hba->nutrs, sizeof(struct ufshcd_lrb),
3483 				GFP_KERNEL);
3484 	if (!hba->lrb) {
3485 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3486 		goto out;
3487 	}
3488 	return 0;
3489 out:
3490 	return -ENOMEM;
3491 }
3492 
3493 /**
3494  * ufshcd_host_memory_configure - configure local reference block with
3495  *				memory offsets
3496  * @hba: per adapter instance
3497  *
3498  * Configure Host memory space
3499  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3500  * address.
3501  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3502  * and PRDT offset.
3503  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3504  * into local reference block.
3505  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3506 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3507 {
3508 	struct utp_transfer_req_desc *utrdlp;
3509 	dma_addr_t cmd_desc_dma_addr;
3510 	dma_addr_t cmd_desc_element_addr;
3511 	u16 response_offset;
3512 	u16 prdt_offset;
3513 	int cmd_desc_size;
3514 	int i;
3515 
3516 	utrdlp = hba->utrdl_base_addr;
3517 
3518 	response_offset =
3519 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3520 	prdt_offset =
3521 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3522 
3523 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3524 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3525 
3526 	for (i = 0; i < hba->nutrs; i++) {
3527 		/* Configure UTRD with command descriptor base address */
3528 		cmd_desc_element_addr =
3529 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3530 		utrdlp[i].command_desc_base_addr_lo =
3531 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3532 		utrdlp[i].command_desc_base_addr_hi =
3533 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3534 
3535 		/* Response upiu and prdt offset should be in double words */
3536 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3537 			utrdlp[i].response_upiu_offset =
3538 				cpu_to_le16(response_offset);
3539 			utrdlp[i].prd_table_offset =
3540 				cpu_to_le16(prdt_offset);
3541 			utrdlp[i].response_upiu_length =
3542 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3543 		} else {
3544 			utrdlp[i].response_upiu_offset =
3545 				cpu_to_le16(response_offset >> 2);
3546 			utrdlp[i].prd_table_offset =
3547 				cpu_to_le16(prdt_offset >> 2);
3548 			utrdlp[i].response_upiu_length =
3549 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3550 		}
3551 
3552 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3553 	}
3554 }
3555 
3556 /**
3557  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3558  * @hba: per adapter instance
3559  *
3560  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3561  * in order to initialize the Unipro link startup procedure.
3562  * Once the Unipro links are up, the device connected to the controller
3563  * is detected.
3564  *
3565  * Returns 0 on success, non-zero value on failure
3566  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3567 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3568 {
3569 	struct uic_command uic_cmd = {0};
3570 	int ret;
3571 
3572 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3573 
3574 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3575 	if (ret)
3576 		dev_dbg(hba->dev,
3577 			"dme-link-startup: error code %d\n", ret);
3578 	return ret;
3579 }
3580 /**
3581  * ufshcd_dme_reset - UIC command for DME_RESET
3582  * @hba: per adapter instance
3583  *
3584  * DME_RESET command is issued in order to reset UniPro stack.
3585  * This function now deals with cold reset.
3586  *
3587  * Returns 0 on success, non-zero value on failure
3588  */
ufshcd_dme_reset(struct ufs_hba * hba)3589 static int ufshcd_dme_reset(struct ufs_hba *hba)
3590 {
3591 	struct uic_command uic_cmd = {0};
3592 	int ret;
3593 
3594 	uic_cmd.command = UIC_CMD_DME_RESET;
3595 
3596 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3597 	if (ret)
3598 		dev_err(hba->dev,
3599 			"dme-reset: error code %d\n", ret);
3600 
3601 	return ret;
3602 }
3603 
3604 /**
3605  * ufshcd_dme_enable - UIC command for DME_ENABLE
3606  * @hba: per adapter instance
3607  *
3608  * DME_ENABLE command is issued in order to enable UniPro stack.
3609  *
3610  * Returns 0 on success, non-zero value on failure
3611  */
ufshcd_dme_enable(struct ufs_hba * hba)3612 static int ufshcd_dme_enable(struct ufs_hba *hba)
3613 {
3614 	struct uic_command uic_cmd = {0};
3615 	int ret;
3616 
3617 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3618 
3619 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3620 	if (ret)
3621 		dev_err(hba->dev,
3622 			"dme-enable: error code %d\n", ret);
3623 
3624 	return ret;
3625 }
3626 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3627 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3628 {
3629 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3630 	unsigned long min_sleep_time_us;
3631 
3632 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3633 		return;
3634 
3635 	/*
3636 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3637 	 * this function
3638 	 */
3639 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3640 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3641 	} else {
3642 		unsigned long delta =
3643 			(unsigned long) ktime_to_us(
3644 				ktime_sub(ktime_get(),
3645 				hba->last_dme_cmd_tstamp));
3646 
3647 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3648 			min_sleep_time_us =
3649 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3650 		else
3651 			return; /* no more delay required */
3652 	}
3653 
3654 	/* allow sleep for extra 50us if needed */
3655 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3656 }
3657 
3658 /**
3659  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3660  * @hba: per adapter instance
3661  * @attr_sel: uic command argument1
3662  * @attr_set: attribute set type as uic command argument2
3663  * @mib_val: setting value as uic command argument3
3664  * @peer: indicate whether peer or local
3665  *
3666  * Returns 0 on success, non-zero value on failure
3667  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3668 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3669 			u8 attr_set, u32 mib_val, u8 peer)
3670 {
3671 	struct uic_command uic_cmd = {0};
3672 	static const char *const action[] = {
3673 		"dme-set",
3674 		"dme-peer-set"
3675 	};
3676 	const char *set = action[!!peer];
3677 	int ret;
3678 	int retries = UFS_UIC_COMMAND_RETRIES;
3679 
3680 	uic_cmd.command = peer ?
3681 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3682 	uic_cmd.argument1 = attr_sel;
3683 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3684 	uic_cmd.argument3 = mib_val;
3685 
3686 	do {
3687 		/* for peer attributes we retry upon failure */
3688 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3689 		if (ret)
3690 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3691 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3692 	} while (ret && peer && --retries);
3693 
3694 	if (ret)
3695 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3696 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3697 			UFS_UIC_COMMAND_RETRIES - retries);
3698 
3699 	return ret;
3700 }
3701 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3702 
3703 /**
3704  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3705  * @hba: per adapter instance
3706  * @attr_sel: uic command argument1
3707  * @mib_val: the value of the attribute as returned by the UIC command
3708  * @peer: indicate whether peer or local
3709  *
3710  * Returns 0 on success, non-zero value on failure
3711  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3712 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3713 			u32 *mib_val, u8 peer)
3714 {
3715 	struct uic_command uic_cmd = {0};
3716 	static const char *const action[] = {
3717 		"dme-get",
3718 		"dme-peer-get"
3719 	};
3720 	const char *get = action[!!peer];
3721 	int ret;
3722 	int retries = UFS_UIC_COMMAND_RETRIES;
3723 	struct ufs_pa_layer_attr orig_pwr_info;
3724 	struct ufs_pa_layer_attr temp_pwr_info;
3725 	bool pwr_mode_change = false;
3726 
3727 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3728 		orig_pwr_info = hba->pwr_info;
3729 		temp_pwr_info = orig_pwr_info;
3730 
3731 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3732 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3733 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3734 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3735 			pwr_mode_change = true;
3736 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3737 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3738 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3739 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3740 			pwr_mode_change = true;
3741 		}
3742 		if (pwr_mode_change) {
3743 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3744 			if (ret)
3745 				goto out;
3746 		}
3747 	}
3748 
3749 	uic_cmd.command = peer ?
3750 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3751 	uic_cmd.argument1 = attr_sel;
3752 
3753 	do {
3754 		/* for peer attributes we retry upon failure */
3755 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3756 		if (ret)
3757 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3758 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3759 	} while (ret && peer && --retries);
3760 
3761 	if (ret)
3762 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3763 			get, UIC_GET_ATTR_ID(attr_sel),
3764 			UFS_UIC_COMMAND_RETRIES - retries);
3765 
3766 	if (mib_val && !ret)
3767 		*mib_val = uic_cmd.argument3;
3768 
3769 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3770 	    && pwr_mode_change)
3771 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3772 out:
3773 	return ret;
3774 }
3775 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3776 
3777 /**
3778  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3779  * state) and waits for it to take effect.
3780  *
3781  * @hba: per adapter instance
3782  * @cmd: UIC command to execute
3783  *
3784  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3785  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3786  * and device UniPro link and hence it's final completion would be indicated by
3787  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3788  * addition to normal UIC command completion Status (UCCS). This function only
3789  * returns after the relevant status bits indicate the completion.
3790  *
3791  * Returns 0 on success, non-zero value on failure
3792  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3793 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3794 {
3795 	struct completion uic_async_done;
3796 	unsigned long flags;
3797 	u8 status;
3798 	int ret;
3799 	bool reenable_intr = false;
3800 
3801 	mutex_lock(&hba->uic_cmd_mutex);
3802 	init_completion(&uic_async_done);
3803 	ufshcd_add_delay_before_dme_cmd(hba);
3804 
3805 	spin_lock_irqsave(hba->host->host_lock, flags);
3806 	if (ufshcd_is_link_broken(hba)) {
3807 		ret = -ENOLINK;
3808 		goto out_unlock;
3809 	}
3810 	hba->uic_async_done = &uic_async_done;
3811 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3812 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3813 		/*
3814 		 * Make sure UIC command completion interrupt is disabled before
3815 		 * issuing UIC command.
3816 		 */
3817 		wmb();
3818 		reenable_intr = true;
3819 	}
3820 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3821 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3822 	if (ret) {
3823 		dev_err(hba->dev,
3824 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3825 			cmd->command, cmd->argument3, ret);
3826 		goto out;
3827 	}
3828 
3829 	if (!wait_for_completion_timeout(hba->uic_async_done,
3830 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3831 		dev_err(hba->dev,
3832 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3833 			cmd->command, cmd->argument3);
3834 
3835 		if (!cmd->cmd_active) {
3836 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
3837 				__func__);
3838 			goto check_upmcrs;
3839 		}
3840 
3841 		ret = -ETIMEDOUT;
3842 		goto out;
3843 	}
3844 
3845 check_upmcrs:
3846 	status = ufshcd_get_upmcrs(hba);
3847 	if (status != PWR_LOCAL) {
3848 		dev_err(hba->dev,
3849 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3850 			cmd->command, status);
3851 		ret = (status != PWR_OK) ? status : -1;
3852 	}
3853 out:
3854 	if (ret) {
3855 		ufshcd_print_host_state(hba);
3856 		ufshcd_print_pwr_info(hba);
3857 		ufshcd_print_host_regs(hba);
3858 	}
3859 
3860 	spin_lock_irqsave(hba->host->host_lock, flags);
3861 	hba->active_uic_cmd = NULL;
3862 	hba->uic_async_done = NULL;
3863 	if (reenable_intr)
3864 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3865 	if (ret) {
3866 		ufshcd_set_link_broken(hba);
3867 		ufshcd_schedule_eh_work(hba);
3868 	}
3869 out_unlock:
3870 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3871 	mutex_unlock(&hba->uic_cmd_mutex);
3872 
3873 	return ret;
3874 }
3875 
3876 /**
3877  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3878  *				using DME_SET primitives.
3879  * @hba: per adapter instance
3880  * @mode: powr mode value
3881  *
3882  * Returns 0 on success, non-zero value on failure
3883  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3884 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3885 {
3886 	struct uic_command uic_cmd = {0};
3887 	int ret;
3888 
3889 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3890 		ret = ufshcd_dme_set(hba,
3891 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3892 		if (ret) {
3893 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3894 						__func__, ret);
3895 			goto out;
3896 		}
3897 	}
3898 
3899 	uic_cmd.command = UIC_CMD_DME_SET;
3900 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3901 	uic_cmd.argument3 = mode;
3902 	ufshcd_hold(hba, false);
3903 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3904 	ufshcd_release(hba);
3905 
3906 out:
3907 	return ret;
3908 }
3909 
ufshcd_link_recovery(struct ufs_hba * hba)3910 int ufshcd_link_recovery(struct ufs_hba *hba)
3911 {
3912 	int ret;
3913 	unsigned long flags;
3914 
3915 	spin_lock_irqsave(hba->host->host_lock, flags);
3916 	hba->ufshcd_state = UFSHCD_STATE_RESET;
3917 	ufshcd_set_eh_in_progress(hba);
3918 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3919 
3920 	/* Reset the attached device */
3921 	ufshcd_vops_device_reset(hba);
3922 
3923 	ret = ufshcd_host_reset_and_restore(hba);
3924 
3925 	spin_lock_irqsave(hba->host->host_lock, flags);
3926 	if (ret)
3927 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
3928 	ufshcd_clear_eh_in_progress(hba);
3929 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3930 
3931 	if (ret)
3932 		dev_err(hba->dev, "%s: link recovery failed, err %d",
3933 			__func__, ret);
3934 
3935 	return ret;
3936 }
3937 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
3938 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3939 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3940 {
3941 	int ret;
3942 	struct uic_command uic_cmd = {0};
3943 	ktime_t start = ktime_get();
3944 
3945 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3946 
3947 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3948 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3949 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3950 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3951 
3952 	if (ret)
3953 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3954 			__func__, ret);
3955 	else
3956 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
3957 								POST_CHANGE);
3958 
3959 	return ret;
3960 }
3961 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3962 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
3963 {
3964 	struct uic_command uic_cmd = {0};
3965 	int ret;
3966 	ktime_t start = ktime_get();
3967 
3968 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
3969 
3970 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
3971 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3972 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
3973 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3974 
3975 	if (ret) {
3976 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
3977 			__func__, ret);
3978 	} else {
3979 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
3980 								POST_CHANGE);
3981 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
3982 		hba->ufs_stats.hibern8_exit_cnt++;
3983 	}
3984 
3985 	return ret;
3986 }
3987 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
3988 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)3989 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
3990 {
3991 	unsigned long flags;
3992 	bool update = false;
3993 
3994 	if (!ufshcd_is_auto_hibern8_supported(hba))
3995 		return;
3996 
3997 	spin_lock_irqsave(hba->host->host_lock, flags);
3998 	if (hba->ahit != ahit) {
3999 		hba->ahit = ahit;
4000 		update = true;
4001 	}
4002 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4003 
4004 	if (update && !pm_runtime_suspended(hba->dev)) {
4005 		pm_runtime_get_sync(hba->dev);
4006 		ufshcd_hold(hba, false);
4007 		ufshcd_auto_hibern8_enable(hba);
4008 		ufshcd_release(hba);
4009 		pm_runtime_put(hba->dev);
4010 	}
4011 }
4012 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4013 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4014 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4015 {
4016 	unsigned long flags;
4017 
4018 	if (!ufshcd_is_auto_hibern8_supported(hba))
4019 		return;
4020 
4021 	spin_lock_irqsave(hba->host->host_lock, flags);
4022 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4023 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4024 }
4025 
4026  /**
4027  * ufshcd_init_pwr_info - setting the POR (power on reset)
4028  * values in hba power info
4029  * @hba: per-adapter instance
4030  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4031 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4032 {
4033 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4034 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4035 	hba->pwr_info.lane_rx = 1;
4036 	hba->pwr_info.lane_tx = 1;
4037 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4038 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4039 	hba->pwr_info.hs_rate = 0;
4040 }
4041 
4042 /**
4043  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4044  * @hba: per-adapter instance
4045  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4046 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4047 {
4048 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4049 
4050 	if (hba->max_pwr_info.is_valid)
4051 		return 0;
4052 
4053 	pwr_info->pwr_tx = FAST_MODE;
4054 	pwr_info->pwr_rx = FAST_MODE;
4055 	pwr_info->hs_rate = PA_HS_MODE_B;
4056 
4057 	/* Get the connected lane count */
4058 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4059 			&pwr_info->lane_rx);
4060 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4061 			&pwr_info->lane_tx);
4062 
4063 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4064 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4065 				__func__,
4066 				pwr_info->lane_rx,
4067 				pwr_info->lane_tx);
4068 		return -EINVAL;
4069 	}
4070 
4071 	/*
4072 	 * First, get the maximum gears of HS speed.
4073 	 * If a zero value, it means there is no HSGEAR capability.
4074 	 * Then, get the maximum gears of PWM speed.
4075 	 */
4076 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4077 	if (!pwr_info->gear_rx) {
4078 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4079 				&pwr_info->gear_rx);
4080 		if (!pwr_info->gear_rx) {
4081 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4082 				__func__, pwr_info->gear_rx);
4083 			return -EINVAL;
4084 		}
4085 		pwr_info->pwr_rx = SLOW_MODE;
4086 	}
4087 
4088 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4089 			&pwr_info->gear_tx);
4090 	if (!pwr_info->gear_tx) {
4091 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4092 				&pwr_info->gear_tx);
4093 		if (!pwr_info->gear_tx) {
4094 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4095 				__func__, pwr_info->gear_tx);
4096 			return -EINVAL;
4097 		}
4098 		pwr_info->pwr_tx = SLOW_MODE;
4099 	}
4100 
4101 	hba->max_pwr_info.is_valid = true;
4102 	return 0;
4103 }
4104 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4105 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4106 			     struct ufs_pa_layer_attr *pwr_mode)
4107 {
4108 	int ret;
4109 
4110 	/* if already configured to the requested pwr_mode */
4111 	if (!hba->force_pmc &&
4112 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4113 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4114 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4115 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4116 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4117 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4118 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4119 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4120 		return 0;
4121 	}
4122 
4123 	/*
4124 	 * Configure attributes for power mode change with below.
4125 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4126 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4127 	 * - PA_HSSERIES
4128 	 */
4129 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4130 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4131 			pwr_mode->lane_rx);
4132 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4133 			pwr_mode->pwr_rx == FAST_MODE)
4134 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4135 	else
4136 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4137 
4138 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4139 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4140 			pwr_mode->lane_tx);
4141 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4142 			pwr_mode->pwr_tx == FAST_MODE)
4143 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4144 	else
4145 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4146 
4147 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4148 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4149 	    pwr_mode->pwr_rx == FAST_MODE ||
4150 	    pwr_mode->pwr_tx == FAST_MODE)
4151 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4152 						pwr_mode->hs_rate);
4153 
4154 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4155 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4156 				DL_FC0ProtectionTimeOutVal_Default);
4157 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4158 				DL_TC0ReplayTimeOutVal_Default);
4159 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4160 				DL_AFC0ReqTimeOutVal_Default);
4161 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4162 				DL_FC1ProtectionTimeOutVal_Default);
4163 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4164 				DL_TC1ReplayTimeOutVal_Default);
4165 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4166 				DL_AFC1ReqTimeOutVal_Default);
4167 
4168 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4169 				DL_FC0ProtectionTimeOutVal_Default);
4170 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4171 				DL_TC0ReplayTimeOutVal_Default);
4172 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4173 				DL_AFC0ReqTimeOutVal_Default);
4174 	}
4175 
4176 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4177 			| pwr_mode->pwr_tx);
4178 
4179 	if (ret) {
4180 		dev_err(hba->dev,
4181 			"%s: power mode change failed %d\n", __func__, ret);
4182 	} else {
4183 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4184 								pwr_mode);
4185 
4186 		memcpy(&hba->pwr_info, pwr_mode,
4187 			sizeof(struct ufs_pa_layer_attr));
4188 	}
4189 
4190 	return ret;
4191 }
4192 
4193 /**
4194  * ufshcd_config_pwr_mode - configure a new power mode
4195  * @hba: per-adapter instance
4196  * @desired_pwr_mode: desired power configuration
4197  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4198 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4199 		struct ufs_pa_layer_attr *desired_pwr_mode)
4200 {
4201 	struct ufs_pa_layer_attr final_params = { 0 };
4202 	int ret;
4203 
4204 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4205 					desired_pwr_mode, &final_params);
4206 
4207 	if (ret)
4208 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4209 
4210 	ret = ufshcd_change_power_mode(hba, &final_params);
4211 
4212 	return ret;
4213 }
4214 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4215 
4216 /**
4217  * ufshcd_complete_dev_init() - checks device readiness
4218  * @hba: per-adapter instance
4219  *
4220  * Set fDeviceInit flag and poll until device toggles it.
4221  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4222 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4223 {
4224 	int err;
4225 	bool flag_res = true;
4226 	ktime_t timeout;
4227 
4228 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4229 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4230 	if (err) {
4231 		dev_err(hba->dev,
4232 			"%s setting fDeviceInit flag failed with error %d\n",
4233 			__func__, err);
4234 		goto out;
4235 	}
4236 
4237 	/* Poll fDeviceInit flag to be cleared */
4238 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4239 	do {
4240 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4241 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4242 		if (!flag_res)
4243 			break;
4244 		usleep_range(5000, 10000);
4245 	} while (ktime_before(ktime_get(), timeout));
4246 
4247 	if (err) {
4248 		dev_err(hba->dev,
4249 				"%s reading fDeviceInit flag failed with error %d\n",
4250 				__func__, err);
4251 	} else if (flag_res) {
4252 		dev_err(hba->dev,
4253 				"%s fDeviceInit was not cleared by the device\n",
4254 				__func__);
4255 		err = -EBUSY;
4256 	}
4257 out:
4258 	return err;
4259 }
4260 
4261 /**
4262  * ufshcd_make_hba_operational - Make UFS controller operational
4263  * @hba: per adapter instance
4264  *
4265  * To bring UFS host controller to operational state,
4266  * 1. Enable required interrupts
4267  * 2. Configure interrupt aggregation
4268  * 3. Program UTRL and UTMRL base address
4269  * 4. Configure run-stop-registers
4270  *
4271  * Returns 0 on success, non-zero value on failure
4272  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4273 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4274 {
4275 	int err = 0;
4276 	u32 reg;
4277 
4278 	/* Enable required interrupts */
4279 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4280 
4281 	/* Configure interrupt aggregation */
4282 	if (ufshcd_is_intr_aggr_allowed(hba))
4283 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4284 	else
4285 		ufshcd_disable_intr_aggr(hba);
4286 
4287 	/* Configure UTRL and UTMRL base address registers */
4288 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4289 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4290 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4291 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4292 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4293 			REG_UTP_TASK_REQ_LIST_BASE_L);
4294 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4295 			REG_UTP_TASK_REQ_LIST_BASE_H);
4296 
4297 	/*
4298 	 * Make sure base address and interrupt setup are updated before
4299 	 * enabling the run/stop registers below.
