• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
getname(const char __user * filename)207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
getname_kernel(const char * filename)213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
putname(struct filename * name)248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
check_acl(struct inode * inode,int mask)262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic UNIX permission checking.
292  *
293  * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294  * for RCU walking.
295  */
acl_permission_check(struct inode * inode,int mask)296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	/* Are we the owner? If so, ACL's don't matter */
301 	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 		mask &= 7;
303 		mode >>= 6;
304 		return (mask & ~mode) ? -EACCES : 0;
305 	}
306 
307 	/* Do we have ACL's? */
308 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 		int error = check_acl(inode, mask);
310 		if (error != -EAGAIN)
311 			return error;
312 	}
313 
314 	/* Only RWX matters for group/other mode bits */
315 	mask &= 7;
316 
317 	/*
318 	 * Are the group permissions different from
319 	 * the other permissions in the bits we care
320 	 * about? Need to check group ownership if so.
321 	 */
322 	if (mask & (mode ^ (mode >> 3))) {
323 		if (in_group_p(inode->i_gid))
324 			mode >>= 3;
325 	}
326 
327 	/* Bits in 'mode' clear that we require? */
328 	return (mask & ~mode) ? -EACCES : 0;
329 }
330 
331 /**
332  * generic_permission -  check for access rights on a Posix-like filesystem
333  * @inode:	inode to check access rights for
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335  *		%MAY_NOT_BLOCK ...)
336  *
337  * Used to check for read/write/execute permissions on a file.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343  * request cannot be satisfied (eg. requires blocking or too much complexity).
344  * It would then be called again in ref-walk mode.
345  */
generic_permission(struct inode * inode,int mask)346 int generic_permission(struct inode *inode, int mask)
347 {
348 	int ret;
349 
350 	/*
351 	 * Do the basic permission checks.
352 	 */
353 	ret = acl_permission_check(inode, mask);
354 	if (ret != -EACCES)
355 		return ret;
356 
357 	if (S_ISDIR(inode->i_mode)) {
358 		/* DACs are overridable for directories */
359 		if (!(mask & MAY_WRITE))
360 			if (capable_wrt_inode_uidgid(inode,
361 						     CAP_DAC_READ_SEARCH))
362 				return 0;
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 			return 0;
365 		return -EACCES;
366 	}
367 
368 	/*
369 	 * Searching includes executable on directories, else just read.
370 	 */
371 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 	if (mask == MAY_READ)
373 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 			return 0;
375 	/*
376 	 * Read/write DACs are always overridable.
377 	 * Executable DACs are overridable when there is
378 	 * at least one exec bit set.
379 	 */
380 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 			return 0;
383 
384 	return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387 
388 /*
389  * We _really_ want to just do "generic_permission()" without
390  * even looking at the inode->i_op values. So we keep a cache
391  * flag in inode->i_opflags, that says "this has not special
392  * permission function, use the fast case".
393  */
do_inode_permission(struct inode * inode,int mask)394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 		if (likely(inode->i_op->permission))
398 			return inode->i_op->permission(inode, mask);
399 
400 		/* This gets set once for the inode lifetime */
401 		spin_lock(&inode->i_lock);
402 		inode->i_opflags |= IOP_FASTPERM;
403 		spin_unlock(&inode->i_lock);
404 	}
405 	return generic_permission(inode, mask);
406 }
407 
408 /**
409  * sb_permission - Check superblock-level permissions
410  * @sb: Superblock of inode to check permission on
411  * @inode: Inode to check permission on
412  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413  *
414  * Separate out file-system wide checks from inode-specific permission checks.
415  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 	if (unlikely(mask & MAY_WRITE)) {
419 		umode_t mode = inode->i_mode;
420 
421 		/* Nobody gets write access to a read-only fs. */
422 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 			return -EROFS;
424 	}
425 	return 0;
426 }
427 
428 /**
429  * inode_permission - Check for access rights to a given inode
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434  * this, letting us set arbitrary permissions for filesystem access without
435  * changing the "normal" UIDs which are used for other things.
