• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
no_open(struct inode * inode,struct file * file)119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
inode_init_always(struct super_block * sb,struct inode * inode)132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
183 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
184 	mapping->wb_err = 0;
185 	atomic_set(&mapping->i_mmap_writable, 0);
186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 	atomic_set(&mapping->nr_thps, 0);
188 #endif
189 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 	mapping->private_data = NULL;
191 	mapping->writeback_index = 0;
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
195 #ifdef CONFIG_FS_POSIX_ACL
196 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198 
199 #ifdef CONFIG_FSNOTIFY
200 	inode->i_fsnotify_mask = 0;
201 #endif
202 	inode->i_flctx = NULL;
203 
204 	if (unlikely(security_inode_alloc(inode)))
205 		return -ENOMEM;
206 	this_cpu_inc(nr_inodes);
207 
208 	return 0;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
free_inode_nonrcu(struct inode * inode)212 void free_inode_nonrcu(struct inode *inode)
213 {
214 	kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217 
i_callback(struct rcu_head * head)218 static void i_callback(struct rcu_head *head)
219 {
220 	struct inode *inode = container_of(head, struct inode, i_rcu);
221 	if (inode->free_inode)
222 		inode->free_inode(inode);
223 	else
224 		free_inode_nonrcu(inode);
225 }
226 
alloc_inode(struct super_block * sb)227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 	const struct super_operations *ops = sb->s_op;
230 	struct inode *inode;
231 
232 	if (ops->alloc_inode)
233 		inode = ops->alloc_inode(sb);
234 	else
235 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236 
237 	if (!inode)
238 		return NULL;
239 
240 	if (unlikely(inode_init_always(sb, inode))) {
241 		if (ops->destroy_inode) {
242 			ops->destroy_inode(inode);
243 			if (!ops->free_inode)
244 				return NULL;
245 		}
246 		inode->free_inode = ops->free_inode;
247 		i_callback(&inode->i_rcu);
248 		return NULL;
249 	}
250 
251 	return inode;
252 }
253 
__destroy_inode(struct inode * inode)254 void __destroy_inode(struct inode *inode)
255 {
256 	BUG_ON(inode_has_buffers(inode));
257 	inode_detach_wb(inode);
258 	security_inode_free(inode);
259 	fsnotify_inode_delete(inode);
260 	locks_free_lock_context(inode);
261 	if (!inode->i_nlink) {
262 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 		atomic_long_dec(&inode->i_sb->s_remove_count);
264 	}
265 
266 #ifdef CONFIG_FS_POSIX_ACL
267 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 		posix_acl_release(inode->i_acl);
269 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 		posix_acl_release(inode->i_default_acl);
271 #endif
272 	this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275 
destroy_inode(struct inode * inode)276 static void destroy_inode(struct inode *inode)
277 {
278 	const struct super_operations *ops = inode->i_sb->s_op;
279 
280 	BUG_ON(!list_empty(&inode->i_lru));
281 	__destroy_inode(inode);
282 	if (ops->destroy_inode) {
283 		ops->destroy_inode(inode);
284 		if (!ops->free_inode)
285 			return;
286 	}
287 	inode->free_inode = ops->free_inode;
288 	call_rcu(&inode->i_rcu, i_callback);
289 }
290 
291 /**
292  * drop_nlink - directly drop an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  In cases
297  * where we are attempting to track writes to the
298  * filesystem, a decrement to zero means an imminent
299  * write when the file is truncated and actually unlinked
300  * on the filesystem.
301  */
drop_nlink(struct inode * inode)302 void drop_nlink(struct inode *inode)
303 {
304 	WARN_ON(inode->i_nlink == 0);
305 	inode->__i_nlink--;
306 	if (!inode->i_nlink)
307 		atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL(drop_nlink);
310 
311 /**
312  * clear_nlink - directly zero an inode's link count
313  * @inode: inode
314  *
315  * This is a low-level filesystem helper to replace any
316  * direct filesystem manipulation of i_nlink.  See
317  * drop_nlink() for why we care about i_nlink hitting zero.
318  */
clear_nlink(struct inode * inode)319 void clear_nlink(struct inode *inode)
320 {
321 	if (inode->i_nlink) {
322 		inode->__i_nlink = 0;
323 		atomic_long_inc(&inode->i_sb->s_remove_count);
324 	}
325 }
326 EXPORT_SYMBOL(clear_nlink);
327 
328 /**
329  * set_nlink - directly set an inode's link count
330  * @inode: inode
331  * @nlink: new nlink (should be non-zero)
332  *
333  * This is a low-level filesystem helper to replace any
334  * direct filesystem manipulation of i_nlink.
335  */
set_nlink(struct inode * inode,unsigned int nlink)336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 	if (!nlink) {
339 		clear_nlink(inode);
340 	} else {
341 		/* Yes, some filesystems do change nlink from zero to one */
342 		if (inode->i_nlink == 0)
343 			atomic_long_dec(&inode->i_sb->s_remove_count);
344 
345 		inode->__i_nlink = nlink;
346 	}
347 }
348 EXPORT_SYMBOL(set_nlink);
349 
350 /**
351  * inc_nlink - directly increment an inode's link count
352  * @inode: inode
353  *
354  * This is a low-level filesystem helper to replace any
355  * direct filesystem manipulation of i_nlink.  Currently,
356  * it is only here for parity with dec_nlink().
357  */
inc_nlink(struct inode * inode)358 void inc_nlink(struct inode *inode)
359 {
360 	if (unlikely(inode->i_nlink == 0)) {
361 		WARN_ON(!(inode->i_state & I_LINKABLE));
362 		atomic_long_dec(&inode->i_sb->s_remove_count);
363 	}
364 
365 	inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368 
__address_space_init_once(struct address_space * mapping)369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 	init_rwsem(&mapping->i_mmap_rwsem);
373 	INIT_LIST_HEAD(&mapping->private_list);
374 	spin_lock_init(&mapping->private_lock);
375 	mapping->i_mmap = RB_ROOT_CACHED;
376 }
377 
address_space_init_once(struct address_space * mapping)378 void address_space_init_once(struct address_space *mapping)
379 {
380 	memset(mapping, 0, sizeof(*mapping));
381 	__address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384 
385 /*
386  * These are initializations that only need to be done
387  * once, because the fields are idempotent across use
388  * of the inode, so let the slab aware of that.
389  */
inode_init_once(struct inode * inode)390 void inode_init_once(struct inode *inode)
391 {
392 	memset(inode, 0, sizeof(*inode));
393 	INIT_HLIST_NODE(&inode->i_hash);
394 	INIT_LIST_HEAD(&inode->i_devices);
395 	INIT_LIST_HEAD(&inode->i_io_list);
396 	INIT_LIST_HEAD(&inode->i_wb_list);
397 	INIT_LIST_HEAD(&inode->i_lru);
398 	__address_space_init_once(&inode->i_data);
399 	i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL(inode_init_once);
402 
init_once(void * foo)403 static void init_once(void *foo)
404 {
405 	struct inode *inode = (struct inode *) foo;
406 
407 	inode_init_once(inode);
408 }
409 
410 /*
411  * inode->i_lock must be held
412  */
__iget(struct inode * inode)413 void __iget(struct inode *inode)
414 {
415 	atomic_inc(&inode->i_count);
416 }
417 
418 /*
419  * get additional reference to inode; caller must already hold one.
420  */
ihold(struct inode * inode)421 void ihold(struct inode *inode)
422 {
423 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL(ihold);
426 
inode_lru_list_add(struct inode * inode)427 static void inode_lru_list_add(struct inode *inode)
428 {
429 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 		this_cpu_inc(nr_unused);
431 	else
432 		inode->i_state |= I_REFERENCED;
433 }
434 
435 /*
436  * Add inode to LRU if needed (inode is unused and clean).
437  *
438  * Needs inode->i_lock held.
439  */
inode_add_lru(struct inode * inode)440 void inode_add_lru(struct inode *inode)
441 {
442 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 				I_FREEING | I_WILL_FREE)) &&
444 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 		inode_lru_list_add(inode);
446 }
447 
448 
inode_lru_list_del(struct inode * inode)449 static void inode_lru_list_del(struct inode *inode)
450 {
451 
452 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 		this_cpu_dec(nr_unused);
454 }
455 
456 /**
457  * inode_sb_list_add - add inode to the superblock list of inodes
458  * @inode: inode to add
459  */
inode_sb_list_add(struct inode * inode)460 void inode_sb_list_add(struct inode *inode)
461 {
462 	spin_lock(&inode->i_sb->s_inode_list_lock);
463 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 	spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467 
inode_sb_list_del(struct inode * inode)468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 	if (!list_empty(&inode->i_sb_list)) {
471 		spin_lock(&inode->i_sb->s_inode_list_lock);
472 		list_del_init(&inode->i_sb_list);
473 		spin_unlock(&inode->i_sb->s_inode_list_lock);
474 	}
475 }
476 
hash(struct super_block * sb,unsigned long hashval)477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 	unsigned long tmp;
480 
481 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 			L1_CACHE_BYTES;
483 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 	return tmp & i_hash_mask;
485 }
486 
487 /**
488  *	__insert_inode_hash - hash an inode
489  *	@inode: unhashed inode
490  *	@hashval: unsigned long value used to locate this object in the
491  *		inode_hashtable.