4300 	 */
4301 	wmb();
4302 
4303 	/*
4304 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4305 	 */
4306 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4307 	if (!(ufshcd_get_lists_status(reg))) {
4308 		ufshcd_enable_run_stop_reg(hba);
4309 	} else {
4310 		dev_err(hba->dev,
4311 			"Host controller not ready to process requests");
4312 		err = -EIO;
4313 	}
4314 
4315 	return err;
4316 }
4317 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4318 
4319 /**
4320  * ufshcd_hba_stop - Send controller to reset state
4321  * @hba: per adapter instance
4322  */
ufshcd_hba_stop(struct ufs_hba * hba)4323 static inline void ufshcd_hba_stop(struct ufs_hba *hba)
4324 {
4325 	unsigned long flags;
4326 	int err;
4327 
4328 	/*
4329 	 * Obtain the host lock to prevent that the controller is disabled
4330 	 * while the UFS interrupt handler is active on another CPU.
4331 	 */
4332 	spin_lock_irqsave(hba->host->host_lock, flags);
4333 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4334 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4335 
4336 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4337 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4338 					10, 1);
4339 	if (err)
4340 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4341 }
4342 
4343 /**
4344  * ufshcd_hba_execute_hce - initialize the controller
4345  * @hba: per adapter instance
4346  *
4347  * The controller resets itself and controller firmware initialization
4348  * sequence kicks off. When controller is ready it will set
4349  * the Host Controller Enable bit to 1.
4350  *
4351  * Returns 0 on success, non-zero value on failure
4352  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4353 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4354 {
4355 	int retry;
4356 
4357 	if (!ufshcd_is_hba_active(hba))
4358 		/* change controller state to "reset state" */
4359 		ufshcd_hba_stop(hba);
4360 
4361 	/* UniPro link is disabled at this point */
4362 	ufshcd_set_link_off(hba);
4363 
4364 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4365 
4366 	/* start controller initialization sequence */
4367 	ufshcd_hba_start(hba);
4368 
4369 	/*
4370 	 * To initialize a UFS host controller HCE bit must be set to 1.
4371 	 * During initialization the HCE bit value changes from 1->0->1.
4372 	 * When the host controller completes initialization sequence
4373 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4374 	 * to check if the controller has completed initialization sequence.
4375 	 * So without this delay the value HCE = 1, set in the previous
4376 	 * instruction might be read back.
4377 	 * This delay can be changed based on the controller.
4378 	 */
4379 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4380 
4381 	/* wait for the host controller to complete initialization */
4382 	retry = 50;
4383 	while (ufshcd_is_hba_active(hba)) {
4384 		if (retry) {
4385 			retry--;
4386 		} else {
4387 			dev_err(hba->dev,
4388 				"Controller enable failed\n");
4389 			return -EIO;
4390 		}
4391 		usleep_range(1000, 1100);
4392 	}
4393 
4394 	/* enable UIC related interrupts */
4395 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4396 
4397 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4398 
4399 	return 0;
4400 }
4401 
ufshcd_hba_enable(struct ufs_hba * hba)4402 int ufshcd_hba_enable(struct ufs_hba *hba)
4403 {
4404 	int ret;
4405 
4406 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4407 		ufshcd_set_link_off(hba);
4408 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4409 
4410 		/* enable UIC related interrupts */
4411 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4412 		ret = ufshcd_dme_reset(hba);
4413 		if (!ret) {
4414 			ret = ufshcd_dme_enable(hba);
4415 			if (!ret)
4416 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4417 			if (ret)
4418 				dev_err(hba->dev,
4419 					"Host controller enable failed with non-hce\n");
4420 		}
4421 	} else {
4422 		ret = ufshcd_hba_execute_hce(hba);
4423 	}
4424 
4425 	return ret;
4426 }
4427 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4428 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4429 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4430 {
4431 	int tx_lanes = 0, i, err = 0;
4432 
4433 	if (!peer)
4434 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4435 			       &tx_lanes);
4436 	else
4437 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4438 				    &tx_lanes);
4439 	for (i = 0; i < tx_lanes; i++) {
4440 		if (!peer)
4441 			err = ufshcd_dme_set(hba,
4442 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4443 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4444 					0);
4445 		else
4446 			err = ufshcd_dme_peer_set(hba,
4447 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4448 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4449 					0);
4450 		if (err) {
4451 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4452 				__func__, peer, i, err);
4453 			break;
4454 		}
4455 	}
4456 
4457 	return err;
4458 }
4459 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4460 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4461 {
4462 	return ufshcd_disable_tx_lcc(hba, true);
4463 }
4464 
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4465 void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4466 			    u32 reg)
4467 {
4468 	reg_hist->reg[reg_hist->pos] = reg;
4469 	reg_hist->tstamp[reg_hist->pos] = ktime_get();
4470 	reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4471 }
4472 EXPORT_SYMBOL_GPL(ufshcd_update_reg_hist);
4473 
4474 /**
4475  * ufshcd_link_startup - Initialize unipro link startup
4476  * @hba: per adapter instance
4477  *
4478  * Returns 0 for success, non-zero in case of failure
4479  */
ufshcd_link_startup(struct ufs_hba * hba)4480 static int ufshcd_link_startup(struct ufs_hba *hba)
4481 {
4482 	int ret;
4483 	int retries = DME_LINKSTARTUP_RETRIES;
4484 	bool link_startup_again = false;
4485 
4486 	/*
4487 	 * If UFS device isn't active then we will have to issue link startup
4488 	 * 2 times to make sure the device state move to active.
4489 	 */
4490 	if (!ufshcd_is_ufs_dev_active(hba))
4491 		link_startup_again = true;
4492 
4493 link_startup:
4494 	do {
4495 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4496 
4497 		ret = ufshcd_dme_link_startup(hba);
4498 
4499 		/* check if device is detected by inter-connect layer */
4500 		if (!ret && !ufshcd_is_device_present(hba)) {
4501 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4502 					       0);
4503 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4504 			ret = -ENXIO;
4505 			goto out;
4506 		}
4507 
4508 		/*
4509 		 * DME link lost indication is only received when link is up,
4510 		 * but we can't be sure if the link is up until link startup
4511 		 * succeeds. So reset the local Uni-Pro and try again.
4512 		 */
4513 		if (ret && ufshcd_hba_enable(hba)) {
4514 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4515 					       (u32)ret);
4516 			goto out;
4517 		}
4518 	} while (ret && retries--);
4519 
4520 	if (ret) {
4521 		/* failed to get the link up... retire */
4522 		ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4523 				       (u32)ret);
4524 		goto out;
4525 	}
4526 
4527 	if (link_startup_again) {
4528 		link_startup_again = false;
4529 		retries = DME_LINKSTARTUP_RETRIES;
4530 		goto link_startup;
4531 	}
4532 
4533 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4534 	ufshcd_init_pwr_info(hba);
4535 	ufshcd_print_pwr_info(hba);
4536 
4537 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4538 		ret = ufshcd_disable_device_tx_lcc(hba);
4539 		if (ret)
4540 			goto out;
4541 	}
4542 
4543 	/* Include any host controller configuration via UIC commands */
4544 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4545 	if (ret)
4546 		goto out;
4547 
4548 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4549 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4550 	ret = ufshcd_make_hba_operational(hba);
4551 out:
4552 	if (ret) {
4553 		dev_err(hba->dev, "link startup failed %d\n", ret);
4554 		ufshcd_print_host_state(hba);
4555 		ufshcd_print_pwr_info(hba);
4556 		ufshcd_print_host_regs(hba);
4557 	}
4558 	return ret;
4559 }
4560 
4561 /**
4562  * ufshcd_verify_dev_init() - Verify device initialization
4563  * @hba: per-adapter instance
4564  *
4565  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4566  * device Transport Protocol (UTP) layer is ready after a reset.
4567  * If the UTP layer at the device side is not initialized, it may
4568  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4569  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4570  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4571 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4572 {
4573 	int err = 0;
4574 	int retries;
4575 
4576 	ufshcd_hold(hba, false);
4577 	mutex_lock(&hba->dev_cmd.lock);
4578 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4579 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4580 					       NOP_OUT_TIMEOUT);
4581 
4582 		if (!err || err == -ETIMEDOUT)
4583 			break;
4584 
4585 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4586 	}
4587 	mutex_unlock(&hba->dev_cmd.lock);
4588 	ufshcd_release(hba);
4589 
4590 	if (err)
4591 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4592 	return err;
4593 }
4594 
4595 /**
4596  * ufshcd_set_queue_depth - set lun queue depth
4597  * @sdev: pointer to SCSI device
4598  *
4599  * Read bLUQueueDepth value and activate scsi tagged command
4600  * queueing. For WLUN, queue depth is set to 1. For best-effort
4601  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4602  * value that host can queue.
4603  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4604 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4605 {
4606 	int ret = 0;
4607 	u8 lun_qdepth;
4608 	struct ufs_hba *hba;
4609 
4610 	hba = shost_priv(sdev->host);
4611 
4612 	lun_qdepth = hba->nutrs;
4613 	ret = ufshcd_read_unit_desc_param(hba,
4614 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4615 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4616 					  &lun_qdepth,
4617 					  sizeof(lun_qdepth));
4618 
4619 	/* Some WLUN doesn't support unit descriptor */
4620 	if (ret == -EOPNOTSUPP)
4621 		lun_qdepth = 1;
4622 	else if (!lun_qdepth)
4623 		/* eventually, we can figure out the real queue depth */
4624 		lun_qdepth = hba->nutrs;
4625 	else
4626 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4627 
4628 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4629 			__func__, lun_qdepth);
4630 	scsi_change_queue_depth(sdev, lun_qdepth);
4631 }
4632 
4633 /*
4634  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4635  * @hba: per-adapter instance
4636  * @lun: UFS device lun id
4637  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4638  *
4639  * Returns 0 in case of success and b_lu_write_protect status would be returned
4640  * @b_lu_write_protect parameter.
4641  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4642  * Returns -EINVAL in case of invalid parameters passed to this function.
4643  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4644 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4645 			    u8 lun,
4646 			    u8 *b_lu_write_protect)
4647 {
4648 	int ret;
4649 
4650 	if (!b_lu_write_protect)
4651 		ret = -EINVAL;
4652 	/*
4653 	 * According to UFS device spec, RPMB LU can't be write
4654 	 * protected so skip reading bLUWriteProtect parameter for
4655 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4656 	 */
4657 	else if (lun >= hba->dev_info.max_lu_supported)
4658 		ret = -ENOTSUPP;
4659 	else
4660 		ret = ufshcd_read_unit_desc_param(hba,
4661 					  lun,
4662 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4663 					  b_lu_write_protect,
4664 					  sizeof(*b_lu_write_protect));
4665 	return ret;
4666 }
4667 
4668 /**
4669  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4670  * status
4671  * @hba: per-adapter instance
4672  * @sdev: pointer to SCSI device
4673  *
4674  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4675 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4676 						    struct scsi_device *sdev)
4677 {
4678 	if (hba->dev_info.f_power_on_wp_en &&
4679 	    !hba->dev_info.is_lu_power_on_wp) {
4680 		u8 b_lu_write_protect;
4681 
4682 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4683 				      &b_lu_write_protect) &&
4684 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4685 			hba->dev_info.is_lu_power_on_wp = true;
4686 	}
4687 }
4688 
4689 /**
4690  * ufshcd_slave_alloc - handle initial SCSI device configurations
4691  * @sdev: pointer to SCSI device
4692  *
4693  * Returns success
4694  */
ufshcd_slave_alloc(struct scsi_device * sdev)4695 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4696 {
4697 	struct ufs_hba *hba;
4698 
4699 	hba = shost_priv(sdev->host);
4700 
4701 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4702 	sdev->use_10_for_ms = 1;
4703 
4704 	/* DBD field should be set to 1 in mode sense(10) */
4705 	sdev->set_dbd_for_ms = 1;
4706 
4707 	/* allow SCSI layer to restart the device in case of errors */
4708 	sdev->allow_restart = 1;
4709 
4710 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4711 	sdev->no_report_opcodes = 1;
4712 
4713 	/* WRITE_SAME command is not supported */
4714 	sdev->no_write_same = 1;
4715 
4716 	ufshcd_set_queue_depth(sdev);
4717 
4718 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4719 
4720 	return 0;
4721 }
4722 
4723 /**
4724  * ufshcd_change_queue_depth - change queue depth
4725  * @sdev: pointer to SCSI device
4726  * @depth: required depth to set
4727  *
4728  * Change queue depth and make sure the max. limits are not crossed.
4729  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4730 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4731 {
4732 	struct ufs_hba *hba = shost_priv(sdev->host);
4733 
4734 	if (depth > hba->nutrs)
4735 		depth = hba->nutrs;
4736 	return scsi_change_queue_depth(sdev, depth);
4737 }
4738 
4739 /**
4740  * ufshcd_slave_configure - adjust SCSI device configurations
4741  * @sdev: pointer to SCSI device
4742  */
ufshcd_slave_configure(struct scsi_device * sdev)4743 static int ufshcd_slave_configure(struct scsi_device *sdev)
4744 {
4745 	struct ufs_hba *hba = shost_priv(sdev->host);
4746 	struct request_queue *q = sdev->request_queue;
4747 
4748 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4749 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
4750 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
4751 
4752 	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4753 		sdev->rpm_autosuspend = 1;
4754 
4755 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4756 
4757 	return 0;
4758 }
4759 
4760 /**
4761  * ufshcd_slave_destroy - remove SCSI device configurations
4762  * @sdev: pointer to SCSI device
4763  */
ufshcd_slave_destroy(struct scsi_device * sdev)4764 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4765 {
4766 	struct ufs_hba *hba;
4767 
4768 	hba = shost_priv(sdev->host);
4769 	/* Drop the reference as it won't be needed anymore */
4770 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4771 		unsigned long flags;
4772 
4773 		spin_lock_irqsave(hba->host->host_lock, flags);
4774 		hba->sdev_ufs_device = NULL;
4775 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4776 	}
4777 }
4778 
4779 /**
4780  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4781  * @lrbp: pointer to local reference block of completed command
4782  * @scsi_status: SCSI command status
4783  *
4784  * Returns value base on SCSI command status
4785  */
4786 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4787 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4788 {
4789 	int result = 0;
4790 
4791 	switch (scsi_status) {
4792 	case SAM_STAT_CHECK_CONDITION:
4793 		ufshcd_copy_sense_data(lrbp);
4794 		fallthrough;
4795 	case SAM_STAT_GOOD:
4796 		result |= DID_OK << 16 |
4797 			  COMMAND_COMPLETE << 8 |
4798 			  scsi_status;
4799 		break;
4800 	case SAM_STAT_TASK_SET_FULL:
4801 	case SAM_STAT_BUSY:
4802 	case SAM_STAT_TASK_ABORTED:
4803 		ufshcd_copy_sense_data(lrbp);
4804 		result |= scsi_status;
4805 		break;
4806 	default:
4807 		result |= DID_ERROR << 16;
4808 		break;
4809 	} /* end of switch */
4810 
4811 	return result;
4812 }
4813 
4814 /**
4815  * ufshcd_transfer_rsp_status - Get overall status of the response
4816  * @hba: per adapter instance
4817  * @lrbp: pointer to local reference block of completed command
4818  *
4819  * Returns result of the command to notify SCSI midlayer
4820  */
4821 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4822 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4823 {
4824 	int result = 0;
4825 	int scsi_status;
4826 	int ocs;
4827 
4828 	/* overall command status of utrd */
4829 	ocs = ufshcd_get_tr_ocs(lrbp);
4830 
4831 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
4832 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
4833 					MASK_RSP_UPIU_RESULT)
4834 			ocs = OCS_SUCCESS;
4835 	}
4836 
4837 	switch (ocs) {
4838 	case OCS_SUCCESS:
4839 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4840 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4841 		switch (result) {
4842 		case UPIU_TRANSACTION_RESPONSE:
4843 			/*
4844 			 * get the response UPIU result to extract
4845 			 * the SCSI command status
4846 			 */
4847 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4848 
4849 			/*
4850 			 * get the result based on SCSI status response
4851 			 * to notify the SCSI midlayer of the command status
4852 			 */
4853 			scsi_status = result & MASK_SCSI_STATUS;
4854 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4855 
4856 			/*
4857 			 * Currently we are only supporting BKOPs exception
4858 			 * events hence we can ignore BKOPs exception event
4859 			 * during power management callbacks. BKOPs exception
4860 			 * event is not expected to be raised in runtime suspend
4861 			 * callback as it allows the urgent bkops.
4862 			 * During system suspend, we are anyway forcefully
4863 			 * disabling the bkops and if urgent bkops is needed
4864 			 * it will be enabled on system resume. Long term
4865 			 * solution could be to abort the system suspend if
4866 			 * UFS device needs urgent BKOPs.
4867 			 */
4868 			if (!hba->pm_op_in_progress &&
4869 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
4870 			    schedule_work(&hba->eeh_work)) {
4871 				/*
4872 				 * Prevent suspend once eeh_work is scheduled
4873 				 * to avoid deadlock between ufshcd_suspend
4874 				 * and exception event handler.
4875 				 */
4876 				pm_runtime_get_noresume(hba->dev);
4877 			}
4878 			break;
4879 		case UPIU_TRANSACTION_REJECT_UPIU:
4880 			/* TODO: handle Reject UPIU Response */
4881 			result = DID_ERROR << 16;
4882 			dev_err(hba->dev,
4883 				"Reject UPIU not fully implemented\n");
4884 			break;
4885 		default:
4886 			dev_err(hba->dev,
4887 				"Unexpected request response code = %x\n",
4888 				result);
4889 			result = DID_ERROR << 16;
4890 			break;
4891 		}
4892 		break;
4893 	case OCS_ABORTED:
4894 		result |= DID_ABORT << 16;
4895 		break;
4896 	case OCS_INVALID_COMMAND_STATUS:
4897 		result |= DID_REQUEUE << 16;
4898 		break;
4899 	case OCS_INVALID_CMD_TABLE_ATTR:
4900 	case OCS_INVALID_PRDT_ATTR:
4901 	case OCS_MISMATCH_DATA_BUF_SIZE:
4902 	case OCS_MISMATCH_RESP_UPIU_SIZE:
4903 	case OCS_PEER_COMM_FAILURE:
4904 	case OCS_FATAL_ERROR:
4905 	case OCS_DEVICE_FATAL_ERROR:
4906 	case OCS_INVALID_CRYPTO_CONFIG:
4907 	case OCS_GENERAL_CRYPTO_ERROR:
4908 	default:
4909 		result |= DID_ERROR << 16;
4910 		dev_err(hba->dev,
4911 				"OCS error from controller = %x for tag %d\n",
4912 				ocs, lrbp->task_tag);
4913 		ufshcd_print_host_regs(hba);
4914 		ufshcd_print_host_state(hba);
4915 		break;
4916 	} /* end of switch */
4917 
4918 	if ((host_byte(result) != DID_OK) &&
4919 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
4920 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4921 	return result;
4922 }
4923 
4924 /**
4925  * ufshcd_uic_cmd_compl - handle completion of uic command
4926  * @hba: per adapter instance
4927  * @intr_status: interrupt status generated by the controller
4928  *
4929  * Returns
4930  *  IRQ_HANDLED - If interrupt is valid
4931  *  IRQ_NONE    - If invalid interrupt
4932  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4933 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4934 {
4935 	irqreturn_t retval = IRQ_NONE;
4936 
4937 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4938 		hba->active_uic_cmd->argument2 |=
4939 			ufshcd_get_uic_cmd_result(hba);
4940 		hba->active_uic_cmd->argument3 =
4941 			ufshcd_get_dme_attr_val(hba);
4942 		if (!hba->uic_async_done)
4943 			hba->active_uic_cmd->cmd_active = 0;
4944 		complete(&hba->active_uic_cmd->done);
4945 		retval = IRQ_HANDLED;
4946 	}
4947 
4948 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
4949 		hba->active_uic_cmd->cmd_active = 0;
4950 		complete(hba->uic_async_done);
4951 		retval = IRQ_HANDLED;
4952 	}
4953 
4954 	if (retval == IRQ_HANDLED)
4955 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
4956 					     "complete");
4957 	return retval;
4958 }
4959 
4960 /**
4961  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4962  * @hba: per adapter instance
4963  * @completed_reqs: requests to complete
4964  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4965 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4966 					unsigned long completed_reqs)
4967 {
4968 	struct ufshcd_lrb *lrbp;
4969 	struct scsi_cmnd *cmd;
4970 	int result;
4971 	int index;
4972 
4973 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4974 		lrbp = &hba->lrb[index];
4975 		lrbp->compl_time_stamp = ktime_get();
4976 		cmd = lrbp->cmd;
4977 		if (cmd) {
4978 			ufshcd_add_command_trace(hba, index, "complete");
4979 			result = ufshcd_transfer_rsp_status(hba, lrbp);
4980 			scsi_dma_unmap(cmd);
4981 			cmd->result = result;
4982 			/* Mark completed command as NULL in LRB */
4983 			lrbp->cmd = NULL;
4984 			/* Do not touch lrbp after scsi done */
4985 			cmd->scsi_done(cmd);
4986 			__ufshcd_release(hba);
4987 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4988 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4989 			if (hba->dev_cmd.complete) {
4990 				ufshcd_add_command_trace(hba, index,
4991 						"dev_complete");
4992 				complete(hba->dev_cmd.complete);
4993 			}
4994 		}
4995 		if (ufshcd_is_clkscaling_supported(hba))
4996 			hba->clk_scaling.active_reqs--;
4997 	}
4998 
4999 	/* clear corresponding bits of completed commands */
5000 	hba->outstanding_reqs ^= completed_reqs;
5001 
5002 	ufshcd_clk_scaling_update_busy(hba);
5003 }
5004 
5005 /**
5006  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5007  * @hba: per adapter instance
5008  *
5009  * Returns
5010  *  IRQ_HANDLED - If interrupt is valid
5011  *  IRQ_NONE    - If invalid interrupt
5012  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5013 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5014 {
5015 	unsigned long completed_reqs;
5016 	u32 tr_doorbell;
5017 
5018 	/* Resetting interrupt aggregation counters first and reading the
5019 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5020 	 * In order to prevent other interrupts starvation the DB is read once
5021 	 * after reset. The down side of this solution is the possibility of
5022 	 * false interrupt if device completes another request after resetting
5023 	 * aggregation and before reading the DB.