436  *
437  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438  */
inode_permission(struct inode * inode,int mask)439 int inode_permission(struct inode *inode, int mask)
440 {
441 	int retval;
442 
443 	retval = sb_permission(inode->i_sb, inode, mask);
444 	if (retval)
445 		return retval;
446 
447 	if (unlikely(mask & MAY_WRITE)) {
448 		/*
449 		 * Nobody gets write access to an immutable file.
450 		 */
451 		if (IS_IMMUTABLE(inode))
452 			return -EPERM;
453 
454 		/*
455 		 * Updating mtime will likely cause i_uid and i_gid to be
456 		 * written back improperly if their true value is unknown
457 		 * to the vfs.
458 		 */
459 		if (HAS_UNMAPPED_ID(inode))
460 			return -EACCES;
461 	}
462 
463 	retval = do_inode_permission(inode, mask);
464 	if (retval)
465 		return retval;
466 
467 	retval = devcgroup_inode_permission(inode, mask);
468 	if (retval)
469 		return retval;
470 
471 	return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474 
475 /**
476  * path_get - get a reference to a path
477  * @path: path to get the reference to
478  *
479  * Given a path increment the reference count to the dentry and the vfsmount.
480  */
path_get(const struct path * path)481 void path_get(const struct path *path)
482 {
483 	mntget(path->mnt);
484 	dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487 
488 /**
489  * path_put - put a reference to a path
490  * @path: path to put the reference to
491  *
492  * Given a path decrement the reference count to the dentry and the vfsmount.
493  */
path_put(const struct path * path)494 void path_put(const struct path *path)
495 {
496 	dput(path->dentry);
497 	mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500 
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 	struct path	path;
504 	struct qstr	last;
505 	struct path	root;
506 	struct inode	*inode; /* path.dentry.d_inode */
507 	unsigned int	flags, state;
508 	unsigned	seq, m_seq, r_seq;
509 	int		last_type;
510 	unsigned	depth;
511 	int		total_link_count;
512 	struct saved {
513 		struct path link;
514 		struct delayed_call done;
515 		const char *name;
516 		unsigned seq;
517 	} *stack, internal[EMBEDDED_LEVELS];
518 	struct filename	*name;
519 	struct nameidata *saved;
520 	unsigned	root_seq;
521 	int		dfd;
522 	kuid_t		dir_uid;
523 	umode_t		dir_mode;
524 } __randomize_layout;
525 
526 #define ND_ROOT_PRESET 1
527 #define ND_ROOT_GRABBED 2
528 #define ND_JUMPED 4
529 
set_nameidata(struct nameidata * p,int dfd,struct filename * name)530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532 	struct nameidata *old = current->nameidata;
533 	p->stack = p->internal;
534 	p->dfd = dfd;
535 	p->name = name;
536 	p->total_link_count = old ? old->total_link_count : 0;
537 	p->saved = old;
538 	p->state = 0;
539 	current->nameidata = p;
540 }
541 
restore_nameidata(void)542 static void restore_nameidata(void)
543 {
544 	struct nameidata *now = current->nameidata, *old = now->saved;
545 
546 	current->nameidata = old;
547 	if (old)
548 		old->total_link_count = now->total_link_count;
549 	if (now->stack != now->internal)
550 		kfree(now->stack);
551 }
552 
nd_alloc_stack(struct nameidata * nd)553 static bool nd_alloc_stack(struct nameidata *nd)
554 {
555 	struct saved *p;
556 
557 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
558 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
559 	if (unlikely(!p))
560 		return false;
561 	memcpy(p, nd->internal, sizeof(nd->internal));
562 	nd->stack = p;
563 	return true;
564 }
565 
566 /**
567  * path_connected - Verify that a dentry is below mnt.mnt_root
568  *
569  * Rename can sometimes move a file or directory outside of a bind
570  * mount, path_connected allows those cases to be detected.