492  *
493  *	Add an inode to the inode hash for this superblock.
494  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498 
499 	spin_lock(&inode_hash_lock);
500 	spin_lock(&inode->i_lock);
501 	hlist_add_head_rcu(&inode->i_hash, b);
502 	spin_unlock(&inode->i_lock);
503 	spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL(__insert_inode_hash);
506 
507 /**
508  *	__remove_inode_hash - remove an inode from the hash
509  *	@inode: inode to unhash
510  *
511  *	Remove an inode from the superblock.
512  */
__remove_inode_hash(struct inode * inode)513 void __remove_inode_hash(struct inode *inode)
514 {
515 	spin_lock(&inode_hash_lock);
516 	spin_lock(&inode->i_lock);
517 	hlist_del_init_rcu(&inode->i_hash);
518 	spin_unlock(&inode->i_lock);
519 	spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL(__remove_inode_hash);
522 
clear_inode(struct inode * inode)523 void clear_inode(struct inode *inode)
524 {
525 	/*
526 	 * We have to cycle the i_pages lock here because reclaim can be in the
527 	 * process of removing the last page (in __delete_from_page_cache())
528 	 * and we must not free the mapping under it.
529 	 */
530 	xa_lock_irq(&inode->i_data.i_pages);
531 	BUG_ON(inode->i_data.nrpages);
532 	BUG_ON(inode->i_data.nrexceptional);
533 	xa_unlock_irq(&inode->i_data.i_pages);
534 	BUG_ON(!list_empty(&inode->i_data.private_list));
535 	BUG_ON(!(inode->i_state & I_FREEING));
536 	BUG_ON(inode->i_state & I_CLEAR);
537 	BUG_ON(!list_empty(&inode->i_wb_list));
538 	/* don't need i_lock here, no concurrent mods to i_state */
539 	inode->i_state = I_FREEING | I_CLEAR;
540 }
541 EXPORT_SYMBOL(clear_inode);
542 
543 /*
544  * Free the inode passed in, removing it from the lists it is still connected
545  * to. We remove any pages still attached to the inode and wait for any IO that
546  * is still in progress before finally destroying the inode.
547  *
548  * An inode must already be marked I_FREEING so that we avoid the inode being
549  * moved back onto lists if we race with other code that manipulates the lists
550  * (e.g. writeback_single_inode). The caller is responsible for setting this.
551  *
552  * An inode must already be removed from the LRU list before being evicted from
553  * the cache. This should occur atomically with setting the I_FREEING state
554  * flag, so no inodes here should ever be on the LRU when being evicted.
555  */
evict(struct inode * inode)556 static void evict(struct inode *inode)
557 {
558 	const struct super_operations *op = inode->i_sb->s_op;
559 
560 	BUG_ON(!(inode->i_state & I_FREEING));
561 	BUG_ON(!list_empty(&inode->i_lru));
562 
563 	if (!list_empty(&inode->i_io_list))
564 		inode_io_list_del(inode);
565 
566 	inode_sb_list_del(inode);
567 
568 	/*
569 	 * Wait for flusher thread to be done with the inode so that filesystem
570 	 * does not start destroying it while writeback is still running. Since
571 	 * the inode has I_FREEING set, flusher thread won't start new work on
572 	 * the inode.  We just have to wait for running writeback to finish.
573 	 */
574 	inode_wait_for_writeback(inode);
575 
576 	if (op->evict_inode) {
577 		op->evict_inode(inode);
578 	} else {
579 		truncate_inode_pages_final(&inode->i_data);
580 		clear_inode(inode);
581 	}
582 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
583 		bd_forget(inode);
584 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
585 		cd_forget(inode);
586 
587 	remove_inode_hash(inode);
588 
589 	spin_lock(&inode->i_lock);
590 	wake_up_bit(&inode->i_state, __I_NEW);
591 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
592 	spin_unlock(&inode->i_lock);
593 
594 	destroy_inode(inode);
595 }
596 
597 /*
598  * dispose_list - dispose of the contents of a local list
599  * @head: the head of the list to free
600  *
601  * Dispose-list gets a local list with local inodes in it, so it doesn't
602  * need to worry about list corruption and SMP locks.
603  */
dispose_list(struct list_head * head)604 static void dispose_list(struct list_head *head)
605 {
606 	while (!list_empty(head)) {
607 		struct inode *inode;
608 
609 		inode = list_first_entry(head, struct inode, i_lru);
610 		list_del_init(&inode->i_lru);
611 
612 		evict(inode);
613 		cond_resched();
614 	}
615 }
616 
617 /**
618  * evict_inodes	- evict all evictable inodes for a superblock
619  * @sb:		superblock to operate on
620  *
621  * Make sure that no inodes with zero refcount are retained.  This is
622  * called by superblock shutdown after having SB_ACTIVE flag removed,
623  * so any inode reaching zero refcount during or after that call will
624  * be immediately evicted.
625  */
evict_inodes(struct super_block * sb)626 void evict_inodes(struct super_block *sb)
627 {
628 	struct inode *inode, *next;
629 	LIST_HEAD(dispose);
630 
631 again:
632 	spin_lock(&sb->s_inode_list_lock);
633 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
634 		if (atomic_read(&inode->i_count))
635 			continue;
636 
637 		spin_lock(&inode->i_lock);
638 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
639 			spin_unlock(&inode->i_lock);
640 			continue;
641 		}
642 
643 		inode->i_state |= I_FREEING;
644 		inode_lru_list_del(inode);
645 		spin_unlock(&inode->i_lock);
646 		list_add(&inode->i_lru, &dispose);
647 
648 		/*
649 		 * We can have a ton of inodes to evict at unmount time given
650 		 * enough memory, check to see if we need to go to sleep for a
651 		 * bit so we don't livelock.
652 		 */
653 		if (need_resched()) {
654 			spin_unlock(&sb->s_inode_list_lock);
655 			cond_resched();
656 			dispose_list(&dispose);
657 			goto again;
658 		}
659 	}
660 	spin_unlock(&sb->s_inode_list_lock);
661 
662 	dispose_list(&dispose);
663 }
664 EXPORT_SYMBOL_GPL(evict_inodes);
665 
666 /**
667  * invalidate_inodes	- attempt to free all inodes on a superblock
668  * @sb:		superblock to operate on
669  * @kill_dirty: flag to guide handling of dirty inodes
670  *
671  * Attempts to free all inodes for a given superblock.  If there were any
672  * busy inodes return a non-zero value, else zero.
673  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
674  * them as busy.
675  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)676 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
677 {
678 	int busy = 0;
679 	struct inode *inode, *next;
680 	LIST_HEAD(dispose);
681 
682 again:
683 	spin_lock(&sb->s_inode_list_lock);
684 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
685 		spin_lock(&inode->i_lock);
686 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
687 			spin_unlock(&inode->i_lock);
688 			continue;
689 		}
690 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
691 			spin_unlock(&inode->i_lock);
692 			busy = 1;
693 			continue;
694 		}
695 		if (atomic_read(&inode->i_count)) {
696 			spin_unlock(&inode->i_lock);
697 			busy = 1;
698 			continue;
699 		}
700 
701 		inode->i_state |= I_FREEING;
702 		inode_lru_list_del(inode);
703 		spin_unlock(&inode->i_lock);
704 		list_add(&inode->i_lru, &dispose);
705 		if (need_resched()) {
706 			spin_unlock(&sb->s_inode_list_lock);
707 			cond_resched();
708 			dispose_list(&dispose);
709 			goto again;
710 		}
711 	}
712 	spin_unlock(&sb->s_inode_list_lock);
713 
714 	dispose_list(&dispose);
715 
716 	return busy;
717 }
718 
719 /*
720  * Isolate the inode from the LRU in preparation for freeing it.
721  *
722  * Any inodes which are pinned purely because of attached pagecache have their
723  * pagecache removed.  If the inode has metadata buffers attached to
724  * mapping->private_list then try to remove them.
725  *
726  * If the inode has the I_REFERENCED flag set, then it means that it has been
727  * used recently - the flag is set in iput_final(). When we encounter such an
728  * inode, clear the flag and move it to the back of the LRU so it gets another
729  * pass through the LRU before it gets reclaimed. This is necessary because of
730  * the fact we are doing lazy LRU updates to minimise lock contention so the
731  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
732  * with this flag set because they are the inodes that are out of order.
733  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)734 static enum lru_status inode_lru_isolate(struct list_head *item,
735 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
736 {
737 	struct list_head *freeable = arg;
738 	struct inode	*inode = container_of(item, struct inode, i_lru);
739 
740 	/*
741 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
742 	 * If we fail to get the lock, just skip it.
743 	 */
744 	if (!spin_trylock(&inode->i_lock))
745 		return LRU_SKIP;
746 
747 	/*
748 	 * Referenced or dirty inodes are still in use. Give them another pass
749 	 * through the LRU as we canot reclaim them now.