5024 	 */
5025 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5026 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5027 		ufshcd_reset_intr_aggr(hba);
5028 
5029 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5030 	completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5031 
5032 	if (completed_reqs) {
5033 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5034 		return IRQ_HANDLED;
5035 	} else {
5036 		return IRQ_NONE;
5037 	}
5038 }
5039 
5040 /**
5041  * ufshcd_disable_ee - disable exception event
5042  * @hba: per-adapter instance
5043  * @mask: exception event to disable
5044  *
5045  * Disables exception event in the device so that the EVENT_ALERT
5046  * bit is not set.
5047  *
5048  * Returns zero on success, non-zero error value on failure.
5049  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5050 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5051 {
5052 	int err = 0;
5053 	u32 val;
5054 
5055 	if (!(hba->ee_ctrl_mask & mask))
5056 		goto out;
5057 
5058 	val = hba->ee_ctrl_mask & ~mask;
5059 	val &= MASK_EE_STATUS;
5060 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5061 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5062 	if (!err)
5063 		hba->ee_ctrl_mask &= ~mask;
5064 out:
5065 	return err;
5066 }
5067 
5068 /**
5069  * ufshcd_enable_ee - enable exception event
5070  * @hba: per-adapter instance
5071  * @mask: exception event to enable
5072  *
5073  * Enable corresponding exception event in the device to allow
5074  * device to alert host in critical scenarios.
5075  *
5076  * Returns zero on success, non-zero error value on failure.
5077  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5078 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5079 {
5080 	int err = 0;
5081 	u32 val;
5082 
5083 	if (hba->ee_ctrl_mask & mask)
5084 		goto out;
5085 
5086 	val = hba->ee_ctrl_mask | mask;
5087 	val &= MASK_EE_STATUS;
5088 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5089 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5090 	if (!err)
5091 		hba->ee_ctrl_mask |= mask;
5092 out:
5093 	return err;
5094 }
5095 
5096 /**
5097  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5098  * @hba: per-adapter instance
5099  *
5100  * Allow device to manage background operations on its own. Enabling
5101  * this might lead to inconsistent latencies during normal data transfers
5102  * as the device is allowed to manage its own way of handling background
5103  * operations.
5104  *
5105  * Returns zero on success, non-zero on failure.
5106  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5107 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5108 {
5109 	int err = 0;
5110 
5111 	if (hba->auto_bkops_enabled)
5112 		goto out;
5113 
5114 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5115 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5116 	if (err) {
5117 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5118 				__func__, err);
5119 		goto out;
5120 	}
5121 
5122 	hba->auto_bkops_enabled = true;
5123 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5124 
5125 	/* No need of URGENT_BKOPS exception from the device */
5126 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5127 	if (err)
5128 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5129 				__func__, err);
5130 out:
5131 	return err;
5132 }
5133 
5134 /**
5135  * ufshcd_disable_auto_bkops - block device in doing background operations
5136  * @hba: per-adapter instance
5137  *
5138  * Disabling background operations improves command response latency but
5139  * has drawback of device moving into critical state where the device is
5140  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5141  * host is idle so that BKOPS are managed effectively without any negative
5142  * impacts.
5143  *
5144  * Returns zero on success, non-zero on failure.
5145  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5146 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5147 {
5148 	int err = 0;
5149 
5150 	if (!hba->auto_bkops_enabled)
5151 		goto out;
5152 
5153 	/*
5154 	 * If host assisted BKOPs is to be enabled, make sure
5155 	 * urgent bkops exception is allowed.
5156 	 */
5157 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5158 	if (err) {
5159 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5160 				__func__, err);
5161 		goto out;
5162 	}
5163 
5164 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5165 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5166 	if (err) {
5167 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5168 				__func__, err);
5169 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5170 		goto out;
5171 	}
5172 
5173 	hba->auto_bkops_enabled = false;
5174 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5175 	hba->is_urgent_bkops_lvl_checked = false;
5176 out:
5177 	return err;
5178 }
5179 
5180 /**
5181  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5182  * @hba: per adapter instance
5183  *
5184  * After a device reset the device may toggle the BKOPS_EN flag
5185  * to default value. The s/w tracking variables should be updated
5186  * as well. This function would change the auto-bkops state based on
5187  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5188  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5189 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5190 {
5191 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5192 		hba->auto_bkops_enabled = false;
5193 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5194 		ufshcd_enable_auto_bkops(hba);
5195 	} else {
5196 		hba->auto_bkops_enabled = true;
5197 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5198 		ufshcd_disable_auto_bkops(hba);
5199 	}
5200 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5201 	hba->is_urgent_bkops_lvl_checked = false;
5202 }
5203 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5204 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5205 {
5206 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5207 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5208 }
5209 
5210 /**
5211  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5212  * @hba: per-adapter instance
5213  * @status: bkops_status value
5214  *
5215  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5216  * flag in the device to permit background operations if the device
5217  * bkops_status is greater than or equal to "status" argument passed to
5218  * this function, disable otherwise.
5219  *
5220  * Returns 0 for success, non-zero in case of failure.
5221  *
5222  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5223  * to know whether auto bkops is enabled or disabled after this function
5224  * returns control to it.
5225  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5226 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5227 			     enum bkops_status status)
5228 {
5229 	int err;
5230 	u32 curr_status = 0;
5231 
5232 	err = ufshcd_get_bkops_status(hba, &curr_status);
5233 	if (err) {
5234 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5235 				__func__, err);
5236 		goto out;
5237 	} else if (curr_status > BKOPS_STATUS_MAX) {
5238 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5239 				__func__, curr_status);
5240 		err = -EINVAL;
5241 		goto out;
5242 	}
5243 
5244 	if (curr_status >= status)
5245 		err = ufshcd_enable_auto_bkops(hba);
5246 	else
5247 		err = ufshcd_disable_auto_bkops(hba);
5248 out:
5249 	return err;
5250 }
5251 
5252 /**
5253  * ufshcd_urgent_bkops - handle urgent bkops exception event
5254  * @hba: per-adapter instance
5255  *
5256  * Enable fBackgroundOpsEn flag in the device to permit background
5257  * operations.
5258  *
5259  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5260  * and negative error value for any other failure.
5261  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5262 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5263 {
5264 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5265 }
5266 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5267 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5268 {
5269 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5270 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5271 }
5272 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5273 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5274 {
5275 	int err;
5276 	u32 curr_status = 0;
5277 
5278 	if (hba->is_urgent_bkops_lvl_checked)
5279 		goto enable_auto_bkops;
5280 
5281 	err = ufshcd_get_bkops_status(hba, &curr_status);
5282 	if (err) {
5283 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5284 				__func__, err);
5285 		goto out;
5286 	}
5287 
5288 	/*
5289 	 * We are seeing that some devices are raising the urgent bkops
5290 	 * exception events even when BKOPS status doesn't indicate performace
5291 	 * impacted or critical. Handle these device by determining their urgent
5292 	 * bkops status at runtime.
5293 	 */
5294 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5295 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5296 				__func__, curr_status);
5297 		/* update the current status as the urgent bkops level */
5298 		hba->urgent_bkops_lvl = curr_status;
5299 		hba->is_urgent_bkops_lvl_checked = true;
5300 	}
5301 
5302 enable_auto_bkops:
5303 	err = ufshcd_enable_auto_bkops(hba);
5304 out:
5305 	if (err < 0)
5306 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5307 				__func__, err);
5308 }
5309 
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5310 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5311 {
5312 	int ret;
5313 	u8 index;
5314 	enum query_opcode opcode;
5315 
5316 	if (!ufshcd_is_wb_allowed(hba))
5317 		return 0;
5318 
5319 	if (!(enable ^ hba->wb_enabled))
5320 		return 0;
5321 	if (enable)
5322 		opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5323 	else
5324 		opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5325 
5326 	index = ufshcd_wb_get_query_index(hba);
5327 	ret = ufshcd_query_flag_retry(hba, opcode,
5328 				      QUERY_FLAG_IDN_WB_EN, index, NULL);
5329 	if (ret) {
5330 		dev_err(hba->dev, "%s write booster %s failed %d\n",
5331 			__func__, enable ? "enable" : "disable", ret);
5332 		return ret;
5333 	}
5334 
5335 	hba->wb_enabled = enable;
5336 	dev_dbg(hba->dev, "%s write booster %s %d\n",
5337 			__func__, enable ? "enable" : "disable", ret);
5338 
5339 	return ret;
5340 }
5341 
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5342 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5343 {
5344 	int val;
5345 	u8 index;
5346 
5347 	if (set)
5348 		val =  UPIU_QUERY_OPCODE_SET_FLAG;
5349 	else
5350 		val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5351 
5352 	index = ufshcd_wb_get_query_index(hba);
5353 	return ufshcd_query_flag_retry(hba, val,
5354 				QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5355 				index, NULL);
5356 }
5357 
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5358 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5359 {
5360 	if (enable)
5361 		ufshcd_wb_buf_flush_enable(hba);
5362 	else
5363 		ufshcd_wb_buf_flush_disable(hba);
5364 
5365 }
5366 
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5367 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5368 {
5369 	int ret;
5370 	u8 index;
5371 
5372 	if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5373 		return 0;
5374 
5375 	index = ufshcd_wb_get_query_index(hba);
5376 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5377 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5378 				      index, NULL);
5379 	if (ret)
5380 		dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5381 			__func__, ret);
5382 	else
5383 		hba->wb_buf_flush_enabled = true;
5384 
5385 	dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5386 	return ret;
5387 }
5388 
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5389 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5390 {
5391 	int ret;
5392 	u8 index;
5393 
5394 	if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5395 		return 0;
5396 
5397 	index = ufshcd_wb_get_query_index(hba);
5398 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5399 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5400 				      index, NULL);
5401 	if (ret) {
5402 		dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5403 			 __func__, ret);
5404 	} else {
5405 		hba->wb_buf_flush_enabled = false;
5406 		dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5407 	}
5408 
5409 	return ret;
5410 }
5411 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5412 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5413 						u32 avail_buf)
5414 {
5415 	u32 cur_buf;
5416 	int ret;
5417 	u8 index;
5418 
5419 	index = ufshcd_wb_get_query_index(hba);
5420 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5421 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5422 					      index, 0, &cur_buf);
5423 	if (ret) {
5424 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5425 			__func__, ret);
5426 		return false;
5427 	}
5428 
5429 	if (!cur_buf) {
5430 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5431 			 cur_buf);
5432 		return false;
5433 	}
5434 	/* Let it continue to flush when available buffer exceeds threshold */
5435 	if (avail_buf < hba->vps->wb_flush_threshold)
5436 		return true;
5437 
5438 	return false;
5439 }
5440 
ufshcd_wb_need_flush(struct ufs_hba * hba)5441 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5442 {
5443 	int ret;
5444 	u32 avail_buf;
5445 	u8 index;
5446 
5447 	if (!ufshcd_is_wb_allowed(hba))
5448 		return false;
5449 	/*
5450 	 * The ufs device needs the vcc to be ON to flush.
5451 	 * With user-space reduction enabled, it's enough to enable flush
5452 	 * by checking only the available buffer. The threshold
5453 	 * defined here is > 90% full.
5454 	 * With user-space preserved enabled, the current-buffer
5455 	 * should be checked too because the wb buffer size can reduce
5456 	 * when disk tends to be full. This info is provided by current
5457 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5458 	 * keeping vcc on when current buffer is empty.
5459 	 */
5460 	index = ufshcd_wb_get_query_index(hba);
5461 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5462 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5463 				      index, 0, &avail_buf);
5464 	if (ret) {
5465 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5466 			 __func__, ret);
5467 		return false;
5468 	}
5469 
5470 	if (!hba->dev_info.b_presrv_uspc_en) {
5471 		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5472 			return true;
5473 		return false;
5474 	}
5475 
5476 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5477 }
5478 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5479 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5480 {
5481 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5482 					   struct ufs_hba,
5483 					   rpm_dev_flush_recheck_work);
5484 	/*
5485 	 * To prevent unnecessary VCC power drain after device finishes
5486 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5487 	 * after a certain delay to recheck the threshold by next runtime
5488 	 * suspend.
5489 	 */
5490 	pm_runtime_get_sync(hba->dev);
5491 	pm_runtime_put_sync(hba->dev);
5492 }
5493 
5494 /**
5495  * ufshcd_exception_event_handler - handle exceptions raised by device
5496  * @work: pointer to work data
5497  *
5498  * Read bExceptionEventStatus attribute from the device and handle the
5499  * exception event accordingly.
5500  */
ufshcd_exception_event_handler(struct work_struct * work)5501 static void ufshcd_exception_event_handler(struct work_struct *work)
5502 {
5503 	struct ufs_hba *hba;
5504 	int err;
5505 	u32 status = 0;
5506 	hba = container_of(work, struct ufs_hba, eeh_work);
5507 
5508 	pm_runtime_get_sync(hba->dev);
5509 	ufshcd_scsi_block_requests(hba);
5510 	err = ufshcd_get_ee_status(hba, &status);
5511 	if (err) {
5512 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5513 				__func__, err);
5514 		goto out;
5515 	}
5516 
5517 	status &= hba->ee_ctrl_mask;
5518 
5519 	if (status & MASK_EE_URGENT_BKOPS)
5520 		ufshcd_bkops_exception_event_handler(hba);
5521 
5522 out:
5523 	ufshcd_scsi_unblock_requests(hba);
5524 	/*
5525 	 * pm_runtime_get_noresume is called while scheduling
5526 	 * eeh_work to avoid suspend racing with exception work.
5527 	 * Hence decrement usage counter using pm_runtime_put_noidle
5528 	 * to allow suspend on completion of exception event handler.
5529 	 */
5530 	pm_runtime_put_noidle(hba->dev);
5531 	pm_runtime_put(hba->dev);
5532 	return;
5533 }
5534 
5535 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5536 static void ufshcd_complete_requests(struct ufs_hba *hba)
5537 {
5538 	ufshcd_transfer_req_compl(hba);
5539 	ufshcd_tmc_handler(hba);
5540 }
5541 
5542 /**
5543  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5544  *				to recover from the DL NAC errors or not.
5545  * @hba: per-adapter instance
5546  *
5547  * Returns true if error handling is required, false otherwise
5548  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5549 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5550 {
5551 	unsigned long flags;
5552 	bool err_handling = true;
5553 
5554 	spin_lock_irqsave(hba->host->host_lock, flags);
5555 	/*
5556 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5557 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5558 	 */
5559 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5560 		goto out;
5561 
5562 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5563 	    ((hba->saved_err & UIC_ERROR) &&
5564 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5565 		goto out;
5566 
5567 	if ((hba->saved_err & UIC_ERROR) &&
5568 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5569 		int err;
5570 		/*
5571 		 * wait for 50ms to see if we can get any other errors or not.
5572 		 */
5573 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5574 		msleep(50);
5575 		spin_lock_irqsave(hba->host->host_lock, flags);
5576 
5577 		/*
5578 		 * now check if we have got any other severe errors other than
5579 		 * DL NAC error?
5580 		 */
5581 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5582 		    ((hba->saved_err & UIC_ERROR) &&
5583 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5584 			goto out;
5585 
5586 		/*
5587 		 * As DL NAC is the only error received so far, send out NOP
5588 		 * command to confirm if link is still active or not.
5589 		 *   - If we don't get any response then do error recovery.
5590 		 *   - If we get response then clear the DL NAC error bit.
5591 		 */
5592 
5593 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5594 		err = ufshcd_verify_dev_init(hba);
5595 		spin_lock_irqsave(hba->host->host_lock, flags);
5596 
5597 		if (err)
5598 			goto out;
5599 
5600 		/* Link seems to be alive hence ignore the DL NAC errors */
5601 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5602 			hba->saved_err &= ~UIC_ERROR;
5603 		/* clear NAC error */
5604 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5605 		if (!hba->saved_uic_err)
5606 			err_handling = false;
5607 	}
5608 out:
5609 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5610 	return err_handling;
5611 }
5612 
5613 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5614 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5615 {
5616 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5617 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5618 }
5619 
5620 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5621 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5622 {
5623 	/* handle fatal errors only when link is not in error state */
5624 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5625 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5626 		    ufshcd_is_saved_err_fatal(hba))
5627 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5628 		else
5629 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5630 		queue_work(hba->eh_wq, &hba->eh_work);
5631 	}
5632 }
5633 
ufshcd_err_handling_prepare(struct ufs_hba * hba)5634 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5635 {
5636 	pm_runtime_get_sync(hba->dev);
5637 	if (pm_runtime_suspended(hba->dev)) {
5638 		/*
5639 		 * Don't assume anything of pm_runtime_get_sync(), if
5640 		 * resume fails, irq and clocks can be OFF, and powers
5641 		 * can be OFF or in LPM.
5642 		 */
5643 		ufshcd_setup_hba_vreg(hba, true);
5644 		ufshcd_enable_irq(hba);
5645 		ufshcd_setup_vreg(hba, true);
5646 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5647 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5648 		ufshcd_hold(hba, false);
5649 		if (!ufshcd_is_clkgating_allowed(hba))
5650 			ufshcd_setup_clocks(hba, true);
5651 		ufshcd_release(hba);
5652 		ufshcd_vops_resume(hba, UFS_RUNTIME_PM);
5653 	} else {
5654 		ufshcd_hold(hba, false);
5655 		if (hba->clk_scaling.is_allowed) {
5656 			cancel_work_sync(&hba->clk_scaling.suspend_work);
5657 			cancel_work_sync(&hba->clk_scaling.resume_work);
5658 			ufshcd_suspend_clkscaling(hba);
5659 		}
5660 	}
5661 }
5662 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5663 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5664 {
5665 	ufshcd_release(hba);
5666 	if (hba->clk_scaling.is_allowed)
5667 		ufshcd_resume_clkscaling(hba);
5668 	pm_runtime_put(hba->dev);
5669 }
5670 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5671 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5672 {
5673 	return (hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5674 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5675 			ufshcd_is_link_broken(hba))));
5676 }
5677 
5678 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5679 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5680 {
5681 	struct Scsi_Host *shost = hba->host;
5682 	struct scsi_device *sdev;
5683 	struct request_queue *q;
5684 	int ret;
5685 
5686 	/*
5687 	 * Set RPM status of hba device to RPM_ACTIVE,
5688 	 * this also clears its runtime error.
5689 	 */
5690 	ret = pm_runtime_set_active(hba->dev);
5691 	/*
5692 	 * If hba device had runtime error, we also need to resume those
5693 	 * scsi devices under hba in case any of them has failed to be
5694 	 * resumed due to hba runtime resume failure. This is to unblock
5695 	 * blk_queue_enter in case there are bios waiting inside it.
5696 	 */
5697 	if (!ret) {
5698 		shost_for_each_device(sdev, shost) {
5699 			q = sdev->request_queue;
5700 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
5701 				       q->rpm_status == RPM_SUSPENDING))
5702 				pm_request_resume(q->dev);
5703 		}
5704 	}
5705 }
5706 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)5707 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
5708 {
5709 }
5710 #endif
5711 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5712 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
5713 {
5714 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
5715 	u32 mode;
5716 
5717 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
5718 
5719 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
5720 		return true;
5721 
5722 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
5723 		return true;
5724 
5725 	return false;
5726 }
5727 
5728 /**
5729  * ufshcd_err_handler - handle UFS errors that require s/w attention
5730  * @work: pointer to work structure
5731  */
ufshcd_err_handler(struct work_struct * work)5732 static void ufshcd_err_handler(struct work_struct *work)
5733 {
5734 	struct ufs_hba *hba;
5735 	unsigned long flags;
5736 	bool err_xfer = false;
5737 	bool err_tm = false;
5738 	int err = 0, pmc_err;
5739 	int tag;
5740 	bool needs_reset = false, needs_restore = false;
5741 
5742 	hba = container_of(work, struct ufs_hba, eh_work);
5743 
5744 	spin_lock_irqsave(hba->host->host_lock, flags);
5745 	if (ufshcd_err_handling_should_stop(hba)) {
5746 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5747 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5748 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5749 		return;
5750 	}
5751 	ufshcd_set_eh_in_progress(hba);
5752 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5753 	ufshcd_err_handling_prepare(hba);
5754 	spin_lock_irqsave(hba->host->host_lock, flags);
5755 	ufshcd_scsi_block_requests(hba);
5756 	/*
5757 	 * A full reset and restore might have happened after preparation
5758 	 * is finished, double check whether we should stop.
