1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARM.h"
14
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Target/TargetOptions.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "arm-subtarget"
44
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
48
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51 cl::init(true), cl::Hidden);
52
53 enum ITMode {
54 DefaultIT,
55 RestrictedIT,
56 NoRestrictedIT
57 };
58
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61 cl::ZeroOrMore,
62 cl::values(clEnumValN(DefaultIT, "arm-default-it",
63 "Generate IT block based on arch"),
64 clEnumValN(RestrictedIT, "arm-restrict-it",
65 "Disallow deprecated IT based on ARMv8"),
66 clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67 "Allow IT blocks based on ARMv7")));
68
69 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70 /// currently supported (for testing only).
71 static cl::opt<bool>
72 ForceFastISel("arm-force-fast-isel",
73 cl::init(false), cl::Hidden);
74
75 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
76 cl::init(false), cl::Hidden);
77
78 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
79 /// so that we can use initializer lists for subtarget initialization.
initializeSubtargetDependencies(StringRef CPU,StringRef FS)80 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
81 StringRef FS) {
82 initializeEnvironment();
83 initSubtargetFeatures(CPU, FS);
84 return *this;
85 }
86
initializeFrameLowering(StringRef CPU,StringRef FS)87 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
88 StringRef FS) {
89 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
90 if (STI.isThumb1Only())
91 return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
92
93 return new ARMFrameLowering(STI);
94 }
95
ARMSubtarget(const Triple & TT,const std::string & CPU,const std::string & FS,const ARMBaseTargetMachine & TM,bool IsLittle,bool MinSize)96 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
97 const std::string &FS,
98 const ARMBaseTargetMachine &TM, bool IsLittle,
99 bool MinSize)
100 : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
101 CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
102 TargetTriple(TT), Options(TM.Options), TM(TM),
103 FrameLowering(initializeFrameLowering(CPU, FS)),
104 // At this point initializeSubtargetDependencies has been called so
105 // we can query directly.
106 InstrInfo(isThumb1Only()
107 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
108 : !isThumb()
109 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
110 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
111 TLInfo(TM, *this) {
112
113 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
114 Legalizer.reset(new ARMLegalizerInfo(*this));
115
116 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
117
118 // FIXME: At this point, we can't rely on Subtarget having RBI.
119 // It's awkward to mix passing RBI and the Subtarget; should we pass
120 // TII/TRI as well?
121 InstSelector.reset(createARMInstructionSelector(
122 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
123
124 RegBankInfo.reset(RBI);
125 }
126
getCallLowering() const127 const CallLowering *ARMSubtarget::getCallLowering() const {
128 return CallLoweringInfo.get();
129 }
130
getInstructionSelector() const131 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
132 return InstSelector.get();
133 }
134
getLegalizerInfo() const135 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
136 return Legalizer.get();
137 }
138
getRegBankInfo() const139 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
140 return RegBankInfo.get();
141 }
142
isXRaySupported() const143 bool ARMSubtarget::isXRaySupported() const {
144 // We don't currently suppport Thumb, but Windows requires Thumb.
145 return hasV6Ops() && hasARMOps() && !isTargetWindows();
146 }
147
initializeEnvironment()148 void ARMSubtarget::initializeEnvironment() {
149 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
150 // directly from it, but we can try to make sure they're consistent when both
151 // available.
152 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
153 Options.ExceptionModel == ExceptionHandling::None) ||
154 Options.ExceptionModel == ExceptionHandling::SjLj;
155 assert((!TM.getMCAsmInfo() ||
156 (TM.getMCAsmInfo()->getExceptionHandlingType() ==
157 ExceptionHandling::SjLj) == UseSjLjEH) &&
158 "inconsistent sjlj choice between CodeGen and MC");
159 }
160
initSubtargetFeatures(StringRef CPU,StringRef FS)161 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
162 if (CPUString.empty()) {
163 CPUString = "generic";
164
165 if (isTargetDarwin()) {
166 StringRef ArchName = TargetTriple.getArchName();
167 ARM::ArchKind AK = ARM::parseArch(ArchName);
168 if (AK == ARM::ArchKind::ARMV7S)
169 // Default to the Swift CPU when targeting armv7s/thumbv7s.
170 CPUString = "swift";
171 else if (AK == ARM::ArchKind::ARMV7K)
172 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
173 // ARMv7k does not use SjLj exception handling.
174 CPUString = "cortex-a7";
175 }
176 }
177
178 // Insert the architecture feature derived from the target triple into the
179 // feature string. This is important for setting features that are implied
180 // based on the architecture version.
181 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
182 if (!FS.empty()) {
183 if (!ArchFS.empty())
184 ArchFS = (Twine(ArchFS) + "," + FS).str();
185 else
186 ArchFS = FS;
187 }
188 ParseSubtargetFeatures(CPUString, ArchFS);
189
190 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
191 // Assert this for now to make the change obvious.
