1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SGI NMI support routines
4 *
5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7 * Copyright (c) Mike Travis
8 */
9
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/kdb.h>
13 #include <linux/kexec.h>
14 #include <linux/kgdb.h>
15 #include <linux/moduleparam.h>
16 #include <linux/nmi.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/slab.h>
20 #include <linux/clocksource.h>
21
22 #include <asm/apic.h>
23 #include <asm/current.h>
24 #include <asm/kdebug.h>
25 #include <asm/local64.h>
26 #include <asm/nmi.h>
27 #include <asm/traps.h>
28 #include <asm/uv/uv.h>
29 #include <asm/uv/uv_hub.h>
30 #include <asm/uv/uv_mmrs.h>
31
32 /*
33 * UV handler for NMI
34 *
35 * Handle system-wide NMI events generated by the global 'power nmi' command.
36 *
37 * Basic operation is to field the NMI interrupt on each CPU and wait
38 * until all CPU's have arrived into the nmi handler. If some CPU's do not
39 * make it into the handler, try and force them in with the IPI(NMI) signal.
40 *
41 * We also have to lessen UV Hub MMR accesses as much as possible as this
42 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
43 * can cause system problems to occur.
44 *
45 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
46 * chain. This reduces the number of false NMI calls when the perf
47 * tools are running which generate an enormous number of NMIs per
48 * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is
49 * very short as it only checks that if it has been "pinged" with the
50 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
51 *
52 */
53
54 static struct uv_hub_nmi_s **uv_hub_nmi_list;
55
56 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
57
58 /* Newer SMM NMI handler, not present in all systems */
59 static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */
60 static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */
61 static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
62 static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */
63
64 /* Non-zero indicates newer SMM NMI handler present */
65 static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */
66
67 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
68 static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
69 static int uvh_nmi_mmrx_req_shift; /* 62 */
70
71 /* UV hubless values */
72 #define NMI_CONTROL_PORT 0x70
73 #define NMI_DUMMY_PORT 0x71
74 #define PAD_OWN_GPP_D_0 0x2c
75 #define GPI_NMI_STS_GPP_D_0 0x164
76 #define GPI_NMI_ENA_GPP_D_0 0x174
77 #define STS_GPP_D_0_MASK 0x1
78 #define PAD_CFG_DW0_GPP_D_0 0x4c0
79 #define GPIROUTNMI (1ul << 17)
80 #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul
81 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
82
83 static u64 *pch_base;
84 static unsigned long nmi_mmr;
85 static unsigned long nmi_mmr_clear;
86 static unsigned long nmi_mmr_pending;
87
88 static atomic_t uv_in_nmi;
89 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
90 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
91 static atomic_t uv_nmi_slave_continue;
92 static cpumask_var_t uv_nmi_cpu_mask;
93
94 /* Values for uv_nmi_slave_continue */
95 #define SLAVE_CLEAR 0
96 #define SLAVE_CONTINUE 1
97 #define SLAVE_EXIT 2
98
99 /*
100 * Default is all stack dumps go to the console and buffer.
101 * Lower level to send to log buffer only.
102 */
103 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
104 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
105
106 /*
107 * The following values show statistics on how perf events are affecting
108 * this system.