5759 	 */
5760 	if (ufshcd_err_handling_should_stop(hba)) {
5761 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5762 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5763 		goto out;
5764 	}
5765 	hba->ufshcd_state = UFSHCD_STATE_RESET;
5766 
5767 	/* Complete requests that have door-bell cleared by h/w */
5768 	ufshcd_complete_requests(hba);
5769 
5770 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5771 		bool ret;
5772 
5773 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5774 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5775 		ret = ufshcd_quirk_dl_nac_errors(hba);
5776 		spin_lock_irqsave(hba->host->host_lock, flags);
5777 		if (!ret && !hba->force_reset && ufshcd_is_link_active(hba))
5778 			goto skip_err_handling;
5779 	}
5780 
5781 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5782 	    ufshcd_is_saved_err_fatal(hba) ||
5783 	    ((hba->saved_err & UIC_ERROR) &&
5784 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5785 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5786 		needs_reset = true;
5787 
5788 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
5789 	    (hba->saved_uic_err &&
5790 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
5791 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
5792 
5793 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5794 		ufshcd_print_host_state(hba);
5795 		ufshcd_print_pwr_info(hba);
5796 		ufshcd_print_host_regs(hba);
5797 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5798 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
5799 		spin_lock_irqsave(hba->host->host_lock, flags);
5800 	}
5801 
5802 	/*
5803 	 * if host reset is required then skip clearing the pending
5804 	 * transfers forcefully because they will get cleared during
5805 	 * host reset and restore
5806 	 */
5807 	if (needs_reset)
5808 		goto do_reset;
5809 
5810 	/*
5811 	 * If LINERESET was caught, UFS might have been put to PWM mode,
5812 	 * check if power mode restore is needed.
5813 	 */
5814 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
5815 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5816 		if (!hba->saved_uic_err)
5817 			hba->saved_err &= ~UIC_ERROR;
5818 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5819 		if (ufshcd_is_pwr_mode_restore_needed(hba))
5820 			needs_restore = true;
5821 		spin_lock_irqsave(hba->host->host_lock, flags);
5822 		if (!hba->saved_err && !needs_restore)
5823 			goto skip_err_handling;
5824 	}
5825 
5826 	hba->silence_err_logs = true;
5827 	/* release lock as clear command might sleep */
5828 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5829 	/* Clear pending transfer requests */
5830 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5831 		if (ufshcd_try_to_abort_task(hba, tag)) {
5832 			err_xfer = true;
5833 			goto lock_skip_pending_xfer_clear;
5834 		}
5835 	}
5836 
5837 	/* Clear pending task management requests */
5838 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5839 		if (ufshcd_clear_tm_cmd(hba, tag)) {
5840 			err_tm = true;
5841 			goto lock_skip_pending_xfer_clear;
5842 		}
5843 	}
5844 
5845 lock_skip_pending_xfer_clear:
5846 	spin_lock_irqsave(hba->host->host_lock, flags);
5847 
5848 	/* Complete the requests that are cleared by s/w */
5849 	ufshcd_complete_requests(hba);
5850 	hba->silence_err_logs = false;
5851 
5852 	if (err_xfer || err_tm) {
5853 		needs_reset = true;
5854 		goto do_reset;
5855 	}
5856 
5857 	/*
5858 	 * After all reqs and tasks are cleared from doorbell,
5859 	 * now it is safe to retore power mode.
5860 	 */
5861 	if (needs_restore) {
5862 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5863 		/*
5864 		 * Hold the scaling lock just in case dev cmds
5865 		 * are sent via bsg and/or sysfs.
5866 		 */
5867 		down_write(&hba->clk_scaling_lock);
5868 		hba->force_pmc = true;
5869 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
5870 		if (pmc_err) {
5871 			needs_reset = true;
5872 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
5873 					__func__, pmc_err);
5874 		}
5875 		hba->force_pmc = false;
5876 		ufshcd_print_pwr_info(hba);
5877 		up_write(&hba->clk_scaling_lock);
5878 		spin_lock_irqsave(hba->host->host_lock, flags);
5879 	}
5880 
5881 do_reset:
5882 	/* Fatal errors need reset */
5883 	if (needs_reset) {
5884 		unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5885 
5886 		/*
5887 		 * ufshcd_reset_and_restore() does the link reinitialization
5888 		 * which will need atleast one empty doorbell slot to send the
5889 		 * device management commands (NOP and query commands).
5890 		 * If there is no slot empty at this moment then free up last
5891 		 * slot forcefully.
5892 		 */
5893 		if (hba->outstanding_reqs == max_doorbells)
5894 			__ufshcd_transfer_req_compl(hba,
5895 						    (1UL << (hba->nutrs - 1)));
5896 
5897 		hba->force_reset = false;
5898 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5899 		err = ufshcd_reset_and_restore(hba);
5900 		if (err)
5901 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
5902 					__func__, err);
5903 		else
5904 			ufshcd_recover_pm_error(hba);
5905 		spin_lock_irqsave(hba->host->host_lock, flags);
5906 	}
5907 
5908 skip_err_handling:
5909 	if (!needs_reset) {
5910 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5911 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5912 		if (hba->saved_err || hba->saved_uic_err)
5913 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5914 			    __func__, hba->saved_err, hba->saved_uic_err);
5915 	}
5916 
5917 out:
5918 	ufshcd_clear_eh_in_progress(hba);
5919 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5920 	ufshcd_scsi_unblock_requests(hba);
5921 	ufshcd_err_handling_unprepare(hba);
5922 }
5923 
5924 /**
5925  * ufshcd_update_uic_error - check and set fatal UIC error flags.
5926  * @hba: per-adapter instance
5927  *
5928  * Returns
5929  *  IRQ_HANDLED - If interrupt is valid
5930  *  IRQ_NONE    - If invalid interrupt
5931  */
ufshcd_update_uic_error(struct ufs_hba * hba)5932 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
5933 {
5934 	u32 reg;
5935 	irqreturn_t retval = IRQ_NONE;
5936 
5937 	/* PHY layer error */
5938 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5939 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5940 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
5941 		ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5942 		/*
5943 		 * To know whether this error is fatal or not, DB timeout
5944 		 * must be checked but this error is handled separately.
5945 		 */
5946 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
5947 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
5948 					__func__);
5949 
5950 		/* Got a LINERESET indication. */
5951 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
5952 			struct uic_command *cmd = NULL;
5953 
5954 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
5955 			if (hba->uic_async_done && hba->active_uic_cmd)
5956 				cmd = hba->active_uic_cmd;
5957 			/*
5958 			 * Ignore the LINERESET during power mode change
5959 			 * operation via DME_SET command.
5960 			 */
5961 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
5962 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5963 		}
5964 		retval |= IRQ_HANDLED;
5965 	}
5966 
5967 	/* PA_INIT_ERROR is fatal and needs UIC reset */
5968 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5969 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
5970 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
5971 		ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5972 
5973 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5974 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5975 		else if (hba->dev_quirks &
5976 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5977 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5978 				hba->uic_error |=
5979 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5980 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5981 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5982 		}
5983 		retval |= IRQ_HANDLED;
5984 	}
5985 
5986 	/* UIC NL/TL/DME errors needs software retry */
5987 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5988 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
5989 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
5990 		ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5991 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5992 		retval |= IRQ_HANDLED;
5993 	}
5994 
5995 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
5996 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
5997 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
5998 		ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
5999 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6000 		retval |= IRQ_HANDLED;
6001 	}
6002 
6003 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6004 	if ((reg & UIC_DME_ERROR) &&
6005 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6006 		ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
6007 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6008 		retval |= IRQ_HANDLED;
6009 	}
6010 
6011 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6012 			__func__, hba->uic_error);
6013 	return retval;
6014 }
6015 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)6016 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
6017 					 u32 intr_mask)
6018 {
6019 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
6020 	    !ufshcd_is_auto_hibern8_enabled(hba))
6021 		return false;
6022 
6023 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
6024 		return false;
6025 
6026 	if (hba->active_uic_cmd &&
6027 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
6028 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
6029 		return false;
6030 
6031 	return true;
6032 }
6033 
6034 /**
6035  * ufshcd_check_errors - Check for errors that need s/w attention
6036  * @hba: per-adapter instance
6037  *
6038  * Returns
6039  *  IRQ_HANDLED - If interrupt is valid
6040  *  IRQ_NONE    - If invalid interrupt
6041  */
ufshcd_check_errors(struct ufs_hba * hba)6042 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba)
6043 {
6044 	bool queue_eh_work = false;
6045 	irqreturn_t retval = IRQ_NONE;
6046 
6047 	if (hba->errors & INT_FATAL_ERRORS) {
6048 		ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
6049 		queue_eh_work = true;
6050 	}
6051 
6052 	if (hba->errors & UIC_ERROR) {
6053 		hba->uic_error = 0;
6054 		retval = ufshcd_update_uic_error(hba);
6055 		if (hba->uic_error)
6056 			queue_eh_work = true;
6057 	}
6058 
6059 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6060 		dev_err(hba->dev,
6061 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6062 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6063 			"Enter" : "Exit",
6064 			hba->errors, ufshcd_get_upmcrs(hba));
6065 		ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
6066 				       hba->errors);
6067 		ufshcd_set_link_broken(hba);
6068 		queue_eh_work = true;
6069 	}
6070 
6071 	if (queue_eh_work) {
6072 		/*
6073 		 * update the transfer error masks to sticky bits, let's do this
6074 		 * irrespective of current ufshcd_state.
6075 		 */
6076 		hba->saved_err |= hba->errors;
6077 		hba->saved_uic_err |= hba->uic_error;
6078 
6079 		/* dump controller state before resetting */
6080 		if ((hba->saved_err & (INT_FATAL_ERRORS)) ||
6081 		    (hba->saved_uic_err &&
6082 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6083 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6084 					__func__, hba->saved_err,
6085 					hba->saved_uic_err);
6086 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6087 					 "host_regs: ");
6088 			ufshcd_print_pwr_info(hba);
6089 		}
6090 		ufshcd_schedule_eh_work(hba);
6091 		retval |= IRQ_HANDLED;
6092 	}
6093 	/*
6094 	 * if (!queue_eh_work) -
6095 	 * Other errors are either non-fatal where host recovers
6096 	 * itself without s/w intervention or errors that will be
6097 	 * handled by the SCSI core layer.
6098 	 */
6099 	return retval;
6100 }
6101 
6102 /**
6103  * ufshcd_tmc_handler - handle task management function completion
6104  * @hba: per adapter instance
6105  *
6106  * Returns
6107  *  IRQ_HANDLED - If interrupt is valid
6108  *  IRQ_NONE    - If invalid interrupt
6109  */
ufshcd_tmc_handler(struct ufs_hba * hba)6110 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6111 {
6112 	unsigned long pending, issued;
6113 	irqreturn_t ret = IRQ_NONE;
6114 	int tag;
6115 
6116 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6117 
6118 	issued = hba->outstanding_tasks & ~pending;
6119 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6120 		struct request *req = hba->tmf_rqs[tag];
6121 		struct completion *c = req->end_io_data;
6122 
6123 		complete(c);
6124 		ret = IRQ_HANDLED;
6125 	}
6126 
6127 	return ret;
6128 }
6129 
6130 /**
6131  * ufshcd_sl_intr - Interrupt service routine
6132  * @hba: per adapter instance
6133  * @intr_status: contains interrupts generated by the controller
6134  *
6135  * Returns
6136  *  IRQ_HANDLED - If interrupt is valid
6137  *  IRQ_NONE    - If invalid interrupt
6138  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6139 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6140 {
6141 	irqreturn_t retval = IRQ_NONE;
6142 
6143 	hba->errors = UFSHCD_ERROR_MASK & intr_status;
6144 
6145 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
6146 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
6147 
6148 	if (hba->errors)
6149 		retval |= ufshcd_check_errors(hba);
6150 
6151 	if (intr_status & UFSHCD_UIC_MASK)
6152 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6153 
6154 	if (intr_status & UTP_TASK_REQ_COMPL)
6155 		retval |= ufshcd_tmc_handler(hba);
6156 
6157 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6158 		retval |= ufshcd_transfer_req_compl(hba);
6159 
6160 	return retval;
6161 }
6162 
6163 /**
6164  * ufshcd_intr - Main interrupt service routine
6165  * @irq: irq number
6166  * @__hba: pointer to adapter instance
6167  *
6168  * Returns
6169  *  IRQ_HANDLED - If interrupt is valid
6170  *  IRQ_NONE    - If invalid interrupt
6171  */
ufshcd_intr(int irq,void * __hba)6172 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6173 {
6174 	u32 intr_status, enabled_intr_status = 0;
6175 	irqreturn_t retval = IRQ_NONE;
6176 	struct ufs_hba *hba = __hba;
6177 	int retries = hba->nutrs;
6178 
6179 	spin_lock(hba->host->host_lock);
6180 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6181 	hba->ufs_stats.last_intr_status = intr_status;
6182 	hba->ufs_stats.last_intr_ts = ktime_get();
6183 
6184 	/*
6185 	 * There could be max of hba->nutrs reqs in flight and in worst case
6186 	 * if the reqs get finished 1 by 1 after the interrupt status is
6187 	 * read, make sure we handle them by checking the interrupt status
6188 	 * again in a loop until we process all of the reqs before returning.
6189 	 */
6190 	while (intr_status && retries--) {
6191 		enabled_intr_status =
6192 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6193 		if (intr_status)
6194 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6195 		if (enabled_intr_status)
6196 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6197 
6198 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6199 	}
6200 
6201 	if (enabled_intr_status && retval == IRQ_NONE &&
6202 				!ufshcd_eh_in_progress(hba)) {
6203 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6204 					__func__,
6205 					intr_status,
6206 					hba->ufs_stats.last_intr_status,
6207 					enabled_intr_status);
6208 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6209 	}
6210 
6211 	spin_unlock(hba->host->host_lock);
6212 	return retval;
6213 }
6214 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6215 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6216 {
6217 	int err = 0;
6218 	u32 mask = 1 << tag;
6219 	unsigned long flags;
6220 
6221 	if (!test_bit(tag, &hba->outstanding_tasks))
6222 		goto out;
6223 
6224 	spin_lock_irqsave(hba->host->host_lock, flags);
6225 	ufshcd_utmrl_clear(hba, tag);
6226 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6227 
6228 	/* poll for max. 1 sec to clear door bell register by h/w */
6229 	err = ufshcd_wait_for_register(hba,
6230 			REG_UTP_TASK_REQ_DOOR_BELL,
6231 			mask, 0, 1000, 1000);
6232 out:
6233 	return err;
6234 }
6235 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6236 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6237 		struct utp_task_req_desc *treq, u8 tm_function)
6238 {
6239 	struct request_queue *q = hba->tmf_queue;
6240 	struct Scsi_Host *host = hba->host;
6241 	DECLARE_COMPLETION_ONSTACK(wait);
6242 	struct request *req;
6243 	unsigned long flags;
6244 	int task_tag, err;
6245 
6246 	/*
6247 	 * blk_get_request() is used here only to get a free tag.
6248 	 */
6249 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6250 	if (IS_ERR(req))
6251 		return PTR_ERR(req);
6252 
6253 	req->end_io_data = &wait;
6254 	ufshcd_hold(hba, false);
6255 
6256 	spin_lock_irqsave(host->host_lock, flags);
6257 
6258 	task_tag = req->tag;
6259 	hba->tmf_rqs[req->tag] = req;
6260 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6261 
6262 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6263 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6264 
6265 	/* send command to the controller */
6266 	__set_bit(task_tag, &hba->outstanding_tasks);
6267 
6268 	/* Make sure descriptors are ready before ringing the task doorbell */
6269 	wmb();
6270 
6271 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6272 	/* Make sure that doorbell is committed immediately */
6273 	wmb();
6274 
6275 	spin_unlock_irqrestore(host->host_lock, flags);
6276 
6277 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6278 
6279 	/* wait until the task management command is completed */
6280 	err = wait_for_completion_io_timeout(&wait,
6281 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6282 	if (!err) {
6283 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6284 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6285 				__func__, tm_function);
6286 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6287 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6288 					__func__, task_tag);
6289 		err = -ETIMEDOUT;
6290 	} else {
6291 		err = 0;
6292 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6293 
6294 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6295 	}
6296 
6297 	spin_lock_irqsave(hba->host->host_lock, flags);
6298 	hba->tmf_rqs[req->tag] = NULL;
6299 	__clear_bit(task_tag, &hba->outstanding_tasks);
6300 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6301 
6302 	ufshcd_release(hba);
6303 	blk_put_request(req);
6304 
6305 	return err;
6306 }
6307 
6308 /**
6309  * ufshcd_issue_tm_cmd - issues task management commands to controller
6310  * @hba: per adapter instance
6311  * @lun_id: LUN ID to which TM command is sent
6312  * @task_id: task ID to which the TM command is applicable
6313  * @tm_function: task management function opcode
6314  * @tm_response: task management service response return value
6315  *
6316  * Returns non-zero value on error, zero on success.
6317  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6318 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6319 		u8 tm_function, u8 *tm_response)
6320 {
6321 	struct utp_task_req_desc treq = { { 0 }, };
6322 	int ocs_value, err;
6323 
6324 	/* Configure task request descriptor */
6325 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6326 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6327 
6328 	/* Configure task request UPIU */
6329 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6330 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6331 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6332 
6333 	/*
6334 	 * The host shall provide the same value for LUN field in the basic
6335 	 * header and for Input Parameter.
6336 	 */
6337 	treq.input_param1 = cpu_to_be32(lun_id);
6338 	treq.input_param2 = cpu_to_be32(task_id);
6339 
6340 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6341 	if (err == -ETIMEDOUT)
6342 		return err;
6343 
6344 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6345 	if (ocs_value != OCS_SUCCESS)
6346 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6347 				__func__, ocs_value);
6348 	else if (tm_response)
6349 		*tm_response = be32_to_cpu(treq.output_param1) &
6350 				MASK_TM_SERVICE_RESP;
6351 	return err;
6352 }
6353 
6354 /**
6355  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6356  * @hba:	per-adapter instance
6357  * @req_upiu:	upiu request
6358  * @rsp_upiu:	upiu reply
6359  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6360  * @buff_len:	descriptor size, 0 if NA
6361  * @cmd_type:	specifies the type (NOP, Query...)
6362  * @desc_op:	descriptor operation
6363  *
6364  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6365  * Therefore, it "rides" the device management infrastructure: uses its tag and
6366  * tasks work queues.
6367  *
6368  * Since there is only one available tag for device management commands,
6369  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6370  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6371 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6372 					struct utp_upiu_req *req_upiu,
6373 					struct utp_upiu_req *rsp_upiu,
6374 					u8 *desc_buff, int *buff_len,
6375 					enum dev_cmd_type cmd_type,
6376 					enum query_opcode desc_op)
6377 {
6378 	struct request_queue *q = hba->cmd_queue;
6379 	struct request *req;
6380 	struct ufshcd_lrb *lrbp;
6381 	int err = 0;
6382 	int tag;
6383 	struct completion wait;
6384 	unsigned long flags;
6385 	u8 upiu_flags;
6386 
6387 	down_read(&hba->clk_scaling_lock);
6388 
6389 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6390 	if (IS_ERR(req)) {
6391 		err = PTR_ERR(req);
6392 		goto out_unlock;
6393 	}
6394 	tag = req->tag;
6395 	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
6396 
6397 	init_completion(&wait);
6398 	lrbp = &hba->lrb[tag];
6399 	WARN_ON(lrbp->cmd);
6400 
6401 	lrbp->cmd = NULL;
6402 	lrbp->sense_bufflen = 0;
6403 	lrbp->sense_buffer = NULL;
6404 	lrbp->task_tag = tag;
6405 	lrbp->lun = 0;
6406 	lrbp->intr_cmd = true;
6407 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6408 	hba->dev_cmd.type = cmd_type;
6409 
6410 	switch (hba->ufs_version) {
6411 	case UFSHCI_VERSION_10:
6412 	case UFSHCI_VERSION_11:
6413 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6414 		break;
6415 	default:
6416 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6417 		break;
6418 	}
6419 
6420 	/* update the task tag in the request upiu */
6421 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6422 
6423 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6424 
6425 	/* just copy the upiu request as it is */
6426 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6427 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6428 		/* The Data Segment Area is optional depending upon the query
6429 		 * function value. for WRITE DESCRIPTOR, the data segment
6430 		 * follows right after the tsf.
6431 		 */
6432 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6433 		*buff_len = 0;
6434 	}
6435 
6436 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6437 
6438 	hba->dev_cmd.complete = &wait;
6439 
6440 	/* Make sure descriptors are ready before ringing the doorbell */
6441 	wmb();
6442 	spin_lock_irqsave(hba->host->host_lock, flags);
6443 	ufshcd_send_command(hba, tag);
6444 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6445 
6446 	/*
6447 	 * ignore the returning value here - ufshcd_check_query_response is
6448 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6449 	 * read the response directly ignoring all errors.
6450 	 */
6451 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6452 
6453 	/* just copy the upiu response as it is */
6454 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6455 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6456 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6457 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6458 			       MASK_QUERY_DATA_SEG_LEN;
6459 
6460 		if (*buff_len >= resp_len) {
6461 			memcpy(desc_buff, descp, resp_len);
6462 			*buff_len = resp_len;
6463 		} else {
6464 			dev_warn(hba->dev,
6465 				 "%s: rsp size %d is bigger than buffer size %d",
6466 				 __func__, resp_len, *buff_len);
6467 			*buff_len = 0;
6468 			err = -EINVAL;
6469 		}
6470 	}
6471 
6472 	blk_put_request(req);
6473 out_unlock:
6474 	up_read(&hba->clk_scaling_lock);
6475 	return err;
6476 }
6477 
6478 /**
6479  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6480  * @hba:	per-adapter instance
6481  * @req_upiu:	upiu request
6482  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6483  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6484  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6485  * @buff_len:	descriptor size, 0 if NA
6486  * @desc_op:	descriptor operation
6487  *
6488  * Supports UTP Transfer requests (nop and query), and UTP Task
6489  * Management requests.