750 	 */
751 	if (atomic_read(&inode->i_count) ||
752 	    (inode->i_state & ~I_REFERENCED)) {
753 		list_lru_isolate(lru, &inode->i_lru);
754 		spin_unlock(&inode->i_lock);
755 		this_cpu_dec(nr_unused);
756 		return LRU_REMOVED;
757 	}
758 
759 	/* recently referenced inodes get one more pass */
760 	if (inode->i_state & I_REFERENCED) {
761 		inode->i_state &= ~I_REFERENCED;
762 		spin_unlock(&inode->i_lock);
763 		return LRU_ROTATE;
764 	}
765 
766 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
767 		__iget(inode);
768 		spin_unlock(&inode->i_lock);
769 		spin_unlock(lru_lock);
770 		if (remove_inode_buffers(inode)) {
771 			unsigned long reap;
772 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
773 			if (current_is_kswapd())
774 				__count_vm_events(KSWAPD_INODESTEAL, reap);
775 			else
776 				__count_vm_events(PGINODESTEAL, reap);
777 			if (current->reclaim_state)
778 				current->reclaim_state->reclaimed_slab += reap;
779 		}
780 		iput(inode);
781 		spin_lock(lru_lock);
782 		return LRU_RETRY;
783 	}
784 
785 	WARN_ON(inode->i_state & I_NEW);
786 	inode->i_state |= I_FREEING;
787 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
788 	spin_unlock(&inode->i_lock);
789 
790 	this_cpu_dec(nr_unused);
791 	return LRU_REMOVED;
792 }
793 
794 /*
795  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
796  * This is called from the superblock shrinker function with a number of inodes
797  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
798  * then are freed outside inode_lock by dispose_list().
799  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)800 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
801 {
802 	LIST_HEAD(freeable);
803 	long freed;
804 
805 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
806 				     inode_lru_isolate, &freeable);
807 	dispose_list(&freeable);
808 	return freed;
809 }
810 
811 static void __wait_on_freeing_inode(struct inode *inode);
812 /*
813  * Called with the inode lock held.
814  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)815 static struct inode *find_inode(struct super_block *sb,
816 				struct hlist_head *head,
817 				int (*test)(struct inode *, void *),
818 				void *data)
819 {
820 	struct inode *inode = NULL;
821 
822 repeat:
823 	hlist_for_each_entry(inode, head, i_hash) {
824 		if (inode->i_sb != sb)
825 			continue;
826 		if (!test(inode, data))
827 			continue;
828 		spin_lock(&inode->i_lock);
829 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 			__wait_on_freeing_inode(inode);
831 			goto repeat;
832 		}
833 		if (unlikely(inode->i_state & I_CREATING)) {
834 			spin_unlock(&inode->i_lock);
835 			return ERR_PTR(-ESTALE);
836 		}
837 		__iget(inode);
838 		spin_unlock(&inode->i_lock);
839 		return inode;
840 	}
841 	return NULL;
842 }
843 
844 /*
845  * find_inode_fast is the fast path version of find_inode, see the comment at
846  * iget_locked for details.
847  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)848 static struct inode *find_inode_fast(struct super_block *sb,
849 				struct hlist_head *head, unsigned long ino)
850 {
851 	struct inode *inode = NULL;
852 
853 repeat:
854 	hlist_for_each_entry(inode, head, i_hash) {
855 		if (inode->i_ino != ino)
856 			continue;
857 		if (inode->i_sb != sb)
858 			continue;
859 		spin_lock(&inode->i_lock);
860 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
861 			__wait_on_freeing_inode(inode);
862 			goto repeat;
863 		}
864 		if (unlikely(inode->i_state & I_CREATING)) {
865 			spin_unlock(&inode->i_lock);
866 			return ERR_PTR(-ESTALE);
867 		}
868 		__iget(inode);
869 		spin_unlock(&inode->i_lock);
870 		return inode;
871 	}
872 	return NULL;
873 }
874 
875 /*
876  * Each cpu owns a range of LAST_INO_BATCH numbers.
877  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
878  * to renew the exhausted range.
879  *
880  * This does not significantly increase overflow rate because every CPU can
881  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
882  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
883  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
884  * overflow rate by 2x, which does not seem too significant.
885  *
886  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
887  * error if st_ino won't fit in target struct field. Use 32bit counter
888  * here to attempt to avoid that.
889  */
890 #define LAST_INO_BATCH 1024
891 static DEFINE_PER_CPU(unsigned int, last_ino);
892 
get_next_ino(void)893 unsigned int get_next_ino(void)
894 {
895 	unsigned int *p = &get_cpu_var(last_ino);
896 	unsigned int res = *p;
897 
898 #ifdef CONFIG_SMP
899 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
900 		static atomic_t shared_last_ino;
901 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
902 
903 		res = next - LAST_INO_BATCH;
904 	}
905 #endif
906 
907 	res++;
908 	/* get_next_ino should not provide a 0 inode number */
909 	if (unlikely(!res))
910 		res++;
911 	*p = res;
912 	put_cpu_var(last_ino);
913 	return res;
914 }
915 EXPORT_SYMBOL(get_next_ino);
916 
917 /**
918  *	new_inode_pseudo 	- obtain an inode
919  *	@sb: superblock
920  *
921  *	Allocates a new inode for given superblock.
922  *	Inode wont be chained in superblock s_inodes list
923  *	This means :
924  *	- fs can't be unmount
925  *	- quotas, fsnotify, writeback can't work
926  */
new_inode_pseudo(struct super_block * sb)927 struct inode *new_inode_pseudo(struct super_block *sb)
928 {
929 	struct inode *inode = alloc_inode(sb);
930 
931 	if (inode) {
932 		spin_lock(&inode->i_lock);
933 		inode->i_state = 0;
934 		spin_unlock(&inode->i_lock);
935 		INIT_LIST_HEAD(&inode->i_sb_list);
936 	}
937 	return inode;
938 }
939 
940 /**
941  *	new_inode 	- obtain an inode
942  *	@sb: superblock
943  *
944  *	Allocates a new inode for given superblock. The default gfp_mask
945  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
946  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
947  *	for the page cache are not reclaimable or migratable,
948  *	mapping_set_gfp_mask() must be called with suitable flags on the
949  *	newly created inode's mapping
950  *
951  */
new_inode(struct super_block * sb)952 struct inode *new_inode(struct super_block *sb)
953 {
954 	struct inode *inode;
955 
956 	spin_lock_prefetch(&sb->s_inode_list_lock);
957 
958 	inode = new_inode_pseudo(sb);
959 	if (inode)
960 		inode_sb_list_add(inode);
961 	return inode;
962 }
963 EXPORT_SYMBOL(new_inode);
964 
965 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)966 void lockdep_annotate_inode_mutex_key(struct inode *inode)
967 {
968 	if (S_ISDIR(inode->i_mode)) {
969 		struct file_system_type *type = inode->i_sb->s_type;
970 
971 		/* Set new key only if filesystem hasn't already changed it */
972 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
973 			/*
974 			 * ensure nobody is actually holding i_mutex
975 			 */
976 			// mutex_destroy(&inode->i_mutex);
977 			init_rwsem(&inode->i_rwsem);
978 			lockdep_set_class(&inode->i_rwsem,
979 					  &type->i_mutex_dir_key);
980 		}
981 	}
982 }
983 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
984 #endif
985 
986 /**
987  * unlock_new_inode - clear the I_NEW state and wake up any waiters
988  * @inode:	new inode to unlock
989  *
990  * Called when the inode is fully initialised to clear the new state of the
991  * inode and wake up anyone waiting for the inode to finish initialisation.
992  */
unlock_new_inode(struct inode * inode)993 void unlock_new_inode(struct inode *inode)
994 {
995 	lockdep_annotate_inode_mutex_key(inode);
996 	spin_lock(&inode->i_lock);
997 	WARN_ON(!(inode->i_state & I_NEW));
998 	inode->i_state &= ~I_NEW & ~I_CREATING;
999 	smp_mb();
1000 	wake_up_bit(&inode->i_state, __I_NEW);
1001 	spin_unlock(&inode->i_lock);
1002 }
1003 EXPORT_SYMBOL(unlock_new_inode);
1004 
discard_new_inode(struct inode * inode)1005 void discard_new_inode(struct inode *inode)
1006 {
1007 	lockdep_annotate_inode_mutex_key(inode);
1008 	spin_lock(&inode->i_lock);
1009 	WARN_ON(!(inode->i_state & I_NEW));
1010 	inode->i_state &= ~I_NEW;
1011 	smp_mb();
1012 	wake_up_bit(&inode->i_state, __I_NEW);
1013 	spin_unlock(&inode->i_lock);
1014 	iput(inode);
1015 }
1016 EXPORT_SYMBOL(discard_new_inode);
1017 
1018 /**
1019  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1020  *
1021  * Lock any non-NULL argument that is not a directory.
1022  * Zero, one or two objects may be locked by this function.