571  */
path_connected(struct vfsmount * mnt,struct dentry * dentry)572 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
573 {
574 	struct super_block *sb = mnt->mnt_sb;
575 
576 	/* Bind mounts can have disconnected paths */
577 	if (mnt->mnt_root == sb->s_root)
578 		return true;
579 
580 	return is_subdir(dentry, mnt->mnt_root);
581 }
582 
drop_links(struct nameidata * nd)583 static void drop_links(struct nameidata *nd)
584 {
585 	int i = nd->depth;
586 	while (i--) {
587 		struct saved *last = nd->stack + i;
588 		do_delayed_call(&last->done);
589 		clear_delayed_call(&last->done);
590 	}
591 }
592 
terminate_walk(struct nameidata * nd)593 static void terminate_walk(struct nameidata *nd)
594 {
595 	drop_links(nd);
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		int i;
598 		path_put(&nd->path);
599 		for (i = 0; i < nd->depth; i++)
600 			path_put(&nd->stack[i].link);
601 		if (nd->state & ND_ROOT_GRABBED) {
602 			path_put(&nd->root);
603 			nd->state &= ~ND_ROOT_GRABBED;
604 		}
605 	} else {
606 		nd->flags &= ~LOOKUP_RCU;
607 		rcu_read_unlock();
608 	}
609 	nd->depth = 0;
610 }
611 
612 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)613 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
614 {
615 	int res = __legitimize_mnt(path->mnt, mseq);
616 	if (unlikely(res)) {
617 		if (res > 0)
618 			path->mnt = NULL;
619 		path->dentry = NULL;
620 		return false;
621 	}
622 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
623 		path->dentry = NULL;
624 		return false;
625 	}
626 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
627 }
628 
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)629 static inline bool legitimize_path(struct nameidata *nd,
630 			    struct path *path, unsigned seq)
631 {
632 	return __legitimize_path(path, seq, nd->m_seq);
633 }
634 
legitimize_links(struct nameidata * nd)635 static bool legitimize_links(struct nameidata *nd)
636 {
637 	int i;
638 	for (i = 0; i < nd->depth; i++) {
639 		struct saved *last = nd->stack + i;
640 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
641 			drop_links(nd);
642 			nd->depth = i + 1;
643 			return false;
644 		}
645 	}
646 	return true;
647 }
648 
legitimize_root(struct nameidata * nd)649 static bool legitimize_root(struct nameidata *nd)
650 {
651 	/*
652 	 * For scoped-lookups (where nd->root has been zeroed), we need to
653 	 * restart the whole lookup from scratch -- because set_root() is wrong
654 	 * for these lookups (nd->dfd is the root, not the filesystem root).
655 	 */
656 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
657 		return false;
658 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
659 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
660 		return true;
661 	nd->state |= ND_ROOT_GRABBED;
662 	return legitimize_path(nd, &nd->root, nd->root_seq);
663 }
664 
665 /*
666  * Path walking has 2 modes, rcu-walk and ref-walk (see
667  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
668  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
669  * normal reference counts on dentries and vfsmounts to transition to ref-walk
670  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
671  * got stuck, so ref-walk may continue from there. If this is not successful
672  * (eg. a seqcount has changed), then failure is returned and it's up to caller
673  * to restart the path walk from the beginning in ref-walk mode.
674  */
675 
676 /**
677  * try_to_unlazy - try to switch to ref-walk mode.
678  * @nd: nameidata pathwalk data
679  * Returns: true on success, false on failure
680  *
681  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
682  * for ref-walk mode.
683  * Must be called from rcu-walk context.
684  * Nothing should touch nameidata between try_to_unlazy() failure and
685  * terminate_walk().