6490  * It is up to the caller to fill the upiu conent properly, as it will
6491  * be copied without any further input validations.
6492  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6493 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6494 			     struct utp_upiu_req *req_upiu,
6495 			     struct utp_upiu_req *rsp_upiu,
6496 			     int msgcode,
6497 			     u8 *desc_buff, int *buff_len,
6498 			     enum query_opcode desc_op)
6499 {
6500 	int err;
6501 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6502 	struct utp_task_req_desc treq = { { 0 }, };
6503 	int ocs_value;
6504 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6505 
6506 	switch (msgcode) {
6507 	case UPIU_TRANSACTION_NOP_OUT:
6508 		cmd_type = DEV_CMD_TYPE_NOP;
6509 		fallthrough;
6510 	case UPIU_TRANSACTION_QUERY_REQ:
6511 		ufshcd_hold(hba, false);
6512 		mutex_lock(&hba->dev_cmd.lock);
6513 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6514 						   desc_buff, buff_len,
6515 						   cmd_type, desc_op);
6516 		mutex_unlock(&hba->dev_cmd.lock);
6517 		ufshcd_release(hba);
6518 
6519 		break;
6520 	case UPIU_TRANSACTION_TASK_REQ:
6521 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6522 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6523 
6524 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6525 
6526 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6527 		if (err == -ETIMEDOUT)
6528 			break;
6529 
6530 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6531 		if (ocs_value != OCS_SUCCESS) {
6532 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6533 				ocs_value);
6534 			break;
6535 		}
6536 
6537 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6538 
6539 		break;
6540 	default:
6541 		err = -EINVAL;
6542 
6543 		break;
6544 	}
6545 
6546 	return err;
6547 }
6548 
6549 /**
6550  * ufshcd_eh_device_reset_handler - device reset handler registered to
6551  *                                    scsi layer.
6552  * @cmd: SCSI command pointer
6553  *
6554  * Returns SUCCESS/FAILED
6555  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6556 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6557 {
6558 	struct Scsi_Host *host;
6559 	struct ufs_hba *hba;
6560 	u32 pos;
6561 	int err;
6562 	u8 resp = 0xF, lun;
6563 	unsigned long flags;
6564 
6565 	host = cmd->device->host;
6566 	hba = shost_priv(host);
6567 
6568 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6569 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6570 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6571 		if (!err)
6572 			err = resp;
6573 		goto out;
6574 	}
6575 
6576 	/* clear the commands that were pending for corresponding LUN */
6577 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6578 		if (hba->lrb[pos].lun == lun) {
6579 			err = ufshcd_clear_cmd(hba, pos);
6580 			if (err)
6581 				break;
6582 		}
6583 	}
6584 	spin_lock_irqsave(host->host_lock, flags);
6585 	ufshcd_transfer_req_compl(hba);
6586 	spin_unlock_irqrestore(host->host_lock, flags);
6587 
6588 out:
6589 	hba->req_abort_count = 0;
6590 	ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6591 	if (!err) {
6592 		err = SUCCESS;
6593 	} else {
6594 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6595 		err = FAILED;
6596 	}
6597 	return err;
6598 }
6599 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6600 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6601 {
6602 	struct ufshcd_lrb *lrbp;
6603 	int tag;
6604 
6605 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6606 		lrbp = &hba->lrb[tag];
6607 		lrbp->req_abort_skip = true;
6608 	}
6609 }
6610 
6611 /**
6612  * ufshcd_try_to_abort_task - abort a specific task
6613  * @cmd: SCSI command pointer
6614  *
6615  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6616  * command, and in host controller by clearing the door-bell register. There can
6617  * be race between controller sending the command to the device while abort is
6618  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6619  * really issued and then try to abort it.
6620  *
6621  * Returns zero on success, non-zero on failure
6622  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6623 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6624 {
6625 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6626 	int err = 0;
6627 	int poll_cnt;
6628 	u8 resp = 0xF;
6629 	u32 reg;
6630 
6631 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6632 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6633 				UFS_QUERY_TASK, &resp);
6634 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6635 			/* cmd pending in the device */
6636 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6637 				__func__, tag);
6638 			break;
6639 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6640 			/*
6641 			 * cmd not pending in the device, check if it is
6642 			 * in transition.
6643 			 */
6644 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6645 				__func__, tag);
6646 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6647 			if (reg & (1 << tag)) {
6648 				/* sleep for max. 200us to stabilize */
6649 				usleep_range(100, 200);
6650 				continue;
6651 			}
6652 			/* command completed already */
6653 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6654 				__func__, tag);
6655 			goto out;
6656 		} else {
6657 			dev_err(hba->dev,
6658 				"%s: no response from device. tag = %d, err %d\n",
6659 				__func__, tag, err);
6660 			if (!err)
6661 				err = resp; /* service response error */
6662 			goto out;
6663 		}
6664 	}
6665 
6666 	if (!poll_cnt) {
6667 		err = -EBUSY;
6668 		goto out;
6669 	}
6670 
6671 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6672 			UFS_ABORT_TASK, &resp);
6673 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6674 		if (!err) {
6675 			err = resp; /* service response error */
6676 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6677 				__func__, tag, err);
6678 		}
6679 		goto out;
6680 	}
6681 
6682 	err = ufshcd_clear_cmd(hba, tag);
6683 	if (err)
6684 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6685 			__func__, tag, err);
6686 
6687 out:
6688 	return err;
6689 }
6690 
6691 /**
6692  * ufshcd_abort - scsi host template eh_abort_handler callback
6693  * @cmd: SCSI command pointer
6694  *
6695  * Returns SUCCESS/FAILED
6696  */
ufshcd_abort(struct scsi_cmnd * cmd)6697 static int ufshcd_abort(struct scsi_cmnd *cmd)
6698 {
6699 	struct Scsi_Host *host;
6700 	struct ufs_hba *hba;
6701 	unsigned long flags;
6702 	unsigned int tag;
6703 	int err = 0;
6704 	struct ufshcd_lrb *lrbp;
6705 	u32 reg;
6706 
6707 	host = cmd->device->host;
6708 	hba = shost_priv(host);
6709 	tag = cmd->request->tag;
6710 	lrbp = &hba->lrb[tag];
6711 	if (!ufshcd_valid_tag(hba, tag)) {
6712 		dev_err(hba->dev,
6713 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6714 			__func__, tag, cmd, cmd->request);
6715 		BUG();
6716 	}
6717 
6718 	/*
6719 	 * Task abort to the device W-LUN is illegal. When this command
6720 	 * will fail, due to spec violation, scsi err handling next step
6721 	 * will be to send LU reset which, again, is a spec violation.
6722 	 * To avoid these unnecessary/illegal step we skip to the last error
6723 	 * handling stage: reset and restore.
6724 	 */
6725 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6726 		return ufshcd_eh_host_reset_handler(cmd);
6727 
6728 	ufshcd_hold(hba, false);
6729 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6730 	/* If command is already aborted/completed, return SUCCESS */
6731 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6732 		dev_err(hba->dev,
6733 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6734 			__func__, tag, hba->outstanding_reqs, reg);
6735 		goto out;
6736 	}
6737 
6738 	/* Print Transfer Request of aborted task */
6739 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6740 
6741 	/*
6742 	 * Print detailed info about aborted request.
6743 	 * As more than one request might get aborted at the same time,
6744 	 * print full information only for the first aborted request in order
6745 	 * to reduce repeated printouts. For other aborted requests only print
6746 	 * basic details.
6747 	 */
6748 	scsi_print_command(hba->lrb[tag].cmd);
6749 	if (!hba->req_abort_count) {
6750 		ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6751 		ufshcd_print_host_regs(hba);
6752 		ufshcd_print_host_state(hba);
6753 		ufshcd_print_pwr_info(hba);
6754 		ufshcd_print_trs(hba, 1 << tag, true);
6755 	} else {
6756 		ufshcd_print_trs(hba, 1 << tag, false);
6757 	}
6758 	hba->req_abort_count++;
6759 
6760 	if (!(reg & (1 << tag))) {
6761 		dev_err(hba->dev,
6762 		"%s: cmd was completed, but without a notifying intr, tag = %d",
6763 		__func__, tag);
6764 		goto cleanup;
6765 	}
6766 
6767 	/* Skip task abort in case previous aborts failed and report failure */
6768 	if (lrbp->req_abort_skip)
6769 		err = -EIO;
6770 	else
6771 		err = ufshcd_try_to_abort_task(hba, tag);
6772 
6773 	if (!err) {
6774 cleanup:
6775 		spin_lock_irqsave(host->host_lock, flags);
6776 		__ufshcd_transfer_req_compl(hba, (1UL << tag));
6777 		spin_unlock_irqrestore(host->host_lock, flags);
6778 out:
6779 		err = SUCCESS;
6780 	} else {
6781 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6782 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6783 		err = FAILED;
6784 	}
6785 
6786 	/*
6787 	 * This ufshcd_release() corresponds to the original scsi cmd that got
6788 	 * aborted here (as we won't get any IRQ for it).
6789 	 */
6790 	ufshcd_release(hba);
6791 	return err;
6792 }
6793 
6794 /**
6795  * ufshcd_host_reset_and_restore - reset and restore host controller
6796  * @hba: per-adapter instance
6797  *
6798  * Note that host controller reset may issue DME_RESET to
6799  * local and remote (device) Uni-Pro stack and the attributes
6800  * are reset to default state.
6801  *
6802  * Returns zero on success, non-zero on failure
6803  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6804 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6805 {
6806 	int err;
6807 	unsigned long flags;
6808 
6809 	/*
6810 	 * Stop the host controller and complete the requests
6811 	 * cleared by h/w
6812 	 */
6813 	ufshcd_hba_stop(hba);
6814 
6815 	spin_lock_irqsave(hba->host->host_lock, flags);
6816 	hba->silence_err_logs = true;
6817 	ufshcd_complete_requests(hba);
6818 	hba->silence_err_logs = false;
6819 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6820 
6821 	/* scale up clocks to max frequency before full reinitialization */
6822 	ufshcd_set_clk_freq(hba, true);
6823 
6824 	err = ufshcd_hba_enable(hba);
6825 	if (err)
6826 		goto out;
6827 
6828 	/* Establish the link again and restore the device */
6829 	err = ufshcd_probe_hba(hba, false);
6830 
6831 out:
6832 	if (err)
6833 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6834 	ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6835 	return err;
6836 }
6837 
6838 /**
6839  * ufshcd_reset_and_restore - reset and re-initialize host/device
6840  * @hba: per-adapter instance
6841  *
6842  * Reset and recover device, host and re-establish link. This
6843  * is helpful to recover the communication in fatal error conditions.
6844  *
6845  * Returns zero on success, non-zero on failure
6846  */
ufshcd_reset_and_restore(struct ufs_hba * hba)6847 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6848 {
6849 	u32 saved_err;
6850 	u32 saved_uic_err;
6851 	int err = 0;
6852 	unsigned long flags;
6853 	int retries = MAX_HOST_RESET_RETRIES;
6854 
6855 	/*
6856 	 * This is a fresh start, cache and clear saved error first,
6857 	 * in case new error generated during reset and restore.
6858 	 */
6859 	spin_lock_irqsave(hba->host->host_lock, flags);
6860 	saved_err = hba->saved_err;
6861 	saved_uic_err = hba->saved_uic_err;
6862 	hba->saved_err = 0;
6863 	hba->saved_uic_err = 0;
6864 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6865 
6866 	do {
6867 		/* Reset the attached device */
6868 		ufshcd_vops_device_reset(hba);
6869 
6870 		err = ufshcd_host_reset_and_restore(hba);
6871 	} while (err && --retries);
6872 
6873 	spin_lock_irqsave(hba->host->host_lock, flags);
6874 	/*
6875 	 * Inform scsi mid-layer that we did reset and allow to handle
6876 	 * Unit Attention properly.
6877 	 */
6878 	scsi_report_bus_reset(hba->host, 0);
6879 	if (err) {
6880 		hba->saved_err |= saved_err;
6881 		hba->saved_uic_err |= saved_uic_err;
6882 	}
6883 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6884 
6885 	return err;
6886 }
6887 
6888 /**
6889  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6890  * @cmd: SCSI command pointer
6891  *
6892  * Returns SUCCESS/FAILED
6893  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6894 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6895 {
6896 	int err = SUCCESS;
6897 	unsigned long flags;
6898 	struct ufs_hba *hba;
6899 
6900 	hba = shost_priv(cmd->device->host);
6901 
6902 	spin_lock_irqsave(hba->host->host_lock, flags);
6903 	hba->force_reset = true;
6904 	ufshcd_schedule_eh_work(hba);
6905 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
6906 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6907 
6908 	flush_work(&hba->eh_work);
6909 
6910 	spin_lock_irqsave(hba->host->host_lock, flags);
6911 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
6912 		err = FAILED;
6913 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6914 
6915 	return err;
6916 }
6917 
6918 /**
6919  * ufshcd_get_max_icc_level - calculate the ICC level
6920  * @sup_curr_uA: max. current supported by the regulator
6921  * @start_scan: row at the desc table to start scan from
6922  * @buff: power descriptor buffer
6923  *
6924  * Returns calculated max ICC level for specific regulator
6925  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6926 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6927 {
6928 	int i;
6929 	int curr_uA;
6930 	u16 data;
6931 	u16 unit;
6932 
6933 	for (i = start_scan; i >= 0; i--) {
6934 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
6935 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6936 						ATTR_ICC_LVL_UNIT_OFFSET;
6937 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6938 		switch (unit) {
6939 		case UFSHCD_NANO_AMP:
6940 			curr_uA = curr_uA / 1000;
6941 			break;
6942 		case UFSHCD_MILI_AMP:
6943 			curr_uA = curr_uA * 1000;
6944 			break;
6945 		case UFSHCD_AMP:
6946 			curr_uA = curr_uA * 1000 * 1000;
6947 			break;
6948 		case UFSHCD_MICRO_AMP:
6949 		default:
6950 			break;
6951 		}
6952 		if (sup_curr_uA >= curr_uA)
6953 			break;
6954 	}
6955 	if (i < 0) {
6956 		i = 0;
6957 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6958 	}
6959 
6960 	return (u32)i;
6961 }
6962 
6963 /**
6964  * ufshcd_calc_icc_level - calculate the max ICC level
6965  * In case regulators are not initialized we'll return 0
6966  * @hba: per-adapter instance
6967  * @desc_buf: power descriptor buffer to extract ICC levels from.
6968  * @len: length of desc_buff
6969  *
6970  * Returns calculated ICC level
6971  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6972 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6973 							u8 *desc_buf, int len)
6974 {
6975 	u32 icc_level = 0;
6976 
6977 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6978 						!hba->vreg_info.vccq2) {
6979 		dev_err(hba->dev,
6980 			"%s: Regulator capability was not set, actvIccLevel=%d",
6981 							__func__, icc_level);
6982 		goto out;
6983 	}
6984 
6985 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
6986 		icc_level = ufshcd_get_max_icc_level(
6987 				hba->vreg_info.vcc->max_uA,
6988 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
6989 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
6990 
6991 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
6992 		icc_level = ufshcd_get_max_icc_level(
6993 				hba->vreg_info.vccq->max_uA,
6994 				icc_level,
6995 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
6996 
6997 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
6998 		icc_level = ufshcd_get_max_icc_level(
6999 				hba->vreg_info.vccq2->max_uA,
7000 				icc_level,
7001 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7002 out:
7003 	return icc_level;
7004 }
7005 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7006 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7007 {
7008 	int ret;
7009 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7010 	u8 *desc_buf;
7011 	u32 icc_level;
7012 
7013 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7014 	if (!desc_buf)
7015 		return;
7016 
7017 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7018 				     desc_buf, buff_len);
7019 	if (ret) {
7020 		dev_err(hba->dev,
7021 			"%s: Failed reading power descriptor.len = %d ret = %d",
7022 			__func__, buff_len, ret);
7023 		goto out;
7024 	}
7025 
7026 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7027 							 buff_len);
7028 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7029 
7030 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7031 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7032 
7033 	if (ret)
7034 		dev_err(hba->dev,
7035 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7036 			__func__, icc_level, ret);
7037 
7038 out:
7039 	kfree(desc_buf);
7040 }
7041 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7042 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7043 {
7044 	scsi_autopm_get_device(sdev);
7045 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7046 	if (sdev->rpm_autosuspend)
7047 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7048 						 RPM_AUTOSUSPEND_DELAY_MS);
7049 	scsi_autopm_put_device(sdev);
7050 }
7051 
7052 /**
7053  * ufshcd_scsi_add_wlus - Adds required W-LUs
7054  * @hba: per-adapter instance
7055  *
7056  * UFS device specification requires the UFS devices to support 4 well known
7057  * logical units:
7058  *	"REPORT_LUNS" (address: 01h)
7059  *	"UFS Device" (address: 50h)
7060  *	"RPMB" (address: 44h)
7061  *	"BOOT" (address: 30h)
7062  * UFS device's power management needs to be controlled by "POWER CONDITION"
7063  * field of SSU (START STOP UNIT) command. But this "power condition" field
7064  * will take effect only when its sent to "UFS device" well known logical unit
7065  * hence we require the scsi_device instance to represent this logical unit in
7066  * order for the UFS host driver to send the SSU command for power management.
7067  *
7068  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7069  * Block) LU so user space process can control this LU. User space may also
7070  * want to have access to BOOT LU.
7071  *
7072  * This function adds scsi device instances for each of all well known LUs
7073  * (except "REPORT LUNS" LU).
7074  *
7075  * Returns zero on success (all required W-LUs are added successfully),
7076  * non-zero error value on failure (if failed to add any of the required W-LU).
7077  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7078 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7079 {
7080 	int ret = 0;
7081 	struct scsi_device *sdev_boot;
7082 
7083 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7084 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7085 	if (IS_ERR(hba->sdev_ufs_device)) {
7086 		ret = PTR_ERR(hba->sdev_ufs_device);
7087 		hba->sdev_ufs_device = NULL;
7088 		goto out;
7089 	}
7090 	ufshcd_blk_pm_runtime_init(hba->sdev_ufs_device);
7091 	scsi_device_put(hba->sdev_ufs_device);
7092 
7093 	hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7094 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7095 	if (IS_ERR(hba->sdev_rpmb)) {
7096 		ret = PTR_ERR(hba->sdev_rpmb);
7097 		goto remove_sdev_ufs_device;
7098 	}
7099 	ufshcd_blk_pm_runtime_init(hba->sdev_rpmb);
7100 	scsi_device_put(hba->sdev_rpmb);
7101 
7102 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7103 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7104 	if (IS_ERR(sdev_boot)) {
7105 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7106 	} else {
7107 		ufshcd_blk_pm_runtime_init(sdev_boot);
7108 		scsi_device_put(sdev_boot);
7109 	}
7110 	goto out;
7111 
7112 remove_sdev_ufs_device:
7113 	scsi_remove_device(hba->sdev_ufs_device);
7114 out:
7115 	return ret;
7116 }
7117 
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7118 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7119 {
7120 	struct ufs_dev_info *dev_info = &hba->dev_info;
7121 	u8 lun;
7122 	u32 d_lu_wb_buf_alloc;
7123 
7124 	if (!ufshcd_is_wb_allowed(hba))
7125 		return;
7126 	/*
7127 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7128 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7129 	 * enabled
7130 	 */
7131 	if (!(dev_info->wspecversion >= 0x310 ||
7132 	      dev_info->wspecversion == 0x220 ||
7133 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7134 		goto wb_disabled;
7135 
7136 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7137 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7138 		goto wb_disabled;
7139 
7140 	dev_info->d_ext_ufs_feature_sup =
7141 		get_unaligned_be32(desc_buf +
7142 				   DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7143 
7144 	if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7145 		goto wb_disabled;
7146 
7147 	/*
7148 	 * WB may be supported but not configured while provisioning.
7149 	 * The spec says, in dedicated wb buffer mode,
7150 	 * a max of 1 lun would have wb buffer configured.
7151 	 * Now only shared buffer mode is supported.