1023  *
1024  * @inode1: first inode to lock
1025  * @inode2: second inode to lock
1026  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1027 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1028 {
1029 	if (inode1 > inode2)
1030 		swap(inode1, inode2);
1031 
1032 	if (inode1 && !S_ISDIR(inode1->i_mode))
1033 		inode_lock(inode1);
1034 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1035 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1036 }
1037 EXPORT_SYMBOL(lock_two_nondirectories);
1038 
1039 /**
1040  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1041  * @inode1: first inode to unlock
1042  * @inode2: second inode to unlock
1043  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1044 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1045 {
1046 	if (inode1 && !S_ISDIR(inode1->i_mode))
1047 		inode_unlock(inode1);
1048 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1049 		inode_unlock(inode2);
1050 }
1051 EXPORT_SYMBOL(unlock_two_nondirectories);
1052 
1053 /**
1054  * inode_insert5 - obtain an inode from a mounted file system
1055  * @inode:	pre-allocated inode to use for insert to cache
1056  * @hashval:	hash value (usually inode number) to get
1057  * @test:	callback used for comparisons between inodes
1058  * @set:	callback used to initialize a new struct inode
1059  * @data:	opaque data pointer to pass to @test and @set
1060  *
1061  * Search for the inode specified by @hashval and @data in the inode cache,
1062  * and if present it is return it with an increased reference count. This is
1063  * a variant of iget5_locked() for callers that don't want to fail on memory
1064  * allocation of inode.
1065  *
1066  * If the inode is not in cache, insert the pre-allocated inode to cache and
1067  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1068  * to fill it in before unlocking it via unlock_new_inode().
1069  *
1070  * Note both @test and @set are called with the inode_hash_lock held, so can't
1071  * sleep.
1072  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1073 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1074 			    int (*test)(struct inode *, void *),
1075 			    int (*set)(struct inode *, void *), void *data)
1076 {
1077 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1078 	struct inode *old;
1079 	bool creating = inode->i_state & I_CREATING;
1080 
1081 again:
1082 	spin_lock(&inode_hash_lock);
1083 	old = find_inode(inode->i_sb, head, test, data);
1084 	if (unlikely(old)) {
1085 		/*
1086 		 * Uhhuh, somebody else created the same inode under us.
1087 		 * Use the old inode instead of the preallocated one.
1088 		 */
1089 		spin_unlock(&inode_hash_lock);
1090 		if (IS_ERR(old))
1091 			return NULL;
1092 		wait_on_inode(old);
1093 		if (unlikely(inode_unhashed(old))) {
1094 			iput(old);
1095 			goto again;
1096 		}
1097 		return old;
1098 	}
1099 
1100 	if (set && unlikely(set(inode, data))) {
1101 		inode = NULL;
1102 		goto unlock;
1103 	}
1104 
1105 	/*
1106 	 * Return the locked inode with I_NEW set, the
1107 	 * caller is responsible for filling in the contents
1108 	 */
1109 	spin_lock(&inode->i_lock);
1110 	inode->i_state |= I_NEW;
1111 	hlist_add_head_rcu(&inode->i_hash, head);
1112 	spin_unlock(&inode->i_lock);
1113 	if (!creating)
1114 		inode_sb_list_add(inode);
1115 unlock:
1116 	spin_unlock(&inode_hash_lock);
1117 
1118 	return inode;
1119 }
1120 EXPORT_SYMBOL(inode_insert5);
1121 
1122 /**
1123  * iget5_locked - obtain an inode from a mounted file system
1124  * @sb:		super block of file system
1125  * @hashval:	hash value (usually inode number) to get
1126  * @test:	callback used for comparisons between inodes
1127  * @set:	callback used to initialize a new struct inode
1128  * @data:	opaque data pointer to pass to @test and @set
1129  *
1130  * Search for the inode specified by @hashval and @data in the inode cache,
1131  * and if present it is return it with an increased reference count. This is
1132  * a generalized version of iget_locked() for file systems where the inode
1133  * number is not sufficient for unique identification of an inode.
1134  *
1135  * If the inode is not in cache, allocate a new inode and return it locked,
1136  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1137  * before unlocking it via unlock_new_inode().
1138  *
1139  * Note both @test and @set are called with the inode_hash_lock held, so can't
1140  * sleep.
1141  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1142 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1143 		int (*test)(struct inode *, void *),
1144 		int (*set)(struct inode *, void *), void *data)
1145 {
1146 	struct inode *inode = ilookup5(sb, hashval, test, data);
1147 
1148 	if (!inode) {
1149 		struct inode *new = alloc_inode(sb);
1150 
1151 		if (new) {
1152 			new->i_state = 0;
1153 			inode = inode_insert5(new, hashval, test, set, data);
1154 			if (unlikely(inode != new))
1155 				destroy_inode(new);
1156 		}
1157 	}
1158 	return inode;
1159 }
1160 EXPORT_SYMBOL(iget5_locked);
1161 
1162 /**
1163  * iget_locked - obtain an inode from a mounted file system
1164  * @sb:		super block of file system
1165  * @ino:	inode number to get
1166  *
1167  * Search for the inode specified by @ino in the inode cache and if present
1168  * return it with an increased reference count. This is for file systems
1169  * where the inode number is sufficient for unique identification of an inode.
1170  *
1171  * If the inode is not in cache, allocate a new inode and return it locked,
1172  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1173  * before unlocking it via unlock_new_inode().
1174  */
iget_locked(struct super_block * sb,unsigned long ino)1175 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1176 {
1177 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1178 	struct inode *inode;
1179 again:
1180 	spin_lock(&inode_hash_lock);
1181 	inode = find_inode_fast(sb, head, ino);
1182 	spin_unlock(&inode_hash_lock);
1183 	if (inode) {
1184 		if (IS_ERR(inode))
1185 			return NULL;
1186 		wait_on_inode(inode);
1187 		if (unlikely(inode_unhashed(inode))) {
1188 			iput(inode);
1189 			goto again;
1190 		}
1191 		return inode;
1192 	}
1193 
1194 	inode = alloc_inode(sb);
1195 	if (inode) {
1196 		struct inode *old;
1197 
1198 		spin_lock(&inode_hash_lock);
1199 		/* We released the lock, so.. */
1200 		old = find_inode_fast(sb, head, ino);
1201 		if (!old) {
1202 			inode->i_ino = ino;
1203 			spin_lock(&inode->i_lock);
1204 			inode->i_state = I_NEW;
1205 			hlist_add_head_rcu(&inode->i_hash, head);
1206 			spin_unlock(&inode->i_lock);
1207 			inode_sb_list_add(inode);
1208 			spin_unlock(&inode_hash_lock);
1209 
1210 			/* Return the locked inode with I_NEW set, the
1211 			 * caller is responsible for filling in the contents
1212 			 */
1213 			return inode;
1214 		}
1215 
1216 		/*
1217 		 * Uhhuh, somebody else created the same inode under
1218 		 * us. Use the old inode instead of the one we just
1219 		 * allocated.
1220 		 */
1221 		spin_unlock(&inode_hash_lock);
1222 		destroy_inode(inode);
1223 		if (IS_ERR(old))
1224 			return NULL;
1225 		inode = old;
1226 		wait_on_inode(inode);
1227 		if (unlikely(inode_unhashed(inode))) {
1228 			iput(inode);
1229 			goto again;
1230 		}
1231 	}
1232 	return inode;
1233 }
1234 EXPORT_SYMBOL(iget_locked);
1235 
1236 /*
1237  * search the inode cache for a matching inode number.
1238  * If we find one, then the inode number we are trying to
1239  * allocate is not unique and so we should not use it.
1240  *
1241  * Returns 1 if the inode number is unique, 0 if it is not.
1242  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1243 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1244 {
1245 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1246 	struct inode *inode;
1247 
1248 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1249 		if (inode->i_ino == ino && inode->i_sb == sb)
1250 			return 0;
1251 	}
1252 	return 1;
1253 }
1254 
1255 /**
1256  *	iunique - get a unique inode number
1257  *	@sb: superblock
1258  *	@max_reserved: highest reserved inode number
1259  *
1260  *	Obtain an inode number that is unique on the system for a given
1261  *	superblock. This is used by file systems that have no natural
1262  *	permanent inode numbering system. An inode number is returned that
1263  *	is higher than the reserved limit but unique.
1264  *
1265  *	BUGS:
1266  *	With a large number of inodes live on the file system this function
1267  *	currently becomes quite slow.
1268  */
iunique(struct super_block * sb,ino_t max_reserved)1269 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1270 {
1271 	/*
1272 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1273 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1274 	 * here to attempt to avoid that.