686  */
try_to_unlazy(struct nameidata * nd)687 static bool try_to_unlazy(struct nameidata *nd)
688 {
689 	struct dentry *parent = nd->path.dentry;
690 
691 	BUG_ON(!(nd->flags & LOOKUP_RCU));
692 
693 	nd->flags &= ~LOOKUP_RCU;
694 	if (unlikely(!legitimize_links(nd)))
695 		goto out1;
696 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
697 		goto out;
698 	if (unlikely(!legitimize_root(nd)))
699 		goto out;
700 	rcu_read_unlock();
701 	BUG_ON(nd->inode != parent->d_inode);
702 	return true;
703 
704 out1:
705 	nd->path.mnt = NULL;
706 	nd->path.dentry = NULL;
707 out:
708 	rcu_read_unlock();
709 	return false;
710 }
711 
712 /**
713  * unlazy_child - try to switch to ref-walk mode.
714  * @nd: nameidata pathwalk data
715  * @dentry: child of nd->path.dentry
716  * @seq: seq number to check dentry against
717  * Returns: 0 on success, -ECHILD on failure
718  *
719  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
720  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
721  * @nd.  Must be called from rcu-walk context.
722  * Nothing should touch nameidata between unlazy_child() failure and
723  * terminate_walk().
724  */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)725 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
726 {
727 	BUG_ON(!(nd->flags & LOOKUP_RCU));
728 
729 	nd->flags &= ~LOOKUP_RCU;
730 	if (unlikely(!legitimize_links(nd)))
731 		goto out2;
732 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
733 		goto out2;
734 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
735 		goto out1;
736 
737 	/*
738 	 * We need to move both the parent and the dentry from the RCU domain
739 	 * to be properly refcounted. And the sequence number in the dentry
740 	 * validates *both* dentry counters, since we checked the sequence
741 	 * number of the parent after we got the child sequence number. So we
742 	 * know the parent must still be valid if the child sequence number is
743 	 */
744 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
745 		goto out;
746 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
747 		goto out_dput;
748 	/*
749 	 * Sequence counts matched. Now make sure that the root is
750 	 * still valid and get it if required.
751 	 */
752 	if (unlikely(!legitimize_root(nd)))
753 		goto out_dput;
754 	rcu_read_unlock();
755 	return 0;
756 
757 out2:
758 	nd->path.mnt = NULL;
759 out1:
760 	nd->path.dentry = NULL;
761 out:
762 	rcu_read_unlock();
763 	return -ECHILD;
764 out_dput:
765 	rcu_read_unlock();
766 	dput(dentry);
767 	return -ECHILD;
768 }
769 
d_revalidate(struct dentry * dentry,unsigned int flags)770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
773 		return dentry->d_op->d_revalidate(dentry, flags);
774 	else
775 		return 1;
776 }
777 
778 /**
779  * complete_walk - successful completion of path walk
780  * @nd:  pointer nameidata
781  *
782  * If we had been in RCU mode, drop out of it and legitimize nd->path.
783  * Revalidate the final result, unless we'd already done that during
784  * the path walk or the filesystem doesn't ask for it.  Return 0 on
785  * success, -error on failure.  In case of failure caller does not
786  * need to drop nd->path.
787  */
complete_walk(struct nameidata * nd)788 static int complete_walk(struct nameidata *nd)
789 {
790 	struct dentry *dentry = nd->path.dentry;
791 	int status;
792 
793 	if (nd->flags & LOOKUP_RCU) {
794 		/*
795 		 * We don't want to zero nd->root for scoped-lookups or
796 		 * externally-managed nd->root.
797 		 */
798 		if (!(nd->state & ND_ROOT_PRESET))
799 			if (!(nd->flags & LOOKUP_IS_SCOPED))
800 				nd->root.mnt = NULL;
801 		if (!try_to_unlazy(nd))
802 			return -ECHILD;
803 	}
804 
805 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
806 		/*
807 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
808 		 * ever step outside the root during lookup" and should already
809 		 * be guaranteed by the rest of namei, we want to avoid a namei
810 		 * BUG resulting in userspace being given a path that was not
811 		 * scoped within the root at some point during the lookup.