7152 	 */
7153 	dev_info->b_wb_buffer_type =
7154 		desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7155 
7156 	dev_info->b_presrv_uspc_en =
7157 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7158 
7159 	if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7160 		dev_info->d_wb_alloc_units =
7161 		get_unaligned_be32(desc_buf +
7162 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7163 		if (!dev_info->d_wb_alloc_units)
7164 			goto wb_disabled;
7165 	} else {
7166 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7167 			d_lu_wb_buf_alloc = 0;
7168 			ufshcd_read_unit_desc_param(hba,
7169 					lun,
7170 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7171 					(u8 *)&d_lu_wb_buf_alloc,
7172 					sizeof(d_lu_wb_buf_alloc));
7173 			if (d_lu_wb_buf_alloc) {
7174 				dev_info->wb_dedicated_lu = lun;
7175 				break;
7176 			}
7177 		}
7178 
7179 		if (!d_lu_wb_buf_alloc)
7180 			goto wb_disabled;
7181 	}
7182 	return;
7183 
7184 wb_disabled:
7185 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7186 }
7187 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7188 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7189 {
7190 	struct ufs_dev_fix *f;
7191 	struct ufs_dev_info *dev_info = &hba->dev_info;
7192 
7193 	if (!fixups)
7194 		return;
7195 
7196 	for (f = fixups; f->quirk; f++) {
7197 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7198 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7199 		     ((dev_info->model &&
7200 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7201 		      !strcmp(f->model, UFS_ANY_MODEL)))
7202 			hba->dev_quirks |= f->quirk;
7203 	}
7204 }
7205 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7206 
ufs_fixup_device_setup(struct ufs_hba * hba)7207 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7208 {
7209 	/* fix by general quirk table */
7210 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7211 
7212 	/* allow vendors to fix quirks */
7213 	ufshcd_vops_fixup_dev_quirks(hba);
7214 }
7215 
ufs_get_device_desc(struct ufs_hba * hba)7216 static int ufs_get_device_desc(struct ufs_hba *hba)
7217 {
7218 	int err;
7219 	u8 model_index;
7220 	u8 *desc_buf;
7221 	struct ufs_dev_info *dev_info = &hba->dev_info;
7222 
7223 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7224 	if (!desc_buf) {
7225 		err = -ENOMEM;
7226 		goto out;
7227 	}
7228 
7229 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7230 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7231 	if (err) {
7232 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7233 			__func__, err);
7234 		goto out;
7235 	}
7236 
7237 	/*
7238 	 * getting vendor (manufacturerID) and Bank Index in big endian
7239 	 * format
7240 	 */
7241 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7242 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7243 
7244 	/* getting Specification Version in big endian format */
7245 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7246 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7247 
7248 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7249 
7250 	err = ufshcd_read_string_desc(hba, model_index,
7251 				      &dev_info->model, SD_ASCII_STD);
7252 	if (err < 0) {
7253 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7254 			__func__, err);
7255 		goto out;
7256 	}
7257 
7258 	ufs_fixup_device_setup(hba);
7259 
7260 	ufshcd_wb_probe(hba, desc_buf);
7261 
7262 	/*
7263 	 * ufshcd_read_string_desc returns size of the string
7264 	 * reset the error value
7265 	 */
7266 	err = 0;
7267 
7268 out:
7269 	kfree(desc_buf);
7270 	return err;
7271 }
7272 
ufs_put_device_desc(struct ufs_hba * hba)7273 static void ufs_put_device_desc(struct ufs_hba *hba)
7274 {
7275 	struct ufs_dev_info *dev_info = &hba->dev_info;
7276 
7277 	kfree(dev_info->model);
7278 	dev_info->model = NULL;
7279 }
7280 
7281 /**
7282  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7283  * @hba: per-adapter instance
7284  *
7285  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7286  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7287  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7288  * the hibern8 exit latency.
7289  *
7290  * Returns zero on success, non-zero error value on failure.
7291  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7292 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7293 {
7294 	int ret = 0;
7295 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7296 
7297 	ret = ufshcd_dme_peer_get(hba,
7298 				  UIC_ARG_MIB_SEL(
7299 					RX_MIN_ACTIVATETIME_CAPABILITY,
7300 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7301 				  &peer_rx_min_activatetime);
7302 	if (ret)
7303 		goto out;
7304 
7305 	/* make sure proper unit conversion is applied */
7306 	tuned_pa_tactivate =
7307 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7308 		 / PA_TACTIVATE_TIME_UNIT_US);
7309 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7310 			     tuned_pa_tactivate);
7311 
7312 out:
7313 	return ret;
7314 }
7315 
7316 /**
7317  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7318  * @hba: per-adapter instance
7319  *
7320  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7321  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7322  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7323  * This optimal value can help reduce the hibern8 exit latency.
7324  *
7325  * Returns zero on success, non-zero error value on failure.
7326  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7327 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7328 {
7329 	int ret = 0;
7330 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7331 	u32 max_hibern8_time, tuned_pa_hibern8time;
7332 
7333 	ret = ufshcd_dme_get(hba,
7334 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7335 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7336 				  &local_tx_hibern8_time_cap);
7337 	if (ret)
7338 		goto out;
7339 
7340 	ret = ufshcd_dme_peer_get(hba,
7341 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7342 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7343 				  &peer_rx_hibern8_time_cap);
7344 	if (ret)
7345 		goto out;
7346 
7347 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7348 			       peer_rx_hibern8_time_cap);
7349 	/* make sure proper unit conversion is applied */
7350 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7351 				/ PA_HIBERN8_TIME_UNIT_US);
7352 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7353 			     tuned_pa_hibern8time);
7354 out:
7355 	return ret;
7356 }
7357 
7358 /**
7359  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7360  * less than device PA_TACTIVATE time.
7361  * @hba: per-adapter instance
7362  *
7363  * Some UFS devices require host PA_TACTIVATE to be lower than device
7364  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7365  * for such devices.
7366  *
7367  * Returns zero on success, non-zero error value on failure.
7368  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7369 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7370 {
7371 	int ret = 0;
7372 	u32 granularity, peer_granularity;
7373 	u32 pa_tactivate, peer_pa_tactivate;
7374 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7375 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7376 
7377 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7378 				  &granularity);
7379 	if (ret)
7380 		goto out;
7381 
7382 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7383 				  &peer_granularity);
7384 	if (ret)
7385 		goto out;
7386 
7387 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7388 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7389 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7390 			__func__, granularity);
7391 		return -EINVAL;
7392 	}
7393 
7394 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7395 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7396 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7397 			__func__, peer_granularity);
7398 		return -EINVAL;
7399 	}
7400 
7401 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7402 	if (ret)
7403 		goto out;
7404 
7405 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7406 				  &peer_pa_tactivate);
7407 	if (ret)
7408 		goto out;
7409 
7410 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7411 	peer_pa_tactivate_us = peer_pa_tactivate *
7412 			     gran_to_us_table[peer_granularity - 1];
7413 
7414 	if (pa_tactivate_us > peer_pa_tactivate_us) {
7415 		u32 new_peer_pa_tactivate;
7416 
7417 		new_peer_pa_tactivate = pa_tactivate_us /
7418 				      gran_to_us_table[peer_granularity - 1];
7419 		new_peer_pa_tactivate++;
7420 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7421 					  new_peer_pa_tactivate);
7422 	}
7423 
7424 out:
7425 	return ret;
7426 }
7427 
ufshcd_tune_unipro_params(struct ufs_hba * hba)7428 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7429 {
7430 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7431 		ufshcd_tune_pa_tactivate(hba);
7432 		ufshcd_tune_pa_hibern8time(hba);
7433 	}
7434 
7435 	ufshcd_vops_apply_dev_quirks(hba);
7436 
7437 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7438 		/* set 1ms timeout for PA_TACTIVATE */
7439 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7440 
7441 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7442 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7443 }
7444 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7445 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7446 {
7447 	hba->ufs_stats.hibern8_exit_cnt = 0;
7448 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7449 	hba->req_abort_count = 0;
7450 }
7451 
ufshcd_device_geo_params_init(struct ufs_hba * hba)7452 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7453 {
7454 	int err;
7455 	size_t buff_len;
7456 	u8 *desc_buf;
7457 
7458 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7459 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7460 	if (!desc_buf) {
7461 		err = -ENOMEM;
7462 		goto out;
7463 	}
7464 
7465 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7466 				     desc_buf, buff_len);
7467 	if (err) {
7468 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7469 				__func__, err);
7470 		goto out;
7471 	}
7472 
7473 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7474 		hba->dev_info.max_lu_supported = 32;
7475 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7476 		hba->dev_info.max_lu_supported = 8;
7477 
7478 out:
7479 	kfree(desc_buf);
7480 	return err;
7481 }
7482 
7483 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7484 	{19200000, REF_CLK_FREQ_19_2_MHZ},
7485 	{26000000, REF_CLK_FREQ_26_MHZ},
7486 	{38400000, REF_CLK_FREQ_38_4_MHZ},
7487 	{52000000, REF_CLK_FREQ_52_MHZ},
7488 	{0, REF_CLK_FREQ_INVAL},
7489 };
7490 
7491 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7492 ufs_get_bref_clk_from_hz(unsigned long freq)
7493 {
7494 	int i;
7495 
7496 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7497 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
7498 			return ufs_ref_clk_freqs[i].val;
7499 
7500 	return REF_CLK_FREQ_INVAL;
7501 }
7502 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7503 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7504 {
7505 	unsigned long freq;
7506 
7507 	freq = clk_get_rate(refclk);
7508 
7509 	hba->dev_ref_clk_freq =
7510 		ufs_get_bref_clk_from_hz(freq);
7511 
7512 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7513 		dev_err(hba->dev,
7514 		"invalid ref_clk setting = %ld\n", freq);
7515 }
7516 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7517 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7518 {
7519 	int err;
7520 	u32 ref_clk;
7521 	u32 freq = hba->dev_ref_clk_freq;
7522 
7523 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7524 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7525 
7526 	if (err) {
7527 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7528 			err);
7529 		goto out;
7530 	}
7531 
7532 	if (ref_clk == freq)
7533 		goto out; /* nothing to update */
7534 
7535 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7536 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7537 
7538 	if (err) {
7539 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7540 			ufs_ref_clk_freqs[freq].freq_hz);
7541 		goto out;
7542 	}
7543 
7544 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7545 			ufs_ref_clk_freqs[freq].freq_hz);
7546 
7547 out:
7548 	return err;
7549 }
7550 
ufshcd_device_params_init(struct ufs_hba * hba)7551 static int ufshcd_device_params_init(struct ufs_hba *hba)
7552 {
7553 	bool flag;
7554 	int ret, i;
7555 
7556 	 /* Init device descriptor sizes */
7557 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7558 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7559 
7560 	/* Init UFS geometry descriptor related parameters */
7561 	ret = ufshcd_device_geo_params_init(hba);
7562 	if (ret)
7563 		goto out;
7564 
7565 	/* Check and apply UFS device quirks */
7566 	ret = ufs_get_device_desc(hba);
7567 	if (ret) {
7568 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7569 			__func__, ret);
7570 		goto out;
7571 	}
7572 
7573 	ufshcd_get_ref_clk_gating_wait(hba);
7574 
7575 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7576 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7577 		hba->dev_info.f_power_on_wp_en = flag;
7578 
7579 	/* Probe maximum power mode co-supported by both UFS host and device */
7580 	if (ufshcd_get_max_pwr_mode(hba))
7581 		dev_err(hba->dev,
7582 			"%s: Failed getting max supported power mode\n",
7583 			__func__);
7584 out:
7585 	return ret;
7586 }
7587 
7588 /**
7589  * ufshcd_add_lus - probe and add UFS logical units
7590  * @hba: per-adapter instance
7591  */
ufshcd_add_lus(struct ufs_hba * hba)7592 static int ufshcd_add_lus(struct ufs_hba *hba)
7593 {
7594 	int ret;
7595 
7596 	/* Add required well known logical units to scsi mid layer */
7597 	ret = ufshcd_scsi_add_wlus(hba);
7598 	if (ret)
7599 		goto out;
7600 
7601 	/* Initialize devfreq after UFS device is detected */
7602 	if (ufshcd_is_clkscaling_supported(hba)) {
7603 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
7604 			&hba->pwr_info,
7605 			sizeof(struct ufs_pa_layer_attr));
7606 		hba->clk_scaling.saved_pwr_info.is_valid = true;
7607 		if (!hba->devfreq) {
7608 			ret = ufshcd_devfreq_init(hba);
7609 			if (ret)
7610 				goto out;
7611 		}
7612 
7613 		hba->clk_scaling.is_allowed = true;
7614 	}
7615 
7616 	ufs_bsg_probe(hba);
7617 	scsi_scan_host(hba->host);
7618 	pm_runtime_put_sync(hba->dev);
7619 
7620 out:
7621 	return ret;
7622 }
7623 
7624 static int
7625 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp);
7626 
ufshcd_clear_ua_wlun(struct ufs_hba * hba,u8 wlun)7627 static int ufshcd_clear_ua_wlun(struct ufs_hba *hba, u8 wlun)
7628 {
7629 	struct scsi_device *sdp;
7630 	unsigned long flags;
7631 	int ret = 0;
7632 
7633 	spin_lock_irqsave(hba->host->host_lock, flags);
7634 	if (wlun == UFS_UPIU_UFS_DEVICE_WLUN)
7635 		sdp = hba->sdev_ufs_device;
7636 	else if (wlun == UFS_UPIU_RPMB_WLUN)
7637 		sdp = hba->sdev_rpmb;
7638 	else
7639 		BUG();
7640 	if (sdp) {
7641 		ret = scsi_device_get(sdp);
7642 		if (!ret && !scsi_device_online(sdp)) {
7643 			ret = -ENODEV;
7644 			scsi_device_put(sdp);
7645 		}
7646 	} else {
7647 		ret = -ENODEV;
7648 	}
7649 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7650 	if (ret)
7651 		goto out_err;
7652 
7653 	ret = ufshcd_send_request_sense(hba, sdp);
7654 	scsi_device_put(sdp);
7655 out_err:
7656 	if (ret)
7657 		dev_err(hba->dev, "%s: UAC clear LU=%x ret = %d\n",
7658 				__func__, wlun, ret);
7659 	return ret;
7660 }
7661 
ufshcd_clear_ua_wluns(struct ufs_hba * hba)7662 static int ufshcd_clear_ua_wluns(struct ufs_hba *hba)
7663 {
7664 	int ret = 0;
7665 
7666 	if (!hba->wlun_dev_clr_ua)
7667 		goto out;
7668 
7669 	ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_UFS_DEVICE_WLUN);
7670 	if (!ret)
7671 		ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_RPMB_WLUN);
7672 	if (!ret)
7673 		hba->wlun_dev_clr_ua = false;
7674 out:
7675 	if (ret)
7676 		dev_err(hba->dev, "%s: Failed to clear UAC WLUNS ret = %d\n",
7677 				__func__, ret);
7678 	return ret;
7679 }
7680 
7681 /**
7682  * ufshcd_probe_hba - probe hba to detect device and initialize
7683  * @hba: per-adapter instance
7684  * @async: asynchronous execution or not
7685  *
7686  * Execute link-startup and verify device initialization
7687  */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7688 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7689 {
7690 	int ret;
7691 	unsigned long flags;
7692 	ktime_t start = ktime_get();
7693 
7694 	ret = ufshcd_link_startup(hba);
7695 	if (ret)
7696 		goto out;
7697 
7698 	/* Debug counters initialization */
7699 	ufshcd_clear_dbg_ufs_stats(hba);
7700 
7701 	/* UniPro link is active now */
7702 	ufshcd_set_link_active(hba);
7703 
7704 	/* Verify device initialization by sending NOP OUT UPIU */
7705 	ret = ufshcd_verify_dev_init(hba);
7706 	if (ret)
7707 		goto out;
7708 
7709 	/* Initiate UFS initialization, and waiting until completion */
7710 	ret = ufshcd_complete_dev_init(hba);
7711 	if (ret)
7712 		goto out;
7713 
7714 	/*
7715 	 * Initialize UFS device parameters used by driver, these
7716 	 * parameters are associated with UFS descriptors.
7717 	 */
7718 	if (async) {
7719 		ret = ufshcd_device_params_init(hba);
7720 		if (ret)
7721 			goto out;
7722 	}
7723 
7724 	ufshcd_tune_unipro_params(hba);
7725 
7726 	/* UFS device is also active now */
7727 	ufshcd_set_ufs_dev_active(hba);
7728 	ufshcd_force_reset_auto_bkops(hba);
7729 	hba->wlun_dev_clr_ua = true;
7730 
7731 	/* Gear up to HS gear if supported */
7732 	if (hba->max_pwr_info.is_valid) {
7733 		/*
7734 		 * Set the right value to bRefClkFreq before attempting to
7735 		 * switch to HS gears.
7736 		 */
7737 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7738 			ufshcd_set_dev_ref_clk(hba);
7739 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7740 		if (ret) {
7741 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7742 					__func__, ret);
7743 			goto out;
7744 		}
7745 		ufshcd_print_pwr_info(hba);
7746 	}
7747 
7748 	/*
7749 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7750 	 * and for removable UFS card as well, hence always set the parameter.
7751 	 * Note: Error handler may issue the device reset hence resetting
7752 	 * bActiveICCLevel as well so it is always safe to set this here.
7753 	 */
7754 	ufshcd_set_active_icc_lvl(hba);
7755 
7756 	ufshcd_wb_config(hba);
7757 	/* Enable Auto-Hibernate if configured */
7758 	ufshcd_auto_hibern8_enable(hba);
7759 
7760 out:
7761 	spin_lock_irqsave(hba->host->host_lock, flags);
7762 	if (ret)
7763 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7764 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7765 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7766 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7767 
7768 	trace_ufshcd_init(dev_name(hba->dev), ret,
7769 		ktime_to_us(ktime_sub(ktime_get(), start)),
7770 		hba->curr_dev_pwr_mode, hba->uic_link_state);
7771 	return ret;
7772 }
7773 
7774 /**
7775  * ufshcd_async_scan - asynchronous execution for probing hba
7776  * @data: data pointer to pass to this function
7777  * @cookie: cookie data
7778  */
ufshcd_async_scan(void * data,async_cookie_t cookie)7779 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7780 {
7781 	struct ufs_hba *hba = (struct ufs_hba *)data;
7782 	int ret;
7783 
7784 	/* Initialize hba, detect and initialize UFS device */
7785 	ret = ufshcd_probe_hba(hba, true);
7786 	if (ret)
7787 		goto out;
7788 
7789 	/* Probe and add UFS logical units  */
7790 	ret = ufshcd_add_lus(hba);
7791 out:
7792 	/*
7793 	 * If we failed to initialize the device or the device is not
7794 	 * present, turn off the power/clocks etc.
7795 	 */
7796 	if (ret) {
7797 		pm_runtime_put_sync(hba->dev);
7798 		ufshcd_exit_clk_scaling(hba);
7799 		ufshcd_hba_exit(hba);
7800 	} else {
7801 		ufshcd_clear_ua_wluns(hba);
7802 	}
7803 }
7804 
7805 static const struct attribute_group *ufshcd_driver_groups[] = {
7806 	&ufs_sysfs_unit_descriptor_group,
7807 	&ufs_sysfs_lun_attributes_group,
7808 	NULL,
7809 };
7810 
7811 static struct ufs_hba_variant_params ufs_hba_vps = {
7812 	.hba_enable_delay_us		= 1000,
7813 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
7814 	.devfreq_profile.polling_ms	= 100,
7815 	.devfreq_profile.target		= ufshcd_devfreq_target,
7816 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
7817 	.ondemand_data.upthreshold	= 70,
7818 	.ondemand_data.downdifferential	= 5,
7819 };
7820 
7821 static struct scsi_host_template ufshcd_driver_template = {
7822 	.module			= THIS_MODULE,
7823 	.name			= UFSHCD,
7824 	.proc_name		= UFSHCD,
7825 	.queuecommand		= ufshcd_queuecommand,
7826 	.slave_alloc		= ufshcd_slave_alloc,
7827 	.slave_configure	= ufshcd_slave_configure,
7828 	.slave_destroy		= ufshcd_slave_destroy,
7829 	.change_queue_depth	= ufshcd_change_queue_depth,
7830 	.eh_abort_handler	= ufshcd_abort,
7831 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7832 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
7833 	.this_id		= -1,
7834 	.sg_tablesize		= SG_ALL,
7835 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
7836 	.can_queue		= UFSHCD_CAN_QUEUE,
7837 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
7838 	.max_host_blocked	= 1,
7839 	.track_queue_depth	= 1,
7840 	.sdev_groups		= ufshcd_driver_groups,
7841 	.dma_boundary		= PAGE_SIZE - 1,
7842 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
7843 };
7844 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7845 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7846 				   int ua)
7847 {
7848 	int ret;
7849 
7850 	if (!vreg)
7851 		return 0;
7852 
7853 	/*
7854 	 * "set_load" operation shall be required on those regulators
7855 	 * which specifically configured current limitation. Otherwise
7856 	 * zero max_uA may cause unexpected behavior when regulator is
7857 	 * enabled or set as high power mode.