1275 	 */
1276 	static DEFINE_SPINLOCK(iunique_lock);
1277 	static unsigned int counter;
1278 	ino_t res;
1279 
1280 	rcu_read_lock();
1281 	spin_lock(&iunique_lock);
1282 	do {
1283 		if (counter <= max_reserved)
1284 			counter = max_reserved + 1;
1285 		res = counter++;
1286 	} while (!test_inode_iunique(sb, res));
1287 	spin_unlock(&iunique_lock);
1288 	rcu_read_unlock();
1289 
1290 	return res;
1291 }
1292 EXPORT_SYMBOL(iunique);
1293 
igrab(struct inode * inode)1294 struct inode *igrab(struct inode *inode)
1295 {
1296 	spin_lock(&inode->i_lock);
1297 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1298 		__iget(inode);
1299 		spin_unlock(&inode->i_lock);
1300 	} else {
1301 		spin_unlock(&inode->i_lock);
1302 		/*
1303 		 * Handle the case where s_op->clear_inode is not been
1304 		 * called yet, and somebody is calling igrab
1305 		 * while the inode is getting freed.
1306 		 */
1307 		inode = NULL;
1308 	}
1309 	return inode;
1310 }
1311 EXPORT_SYMBOL(igrab);
1312 
1313 /**
1314  * ilookup5_nowait - search for an inode in the inode cache
1315  * @sb:		super block of file system to search
1316  * @hashval:	hash value (usually inode number) to search for
1317  * @test:	callback used for comparisons between inodes
1318  * @data:	opaque data pointer to pass to @test
1319  *
1320  * Search for the inode specified by @hashval and @data in the inode cache.
1321  * If the inode is in the cache, the inode is returned with an incremented
1322  * reference count.
1323  *
1324  * Note: I_NEW is not waited upon so you have to be very careful what you do
1325  * with the returned inode.  You probably should be using ilookup5() instead.
1326  *
1327  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1328  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1329 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1330 		int (*test)(struct inode *, void *), void *data)
1331 {
1332 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1333 	struct inode *inode;
1334 
1335 	spin_lock(&inode_hash_lock);
1336 	inode = find_inode(sb, head, test, data);
1337 	spin_unlock(&inode_hash_lock);
1338 
1339 	return IS_ERR(inode) ? NULL : inode;
1340 }
1341 EXPORT_SYMBOL(ilookup5_nowait);
1342 
1343 /**
1344  * ilookup5 - search for an inode in the inode cache
1345  * @sb:		super block of file system to search
1346  * @hashval:	hash value (usually inode number) to search for
1347  * @test:	callback used for comparisons between inodes
1348  * @data:	opaque data pointer to pass to @test
1349  *
1350  * Search for the inode specified by @hashval and @data in the inode cache,
1351  * and if the inode is in the cache, return the inode with an incremented
1352  * reference count.  Waits on I_NEW before returning the inode.
1353  * returned with an incremented reference count.
1354  *
1355  * This is a generalized version of ilookup() for file systems where the
1356  * inode number is not sufficient for unique identification of an inode.
1357  *
1358  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1359  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1360 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1361 		int (*test)(struct inode *, void *), void *data)
1362 {
1363 	struct inode *inode;
1364 again:
1365 	inode = ilookup5_nowait(sb, hashval, test, data);
1366 	if (inode) {
1367 		wait_on_inode(inode);
1368 		if (unlikely(inode_unhashed(inode))) {
1369 			iput(inode);
1370 			goto again;
1371 		}
1372 	}
1373 	return inode;
1374 }
1375 EXPORT_SYMBOL(ilookup5);
1376 
1377 /**
1378  * ilookup - search for an inode in the inode cache
1379  * @sb:		super block of file system to search
1380  * @ino:	inode number to search for
1381  *
1382  * Search for the inode @ino in the inode cache, and if the inode is in the
1383  * cache, the inode is returned with an incremented reference count.
1384  */
ilookup(struct super_block * sb,unsigned long ino)1385 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1386 {
1387 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1388 	struct inode *inode;
1389 again:
1390 	spin_lock(&inode_hash_lock);
1391 	inode = find_inode_fast(sb, head, ino);
1392 	spin_unlock(&inode_hash_lock);
1393 
1394 	if (inode) {
1395 		if (IS_ERR(inode))
1396 			return NULL;
1397 		wait_on_inode(inode);
1398 		if (unlikely(inode_unhashed(inode))) {
1399 			iput(inode);
1400 			goto again;
1401 		}
1402 	}
1403 	return inode;
1404 }
1405 EXPORT_SYMBOL(ilookup);
1406 
1407 /**
1408  * find_inode_nowait - find an inode in the inode cache
1409  * @sb:		super block of file system to search
1410  * @hashval:	hash value (usually inode number) to search for
1411  * @match:	callback used for comparisons between inodes
1412  * @data:	opaque data pointer to pass to @match
1413  *
1414  * Search for the inode specified by @hashval and @data in the inode
1415  * cache, where the helper function @match will return 0 if the inode
1416  * does not match, 1 if the inode does match, and -1 if the search
1417  * should be stopped.  The @match function must be responsible for
1418  * taking the i_lock spin_lock and checking i_state for an inode being
1419  * freed or being initialized, and incrementing the reference count
1420  * before returning 1.  It also must not sleep, since it is called with
1421  * the inode_hash_lock spinlock held.
1422  *
1423  * This is a even more generalized version of ilookup5() when the
1424  * function must never block --- find_inode() can block in
1425  * __wait_on_freeing_inode() --- or when the caller can not increment
1426  * the reference count because the resulting iput() might cause an
1427  * inode eviction.  The tradeoff is that the @match funtion must be
1428  * very carefully implemented.
1429  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1430 struct inode *find_inode_nowait(struct super_block *sb,
1431 				unsigned long hashval,
1432 				int (*match)(struct inode *, unsigned long,
1433 					     void *),
1434 				void *data)
1435 {
1436 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1437 	struct inode *inode, *ret_inode = NULL;
1438 	int mval;
1439 
1440 	spin_lock(&inode_hash_lock);
1441 	hlist_for_each_entry(inode, head, i_hash) {
1442 		if (inode->i_sb != sb)
1443 			continue;
1444 		mval = match(inode, hashval, data);
1445 		if (mval == 0)
1446 			continue;
1447 		if (mval == 1)
1448 			ret_inode = inode;
1449 		goto out;
1450 	}
1451 out:
1452 	spin_unlock(&inode_hash_lock);
1453 	return ret_inode;
1454 }
1455 EXPORT_SYMBOL(find_inode_nowait);
1456 
1457 /**
1458  * find_inode_rcu - find an inode in the inode cache
1459  * @sb:		Super block of file system to search
1460  * @hashval:	Key to hash
1461  * @test:	Function to test match on an inode
1462  * @data:	Data for test function
1463  *
1464  * Search for the inode specified by @hashval and @data in the inode cache,
1465  * where the helper function @test will return 0 if the inode does not match
1466  * and 1 if it does.  The @test function must be responsible for taking the
1467  * i_lock spin_lock and checking i_state for an inode being freed or being
1468  * initialized.
1469  *
1470  * If successful, this will return the inode for which the @test function
1471  * returned 1 and NULL otherwise.
1472  *
1473  * The @test function is not permitted to take a ref on any inode presented.
1474  * It is also not permitted to sleep.
1475  *
1476  * The caller must hold the RCU read lock.
1477  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1478 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1479 			     int (*test)(struct inode *, void *), void *data)
1480 {
1481 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1482 	struct inode *inode;
1483 
1484 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1485 			 "suspicious find_inode_rcu() usage");
1486 
1487 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1488 		if (inode->i_sb == sb &&
1489 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1490 		    test(inode, data))
1491 			return inode;
1492 	}
1493 	return NULL;
1494 }
1495 EXPORT_SYMBOL(find_inode_rcu);
1496 
1497 /**
1498  * find_inode_by_rcu - Find an inode in the inode cache
1499  * @sb:		Super block of file system to search
1500  * @ino:	The inode number to match
1501  *
1502  * Search for the inode specified by @hashval and @data in the inode cache,
1503  * where the helper function @test will return 0 if the inode does not match
1504  * and 1 if it does.  The @test function must be responsible for taking the
1505  * i_lock spin_lock and checking i_state for an inode being freed or being
1506  * initialized.
1507  *
1508  * If successful, this will return the inode for which the @test function
1509  * returned 1 and NULL otherwise.
1510  *
1511  * The @test function is not permitted to take a ref on any inode presented.
1512  * It is also not permitted to sleep.
1513  *
1514  * The caller must hold the RCU read lock.