812 		 *
813 		 * So, do a final sanity-check to make sure that in the
814 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
815 		 * we won't silently return an fd completely outside of the
816 		 * requested root to userspace.
817 		 *
818 		 * Userspace could move the path outside the root after this
819 		 * check, but as discussed elsewhere this is not a concern (the
820 		 * resolved file was inside the root at some point).
821 		 */
822 		if (!path_is_under(&nd->path, &nd->root))
823 			return -EXDEV;
824 	}
825 
826 	if (likely(!(nd->state & ND_JUMPED)))
827 		return 0;
828 
829 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
830 		return 0;
831 
832 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
833 	if (status > 0)
834 		return 0;
835 
836 	if (!status)
837 		status = -ESTALE;
838 
839 	return status;
840 }
841 
set_root(struct nameidata * nd)842 static int set_root(struct nameidata *nd)
843 {
844 	struct fs_struct *fs = current->fs;
845 
846 	/*
847 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
848 	 * still have to ensure it doesn't happen because it will cause a breakout
849 	 * from the dirfd.
850 	 */
851 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
852 		return -ENOTRECOVERABLE;
853 
854 	if (nd->flags & LOOKUP_RCU) {
855 		unsigned seq;
856 
857 		do {
858 			seq = read_seqcount_begin(&fs->seq);
859 			nd->root = fs->root;
860 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
861 		} while (read_seqcount_retry(&fs->seq, seq));
862 	} else {
863 		get_fs_root(fs, &nd->root);
864 		nd->state |= ND_ROOT_GRABBED;
865 	}
866 	return 0;
867 }
868 
nd_jump_root(struct nameidata * nd)869 static int nd_jump_root(struct nameidata *nd)
870 {
871 	if (unlikely(nd->flags & LOOKUP_BENEATH))
872 		return -EXDEV;
873 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
874 		/* Absolute path arguments to path_init() are allowed. */
875 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
876 			return -EXDEV;
877 	}
878 	if (!nd->root.mnt) {
879 		int error = set_root(nd);
880 		if (error)
881 			return error;
882 	}
883 	if (nd->flags & LOOKUP_RCU) {
884 		struct dentry *d;
885 		nd->path = nd->root;
886 		d = nd->path.dentry;
887 		nd->inode = d->d_inode;
888 		nd->seq = nd->root_seq;
889 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
890 			return -ECHILD;
891 	} else {
892 		path_put(&nd->path);
893 		nd->path = nd->root;
894 		path_get(&nd->path);
895 		nd->inode = nd->path.dentry->d_inode;
896 	}
897 	nd->state |= ND_JUMPED;
898 	return 0;
899 }
900 
901 /*
902  * Helper to directly jump to a known parsed path from ->get_link,
903  * caller must have taken a reference to path beforehand.
904  */
nd_jump_link(struct path * path)905 int nd_jump_link(struct path *path)
906 {
907 	int error = -ELOOP;
908 	struct nameidata *nd = current->nameidata;
909 
910 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
911 		goto err;
912 
913 	error = -EXDEV;
914 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
915 		if (nd->path.mnt != path->mnt)
916 			goto err;
917 	}
918 	/* Not currently safe for scoped-lookups. */
919 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
920 		goto err;
921 
922 	path_put(&nd->path);
923 	nd->path = *path;
924 	nd->inode = nd->path.dentry->d_inode;
925 	nd->state |= ND_JUMPED;
926 	return 0;
927 
928 err:
929 	path_put(path);
930 	return error;
931 }
932 
put_link(struct nameidata * nd)933 static inline void put_link(struct nameidata *nd)
934 {
935 	struct saved *last = nd->stack + --nd->depth;
936 	do_delayed_call(&last->done);
937 	if (!(nd->flags & LOOKUP_RCU))
938 		path_put(&last->link);
939 }
940 
941 int sysctl_protected_symlinks __read_mostly = 0;
942 int sysctl_protected_hardlinks __read_mostly = 0;
943 int sysctl_protected_fifos __read_mostly;
944 int sysctl_protected_regular __read_mostly;
945 
946 /**
947  * may_follow_link - Check symlink following for unsafe situations
948  * @nd: nameidata pathwalk data
949  *
950  * In the case of the sysctl_protected_symlinks sysctl being enabled,
951  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
952  * in a sticky world-writable directory. This is to protect privileged
953  * processes from failing races against path names that may change out
954  * from under them by way of other users creating malicious symlinks.