7858 	 */
7859 	if (!vreg->max_uA)
7860 		return 0;
7861 
7862 	ret = regulator_set_load(vreg->reg, ua);
7863 	if (ret < 0) {
7864 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7865 				__func__, vreg->name, ua, ret);
7866 	}
7867 
7868 	return ret;
7869 }
7870 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7871 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7872 					 struct ufs_vreg *vreg)
7873 {
7874 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7875 }
7876 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7877 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7878 					 struct ufs_vreg *vreg)
7879 {
7880 	if (!vreg)
7881 		return 0;
7882 
7883 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7884 }
7885 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7886 static int ufshcd_config_vreg(struct device *dev,
7887 		struct ufs_vreg *vreg, bool on)
7888 {
7889 	int ret = 0;
7890 	struct regulator *reg;
7891 	const char *name;
7892 	int min_uV, uA_load;
7893 
7894 	BUG_ON(!vreg);
7895 
7896 	reg = vreg->reg;
7897 	name = vreg->name;
7898 
7899 	if (regulator_count_voltages(reg) > 0) {
7900 		uA_load = on ? vreg->max_uA : 0;
7901 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7902 		if (ret)
7903 			goto out;
7904 
7905 		if (vreg->min_uV && vreg->max_uV) {
7906 			min_uV = on ? vreg->min_uV : 0;
7907 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7908 			if (ret)
7909 				dev_err(dev,
7910 					"%s: %s set voltage failed, err=%d\n",
7911 					__func__, name, ret);
7912 		}
7913 	}
7914 out:
7915 	return ret;
7916 }
7917 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7918 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7919 {
7920 	int ret = 0;
7921 
7922 	if (!vreg || vreg->enabled)
7923 		goto out;
7924 
7925 	ret = ufshcd_config_vreg(dev, vreg, true);
7926 	if (!ret)
7927 		ret = regulator_enable(vreg->reg);
7928 
7929 	if (!ret)
7930 		vreg->enabled = true;
7931 	else
7932 		dev_err(dev, "%s: %s enable failed, err=%d\n",
7933 				__func__, vreg->name, ret);
7934 out:
7935 	return ret;
7936 }
7937 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7938 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7939 {
7940 	int ret = 0;
7941 
7942 	if (!vreg || !vreg->enabled)
7943 		goto out;
7944 
7945 	ret = regulator_disable(vreg->reg);
7946 
7947 	if (!ret) {
7948 		/* ignore errors on applying disable config */
7949 		ufshcd_config_vreg(dev, vreg, false);
7950 		vreg->enabled = false;
7951 	} else {
7952 		dev_err(dev, "%s: %s disable failed, err=%d\n",
7953 				__func__, vreg->name, ret);
7954 	}
7955 out:
7956 	return ret;
7957 }
7958 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7959 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7960 {
7961 	int ret = 0;
7962 	struct device *dev = hba->dev;
7963 	struct ufs_vreg_info *info = &hba->vreg_info;
7964 
7965 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7966 	if (ret)
7967 		goto out;
7968 
7969 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7970 	if (ret)
7971 		goto out;
7972 
7973 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7974 
7975 out:
7976 	if (ret) {
7977 		ufshcd_toggle_vreg(dev, info->vccq2, false);
7978 		ufshcd_toggle_vreg(dev, info->vccq, false);
7979 		ufshcd_toggle_vreg(dev, info->vcc, false);
7980 	}
7981 	return ret;
7982 }
7983 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7984 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7985 {
7986 	struct ufs_vreg_info *info = &hba->vreg_info;
7987 
7988 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7989 }
7990 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7991 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7992 {
7993 	int ret = 0;
7994 
7995 	if (!vreg)
7996 		goto out;
7997 
7998 	vreg->reg = devm_regulator_get(dev, vreg->name);
7999 	if (IS_ERR(vreg->reg)) {
8000 		ret = PTR_ERR(vreg->reg);
8001 		dev_err(dev, "%s: %s get failed, err=%d\n",
8002 				__func__, vreg->name, ret);
8003 	}
8004 out:
8005 	return ret;
8006 }
8007 
ufshcd_init_vreg(struct ufs_hba * hba)8008 static int ufshcd_init_vreg(struct ufs_hba *hba)
8009 {
8010 	int ret = 0;
8011 	struct device *dev = hba->dev;
8012 	struct ufs_vreg_info *info = &hba->vreg_info;
8013 
8014 	ret = ufshcd_get_vreg(dev, info->vcc);
8015 	if (ret)
8016 		goto out;
8017 
8018 	ret = ufshcd_get_vreg(dev, info->vccq);
8019 	if (!ret)
8020 		ret = ufshcd_get_vreg(dev, info->vccq2);
8021 out:
8022 	return ret;
8023 }
8024 
ufshcd_init_hba_vreg(struct ufs_hba * hba)8025 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8026 {
8027 	struct ufs_vreg_info *info = &hba->vreg_info;
8028 
8029 	if (info)
8030 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8031 
8032 	return 0;
8033 }
8034 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8035 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8036 {
8037 	int ret = 0;
8038 	struct ufs_clk_info *clki;
8039 	struct list_head *head = &hba->clk_list_head;
8040 	unsigned long flags;
8041 	ktime_t start = ktime_get();
8042 	bool clk_state_changed = false;
8043 
8044 	if (list_empty(head))
8045 		goto out;
8046 
8047 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8048 	if (ret)
8049 		return ret;
8050 
8051 	list_for_each_entry(clki, head, list) {
8052 		if (!IS_ERR_OR_NULL(clki->clk)) {
8053 			/*
8054 			 * Don't disable clocks which are needed
8055 			 * to keep the link active.
8056 			 */
8057 			if (ufshcd_is_link_active(hba) &&
8058 			    clki->keep_link_active)
8059 				continue;
8060 
8061 			clk_state_changed = on ^ clki->enabled;
8062 			if (on && !clki->enabled) {
8063 				ret = clk_prepare_enable(clki->clk);
8064 				if (ret) {
8065 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8066 						__func__, clki->name, ret);
8067 					goto out;
8068 				}
8069 			} else if (!on && clki->enabled) {
8070 				clk_disable_unprepare(clki->clk);
8071 			}
8072 			clki->enabled = on;
8073 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8074 					clki->name, on ? "en" : "dis");
8075 		}
8076 	}
8077 
8078 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8079 	if (ret)
8080 		return ret;
8081 
8082 out:
8083 	if (ret) {
8084 		list_for_each_entry(clki, head, list) {
8085 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8086 				clk_disable_unprepare(clki->clk);
8087 		}
8088 	} else if (!ret && on) {
8089 		spin_lock_irqsave(hba->host->host_lock, flags);
8090 		hba->clk_gating.state = CLKS_ON;
8091 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8092 					hba->clk_gating.state);
8093 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8094 	}
8095 
8096 	if (clk_state_changed)
8097 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8098 			(on ? "on" : "off"),
8099 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8100 	return ret;
8101 }
8102 
ufshcd_init_clocks(struct ufs_hba * hba)8103 static int ufshcd_init_clocks(struct ufs_hba *hba)
8104 {
8105 	int ret = 0;
8106 	struct ufs_clk_info *clki;
8107 	struct device *dev = hba->dev;
8108 	struct list_head *head = &hba->clk_list_head;
8109 
8110 	if (list_empty(head))
8111 		goto out;
8112 
8113 	list_for_each_entry(clki, head, list) {
8114 		if (!clki->name)
8115 			continue;
8116 
8117 		clki->clk = devm_clk_get(dev, clki->name);
8118 		if (IS_ERR(clki->clk)) {
8119 			ret = PTR_ERR(clki->clk);
8120 			dev_err(dev, "%s: %s clk get failed, %d\n",
8121 					__func__, clki->name, ret);
8122 			goto out;
8123 		}
8124 
8125 		/*
8126 		 * Parse device ref clk freq as per device tree "ref_clk".
8127 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8128 		 * in ufshcd_alloc_host().
8129 		 */
8130 		if (!strcmp(clki->name, "ref_clk"))
8131 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8132 
8133 		if (clki->max_freq) {
8134 			ret = clk_set_rate(clki->clk, clki->max_freq);
8135 			if (ret) {
8136 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8137 					__func__, clki->name,
8138 					clki->max_freq, ret);
8139 				goto out;
8140 			}
8141 			clki->curr_freq = clki->max_freq;
8142 		}
8143 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8144 				clki->name, clk_get_rate(clki->clk));
8145 	}
8146 out:
8147 	return ret;
8148 }
8149 
ufshcd_variant_hba_init(struct ufs_hba * hba)8150 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8151 {
8152 	int err = 0;
8153 
8154 	if (!hba->vops)
8155 		goto out;
8156 
8157 	err = ufshcd_vops_init(hba);
8158 	if (err)
8159 		goto out;
8160 
8161 	err = ufshcd_vops_setup_regulators(hba, true);
8162 	if (err)
8163 		ufshcd_vops_exit(hba);
8164 out:
8165 	if (err)
8166 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8167 			__func__, ufshcd_get_var_name(hba), err);
8168 	return err;
8169 }
8170 
ufshcd_variant_hba_exit(struct ufs_hba * hba)8171 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8172 {
8173 	if (!hba->vops)
8174 		return;
8175 
8176 	ufshcd_vops_setup_regulators(hba, false);
8177 
8178 	ufshcd_vops_exit(hba);
8179 }
8180 
ufshcd_hba_init(struct ufs_hba * hba)8181 static int ufshcd_hba_init(struct ufs_hba *hba)
8182 {
8183 	int err;
8184 
8185 	/*
8186 	 * Handle host controller power separately from the UFS device power
8187 	 * rails as it will help controlling the UFS host controller power
8188 	 * collapse easily which is different than UFS device power collapse.
8189 	 * Also, enable the host controller power before we go ahead with rest
8190 	 * of the initialization here.
8191 	 */
8192 	err = ufshcd_init_hba_vreg(hba);
8193 	if (err)
8194 		goto out;
8195 
8196 	err = ufshcd_setup_hba_vreg(hba, true);
8197 	if (err)
8198 		goto out;
8199 
8200 	err = ufshcd_init_clocks(hba);
8201 	if (err)
8202 		goto out_disable_hba_vreg;
8203 
8204 	err = ufshcd_setup_clocks(hba, true);
8205 	if (err)
8206 		goto out_disable_hba_vreg;
8207 
8208 	err = ufshcd_init_vreg(hba);
8209 	if (err)
8210 		goto out_disable_clks;
8211 
8212 	err = ufshcd_setup_vreg(hba, true);
8213 	if (err)
8214 		goto out_disable_clks;
8215 
8216 	err = ufshcd_variant_hba_init(hba);
8217 	if (err)
8218 		goto out_disable_vreg;
8219 
8220 	hba->is_powered = true;
8221 	goto out;
8222 
8223 out_disable_vreg:
8224 	ufshcd_setup_vreg(hba, false);
8225 out_disable_clks:
8226 	ufshcd_setup_clocks(hba, false);
8227 out_disable_hba_vreg:
8228 	ufshcd_setup_hba_vreg(hba, false);
8229 out:
8230 	return err;
8231 }
8232 
ufshcd_hba_exit(struct ufs_hba * hba)8233 static void ufshcd_hba_exit(struct ufs_hba *hba)
8234 {
8235 	if (hba->is_powered) {
8236 		ufshcd_variant_hba_exit(hba);
8237 		ufshcd_setup_vreg(hba, false);
8238 		ufshcd_suspend_clkscaling(hba);
8239 		if (ufshcd_is_clkscaling_supported(hba))
8240 			if (hba->devfreq)
8241 				ufshcd_suspend_clkscaling(hba);
8242 		ufshcd_setup_clocks(hba, false);
8243 		ufshcd_setup_hba_vreg(hba, false);
8244 		hba->is_powered = false;
8245 		ufs_put_device_desc(hba);
8246 	}
8247 }
8248 
8249 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)8250 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
8251 {
8252 	unsigned char cmd[6] = {REQUEST_SENSE,
8253 				0,
8254 				0,
8255 				0,
8256 				UFS_SENSE_SIZE,
8257 				0};
8258 	char *buffer;
8259 	int ret;
8260 
8261 	buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
8262 	if (!buffer) {
8263 		ret = -ENOMEM;
8264 		goto out;
8265 	}
8266 
8267 	ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
8268 			UFS_SENSE_SIZE, NULL, NULL,
8269 			msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
8270 	if (ret)
8271 		pr_err("%s: failed with err %d\n", __func__, ret);
8272 
8273 	kfree(buffer);
8274 out:
8275 	return ret;
8276 }
8277 
8278 /**
8279  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8280  *			     power mode
8281  * @hba: per adapter instance
8282  * @pwr_mode: device power mode to set
8283  *
8284  * Returns 0 if requested power mode is set successfully
8285  * Returns non-zero if failed to set the requested power mode
8286  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8287 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8288 				     enum ufs_dev_pwr_mode pwr_mode)
8289 {
8290 	unsigned char cmd[6] = { START_STOP };
8291 	struct scsi_sense_hdr sshdr;
8292 	struct scsi_device *sdp;
8293 	unsigned long flags;
8294 	int ret;
8295 
8296 	spin_lock_irqsave(hba->host->host_lock, flags);
8297 	sdp = hba->sdev_ufs_device;
8298 	if (sdp) {
8299 		ret = scsi_device_get(sdp);
8300 		if (!ret && !scsi_device_online(sdp)) {
8301 			ret = -ENODEV;
8302 			scsi_device_put(sdp);
8303 		}
8304 	} else {
8305 		ret = -ENODEV;
8306 	}
8307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8308 
8309 	if (ret)
8310 		return ret;
8311 
8312 	/*
8313 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8314 	 * handling, which would wait for host to be resumed. Since we know
8315 	 * we are functional while we are here, skip host resume in error
8316 	 * handling context.
8317 	 */
8318 	hba->host->eh_noresume = 1;
8319 	if (hba->wlun_dev_clr_ua) {
8320 		ret = ufshcd_send_request_sense(hba, sdp);
8321 		if (ret)
8322 			goto out;
8323 		/* Unit attention condition is cleared now */
8324 		hba->wlun_dev_clr_ua = false;
8325 	}
8326 
8327 	cmd[4] = pwr_mode << 4;
8328 
8329 	/*
8330 	 * Current function would be generally called from the power management
8331 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8332 	 * already suspended childs.
8333 	 */
8334 	ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8335 			START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8336 	if (ret) {
8337 		sdev_printk(KERN_WARNING, sdp,
8338 			    "START_STOP failed for power mode: %d, result %x\n",
8339 			    pwr_mode, ret);
8340 		if (driver_byte(ret) == DRIVER_SENSE)
8341 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
8342 	}
8343 
8344 	if (!ret)
8345 		hba->curr_dev_pwr_mode = pwr_mode;
8346 out:
8347 	scsi_device_put(sdp);
8348 	hba->host->eh_noresume = 0;
8349 	return ret;
8350 }
8351 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8352 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8353 					enum uic_link_state req_link_state,
8354 					int check_for_bkops)
8355 {
8356 	int ret = 0;
8357 
8358 	if (req_link_state == hba->uic_link_state)
8359 		return 0;
8360 
8361 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8362 		ret = ufshcd_uic_hibern8_enter(hba);
8363 		if (!ret) {
8364 			ufshcd_set_link_hibern8(hba);
8365 		} else {
8366 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8367 					__func__, ret);
8368 			goto out;
8369 		}
8370 	}
8371 	/*
8372 	 * If autobkops is enabled, link can't be turned off because
8373 	 * turning off the link would also turn off the device.
8374 	 */
8375 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8376 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8377 		/*
8378 		 * Let's make sure that link is in low power mode, we are doing
8379 		 * this currently by putting the link in Hibern8. Otherway to
8380 		 * put the link in low power mode is to send the DME end point
8381 		 * to device and then send the DME reset command to local
8382 		 * unipro. But putting the link in hibern8 is much faster.
8383 		 */
8384 		ret = ufshcd_uic_hibern8_enter(hba);
8385 		if (ret) {
8386 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8387 					__func__, ret);
8388 			goto out;
8389 		}
8390 		/*
8391 		 * Change controller state to "reset state" which
8392 		 * should also put the link in off/reset state
8393 		 */
8394 		ufshcd_hba_stop(hba);
8395 		/*
8396 		 * TODO: Check if we need any delay to make sure that
8397 		 * controller is reset
8398 		 */
8399 		ufshcd_set_link_off(hba);
8400 	}
8401 
8402 out:
8403 	return ret;
8404 }
8405 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8406 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8407 {
8408 	bool vcc_off = false;
8409 
8410 	/*
8411 	 * It seems some UFS devices may keep drawing more than sleep current
8412 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8413 	 * To avoid this situation, add 2ms delay before putting these UFS
8414 	 * rails in LPM mode.
8415 	 */
8416 	if (!ufshcd_is_link_active(hba) &&
8417 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8418 		usleep_range(2000, 2100);
8419 
8420 	/*
8421 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8422 	 * power.
8423 	 *
8424 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8425 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8426 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8427 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8428 	 *
8429 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8430 	 * in low power state which would save some power.
8431 	 *
8432 	 * If Write Booster is enabled and the device needs to flush the WB
8433 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8434 	 */
8435 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8436 	    !hba->dev_info.is_lu_power_on_wp) {
8437 		ufshcd_setup_vreg(hba, false);
8438 		vcc_off = true;
8439 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8440 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8441 		vcc_off = true;
8442 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8443 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8444 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8445 		}
8446 	}
8447 
8448 	/*
8449 	 * Some UFS devices require delay after VCC power rail is turned-off.
8450 	 */
8451 	if (vcc_off && hba->vreg_info.vcc &&
8452 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8453 		usleep_range(5000, 5100);
8454 }
8455 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8456 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8457 {
8458 	int ret = 0;
8459 
8460 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8461 	    !hba->dev_info.is_lu_power_on_wp) {
8462 		ret = ufshcd_setup_vreg(hba, true);
8463 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8464 		if (!ufshcd_is_link_active(hba)) {
8465 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8466 			if (ret)
8467 				goto vcc_disable;
8468 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8469 			if (ret)
8470 				goto vccq_lpm;
8471 		}
8472 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8473 	}
8474 	goto out;
8475 
8476 vccq_lpm:
8477 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8478 vcc_disable:
8479 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8480 out:
8481 	return ret;
8482 }
8483 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8484 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8485 {
8486 	if (ufshcd_is_link_off(hba))
8487 		ufshcd_setup_hba_vreg(hba, false);
8488 }
8489 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8490 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8491 {
8492 	if (ufshcd_is_link_off(hba))
8493 		ufshcd_setup_hba_vreg(hba, true);
8494 }
8495 
8496 /**
8497  * ufshcd_suspend - helper function for suspend operations
8498  * @hba: per adapter instance
8499  * @pm_op: desired low power operation type
8500  *
8501  * This function will try to put the UFS device and link into low power
8502  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8503  * (System PM level).
8504  *
8505  * If this function is called during shutdown, it will make sure that
8506  * both UFS device and UFS link is powered off.
8507  *
8508  * NOTE: UFS device & link must be active before we enter in this function.
8509  *
8510  * Returns 0 for success and non-zero for failure
8511  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8512 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8513 {
8514 	int ret = 0;
8515 	enum ufs_pm_level pm_lvl;
8516 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8517 	enum uic_link_state req_link_state;
8518 
8519 	hba->pm_op_in_progress = 1;
8520 	if (!ufshcd_is_shutdown_pm(pm_op)) {
8521 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8522 			 hba->rpm_lvl : hba->spm_lvl;
8523 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8524 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8525 	} else {
8526 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8527 		req_link_state = UIC_LINK_OFF_STATE;
8528 	}
8529 
8530 	/*
8531 	 * If we can't transition into any of the low power modes
8532 	 * just gate the clocks.
8533 	 */
8534 	ufshcd_hold(hba, false);
8535 	hba->clk_gating.is_suspended = true;
8536 
8537 	if (hba->clk_scaling.is_allowed) {
8538 		cancel_work_sync(&hba->clk_scaling.suspend_work);
8539 		cancel_work_sync(&hba->clk_scaling.resume_work);
8540 		ufshcd_suspend_clkscaling(hba);
8541 	}
8542 
8543 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8544 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8545 		goto disable_clks;
8546 	}
8547 
8548 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8549 	    (req_link_state == hba->uic_link_state))
8550 		goto enable_gating;
8551 
8552 	/* UFS device & link must be active before we enter in this function */
8553 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8554 		ret = -EINVAL;
8555 		goto enable_gating;
8556 	}
8557 
8558 	if (ufshcd_is_runtime_pm(pm_op)) {
8559 		if (ufshcd_can_autobkops_during_suspend(hba)) {
8560 			/*
8561 			 * The device is idle with no requests in the queue,
8562 			 * allow background operations if bkops status shows
8563 			 * that performance might be impacted.
8564 			 */
8565 			ret = ufshcd_urgent_bkops(hba);
8566 			if (ret)
8567 				goto enable_gating;
8568 		} else {
8569 			/* make sure that auto bkops is disabled */
8570 			ufshcd_disable_auto_bkops(hba);
8571 		}
8572 		/*
8573 		 * If device needs to do BKOP or WB buffer flush during
8574 		 * Hibern8, keep device power mode as "active power mode"
8575 		 * and VCC supply.
8576 		 */
8577 		hba->dev_info.b_rpm_dev_flush_capable =
8578 			hba->auto_bkops_enabled ||
8579 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8580 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8581 			ufshcd_is_auto_hibern8_enabled(hba))) &&
8582 			ufshcd_wb_need_flush(hba));
8583 	}
8584 
8585 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8586 		if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8587 		    !ufshcd_is_runtime_pm(pm_op)) {
8588 			/* ensure that bkops is disabled */
8589 			ufshcd_disable_auto_bkops(hba);
8590 		}
8591 
8592 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
8593 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8594 			if (ret)
8595 				goto enable_gating;
8596 		}
8597 	}
8598 
8599 	flush_work(&hba->eeh_work);
8600 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8601 	if (ret)
8602 		goto set_dev_active;
8603 
8604 	ufshcd_vreg_set_lpm(hba);
8605 
8606 disable_clks:
8607 	/*
8608 	 * Call vendor specific suspend callback. As these callbacks may access
8609 	 * vendor specific host controller register space call them before the
8610 	 * host clocks are ON.
8611 	 */
8612 	ret = ufshcd_vops_suspend(hba, pm_op);
8613 	if (ret)
8614 		goto set_link_active;
8615 	/*
8616 	 * Disable the host irq as host controller as there won't be any
8617 	 * host controller transaction expected till resume.
8618 	 */
8619 	ufshcd_disable_irq(hba);
8620 
8621 	ufshcd_setup_clocks(hba, false);
8622 
8623 	if (ufshcd_is_clkgating_allowed(hba)) {
8624 		hba->clk_gating.state = CLKS_OFF;
8625 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8626 					hba->clk_gating.state);
8627 	}
8628 
8629 	/* Put the host controller in low power mode if possible */
8630 	ufshcd_hba_vreg_set_lpm(hba);
8631 	goto out;
8632 
8633 set_link_active:
8634 	if (hba->clk_scaling.is_allowed)
8635 		ufshcd_resume_clkscaling(hba);
8636 	ufshcd_vreg_set_hpm(hba);
8637 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8638 		ufshcd_set_link_active(hba);
8639 	else if (ufshcd_is_link_off(hba))
8640 		ufshcd_host_reset_and_restore(hba);
8641 set_dev_active:
8642 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8643 		ufshcd_disable_auto_bkops(hba);
8644 enable_gating:
8645 	if (hba->clk_scaling.is_allowed)
8646 		ufshcd_resume_clkscaling(hba);
8647 	hba->clk_gating.is_suspended = false;
8648 	hba->dev_info.b_rpm_dev_flush_capable = false;
8649 	ufshcd_release(hba);
8650 out:
8651 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8652 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8653 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8654 	}
8655 
8656 	hba->pm_op_in_progress = 0;
8657 
8658 	if (ret)
8659 		ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8660 	return ret;
8661 }
8662 
8663 /**
8664  * ufshcd_resume - helper function for resume operations
8665  * @hba: per adapter instance
8666  * @pm_op: runtime PM or system PM
8667  *
8668  * This function basically brings the UFS device, UniPro link and controller
8669  * to active state.