109 */
param_get_local64(char * buffer,const struct kernel_param * kp)110 static int param_get_local64(char *buffer, const struct kernel_param *kp)
111 {
112 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
113 }
114
param_set_local64(const char * val,const struct kernel_param * kp)115 static int param_set_local64(const char *val, const struct kernel_param *kp)
116 {
117 /* Clear on any write */
118 local64_set((local64_t *)kp->arg, 0);
119 return 0;
120 }
121
122 static const struct kernel_param_ops param_ops_local64 = {
123 .get = param_get_local64,
124 .set = param_set_local64,
125 };
126 #define param_check_local64(name, p) __param_check(name, p, local64_t)
127
128 static local64_t uv_nmi_count;
129 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
130
131 static local64_t uv_nmi_misses;
132 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
133
134 static local64_t uv_nmi_ping_count;
135 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
136
137 static local64_t uv_nmi_ping_misses;
138 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
139
140 /*
141 * Following values allow tuning for large systems under heavy loading
142 */
143 static int uv_nmi_initial_delay = 100;
144 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
145
146 static int uv_nmi_slave_delay = 100;
147 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
148
149 static int uv_nmi_loop_delay = 100;
150 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
151
152 static int uv_nmi_trigger_delay = 10000;
153 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
154
155 static int uv_nmi_wait_count = 100;
156 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
157
158 static int uv_nmi_retry_count = 500;
159 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
160
161 static bool uv_pch_intr_enable = true;
162 static bool uv_pch_intr_now_enabled;
163 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
164
165 static bool uv_pch_init_enable = true;
166 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
167
168 static int uv_nmi_debug;
169 module_param_named(debug, uv_nmi_debug, int, 0644);
170
171 #define nmi_debug(fmt, ...) \
172 do { \
173 if (uv_nmi_debug) \
174 pr_info(fmt, ##__VA_ARGS__); \
175 } while (0)
176
177 /* Valid NMI Actions */
178 #define ACTION_LEN 16
179 static struct nmi_action {
180 char *action;
181 char *desc;
182 } valid_acts[] = {
183 { "kdump", "do kernel crash dump" },
184 { "dump", "dump process stack for each cpu" },
185 { "ips", "dump Inst Ptr info for each cpu" },
186 { "kdb", "enter KDB (needs kgdboc= assignment)" },
187 { "kgdb", "enter KGDB (needs gdb target remote)" },
188 { "health", "check if CPUs respond to NMI" },
189 };
190 typedef char action_t[ACTION_LEN];
191 static action_t uv_nmi_action = { "dump" };
192
param_get_action(char * buffer,const struct kernel_param * kp)193 static int param_get_action(char *buffer, const struct kernel_param *kp)
194 {
195 return sprintf(buffer, "%s\n", uv_nmi_action);
196 }
197
param_set_action(const char * val,const struct kernel_param * kp)198 static int param_set_action(const char *val, const struct kernel_param *kp)
199 {
200 int i;
201 int n = ARRAY_SIZE(valid_acts);
202 char arg[ACTION_LEN], *p;
203
204 /* (remove possible '\n') */
205 strncpy(arg, val, ACTION_LEN - 1);
206 arg[ACTION_LEN - 1] = '\0';
207 p = strchr(arg, '\n');
208 if (p)
209 *p = '\0';
210
211 for (i = 0; i < n; i++)
212 if (!strcmp(arg, valid_acts[i].action))
213 break;
214
215 if (i < n) {
216 strcpy(uv_nmi_action, arg);
217 pr_info("UV: New NMI action:%s\n", uv_nmi_action);
218 return 0;
219 }
220
221 pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
222 for (i = 0; i < n; i++)
223 pr_err("UV: %-8s - %s\n",
224 valid_acts[i].action, valid_acts[i].desc);
225 return -EINVAL;
226 }
227
228 static const struct kernel_param_ops param_ops_action = {
229 .get = param_get_action,
230 .set = param_set_action,
231 };
232 #define param_check_action(name, p) __param_check(name, p, action_t)
233
234 module_param_named(action, uv_nmi_action, action, 0644);
235
uv_nmi_action_is(const char * action)236 static inline bool uv_nmi_action_is(const char *action)
237 {
238 return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
239 }
240
241 /* Setup which NMI support is present in system */
uv_nmi_setup_mmrs(void)242 static void uv_nmi_setup_mmrs(void)
243 {
244 /* First determine arch specific MMRs to handshake with BIOS */
245 if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {
246 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
247 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
248 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
249 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
250
251 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
252 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
253 uvh_nmi_mmrx_req_shift = 62;
254