1515  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1516 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1517 				    unsigned long ino)
1518 {
1519 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1520 	struct inode *inode;
1521 
1522 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1523 			 "suspicious find_inode_by_ino_rcu() usage");
1524 
1525 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1526 		if (inode->i_ino == ino &&
1527 		    inode->i_sb == sb &&
1528 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1529 		    return inode;
1530 	}
1531 	return NULL;
1532 }
1533 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1534 
insert_inode_locked(struct inode * inode)1535 int insert_inode_locked(struct inode *inode)
1536 {
1537 	struct super_block *sb = inode->i_sb;
1538 	ino_t ino = inode->i_ino;
1539 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1540 
1541 	while (1) {
1542 		struct inode *old = NULL;
1543 		spin_lock(&inode_hash_lock);
1544 		hlist_for_each_entry(old, head, i_hash) {
1545 			if (old->i_ino != ino)
1546 				continue;
1547 			if (old->i_sb != sb)
1548 				continue;
1549 			spin_lock(&old->i_lock);
1550 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1551 				spin_unlock(&old->i_lock);
1552 				continue;
1553 			}
1554 			break;
1555 		}
1556 		if (likely(!old)) {
1557 			spin_lock(&inode->i_lock);
1558 			inode->i_state |= I_NEW | I_CREATING;
1559 			hlist_add_head_rcu(&inode->i_hash, head);
1560 			spin_unlock(&inode->i_lock);
1561 			spin_unlock(&inode_hash_lock);
1562 			return 0;
1563 		}
1564 		if (unlikely(old->i_state & I_CREATING)) {
1565 			spin_unlock(&old->i_lock);
1566 			spin_unlock(&inode_hash_lock);
1567 			return -EBUSY;
1568 		}
1569 		__iget(old);
1570 		spin_unlock(&old->i_lock);
1571 		spin_unlock(&inode_hash_lock);
1572 		wait_on_inode(old);
1573 		if (unlikely(!inode_unhashed(old))) {
1574 			iput(old);
1575 			return -EBUSY;
1576 		}
1577 		iput(old);
1578 	}
1579 }
1580 EXPORT_SYMBOL(insert_inode_locked);
1581 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1582 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1583 		int (*test)(struct inode *, void *), void *data)
1584 {
1585 	struct inode *old;
1586 
1587 	inode->i_state |= I_CREATING;
1588 	old = inode_insert5(inode, hashval, test, NULL, data);
1589 
1590 	if (old != inode) {
1591 		iput(old);
1592 		return -EBUSY;
1593 	}
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(insert_inode_locked4);
1597 
1598 
generic_delete_inode(struct inode * inode)1599 int generic_delete_inode(struct inode *inode)
1600 {
1601 	return 1;
1602 }
1603 EXPORT_SYMBOL(generic_delete_inode);
1604 
1605 /*
1606  * Called when we're dropping the last reference
1607  * to an inode.
1608  *
1609  * Call the FS "drop_inode()" function, defaulting to
1610  * the legacy UNIX filesystem behaviour.  If it tells
1611  * us to evict inode, do so.  Otherwise, retain inode
1612  * in cache if fs is alive, sync and evict if fs is
1613  * shutting down.
1614  */
iput_final(struct inode * inode)1615 static void iput_final(struct inode *inode)
1616 {
1617 	struct super_block *sb = inode->i_sb;
1618 	const struct super_operations *op = inode->i_sb->s_op;
1619 	unsigned long state;
1620 	int drop;
1621 
1622 	WARN_ON(inode->i_state & I_NEW);
1623 
1624 	if (op->drop_inode)
1625 		drop = op->drop_inode(inode);
1626 	else
1627 		drop = generic_drop_inode(inode);
1628 
1629 	if (!drop &&
1630 	    !(inode->i_state & I_DONTCACHE) &&
1631 	    (sb->s_flags & SB_ACTIVE)) {
1632 		inode_add_lru(inode);
1633 		spin_unlock(&inode->i_lock);
1634 		return;
1635 	}
1636 
1637 	state = inode->i_state;
1638 	if (!drop) {
1639 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1640 		spin_unlock(&inode->i_lock);
1641 
1642 		write_inode_now(inode, 1);
1643 
1644 		spin_lock(&inode->i_lock);
1645 		state = inode->i_state;
1646 		WARN_ON(state & I_NEW);
1647 		state &= ~I_WILL_FREE;
1648 	}
1649 
1650 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1651 	if (!list_empty(&inode->i_lru))
1652 		inode_lru_list_del(inode);
1653 	spin_unlock(&inode->i_lock);
1654 
1655 	evict(inode);
1656 }
1657 
1658 /**
1659  *	iput	- put an inode
1660  *	@inode: inode to put
1661  *
1662  *	Puts an inode, dropping its usage count. If the inode use count hits
1663  *	zero, the inode is then freed and may also be destroyed.
1664  *
1665  *	Consequently, iput() can sleep.
1666  */
iput(struct inode * inode)1667 void iput(struct inode *inode)
1668 {
1669 	if (!inode)
1670 		return;
1671 	BUG_ON(inode->i_state & I_CLEAR);
1672 retry:
1673 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1674 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1675 			atomic_inc(&inode->i_count);
1676 			spin_unlock(&inode->i_lock);
1677 			trace_writeback_lazytime_iput(inode);
1678 			mark_inode_dirty_sync(inode);
1679 			goto retry;
1680 		}
1681 		iput_final(inode);
1682 	}
1683 }
1684 EXPORT_SYMBOL(iput);
1685 
1686 #ifdef CONFIG_BLOCK
1687 /**
1688  *	bmap	- find a block number in a file
1689  *	@inode:  inode owning the block number being requested
1690  *	@block: pointer containing the block to find
1691  *
1692  *	Replaces the value in ``*block`` with the block number on the device holding
1693  *	corresponding to the requested block number in the file.
1694  *	That is, asked for block 4 of inode 1 the function will replace the
1695  *	4 in ``*block``, with disk block relative to the disk start that holds that
1696  *	block of the file.
1697  *
1698  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1699  *	hole, returns 0 and ``*block`` is also set to 0.
1700  */
bmap(struct inode * inode,sector_t * block)1701 int bmap(struct inode *inode, sector_t *block)
1702 {
1703 	if (!inode->i_mapping->a_ops->bmap)
1704 		return -EINVAL;
1705 
1706 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(bmap);
1710 #endif
1711 
1712 /*
1713  * With relative atime, only update atime if the previous atime is
1714  * earlier than either the ctime or mtime or if at least a day has
1715  * passed since the last atime update.
1716  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1717 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1718 			     struct timespec64 now)
1719 {
1720 
1721 	if (!(mnt->mnt_flags & MNT_RELATIME))
1722 		return 1;
1723 	/*
1724 	 * Is mtime younger than atime? If yes, update atime:
1725 	 */
1726 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1727 		return 1;
1728 	/*
1729 	 * Is ctime younger than atime? If yes, update atime:
1730 	 */
1731 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1732 		return 1;
1733 
1734 	/*
1735 	 * Is the previous atime value older than a day? If yes,
1736 	 * update atime:
1737 	 */
1738 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1739 		return 1;
1740 	/*
1741 	 * Good, we can skip the atime update:
1742 	 */
1743 	return 0;
1744 }
1745 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1746 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1747 {
1748 	int iflags = I_DIRTY_TIME;
1749 	bool dirty = false;
1750 
1751 	if (flags & S_ATIME)
1752 		inode->i_atime = *time;
1753 	if (flags & S_VERSION)
1754 		dirty = inode_maybe_inc_iversion(inode, false);
1755 	if (flags & S_CTIME)
1756 		inode->i_ctime = *time;
1757 	if (flags & S_MTIME)
1758 		inode->i_mtime = *time;
1759 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1760 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1761 		dirty = true;
1762 
1763 	if (dirty)
1764 		iflags |= I_DIRTY_SYNC;
1765 	__mark_inode_dirty(inode, iflags);
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(generic_update_time);
1769 
1770 /*
1771  * This does the actual work of updating an inodes time or version.  Must have
1772  * had called mnt_want_write() before calling this.
1773  */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1774 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1775 {
1776 	if (inode->i_op->update_time)
1777 		return inode->i_op->update_time(inode, time, flags);
1778 	return generic_update_time(inode, time, flags);
1779 }
1780 EXPORT_SYMBOL(inode_update_time);
1781 
1782 /**
1783  *	touch_atime	-	update the access time
1784  *	@path: the &struct path to update
1785  *	@inode: inode to update
1786  *
1787  *	Update the accessed time on an inode and mark it for writeback.
1788  *	This function automatically handles read only file systems and media,
1789  *	as well as the "noatime" flag and inode specific "noatime" markers.
1790  */
atime_needs_update(const struct path * path,struct inode * inode)1791 bool atime_needs_update(const struct path *path, struct inode *inode)
1792 {
1793 	struct vfsmount *mnt = path->mnt;
1794 	struct timespec64 now;
1795 
1796 	if (inode->i_flags & S_NOATIME)
1797 		return false;
1798 
1799 	/* Atime updates will likely cause i_uid and i_gid to be written
1800 	 * back improprely if their true value is unknown to the vfs.
1801 	 */
1802 	if (HAS_UNMAPPED_ID(inode))
1803 		return false;
1804 
1805 	if (IS_NOATIME(inode))
1806 		return false;
1807 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1808 		return false;
1809 
1810 	if (mnt->mnt_flags & MNT_NOATIME)
1811 		return false;
1812 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1813 		return false;
1814 
1815 	now = current_time(inode);
1816 
1817 	if (!relatime_need_update(mnt, inode, now))
1818 		return false;
1819 
1820 	if (timespec64_equal(&inode->i_atime, &now))
1821 		return false;
1822 
1823 	return true;
1824 }
1825 
touch_atime(const struct path * path)1826 void touch_atime(const struct path *path)
1827 {
1828 	struct vfsmount *mnt = path->mnt;
1829 	struct inode *inode = d_inode(path->dentry);
1830 	struct timespec64 now;
1831 
1832 	if (!atime_needs_update(path, inode))
1833 		return;
1834 
1835 	if (!sb_start_write_trylock(inode->i_sb))
1836 		return;
1837 
1838 	if (__mnt_want_write(mnt) != 0)
1839 		goto skip_update;
1840 	/*
1841 	 * File systems can error out when updating inodes if they need to
1842 	 * allocate new space to modify an inode (such is the case for
1843 	 * Btrfs), but since we touch atime while walking down the path we
1844 	 * really don't care if we failed to update the atime of the file,
1845 	 * so just ignore the return value.