192 assert(hasV6T2Ops() || !hasThumb2());
193
194 // Execute only support requires movt support
195 if (genExecuteOnly()) {
196 NoMovt = false;
197 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
198 }
199
200 // Keep a pointer to static instruction cost data for the specified CPU.
201 SchedModel = getSchedModelForCPU(CPUString);
202
203 // Initialize scheduling itinerary for the specified CPU.
204 InstrItins = getInstrItineraryForCPU(CPUString);
205
206 // FIXME: this is invalid for WindowsCE
207 if (isTargetWindows())
208 NoARM = true;
209
210 if (isAAPCS_ABI())
211 stackAlignment = Align(8);
212 if (isTargetNaCl() || isAAPCS16_ABI())
213 stackAlignment = Align(16);
214
215 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
216 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
217 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
218 // support in the assembler and linker to be used. This would need to be
219 // fixed to fully support tail calls in Thumb1.
220 //
221 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
222 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
223 // means if we need to reload LR, it takes extra instructions, which outweighs
224 // the value of the tail call; but here we don't know yet whether LR is going
225 // to be used. We take the optimistic approach of generating the tail call and
226 // perhaps taking a hit if we need to restore the LR.
227
228 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
229 // but we need to make sure there are enough registers; the only valid
230 // registers are the 4 used for parameters. We don't currently do this
231 // case.
232
233 SupportsTailCall = !isThumb() || hasV8MBaselineOps();
234
235 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
236 SupportsTailCall = false;
237
238 switch (IT) {
239 case DefaultIT:
240 RestrictIT = hasV8Ops();
241 break;
242 case RestrictedIT:
243 RestrictIT = true;
244 break;
245 case NoRestrictedIT:
246 RestrictIT = false;
247 break;
248 }
249
250 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
251 const FeatureBitset &Bits = getFeatureBits();
252 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
253 (Options.UnsafeFPMath || isTargetDarwin()))
254 UseNEONForSinglePrecisionFP = true;
255
256 if (isRWPI())
257 ReserveR9 = true;
258
259 // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
260 if (MVEVectorCostFactor == 0)
261 MVEVectorCostFactor = 2;
262
263 // FIXME: Teach TableGen to deal with these instead of doing it manually here.
264 switch (ARMProcFamily) {
265 case Others:
266 case CortexA5:
267 break;
268 case CortexA7:
269 LdStMultipleTiming = DoubleIssue;
270 break;
271 case CortexA8:
272 LdStMultipleTiming = DoubleIssue;
273 break;
274 case CortexA9:
275 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
276 PreISelOperandLatencyAdjustment = 1;
277 break;
278 case CortexA12:
279 break;
280 case CortexA15:
281 MaxInterleaveFactor = 2;
282 PreISelOperandLatencyAdjustment = 1;
283 PartialUpdateClearance = 12;
284 break;
285 case CortexA17:
286 case CortexA32:
287 case CortexA35:
288 case CortexA53:
289 case CortexA55:
290 case CortexA57:
291 case CortexA72:
292 case CortexA73:
293 case CortexA75:
294 case CortexA76:
295 case CortexR4:
296 case CortexR4F:
297 case CortexR5:
298 case CortexR7:
299 case CortexM3:
300 case CortexR52:
301 break;
302 case Exynos:
303 LdStMultipleTiming = SingleIssuePlusExtras;
304 MaxInterleaveFactor = 4;
305 if (!isThumb())
306 PrefLoopLogAlignment = 3;
307 break;
308 case Kryo:
309 break;
310 case Krait:
311 PreISelOperandLatencyAdjustment = 1;
312 break;
313 case NeoverseN1:
314 break;
315 case Swift:
316 MaxInterleaveFactor = 2;
317 LdStMultipleTiming = SingleIssuePlusExtras;
318 PreISelOperandLatencyAdjustment = 1;
319 PartialUpdateClearance = 12;
320 break;
321 }
322 }
323
isTargetHardFloat() const324 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
325
isAPCS_ABI() const326 bool ARMSubtarget::isAPCS_ABI() const {
327 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
328 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
329 }
isAAPCS_ABI() const330 bool ARMSubtarget::isAAPCS_ABI() const {
331 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
332 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
333 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
334 }
isAAPCS16_ABI() const335 bool ARMSubtarget::isAAPCS16_ABI() const {
336 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
337 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
338 }
339
isROPI() const340 bool ARMSubtarget::isROPI() const {
341 return TM.getRelocationModel() == Reloc::ROPI ||
342 TM.getRelocationModel() == Reloc::ROPI_RWPI;
343 }
isRWPI() const344 bool ARMSubtarget::isRWPI() const {
345 return TM.getRelocationModel() == Reloc::RWPI ||
346 TM.getRelocationModel() == Reloc::ROPI_RWPI;
347 }
348
isGVIndirectSymbol(const GlobalValue * GV) const349 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
350 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
351 return true;
352
353 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
354 // the section that is being relocated. This means we have to use o load even
355 // for GVs that are known to be local to the dso.