255 } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) {
256 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
257 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
258 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
259 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
260
261 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
262 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
263 uvh_nmi_mmrx_req_shift = 62;
264
265 } else {
266 pr_err("UV:%s:cannot find EVENT_OCCURRED*_EXTIO_INT0\n",
267 __func__);
268 return;
269 }
270
271 /* Then find out if new NMI is supported */
272 if (likely(uv_read_local_mmr(uvh_nmi_mmrx_supported))) {
273 uv_write_local_mmr(uvh_nmi_mmrx_req,
274 1UL << uvh_nmi_mmrx_req_shift);
275 nmi_mmr = uvh_nmi_mmrx;
276 nmi_mmr_clear = uvh_nmi_mmrx_clear;
277 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
278 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
279 } else {
280 nmi_mmr = UVH_NMI_MMR;
281 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
282 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
283 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
284 }
285 }
286
287 /* Read NMI MMR and check if NMI flag was set by BMC. */
uv_nmi_test_mmr(struct uv_hub_nmi_s * hub_nmi)288 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
289 {
290 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
291 atomic_inc(&hub_nmi->read_mmr_count);
292 return !!(hub_nmi->nmi_value & nmi_mmr_pending);
293 }
294
uv_local_mmr_clear_nmi(void)295 static inline void uv_local_mmr_clear_nmi(void)
296 {
297 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
298 }
299
300 /*
301 * UV hubless NMI handler functions
302 */
uv_reassert_nmi(void)303 static inline void uv_reassert_nmi(void)
304 {
305 /* (from arch/x86/include/asm/mach_traps.h) */
306 outb(0x8f, NMI_CONTROL_PORT);
307 inb(NMI_DUMMY_PORT); /* dummy read */
308 outb(0x0f, NMI_CONTROL_PORT);
309 inb(NMI_DUMMY_PORT); /* dummy read */
310 }
311
uv_init_hubless_pch_io(int offset,int mask,int data)312 static void uv_init_hubless_pch_io(int offset, int mask, int data)
313 {
314 int *addr = PCH_PCR_GPIO_ADDRESS(offset);
315 int readd = readl(addr);
316
317 if (mask) { /* OR in new data */
318 int writed = (readd & ~mask) | data;
319
320 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
321 addr, readd, ~mask, data, writed);
322 writel(writed, addr);
323 } else if (readd & data) { /* clear status bit */
324 nmi_debug("UV:PCH: %p = %x\n", addr, data);
325 writel(data, addr);
326 }
327
328 (void)readl(addr); /* flush write data */
329 }
330
uv_nmi_setup_hubless_intr(void)331 static void uv_nmi_setup_hubless_intr(void)
332 {
333 uv_pch_intr_now_enabled = uv_pch_intr_enable;
334
335 uv_init_hubless_pch_io(
336 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
337 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
338
339 nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
340 uv_pch_intr_now_enabled ? "enabled" : "disabled");
341 }
342
343 static struct init_nmi {
344 unsigned int offset;
345 unsigned int mask;
346 unsigned int data;
347 } init_nmi[] = {
348 { /* HOSTSW_OWN_GPP_D_0 */
349 .offset = 0x84,
350 .mask = 0x1,
351 .data = 0x0, /* ACPI Mode */
352 },
353
354 /* Clear status: */
355 { /* GPI_INT_STS_GPP_D_0 */
356 .offset = 0x104,
357 .mask = 0x0,
358 .data = 0x1, /* Clear Status */
359 },
360 { /* GPI_GPE_STS_GPP_D_0 */
361 .offset = 0x124,
362 .mask = 0x0,
363 .data = 0x1, /* Clear Status */
364 },
365 { /* GPI_SMI_STS_GPP_D_0 */
366 .offset = 0x144,
367 .mask = 0x0,
368 .data = 0x1, /* Clear Status */
369 },
370 { /* GPI_NMI_STS_GPP_D_0 */
371 .offset = 0x164,
372 .mask = 0x0,
373 .data = 0x1, /* Clear Status */
374 },
375
376 /* Disable interrupts: */
377 { /* GPI_INT_EN_GPP_D_0 */
378 .offset = 0x114,
379 .mask = 0x1,
380 .data = 0x0, /* Disable interrupt generation */
381 },
382 { /* GPI_GPE_EN_GPP_D_0 */
383 .offset = 0x134,
384 .mask = 0x1,
385 .data = 0x0, /* Disable interrupt generation */
386 },
387 { /* GPI_SMI_EN_GPP_D_0 */
388 .offset = 0x154,
389 .mask = 0x1,
390 .data = 0x0, /* Disable interrupt generation */
391 },
392 { /* GPI_NMI_EN_GPP_D_0 */
393 .offset = 0x174,
394 .mask = 0x1,
395 .data = 0x0, /* Disable interrupt generation */
396 },
397
398 /* Setup GPP_D_0 Pad Config: */
399 { /* PAD_CFG_DW0_GPP_D_0 */
400 .offset = 0x4c0,
401 .mask = 0xffffffff,
402 .data = 0x82020100,
403 /*
404 * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default)
405 *
406 * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
407 * from RX buffer (default)
408 *
409 * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override
410 *
411 * 26:25 RX Level/Edge Configuration (RXEVCFG):
412 * = 0h # Level
413 * = 1h # Edge
414 *
415 * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high)
416 *
417 * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
418 * = 0 # Routing does not cause peripheral IRQ...