1846 	 * We may also fail on filesystems that have the ability to make parts
1847 	 * of the fs read only, e.g. subvolumes in Btrfs.
1848 	 */
1849 	now = current_time(inode);
1850 	inode_update_time(inode, &now, S_ATIME);
1851 	__mnt_drop_write(mnt);
1852 skip_update:
1853 	sb_end_write(inode->i_sb);
1854 }
1855 EXPORT_SYMBOL(touch_atime);
1856 
1857 /*
1858  * The logic we want is
1859  *
1860  *	if suid or (sgid and xgrp)
1861  *		remove privs
1862  */
should_remove_suid(struct dentry * dentry)1863 int should_remove_suid(struct dentry *dentry)
1864 {
1865 	umode_t mode = d_inode(dentry)->i_mode;
1866 	int kill = 0;
1867 
1868 	/* suid always must be killed */
1869 	if (unlikely(mode & S_ISUID))
1870 		kill = ATTR_KILL_SUID;
1871 
1872 	/*
1873 	 * sgid without any exec bits is just a mandatory locking mark; leave
1874 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1875 	 */
1876 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1877 		kill |= ATTR_KILL_SGID;
1878 
1879 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1880 		return kill;
1881 
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL(should_remove_suid);
1885 
1886 /*
1887  * Return mask of changes for notify_change() that need to be done as a
1888  * response to write or truncate. Return 0 if nothing has to be changed.
1889  * Negative value on error (change should be denied).
1890  */
dentry_needs_remove_privs(struct dentry * dentry)1891 int dentry_needs_remove_privs(struct dentry *dentry)
1892 {
1893 	struct inode *inode = d_inode(dentry);
1894 	int mask = 0;
1895 	int ret;
1896 
1897 	if (IS_NOSEC(inode))
1898 		return 0;
1899 
1900 	mask = should_remove_suid(dentry);
1901 	ret = security_inode_need_killpriv(dentry);
1902 	if (ret < 0)
1903 		return ret;
1904 	if (ret)
1905 		mask |= ATTR_KILL_PRIV;
1906 	return mask;
1907 }
1908 
__remove_privs(struct dentry * dentry,int kill)1909 static int __remove_privs(struct dentry *dentry, int kill)
1910 {
1911 	struct iattr newattrs;
1912 
1913 	newattrs.ia_valid = ATTR_FORCE | kill;
1914 	/*
1915 	 * Note we call this on write, so notify_change will not
1916 	 * encounter any conflicting delegations:
1917 	 */
1918 	return notify_change(dentry, &newattrs, NULL);
1919 }
1920 
1921 /*
1922  * Remove special file priviledges (suid, capabilities) when file is written
1923  * to or truncated.
1924  */
file_remove_privs(struct file * file)1925 int file_remove_privs(struct file *file)
1926 {
1927 	struct dentry *dentry = file_dentry(file);
1928 	struct inode *inode = file_inode(file);
1929 	int kill;
1930 	int error = 0;
1931 
1932 	/*
1933 	 * Fast path for nothing security related.
1934 	 * As well for non-regular files, e.g. blkdev inodes.
1935 	 * For example, blkdev_write_iter() might get here
1936 	 * trying to remove privs which it is not allowed to.
1937 	 */
1938 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1939 		return 0;
1940 
1941 	kill = dentry_needs_remove_privs(dentry);
1942 	if (kill < 0)
1943 		return kill;
1944 	if (kill)
1945 		error = __remove_privs(dentry, kill);
1946 	if (!error)
1947 		inode_has_no_xattr(inode);
1948 
1949 	return error;
1950 }
1951 EXPORT_SYMBOL(file_remove_privs);
1952 
1953 /**
1954  *	file_update_time	-	update mtime and ctime time
1955  *	@file: file accessed
1956  *
1957  *	Update the mtime and ctime members of an inode and mark the inode
1958  *	for writeback.  Note that this function is meant exclusively for
1959  *	usage in the file write path of filesystems, and filesystems may
1960  *	choose to explicitly ignore update via this function with the
1961  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1962  *	timestamps are handled by the server.  This can return an error for
1963  *	file systems who need to allocate space in order to update an inode.
1964  */
1965 
file_update_time(struct file * file)1966 int file_update_time(struct file *file)
1967 {
1968 	struct inode *inode = file_inode(file);
1969 	struct timespec64 now;
1970 	int sync_it = 0;
1971 	int ret;
1972 
1973 	/* First try to exhaust all avenues to not sync */
1974 	if (IS_NOCMTIME(inode))
1975 		return 0;
1976 
1977 	now = current_time(inode);
1978 	if (!timespec64_equal(&inode->i_mtime, &now))
1979 		sync_it = S_MTIME;
1980 
1981 	if (!timespec64_equal(&inode->i_ctime, &now))
1982 		sync_it |= S_CTIME;
1983 
1984 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1985 		sync_it |= S_VERSION;
1986 
1987 	if (!sync_it)
1988 		return 0;
1989 
1990 	/* Finally allowed to write? Takes lock. */
1991 	if (__mnt_want_write_file(file))
1992 		return 0;
1993 
1994 	ret = inode_update_time(inode, &now, sync_it);
1995 	__mnt_drop_write_file(file);
1996 
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL(file_update_time);
2000 
2001 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2002 int file_modified(struct file *file)
2003 {
2004 	int err;
2005 
2006 	/*
2007 	 * Clear the security bits if the process is not being run by root.
2008 	 * This keeps people from modifying setuid and setgid binaries.
2009 	 */
2010 	err = file_remove_privs(file);
2011 	if (err)
2012 		return err;
2013 
2014 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2015 		return 0;
2016 
2017 	return file_update_time(file);
2018 }
2019 EXPORT_SYMBOL(file_modified);
2020 
inode_needs_sync(struct inode * inode)2021 int inode_needs_sync(struct inode *inode)
2022 {
2023 	if (IS_SYNC(inode))
2024 		return 1;
2025 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2026 		return 1;
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL(inode_needs_sync);
2030 
2031 /*
2032  * If we try to find an inode in the inode hash while it is being
2033  * deleted, we have to wait until the filesystem completes its
2034  * deletion before reporting that it isn't found.  This function waits
2035  * until the deletion _might_ have completed.  Callers are responsible
2036  * to recheck inode state.
2037  *
2038  * It doesn't matter if I_NEW is not set initially, a call to
2039  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2040  * will DTRT.
2041  */
__wait_on_freeing_inode(struct inode * inode)2042 static void __wait_on_freeing_inode(struct inode *inode)
2043 {
2044 	wait_queue_head_t *wq;
2045 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2046 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2047 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2048 	spin_unlock(&inode->i_lock);
2049 	spin_unlock(&inode_hash_lock);
2050 	schedule();
2051 	finish_wait(wq, &wait.wq_entry);
2052 	spin_lock(&inode_hash_lock);
2053 }
2054 
2055 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2056 static int __init set_ihash_entries(char *str)
2057 {
2058 	if (!str)
2059 		return 0;
2060 	ihash_entries = simple_strtoul(str, &str, 0);
2061 	return 1;
2062 }
2063 __setup("ihash_entries=", set_ihash_entries);
2064 
2065 /*
2066  * Initialize the waitqueues and inode hash table.
2067  */
inode_init_early(void)2068 void __init inode_init_early(void)
2069 {
2070 	/* If hashes are distributed across NUMA nodes, defer
2071 	 * hash allocation until vmalloc space is available.