356 if (isTargetMachO() && TM.isPositionIndependent() &&
357 (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
358 return true;
359
360 return false;
361 }
362
isGVInGOT(const GlobalValue * GV) const363 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
364 return isTargetELF() && TM.isPositionIndependent() &&
365 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
366 }
367
getMispredictionPenalty() const368 unsigned ARMSubtarget::getMispredictionPenalty() const {
369 return SchedModel.MispredictPenalty;
370 }
371
enableMachineScheduler() const372 bool ARMSubtarget::enableMachineScheduler() const {
373 // The MachineScheduler can increase register usage, so we use more high
374 // registers and end up with more T2 instructions that cannot be converted to
375 // T1 instructions. At least until we do better at converting to thumb1
376 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
377 // Machine scheduler, relying on the DAG register pressure scheduler instead.
378 if (isMClass() && hasMinSize())
379 return false;
380 // Enable the MachineScheduler before register allocation for subtargets
381 // with the use-misched feature.
382 return useMachineScheduler();
383 }
384
enableSubRegLiveness() const385 bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; }
386
387 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
enablePostRAScheduler() const388 bool ARMSubtarget::enablePostRAScheduler() const {
389 if (enableMachineScheduler())
390 return false;
391 if (disablePostRAScheduler())
392 return false;
393 // Thumb1 cores will generally not benefit from post-ra scheduling
394 return !isThumb1Only();
395 }
396
enablePostRAMachineScheduler() const397 bool ARMSubtarget::enablePostRAMachineScheduler() const {
398 if (!enableMachineScheduler())
399 return false;
400 if (disablePostRAScheduler())
401 return false;
402 return !isThumb1Only();
403 }
404
enableAtomicExpand() const405 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
406
useStride4VFPs() const407 bool ARMSubtarget::useStride4VFPs() const {
408 // For general targets, the prologue can grow when VFPs are allocated with
409 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
410 // format which it's more important to get right.
411 return isTargetWatchABI() ||
412 (useWideStrideVFP() && !OptMinSize);
413 }
414
useMovt() const415 bool ARMSubtarget::useMovt() const {
416 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
417 // immediates as it is inherently position independent, and may be out of
418 // range otherwise.
419 return !NoMovt && hasV8MBaselineOps() &&
420 (isTargetWindows() || !OptMinSize || genExecuteOnly());
421 }
422
useFastISel() const423 bool ARMSubtarget::useFastISel() const {
424 // Enable fast-isel for any target, for testing only.
425 if (ForceFastISel)
426 return true;
427
428 // Limit fast-isel to the targets that are or have been tested.
429 if (!hasV6Ops())
430 return false;
431
432 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
433 return TM.Options.EnableFastISel &&
434 ((isTargetMachO() && !isThumb1Only()) ||
435 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
436 }
437
getGPRAllocationOrder(const MachineFunction & MF) const438 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
439 // The GPR register class has multiple possible allocation orders, with
440 // tradeoffs preferred by different sub-architectures and optimisation goals.
441 // The allocation orders are:
442 // 0: (the default tablegen order, not used)
443 // 1: r14, r0-r13
444 // 2: r0-r7
445 // 3: r0-r7, r12, lr, r8-r11
446 // Note that the register allocator will change this order so that
447 // callee-saved registers are used later, as they require extra work in the
448 // prologue/epilogue (though we sometimes override that).
449
450 // For thumb1-only targets, only the low registers are allocatable.
451 if (isThumb1Only())
452 return 2;
453
454 // Allocate low registers first, so we can select more 16-bit instructions.
455 // We also (in ignoreCSRForAllocationOrder) override the default behaviour
456 // with regards to callee-saved registers, because pushing extra registers is
457 // much cheaper (in terms of code size) than using high registers. After
458 // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
459 // can return with the pop, don't need an extra "bx lr") and then the rest of
460 // the high registers.
461 if (isThumb2() && MF.getFunction().hasMinSize())
462 return 3;
463
464 // Otherwise, allocate in the default order, using LR first because saving it
465 // allows a shorter epilogue sequence.
466 return 1;
467 }
468
ignoreCSRForAllocationOrder(const MachineFunction & MF,unsigned PhysReg) const469 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
470 unsigned PhysReg) const {
471 // To minimize code size in Thumb2, we prefer the usage of low regs (lower
472 // cost per use) so we can use narrow encoding. By default, caller-saved
473 // registers (e.g. lr, r12) are always allocated first, regardless of
474 // their cost per use. When optForMinSize, we prefer the low regs even if
475 // they are CSR because usually push/pop can be folded into existing ones.
476 return isThumb2() && MF.getFunction().hasMinSize() &&
477 ARM::GPRRegClass.contains(PhysReg);
478 }
479