419 * # (we want an NMI not an IRQ)
420 *
421 * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
422 * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
423 * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
424 *
425 * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
426 * 9 GPIO RX Disable (GPIORXDIS):
427 * = 0 # Enable the input buffer (active low enable)
428 *
429 * 8 GPIO TX Disable (GPIOTXDIS):
430 * = 1 # Disable the output buffer; i.e. Hi-Z
431 *
432 * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
433 * 0 GPIO TX State (GPIOTXSTATE):
434 * = 0 # (Leave at default)
435 */
436 },
437
438 /* Pad Config DW1 */
439 { /* PAD_CFG_DW1_GPP_D_0 */
440 .offset = 0x4c4,
441 .mask = 0x3c00,
442 .data = 0, /* Termination = none (default) */
443 },
444 };
445
uv_init_hubless_pch_d0(void)446 static void uv_init_hubless_pch_d0(void)
447 {
448 int i, read;
449
450 read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
451 if (read != 0) {
452 pr_info("UV: Hubless NMI already configured\n");
453 return;
454 }
455
456 nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
457 for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
458 uv_init_hubless_pch_io(init_nmi[i].offset,
459 init_nmi[i].mask,
460 init_nmi[i].data);
461 }
462 }
463
uv_nmi_test_hubless(struct uv_hub_nmi_s * hub_nmi)464 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
465 {
466 int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
467 int status = *pstat;
468
469 hub_nmi->nmi_value = status;
470 atomic_inc(&hub_nmi->read_mmr_count);
471
472 if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */
473 return 0;
474
475 *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */
476 (void)*pstat; /* Flush write */
477
478 return 1;
479 }
480
uv_test_nmi(struct uv_hub_nmi_s * hub_nmi)481 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
482 {
483 if (hub_nmi->hub_present)
484 return uv_nmi_test_mmr(hub_nmi);
485
486 if (hub_nmi->pch_owner) /* Only PCH owner can check status */
487 return uv_nmi_test_hubless(hub_nmi);
488
489 return -1;
490 }
491
492 /*
493 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
494 * return true. If first CPU in on the system, set global "in_nmi" flag.
495 */
uv_set_in_nmi(int cpu,struct uv_hub_nmi_s * hub_nmi)496 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
497 {
498 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
499
500 if (first) {
501 atomic_set(&hub_nmi->cpu_owner, cpu);
502 if (atomic_add_unless(&uv_in_nmi, 1, 1))
503 atomic_set(&uv_nmi_cpu, cpu);
504
505 atomic_inc(&hub_nmi->nmi_count);
506 }
507 return first;
508 }
509
510 /* Check if this is a system NMI event */
uv_check_nmi(struct uv_hub_nmi_s * hub_nmi)511 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
512 {
513 int cpu = smp_processor_id();
514 int nmi = 0;
515 int nmi_detected = 0;
516
517 local64_inc(&uv_nmi_count);
518 this_cpu_inc(uv_cpu_nmi.queries);
519
520 do {
521 nmi = atomic_read(&hub_nmi->in_nmi);
522 if (nmi)
523 break;
524
525 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
526 nmi_detected = uv_test_nmi(hub_nmi);
527
528 /* Check flag for UV external NMI */
529 if (nmi_detected > 0) {
530 uv_set_in_nmi(cpu, hub_nmi);
531 nmi = 1;
532 break;
533 }
534
535 /* A non-PCH node in a hubless system waits for NMI */
536 else if (nmi_detected < 0)
537 goto slave_wait;
538
539 /* MMR/PCH NMI flag is clear */
540 raw_spin_unlock(&hub_nmi->nmi_lock);
541
542 } else {
543
544 /* Wait a moment for the HUB NMI locker to set flag */
545 slave_wait: cpu_relax();
546 udelay(uv_nmi_slave_delay);
547
548 /* Re-check hub in_nmi flag */
549 nmi = atomic_read(&hub_nmi->in_nmi);
550 if (nmi)
551 break;
552 }
553
554 /*
555 * Check if this BMC missed setting the MMR NMI flag (or)
556 * UV hubless system where only PCH owner can check flag
557 */
558 if (!nmi) {
559 nmi = atomic_read(&uv_in_nmi);
560 if (nmi)
561 uv_set_in_nmi(cpu, hub_nmi);
562 }
563
564 /* If we're holding the hub lock, release it now */
565 if (nmi_detected < 0)
566 raw_spin_unlock(&hub_nmi->nmi_lock);
567
568 } while (0);
569
570 if (!nmi)
571 local64_inc(&uv_nmi_misses);
572
573 return nmi;
574 }
575
576 /* Need to reset the NMI MMR register, but only once per hub. */