2072 	 */
2073 	if (hashdist)
2074 		return;
2075 
2076 	inode_hashtable =
2077 		alloc_large_system_hash("Inode-cache",
2078 					sizeof(struct hlist_head),
2079 					ihash_entries,
2080 					14,
2081 					HASH_EARLY | HASH_ZERO,
2082 					&i_hash_shift,
2083 					&i_hash_mask,
2084 					0,
2085 					0);
2086 }
2087 
inode_init(void)2088 void __init inode_init(void)
2089 {
2090 	/* inode slab cache */
2091 	inode_cachep = kmem_cache_create("inode_cache",
2092 					 sizeof(struct inode),
2093 					 0,
2094 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2095 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2096 					 init_once);
2097 
2098 	/* Hash may have been set up in inode_init_early */
2099 	if (!hashdist)
2100 		return;
2101 
2102 	inode_hashtable =
2103 		alloc_large_system_hash("Inode-cache",
2104 					sizeof(struct hlist_head),
2105 					ihash_entries,
2106 					14,
2107 					HASH_ZERO,
2108 					&i_hash_shift,
2109 					&i_hash_mask,
2110 					0,
2111 					0);
2112 }
2113 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2114 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2115 {
2116 	inode->i_mode = mode;
2117 	if (S_ISCHR(mode)) {
2118 		inode->i_fop = &def_chr_fops;
2119 		inode->i_rdev = rdev;
2120 	} else if (S_ISBLK(mode)) {
2121 		inode->i_fop = &def_blk_fops;
2122 		inode->i_rdev = rdev;
2123 	} else if (S_ISFIFO(mode))
2124 		inode->i_fop = &pipefifo_fops;
2125 	else if (S_ISSOCK(mode))
2126 		;	/* leave it no_open_fops */
2127 	else
2128 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2129 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2130 				  inode->i_ino);
2131 }
2132 EXPORT_SYMBOL(init_special_inode);
2133 
2134 /**
2135  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2136  * @inode: New inode
2137  * @dir: Directory inode
2138  * @mode: mode of the new inode
2139  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2140 void inode_init_owner(struct inode *inode, const struct inode *dir,
2141 			umode_t mode)
2142 {
2143 	inode->i_uid = current_fsuid();
2144 	if (dir && dir->i_mode & S_ISGID) {
2145 		inode->i_gid = dir->i_gid;
2146 
2147 		/* Directories are special, and always inherit S_ISGID */
2148 		if (S_ISDIR(mode))
2149 			mode |= S_ISGID;
2150 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2151 			 !in_group_p(inode->i_gid) &&
2152 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2153 			mode &= ~S_ISGID;
2154 	} else
2155 		inode->i_gid = current_fsgid();
2156 	inode->i_mode = mode;
2157 }
2158 EXPORT_SYMBOL(inode_init_owner);
2159 
2160 /**
2161  * inode_owner_or_capable - check current task permissions to inode
2162  * @inode: inode being checked
2163  *
2164  * Return true if current either has CAP_FOWNER in a namespace with the
2165  * inode owner uid mapped, or owns the file.
2166  */
inode_owner_or_capable(const struct inode * inode)2167 bool inode_owner_or_capable(const struct inode *inode)
2168 {
2169 	struct user_namespace *ns;
2170 
2171 	if (uid_eq(current_fsuid(), inode->i_uid))
2172 		return true;
2173 
2174 	ns = current_user_ns();
2175 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2176 		return true;
2177 	return false;
2178 }
2179 EXPORT_SYMBOL(inode_owner_or_capable);
2180 
2181 /*
2182  * Direct i/o helper functions
2183  */
__inode_dio_wait(struct inode * inode)2184 static void __inode_dio_wait(struct inode *inode)
2185 {
2186 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2187 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2188 
2189 	do {
2190 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2191 		if (atomic_read(&inode->i_dio_count))
2192 			schedule();
2193 	} while (atomic_read(&inode->i_dio_count));
2194 	finish_wait(wq, &q.wq_entry);
2195 }
2196 
2197 /**
2198  * inode_dio_wait - wait for outstanding DIO requests to finish
2199  * @inode: inode to wait for
2200  *
2201  * Waits for all pending direct I/O requests to finish so that we can
2202  * proceed with a truncate or equivalent operation.
2203  *
2204  * Must be called under a lock that serializes taking new references
2205  * to i_dio_count, usually by inode->i_mutex.
2206  */
inode_dio_wait(struct inode * inode)2207 void inode_dio_wait(struct inode *inode)
2208 {
2209 	if (atomic_read(&inode->i_dio_count))
2210 		__inode_dio_wait(inode);
2211 }
2212 EXPORT_SYMBOL(inode_dio_wait);
2213 
2214 /*
2215  * inode_set_flags - atomically set some inode flags
2216  *
2217  * Note: the caller should be holding i_mutex, or else be sure that
2218  * they have exclusive access to the inode structure (i.e., while the
2219  * inode is being instantiated).  The reason for the cmpxchg() loop
2220  * --- which wouldn't be necessary if all code paths which modify
2221  * i_flags actually followed this rule, is that there is at least one
2222  * code path which doesn't today so we use cmpxchg() out of an abundance
2223  * of caution.
2224  *
2225  * In the long run, i_mutex is overkill, and we should probably look
2226  * at using the i_lock spinlock to protect i_flags, and then make sure
2227  * it is so documented in include/linux/fs.h and that all code follows
2228  * the locking convention!!
2229  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2230 void inode_set_flags(struct inode *inode, unsigned int flags,
2231 		     unsigned int mask)
2232 {
2233 	WARN_ON_ONCE(flags & ~mask);
2234 	set_mask_bits(&inode->i_flags, mask, flags);
2235 }
2236 EXPORT_SYMBOL(inode_set_flags);
2237 
inode_nohighmem(struct inode * inode)2238 void inode_nohighmem(struct inode *inode)
2239 {
2240 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2241 }
2242 EXPORT_SYMBOL(inode_nohighmem);
2243 
2244 /**
2245  * timestamp_truncate - Truncate timespec to a granularity
2246  * @t: Timespec
2247  * @inode: inode being updated
2248  *
2249  * Truncate a timespec to the granularity supported by the fs
2250  * containing the inode. Always rounds down. gran must
2251  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2252  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2253 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2254 {
2255 	struct super_block *sb = inode->i_sb;
2256 	unsigned int gran = sb->s_time_gran;
2257 
2258 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2259 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2260 		t.tv_nsec = 0;
2261 
2262 	/* Avoid division in the common cases 1 ns and 1 s. */
2263 	if (gran == 1)
2264 		; /* nothing */
2265 	else if (gran == NSEC_PER_SEC)
2266 		t.tv_nsec = 0;
2267 	else if (gran > 1 && gran < NSEC_PER_SEC)
2268 		t.tv_nsec -= t.tv_nsec % gran;
2269 	else
2270 		WARN(1, "invalid file time granularity: %u", gran);
2271 	return t;
2272 }
2273 EXPORT_SYMBOL(timestamp_truncate);
2274 
2275 /**
2276  * current_time - Return FS time
2277  * @inode: inode.
2278  *
2279  * Return the current time truncated to the time granularity supported by
2280  * the fs.
2281  *
2282  * Note that inode and inode->sb cannot be NULL.
2283  * Otherwise, the function warns and returns time without truncation.
2284  */
current_time(struct inode * inode)2285 struct timespec64 current_time(struct inode *inode)
2286 {
2287 	struct timespec64 now;
2288 
2289 	ktime_get_coarse_real_ts64(&now);
2290 
2291 	if (unlikely(!inode->i_sb)) {
2292 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2293 		return now;
2294 	}
2295 
2296 	return timestamp_truncate(now, inode);
2297 }
2298 EXPORT_SYMBOL(current_time);
2299 
2300 /*
2301  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2302  * configurations.
2303  *
2304  * Note: the caller should be holding i_mutex, or else be sure that they have
2305  * exclusive access to the inode structure.
2306  */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2307 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2308 			     unsigned int flags)
2309 {
2310 	/*
2311 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2312 	 * the relevant capability.
2313 	 *
2314 	 * This test looks nicer. Thanks to Pauline Middelink
2315 	 */
2316 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2317 	    !capable(CAP_LINUX_IMMUTABLE))
2318 		return -EPERM;
2319 
2320 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2321 }
2322 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2323 
2324 /*
2325  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2326  * configurations.
2327  *
2328  * Note: the caller should be holding i_mutex, or else be sure that they have
2329  * exclusive access to the inode structure.
2330  */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2331 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2332 			     struct fsxattr *fa)
2333 {
2334 	/*
2335 	 * Can't modify an immutable/append-only file unless we have
2336 	 * appropriate permission.
2337 	 */
2338 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2339 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2340 	    !capable(CAP_LINUX_IMMUTABLE))
2341 		return -EPERM;
2342 
2343 	/*
2344 	 * Project Quota ID state is only allowed to change from within the init
2345 	 * namespace. Enforce that restriction only if we are trying to change
2346 	 * the quota ID state. Everything else is allowed in user namespaces.
2347 	 */
2348 	if (current_user_ns() != &init_user_ns) {
2349 		if (old_fa->fsx_projid != fa->fsx_projid)
2350 			return -EINVAL;
2351 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2352 				FS_XFLAG_PROJINHERIT)
2353 			return -EINVAL;
2354 	}
2355 
2356 	/* Check extent size hints. */
2357 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2358 		return -EINVAL;
2359 
2360 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2361 			!S_ISDIR(inode->i_mode))
2362 		return -EINVAL;
2363 
2364 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2365 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2366 		return -EINVAL;
2367 
2368 	/*
2369 	 * It is only valid to set the DAX flag on regular files and
2370 	 * directories on filesystems.
2371 	 */
2372 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2373 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2374 		return -EINVAL;
2375 
2376 	/* Extent size hints of zero turn off the flags. */
2377 	if (fa->fsx_extsize == 0)
2378 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2379 	if (fa->fsx_cowextsize == 0)
2380 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2385