8670  *
8671  * Returns 0 for success and non-zero for failure
8672  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8673 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8674 {
8675 	int ret;
8676 	enum uic_link_state old_link_state;
8677 
8678 	hba->pm_op_in_progress = 1;
8679 	old_link_state = hba->uic_link_state;
8680 
8681 	ufshcd_hba_vreg_set_hpm(hba);
8682 	/* Make sure clocks are enabled before accessing controller */
8683 	ret = ufshcd_setup_clocks(hba, true);
8684 	if (ret)
8685 		goto out;
8686 
8687 	/* enable the host irq as host controller would be active soon */
8688 	ufshcd_enable_irq(hba);
8689 
8690 	ret = ufshcd_vreg_set_hpm(hba);
8691 	if (ret)
8692 		goto disable_irq_and_vops_clks;
8693 
8694 	/*
8695 	 * Call vendor specific resume callback. As these callbacks may access
8696 	 * vendor specific host controller register space call them when the
8697 	 * host clocks are ON.
8698 	 */
8699 	ret = ufshcd_vops_resume(hba, pm_op);
8700 	if (ret)
8701 		goto disable_vreg;
8702 
8703 	if (ufshcd_is_link_hibern8(hba)) {
8704 		ret = ufshcd_uic_hibern8_exit(hba);
8705 		if (!ret) {
8706 			ufshcd_set_link_active(hba);
8707 		} else {
8708 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8709 					__func__, ret);
8710 			goto vendor_suspend;
8711 		}
8712 	} else if (ufshcd_is_link_off(hba)) {
8713 		/*
8714 		 * A full initialization of the host and the device is
8715 		 * required since the link was put to off during suspend.
8716 		 */
8717 		ret = ufshcd_reset_and_restore(hba);
8718 		/*
8719 		 * ufshcd_reset_and_restore() should have already
8720 		 * set the link state as active
8721 		 */
8722 		if (ret || !ufshcd_is_link_active(hba))
8723 			goto vendor_suspend;
8724 	}
8725 
8726 	if (!ufshcd_is_ufs_dev_active(hba)) {
8727 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8728 		if (ret)
8729 			goto set_old_link_state;
8730 	}
8731 
8732 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8733 		ufshcd_enable_auto_bkops(hba);
8734 	else
8735 		/*
8736 		 * If BKOPs operations are urgently needed at this moment then
8737 		 * keep auto-bkops enabled or else disable it.
8738 		 */
8739 		ufshcd_urgent_bkops(hba);
8740 
8741 	hba->clk_gating.is_suspended = false;
8742 
8743 	if (hba->clk_scaling.is_allowed)
8744 		ufshcd_resume_clkscaling(hba);
8745 
8746 	/* Enable Auto-Hibernate if configured */
8747 	ufshcd_auto_hibern8_enable(hba);
8748 
8749 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8750 		hba->dev_info.b_rpm_dev_flush_capable = false;
8751 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8752 	}
8753 
8754 	/* Schedule clock gating in case of no access to UFS device yet */
8755 	ufshcd_release(hba);
8756 
8757 	goto out;
8758 
8759 set_old_link_state:
8760 	ufshcd_link_state_transition(hba, old_link_state, 0);
8761 vendor_suspend:
8762 	ufshcd_vops_suspend(hba, pm_op);
8763 disable_vreg:
8764 	ufshcd_vreg_set_lpm(hba);
8765 disable_irq_and_vops_clks:
8766 	ufshcd_disable_irq(hba);
8767 	if (hba->clk_scaling.is_allowed)
8768 		ufshcd_suspend_clkscaling(hba);
8769 	ufshcd_setup_clocks(hba, false);
8770 	if (ufshcd_is_clkgating_allowed(hba)) {
8771 		hba->clk_gating.state = CLKS_OFF;
8772 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8773 					hba->clk_gating.state);
8774 	}
8775 out:
8776 	hba->pm_op_in_progress = 0;
8777 	if (ret)
8778 		ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8779 	return ret;
8780 }
8781 
8782 /**
8783  * ufshcd_system_suspend - system suspend routine
8784  * @hba: per adapter instance
8785  *
8786  * Check the description of ufshcd_suspend() function for more details.
8787  *
8788  * Returns 0 for success and non-zero for failure
8789  */
ufshcd_system_suspend(struct ufs_hba * hba)8790 int ufshcd_system_suspend(struct ufs_hba *hba)
8791 {
8792 	int ret = 0;
8793 	ktime_t start = ktime_get();
8794 
8795 	if (!hba || !hba->is_powered)
8796 		return 0;
8797 
8798 	cancel_delayed_work_sync(&hba->rpm_dev_flush_recheck_work);
8799 
8800 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8801 	     hba->curr_dev_pwr_mode) &&
8802 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8803 	     hba->uic_link_state) &&
8804 	     pm_runtime_suspended(hba->dev) &&
8805 	     !hba->dev_info.b_rpm_dev_flush_capable)
8806 		goto out;
8807 
8808 	if (pm_runtime_suspended(hba->dev)) {
8809 		/*
8810 		 * UFS device and/or UFS link low power states during runtime
8811 		 * suspend seems to be different than what is expected during
8812 		 * system suspend. Hence runtime resume the devic & link and
8813 		 * let the system suspend low power states to take effect.
8814 		 * TODO: If resume takes longer time, we might have optimize
8815 		 * it in future by not resuming everything if possible.
8816 		 */
8817 		ret = ufshcd_runtime_resume(hba);
8818 		if (ret)
8819 			goto out;
8820 	}
8821 
8822 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8823 out:
8824 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8825 		ktime_to_us(ktime_sub(ktime_get(), start)),
8826 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8827 	if (!ret)
8828 		hba->is_sys_suspended = true;
8829 	return ret;
8830 }
8831 EXPORT_SYMBOL(ufshcd_system_suspend);
8832 
8833 /**
8834  * ufshcd_system_resume - system resume routine
8835  * @hba: per adapter instance
8836  *
8837  * Returns 0 for success and non-zero for failure
8838  */
8839 
ufshcd_system_resume(struct ufs_hba * hba)8840 int ufshcd_system_resume(struct ufs_hba *hba)
8841 {
8842 	int ret = 0;
8843 	ktime_t start = ktime_get();
8844 
8845 	if (!hba)
8846 		return -EINVAL;
8847 
8848 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8849 		/*
8850 		 * Let the runtime resume take care of resuming
8851 		 * if runtime suspended.
8852 		 */
8853 		goto out;
8854 	else
8855 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8856 out:
8857 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8858 		ktime_to_us(ktime_sub(ktime_get(), start)),
8859 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8860 	if (!ret)
8861 		hba->is_sys_suspended = false;
8862 	return ret;
8863 }
8864 EXPORT_SYMBOL(ufshcd_system_resume);
8865 
8866 /**
8867  * ufshcd_runtime_suspend - runtime suspend routine
8868  * @hba: per adapter instance
8869  *
8870  * Check the description of ufshcd_suspend() function for more details.
8871  *
8872  * Returns 0 for success and non-zero for failure
8873  */
ufshcd_runtime_suspend(struct ufs_hba * hba)8874 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8875 {
8876 	int ret = 0;
8877 	ktime_t start = ktime_get();
8878 
8879 	if (!hba)
8880 		return -EINVAL;
8881 
8882 	if (!hba->is_powered)
8883 		goto out;
8884 	else
8885 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8886 out:
8887 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8888 		ktime_to_us(ktime_sub(ktime_get(), start)),
8889 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8890 	return ret;
8891 }
8892 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8893 
8894 /**
8895  * ufshcd_runtime_resume - runtime resume routine
8896  * @hba: per adapter instance
8897  *
8898  * This function basically brings the UFS device, UniPro link and controller
8899  * to active state. Following operations are done in this function:
8900  *
8901  * 1. Turn on all the controller related clocks
8902  * 2. Bring the UniPro link out of Hibernate state
8903  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8904  *    to active state.
8905  * 4. If auto-bkops is enabled on the device, disable it.
8906  *
8907  * So following would be the possible power state after this function return
8908  * successfully:
8909  *	S1: UFS device in Active state with VCC rail ON
8910  *	    UniPro link in Active state
8911  *	    All the UFS/UniPro controller clocks are ON
8912  *
8913  * Returns 0 for success and non-zero for failure
8914  */
ufshcd_runtime_resume(struct ufs_hba * hba)8915 int ufshcd_runtime_resume(struct ufs_hba *hba)
8916 {
8917 	int ret = 0;
8918 	ktime_t start = ktime_get();
8919 
8920 	if (!hba)
8921 		return -EINVAL;
8922 
8923 	if (!hba->is_powered)
8924 		goto out;
8925 	else
8926 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8927 out:
8928 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8929 		ktime_to_us(ktime_sub(ktime_get(), start)),
8930 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8931 	return ret;
8932 }
8933 EXPORT_SYMBOL(ufshcd_runtime_resume);
8934 
ufshcd_runtime_idle(struct ufs_hba * hba)8935 int ufshcd_runtime_idle(struct ufs_hba *hba)
8936 {
8937 	return 0;
8938 }
8939 EXPORT_SYMBOL(ufshcd_runtime_idle);
8940 
8941 /**
8942  * ufshcd_shutdown - shutdown routine
8943  * @hba: per adapter instance
8944  *
8945  * This function would power off both UFS device and UFS link.
8946  *
8947  * Returns 0 always to allow force shutdown even in case of errors.
8948  */
ufshcd_shutdown(struct ufs_hba * hba)8949 int ufshcd_shutdown(struct ufs_hba *hba)
8950 {
8951 	int ret = 0;
8952 
8953 	if (!hba->is_powered)
8954 		goto out;
8955 
8956 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8957 		goto out;
8958 
8959 	pm_runtime_get_sync(hba->dev);
8960 
8961 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8962 out:
8963 	if (ret)
8964 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8965 	/* allow force shutdown even in case of errors */
8966 	return 0;
8967 }
8968 EXPORT_SYMBOL(ufshcd_shutdown);
8969 
8970 /**
8971  * ufshcd_remove - de-allocate SCSI host and host memory space
8972  *		data structure memory
8973  * @hba: per adapter instance
8974  */
ufshcd_remove(struct ufs_hba * hba)8975 void ufshcd_remove(struct ufs_hba *hba)
8976 {
8977 	ufs_bsg_remove(hba);
8978 	ufs_sysfs_remove_nodes(hba->dev);
8979 	blk_cleanup_queue(hba->tmf_queue);
8980 	blk_mq_free_tag_set(&hba->tmf_tag_set);
8981 	blk_cleanup_queue(hba->cmd_queue);
8982 	scsi_remove_host(hba->host);
8983 	destroy_workqueue(hba->eh_wq);
8984 	/* disable interrupts */
8985 	ufshcd_disable_intr(hba, hba->intr_mask);
8986 	ufshcd_hba_stop(hba);
8987 
8988 	ufshcd_exit_clk_scaling(hba);
8989 	ufshcd_exit_clk_gating(hba);
8990 	if (ufshcd_is_clkscaling_supported(hba))
8991 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8992 	ufshcd_hba_exit(hba);
8993 }
8994 EXPORT_SYMBOL_GPL(ufshcd_remove);
8995 
8996 /**
8997  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
8998  * @hba: pointer to Host Bus Adapter (HBA)
8999  */
ufshcd_dealloc_host(struct ufs_hba * hba)9000 void ufshcd_dealloc_host(struct ufs_hba *hba)
9001 {
9002 	ufshcd_crypto_destroy_keyslot_manager(hba);
9003 	scsi_host_put(hba->host);
9004 }
9005 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9006 
9007 /**
9008  * ufshcd_set_dma_mask - Set dma mask based on the controller
9009  *			 addressing capability
9010  * @hba: per adapter instance
9011  *
9012  * Returns 0 for success, non-zero for failure
9013  */
ufshcd_set_dma_mask(struct ufs_hba * hba)9014 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9015 {
9016 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9017 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9018 			return 0;
9019 	}
9020 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9021 }
9022 
9023 /**
9024  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9025  * @dev: pointer to device handle
9026  * @hba_handle: driver private handle
9027  * Returns 0 on success, non-zero value on failure
9028  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9029 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9030 {
9031 	struct Scsi_Host *host;
9032 	struct ufs_hba *hba;
9033 	int err = 0;
9034 
9035 	if (!dev) {
9036 		dev_err(dev,
9037 		"Invalid memory reference for dev is NULL\n");
9038 		err = -ENODEV;
9039 		goto out_error;
9040 	}
9041 
9042 	host = scsi_host_alloc(&ufshcd_driver_template,
9043 				sizeof(struct ufs_hba));
9044 	if (!host) {
9045 		dev_err(dev, "scsi_host_alloc failed\n");
9046 		err = -ENOMEM;
9047 		goto out_error;
9048 	}
9049 	hba = shost_priv(host);
9050 	hba->host = host;
9051 	hba->dev = dev;
9052 	*hba_handle = hba;
9053 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9054 
9055 	INIT_LIST_HEAD(&hba->clk_list_head);
9056 
9057 out_error:
9058 	return err;
9059 }
9060 EXPORT_SYMBOL(ufshcd_alloc_host);
9061 
9062 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9063 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9064 				     const struct blk_mq_queue_data *qd)
9065 {
9066 	WARN_ON_ONCE(true);
9067 	return BLK_STS_NOTSUPP;
9068 }
9069 
9070 static const struct blk_mq_ops ufshcd_tmf_ops = {
9071 	.queue_rq = ufshcd_queue_tmf,
9072 };
9073 
9074 /**
9075  * ufshcd_init - Driver initialization routine
9076  * @hba: per-adapter instance
9077  * @mmio_base: base register address
9078  * @irq: Interrupt line of device
9079  * Returns 0 on success, non-zero value on failure
9080  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9081 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9082 {
9083 	int err;
9084 	struct Scsi_Host *host = hba->host;
9085 	struct device *dev = hba->dev;
9086 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9087 
9088 	/*
9089 	 * dev_set_drvdata() must be called before any callbacks are registered
9090 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9091 	 * sysfs).
9092 	 */
9093 	dev_set_drvdata(dev, hba);
9094 
9095 	if (!mmio_base) {
9096 		dev_err(hba->dev,
9097 		"Invalid memory reference for mmio_base is NULL\n");
9098 		err = -ENODEV;
9099 		goto out_error;
9100 	}
9101 
9102 	hba->mmio_base = mmio_base;
9103 	hba->irq = irq;
9104 	hba->vps = &ufs_hba_vps;
9105 
9106 	err = ufshcd_hba_init(hba);
9107 	if (err)
9108 		goto out_error;
9109 
9110 	/* Read capabilities registers */
9111 	err = ufshcd_hba_capabilities(hba);
9112 	if (err)
9113 		goto out_disable;
9114 
9115 	/* Get UFS version supported by the controller */
9116 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9117 
9118 	if ((hba->ufs_version != UFSHCI_VERSION_10) &&
9119 	    (hba->ufs_version != UFSHCI_VERSION_11) &&
9120 	    (hba->ufs_version != UFSHCI_VERSION_20) &&
9121 	    (hba->ufs_version != UFSHCI_VERSION_21))
9122 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
9123 			hba->ufs_version);
9124 
9125 	/* Get Interrupt bit mask per version */
9126 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9127 
9128 	err = ufshcd_set_dma_mask(hba);
9129 	if (err) {
9130 		dev_err(hba->dev, "set dma mask failed\n");
9131 		goto out_disable;
9132 	}
9133 
9134 	/* Allocate memory for host memory space */
9135 	err = ufshcd_memory_alloc(hba);
9136 	if (err) {
9137 		dev_err(hba->dev, "Memory allocation failed\n");
9138 		goto out_disable;
9139 	}
9140 
9141 	/* Configure LRB */
9142 	ufshcd_host_memory_configure(hba);
9143 
9144 	host->can_queue = hba->nutrs;
9145 	host->cmd_per_lun = hba->nutrs;
9146 	host->max_id = UFSHCD_MAX_ID;
9147 	host->max_lun = UFS_MAX_LUNS;
9148 	host->max_channel = UFSHCD_MAX_CHANNEL;
9149 	host->unique_id = host->host_no;
9150 	host->max_cmd_len = UFS_CDB_SIZE;
9151 
9152 	hba->max_pwr_info.is_valid = false;
9153 
9154 	/* Initialize work queues */
9155 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9156 		 hba->host->host_no);
9157 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9158 	if (!hba->eh_wq) {
9159 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9160 				__func__);
9161 		err = -ENOMEM;
9162 		goto out_disable;
9163 	}
9164 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9165 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9166 
9167 	/* Initialize UIC command mutex */
9168 	mutex_init(&hba->uic_cmd_mutex);
9169 
9170 	/* Initialize mutex for device management commands */
9171 	mutex_init(&hba->dev_cmd.lock);
9172 
9173 	init_rwsem(&hba->clk_scaling_lock);
9174 
9175 	ufshcd_init_clk_gating(hba);
9176 
9177 	ufshcd_init_clk_scaling(hba);
9178 
9179 	/*
9180 	 * In order to avoid any spurious interrupt immediately after
9181 	 * registering UFS controller interrupt handler, clear any pending UFS
9182 	 * interrupt status and disable all the UFS interrupts.
9183 	 */
9184 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9185 		      REG_INTERRUPT_STATUS);
9186 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9187 	/*
9188 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9189 	 * status is cleared before registering UFS interrupt handler.
9190 	 */
9191 	mb();
9192 
9193 	/* IRQ registration */
9194 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9195 	if (err) {
9196 		dev_err(hba->dev, "request irq failed\n");
9197 		goto exit_gating;
9198 	} else {
9199 		hba->is_irq_enabled = true;
9200 	}
9201 
9202 	err = scsi_add_host(host, hba->dev);
9203 	if (err) {
9204 		dev_err(hba->dev, "scsi_add_host failed\n");
9205 		goto exit_gating;
9206 	}
9207 
9208 	hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9209 	if (IS_ERR(hba->cmd_queue)) {
9210 		err = PTR_ERR(hba->cmd_queue);
9211 		goto out_remove_scsi_host;
9212 	}
9213 
9214 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9215 		.nr_hw_queues	= 1,
9216 		.queue_depth	= hba->nutmrs,
9217 		.ops		= &ufshcd_tmf_ops,
9218 		.flags		= BLK_MQ_F_NO_SCHED,
9219 	};
9220 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9221 	if (err < 0)
9222 		goto free_cmd_queue;
9223 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9224 	if (IS_ERR(hba->tmf_queue)) {
9225 		err = PTR_ERR(hba->tmf_queue);
9226 		goto free_tmf_tag_set;
9227 	}
9228 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9229 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9230 	if (!hba->tmf_rqs) {
9231 		err = -ENOMEM;
9232 		goto free_tmf_queue;
9233 	}
9234 
9235 	/* Reset the attached device */
9236 	ufshcd_vops_device_reset(hba);
9237 
9238 	ufshcd_init_crypto(hba);
9239 
9240 	/* Host controller enable */
9241 	err = ufshcd_hba_enable(hba);
9242 	if (err) {
9243 		dev_err(hba->dev, "Host controller enable failed\n");
9244 		ufshcd_print_host_regs(hba);
9245 		ufshcd_print_host_state(hba);
9246 		goto free_tmf_queue;
9247 	}
9248 
9249 	/*
9250 	 * Set the default power management level for runtime and system PM.
9251 	 * Default power saving mode is to keep UFS link in Hibern8 state
9252 	 * and UFS device in sleep state.
9253 	 */
9254 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9255 						UFS_SLEEP_PWR_MODE,
9256 						UIC_LINK_HIBERN8_STATE);
9257 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9258 						UFS_SLEEP_PWR_MODE,
9259 						UIC_LINK_HIBERN8_STATE);
9260 
9261 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9262 			  ufshcd_rpm_dev_flush_recheck_work);
9263 
9264 	/* Set the default auto-hiberate idle timer value to 150 ms */
9265 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9266 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9267 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9268 	}
9269 
9270 	/* Hold auto suspend until async scan completes */
9271 	pm_runtime_get_sync(dev);
9272 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9273 	/*
9274 	 * We are assuming that device wasn't put in sleep/power-down
9275 	 * state exclusively during the boot stage before kernel.
9276 	 * This assumption helps avoid doing link startup twice during
9277 	 * ufshcd_probe_hba().
9278 	 */
9279 	ufshcd_set_ufs_dev_active(hba);
9280 
9281 	async_schedule(ufshcd_async_scan, hba);
9282 	ufs_sysfs_add_nodes(hba->dev);
9283 
9284 	return 0;
9285 
9286 free_tmf_queue:
9287 	blk_cleanup_queue(hba->tmf_queue);
9288 free_tmf_tag_set:
9289 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9290 free_cmd_queue:
9291 	blk_cleanup_queue(hba->cmd_queue);
9292 out_remove_scsi_host:
9293 	scsi_remove_host(hba->host);
9294 exit_gating:
9295 	ufshcd_exit_clk_scaling(hba);
9296 	ufshcd_exit_clk_gating(hba);
9297 	destroy_workqueue(hba->eh_wq);
9298 out_disable:
9299 	hba->is_irq_enabled = false;
9300 	ufshcd_hba_exit(hba);
9301 out_error:
9302 	return err;
9303 }
9304 EXPORT_SYMBOL_GPL(ufshcd_init);
9305 
9306 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9307 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9308 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9309 MODULE_LICENSE("GPL");
9310 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9311