uv_clear_nmi(int cpu)577 static inline void uv_clear_nmi(int cpu)
578 {
579 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
580
581 if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
582 atomic_set(&hub_nmi->cpu_owner, -1);
583 atomic_set(&hub_nmi->in_nmi, 0);
584 if (hub_nmi->hub_present)
585 uv_local_mmr_clear_nmi();
586 else
587 uv_reassert_nmi();
588 raw_spin_unlock(&hub_nmi->nmi_lock);
589 }
590 }
591
592 /* Ping non-responding CPU's attempting to force them into the NMI handler */
uv_nmi_nr_cpus_ping(void)593 static void uv_nmi_nr_cpus_ping(void)
594 {
595 int cpu;
596
597 for_each_cpu(cpu, uv_nmi_cpu_mask)
598 uv_cpu_nmi_per(cpu).pinging = 1;
599
600 apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
601 }
602
603 /* Clean up flags for CPU's that ignored both NMI and ping */
uv_nmi_cleanup_mask(void)604 static void uv_nmi_cleanup_mask(void)
605 {
606 int cpu;
607
608 for_each_cpu(cpu, uv_nmi_cpu_mask) {
609 uv_cpu_nmi_per(cpu).pinging = 0;
610 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
611 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
612 }
613 }
614
615 /* Loop waiting as CPU's enter NMI handler */
uv_nmi_wait_cpus(int first)616 static int uv_nmi_wait_cpus(int first)
617 {
618 int i, j, k, n = num_online_cpus();
619 int last_k = 0, waiting = 0;
620 int cpu = smp_processor_id();
621
622 if (first) {
623 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
624 k = 0;
625 } else {
626 k = n - cpumask_weight(uv_nmi_cpu_mask);
627 }
628
629 /* PCH NMI causes only one CPU to respond */
630 if (first && uv_pch_intr_now_enabled) {
631 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
632 return n - k - 1;
633 }
634
635 udelay(uv_nmi_initial_delay);
636 for (i = 0; i < uv_nmi_retry_count; i++) {
637 int loop_delay = uv_nmi_loop_delay;
638
639 for_each_cpu(j, uv_nmi_cpu_mask) {
640 if (uv_cpu_nmi_per(j).state) {
641 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
642 if (++k >= n)
643 break;
644 }
645 }
646 if (k >= n) { /* all in? */
647 k = n;
648 break;
649 }
650 if (last_k != k) { /* abort if no new CPU's coming in */
651 last_k = k;
652 waiting = 0;
653 } else if (++waiting > uv_nmi_wait_count)
654 break;
655
656 /* Extend delay if waiting only for CPU 0: */
657 if (waiting && (n - k) == 1 &&
658 cpumask_test_cpu(0, uv_nmi_cpu_mask))
659 loop_delay *= 100;
660
661 udelay(loop_delay);
662 }
663 atomic_set(&uv_nmi_cpus_in_nmi, k);
664 return n - k;
665 }
666
667 /* Wait until all slave CPU's have entered UV NMI handler */
uv_nmi_wait(int master)668 static void uv_nmi_wait(int master)
669 {
670 /* Indicate this CPU is in: */
671 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
672
673 /* If not the first CPU in (the master), then we are a slave CPU */
674 if (!master)
675 return;
676
677 do {
678 /* Wait for all other CPU's to gather here */
679 if (!uv_nmi_wait_cpus(1))
680 break;
681
682 /* If not all made it in, send IPI NMI to them */
683 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
684 cpumask_weight(uv_nmi_cpu_mask),
685 cpumask_pr_args(uv_nmi_cpu_mask));
686
687 uv_nmi_nr_cpus_ping();
688
689 /* If all CPU's are in, then done */
690 if (!uv_nmi_wait_cpus(0))
691 break;
692
693 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
694 cpumask_weight(uv_nmi_cpu_mask),
695 cpumask_pr_args(uv_nmi_cpu_mask));
696 } while (0);
697
698 pr_alert("UV: %d of %d CPUs in NMI\n",
699 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
700 }
701
702 /* Dump Instruction Pointer header */
uv_nmi_dump_cpu_ip_hdr(void)703 static void uv_nmi_dump_cpu_ip_hdr(void)
704 {
705 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
706 "CPU", "PID", "COMMAND", "IP");
707 }
708
709 /* Dump Instruction Pointer info */
uv_nmi_dump_cpu_ip(int cpu,struct pt_regs * regs)710 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
711 {
712 pr_info("UV: %4d %6d %-32.32s %pS",
713 cpu, current->pid, current->comm, (void *)regs->ip);
714 }
715
716 /*
717 * Dump this CPU's state. If action was set to "kdump" and the crash_kexec
718 * failed, then we provide "dump" as an alternate action. Action "dump" now
719 * also includes the show "ips" (instruction pointers) action whereas the
720 * action "ips" only displays instruction pointers for the non-idle CPU's.
721 * This is an abbreviated form of the "ps" command.
722 */
uv_nmi_dump_state_cpu(int cpu,struct pt_regs * regs)723 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
724 {
725 const char *dots = " ................................. ";
726
727 if (cpu == 0)
728 uv_nmi_dump_cpu_ip_hdr();
729
730 if (current->pid != 0 || !uv_nmi_action_is("ips"))
731 uv_nmi_dump_cpu_ip(cpu, regs);
732
733 if (uv_nmi_action_is("dump")) {
734 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
735 show_regs(regs);
736 }
737
738 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
739 }
740
741 /* Trigger a slave CPU to dump it's state */
uv_nmi_trigger_dump(int cpu)742 static void uv_nmi_trigger_dump(int cpu)
743 {
744 int retry = uv_nmi_trigger_delay;
745
746 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
747 return;
748
749 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
750 do {
751 cpu_relax();
752 udelay(10);
753 if (uv_cpu_nmi_per(cpu).state
754 != UV_NMI_STATE_DUMP)
755 return;
756 } while (--retry > 0);
757
758 pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
759 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
760 }
761
762 /* Wait until all CPU's ready to exit */
uv_nmi_sync_exit(int master)763 static void uv_nmi_sync_exit(int master)
764 {
765 atomic_dec(&uv_nmi_cpus_in_nmi);
766 if (master) {
767 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
768 cpu_relax();
769 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
770 } else {
771 while (atomic_read(&uv_nmi_slave_continue))
772 cpu_relax();
773 }
774 }
775
776 /* Current "health" check is to check which CPU's are responsive */
uv_nmi_action_health(int cpu,struct pt_regs * regs,int master)777 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
778 {
779 if (master) {
780 int in = atomic_read(&uv_nmi_cpus_in_nmi);
781 int out = num_online_cpus() - in;
782
783 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
784 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
785 } else {
786 while (!atomic_read(&uv_nmi_slave_continue))
787 cpu_relax();
788 }
789 uv_nmi_sync_exit(master);
790 }
791
792 /* Walk through CPU list and dump state of each */
uv_nmi_dump_state(int cpu,struct pt_regs * regs,int master)793 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
794 {
795 if (master) {
796 int tcpu;
797 int ignored = 0;
798 int saved_console_loglevel = console_loglevel;
799
800 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
801 uv_nmi_action_is("ips") ? "IPs" : "processes",
802 atomic_read(&uv_nmi_cpus_in_nmi), cpu);
803
804 console_loglevel = uv_nmi_loglevel;
805 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
806 for_each_online_cpu(tcpu) {
807 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
808 ignored++;
809 else if (tcpu == cpu)
810 uv_nmi_dump_state_cpu(tcpu, regs);
811 else
812 uv_nmi_trigger_dump(tcpu);
813 }
814 if (ignored)
815 pr_alert("UV: %d CPUs ignored NMI\n", ignored);
816
817 console_loglevel = saved_console_loglevel;
818 pr_alert("UV: process trace complete\n");
819 } else {
820 while (!atomic_read(&uv_nmi_slave_continue))
821 cpu_relax();
822 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
823 cpu_relax();
824 uv_nmi_dump_state_cpu(cpu, regs);
825 }
826 uv_nmi_sync_exit(master);
827 }
828
uv_nmi_touch_watchdogs(void)829 static void uv_nmi_touch_watchdogs(void)
830 {
831 touch_softlockup_watchdog_sync();
832 clocksource_touch_watchdog();
833 rcu_cpu_stall_reset();
834 touch_nmi_watchdog();
835 }
836
837 static atomic_t uv_nmi_kexec_failed;
838
839 #if defined(CONFIG_KEXEC_CORE)
uv_nmi_kdump(int cpu,int master,struct pt_regs * regs)840 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
841 {
842 /* Call crash to dump system state */
843 if (master) {
844 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
845 crash_kexec(regs);
846
847 pr_emerg("UV: crash_kexec unexpectedly returned, ");
848 atomic_set(&uv_nmi_kexec_failed, 1);
849 if (!kexec_crash_image) {
850 pr_cont("crash kernel not loaded\n");
851 return;
852 }
853 pr_cont("kexec busy, stalling cpus while waiting\n");
854 }
855
856 /* If crash exec fails the slaves should return, otherwise stall */
857 while (atomic_read(&uv_nmi_kexec_failed) == 0)
858 mdelay(10);
859 }
860
861 #else /* !CONFIG_KEXEC_CORE */
uv_nmi_kdump(int cpu,int master,struct pt_regs * regs)862 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
863 {
864 if (master)
865 pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
866 atomic_set(&uv_nmi_kexec_failed, 1);
867 }
868 #endif /* !CONFIG_KEXEC_CORE */
869
870 #ifdef CONFIG_KGDB
871 #ifdef CONFIG_KGDB_KDB
uv_nmi_kdb_reason(void)872 static inline int uv_nmi_kdb_reason(void)
873 {
874 return KDB_REASON_SYSTEM_NMI;
875 }
876 #else /* !CONFIG_KGDB_KDB */
uv_nmi_kdb_reason(void)877 static inline int uv_nmi_kdb_reason(void)
878 {
879 /* Ensure user is expecting to attach gdb remote */
880 if (uv_nmi_action_is("kgdb"))
881 return 0;
882
883 pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884 return -1;
885 }
886 #endif /* CONFIG_KGDB_KDB */
887
888 /*
889 * Call KGDB/KDB from NMI handler
890 *
891 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892 * 'kdb' has no affect on which is used. See the KGDB documention for further
893 * information.
894 */
uv_call_kgdb_kdb(int cpu,struct pt_regs * regs,int master)895 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896 {
897 if (master) {
898 int reason = uv_nmi_kdb_reason();
899 int ret;
900
901 if (reason < 0)
902 return;
903
904 /* Call KGDB NMI handler as MASTER */
905 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906 &uv_nmi_slave_continue);
907 if (ret) {
908 pr_alert("KGDB returned error, is kgdboc set?\n");
909 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910 }
911 } else {
912 /* Wait for KGDB signal that it's ready for slaves to enter */
913 int sig;
914
915 do {
916 cpu_relax();
917 sig = atomic_read(&uv_nmi_slave_continue);
918 } while (!sig);
919
920 /* Call KGDB as slave */
921 if (sig == SLAVE_CONTINUE)
922 kgdb_nmicallback(cpu, regs);
923 }
924 uv_nmi_sync_exit(master);
925 }
926
927 #else /* !CONFIG_KGDB */
uv_call_kgdb_kdb(int cpu,struct pt_regs * regs,int master)928 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929 {
930 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931 }
932 #endif /* !CONFIG_KGDB */
933
934 /*
935 * UV NMI handler
936 */
uv_handle_nmi(unsigned int reason,struct pt_regs * regs)937 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938 {
939 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940 int cpu = smp_processor_id();
941 int master = 0;
942 unsigned long flags;
943
944 local_irq_save(flags);
945
946 /* If not a UV System NMI, ignore */
947 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948 local_irq_restore(flags);
949 return NMI_DONE;
950 }
951
952 /* Indicate we are the first CPU into the NMI handler */
953 master = (atomic_read(&uv_nmi_cpu) == cpu);
954
955 /* If NMI action is "kdump", then attempt to do it */
956 if (uv_nmi_action_is("kdump")) {
957 uv_nmi_kdump(cpu, master, regs);
958
959 /* Unexpected return, revert action to "dump" */
960 if (master)
961 strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
962 }
963
964 /* Pause as all CPU's enter the NMI handler */
965 uv_nmi_wait(master);
966
967 /* Process actions other than "kdump": */
968 if (uv_nmi_action_is("health")) {
969 uv_nmi_action_health(cpu, regs, master);
970 } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
971 uv_nmi_dump_state(cpu, regs, master);
972 } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
973 uv_call_kgdb_kdb(cpu, regs, master);
974 } else {
975 if (master)
976 pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
977 uv_nmi_sync_exit(master);
978 }
979
980 /* Clear per_cpu "in_nmi" flag */
981 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
982
983 /* Clear MMR NMI flag on each hub */
984 uv_clear_nmi(cpu);
985
986 /* Clear global flags */
987 if (master) {
988 if (cpumask_weight(uv_nmi_cpu_mask))
989 uv_nmi_cleanup_mask();
990 atomic_set(&uv_nmi_cpus_in_nmi, -1);
991 atomic_set(&uv_nmi_cpu, -1);
992 atomic_set(&uv_in_nmi, 0);
993 atomic_set(&uv_nmi_kexec_failed, 0);
994 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
995 }
996
997 uv_nmi_touch_watchdogs();
998 local_irq_restore(flags);
999
1000 return NMI_HANDLED;
1001 }
1002
1003 /*
1004 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1005 */
uv_handle_nmi_ping(unsigned int reason,struct pt_regs * regs)1006 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1007 {
1008 int ret;
1009
1010 this_cpu_inc(uv_cpu_nmi.queries);
1011 if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1012 local64_inc(&uv_nmi_ping_misses);
1013 return NMI_DONE;
1014 }
1015
1016 this_cpu_inc(uv_cpu_nmi.pings);
1017 local64_inc(&uv_nmi_ping_count);
1018 ret = uv_handle_nmi(reason, regs);
1019 this_cpu_write(uv_cpu_nmi.pinging, 0);
1020 return ret;
1021 }
1022
uv_register_nmi_notifier(void)1023 static void uv_register_nmi_notifier(void)
1024 {
1025 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1026 pr_warn("UV: NMI handler failed to register\n");
1027
1028 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1029 pr_warn("UV: PING NMI handler failed to register\n");
1030 }
1031
uv_nmi_init(void)1032 void uv_nmi_init(void)
1033 {
1034 unsigned int value;
1035
1036 /*
1037 * Unmask NMI on all CPU's
1038 */
1039 value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1040 value &= ~APIC_LVT_MASKED;
1041 apic_write(APIC_LVT1, value);
1042 }
1043
1044 /* Setup HUB NMI info */
uv_nmi_setup_common(bool hubbed)1045 static void __init uv_nmi_setup_common(bool hubbed)
1046 {
1047 int size = sizeof(void *) * (1 << NODES_SHIFT);
1048 int cpu;
1049
1050 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1051 nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1052 BUG_ON(!uv_hub_nmi_list);
1053 size = sizeof(struct uv_hub_nmi_s);
1054 for_each_present_cpu(cpu) {
1055 int nid = cpu_to_node(cpu);
1056 if (uv_hub_nmi_list[nid] == NULL) {
1057 uv_hub_nmi_list[nid] = kzalloc_node(size,
1058 GFP_KERNEL, nid);
1059 BUG_ON(!uv_hub_nmi_list[nid]);
1060 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1061 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1062 uv_hub_nmi_list[nid]->hub_present = hubbed;
1063 uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1064 }
1065 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1066 }
1067 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1068 }
1069
1070 /* Setup for UV Hub systems */
uv_nmi_setup(void)1071 void __init uv_nmi_setup(void)
1072 {
1073 uv_nmi_setup_mmrs();
1074 uv_nmi_setup_common(true);
1075 uv_register_nmi_notifier();
1076 pr_info("UV: Hub NMI enabled\n");
1077 }
1078
1079 /* Setup for UV Hubless systems */
uv_nmi_setup_hubless(void)1080 void __init uv_nmi_setup_hubless(void)
1081 {
1082 uv_nmi_setup_common(false);
1083 pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1084 nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1085 pch_base, PCH_PCR_GPIO_1_BASE);
1086 if (uv_pch_init_enable)
1087 uv_init_hubless_pch_d0();
1088 uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1089 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1090 uv_nmi_setup_hubless_intr();
1091 /* Ensure NMI enabled in Processor Interface Reg: */
1092 uv_reassert_nmi();
1093 uv_register_nmi_notifier();
1094 pr_info("UV: PCH NMI enabled\n");
1095 }
1096