955  * It will permit symlinks to be followed only when outside a sticky
956  * world-writable directory, or when the uid of the symlink and follower
957  * match, or when the directory owner matches the symlink's owner.
958  *
959  * Returns 0 if following the symlink is allowed, -ve on error.
960  */
may_follow_link(struct nameidata * nd,const struct inode * inode)961 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
962 {
963 	if (!sysctl_protected_symlinks)
964 		return 0;
965 
966 	/* Allowed if owner and follower match. */
967 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
968 		return 0;
969 
970 	/* Allowed if parent directory not sticky and world-writable. */
971 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
972 		return 0;
973 
974 	/* Allowed if parent directory and link owner match. */
975 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
976 		return 0;
977 
978 	if (nd->flags & LOOKUP_RCU)
979 		return -ECHILD;
980 
981 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
982 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
983 	return -EACCES;
984 }
985 
986 /**
987  * safe_hardlink_source - Check for safe hardlink conditions
988  * @inode: the source inode to hardlink from
989  *
990  * Return false if at least one of the following conditions:
991  *    - inode is not a regular file
992  *    - inode is setuid
993  *    - inode is setgid and group-exec
994  *    - access failure for read and write
995  *
996  * Otherwise returns true.
997  */
safe_hardlink_source(struct inode * inode)998 static bool safe_hardlink_source(struct inode *inode)
999 {
1000 	umode_t mode = inode->i_mode;
1001 
1002 	/* Special files should not get pinned to the filesystem. */
1003 	if (!S_ISREG(mode))
1004 		return false;
1005 
1006 	/* Setuid files should not get pinned to the filesystem. */
1007 	if (mode & S_ISUID)
1008 		return false;
1009 
1010 	/* Executable setgid files should not get pinned to the filesystem. */
1011 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1012 		return false;
1013 
1014 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1015 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1016 		return false;
1017 
1018 	return true;
1019 }
1020 
1021 /**
1022  * may_linkat - Check permissions for creating a hardlink
1023  * @link: the source to hardlink from
1024  *
1025  * Block hardlink when all of:
1026  *  - sysctl_protected_hardlinks enabled
1027  *  - fsuid does not match inode
1028  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1029  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1030  *
1031  * Returns 0 if successful, -ve on error.
1032  */
may_linkat(struct path * link)1033 int may_linkat(struct path *link)
1034 {
1035 	struct inode *inode = link->dentry->d_inode;
1036 
1037 	/* Inode writeback is not safe when the uid or gid are invalid. */
1038 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1039 		return -EOVERFLOW;
1040 
1041 	if (!sysctl_protected_hardlinks)
1042 		return 0;
1043 
1044 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1045 	 * otherwise, it must be a safe source.
1046 	 */
1047 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1048 		return 0;
1049 
1050 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1051 	return -EPERM;
1052 }
1053 
1054 /**
1055  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1056  *			  should be allowed, or not, on files that already
1057  *			  exist.
1058  * @dir_mode: mode bits of directory
1059  * @dir_uid: owner of directory
1060  * @inode: the inode of the file to open
1061  *
1062  * Block an O_CREAT open of a FIFO (or a regular file) when:
1063  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1064  *   - the file already exists
1065  *   - we are in a sticky directory
1066  *   - we don't own the file
1067  *   - the owner of the directory doesn't own the file
1068  *   - the directory is world writable
1069  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1070  * the directory doesn't have to be world writable: being group writable will
1071  * be enough.
1072  *
1073  * Returns 0 if the open is allowed, -ve on error.
1074  */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1075 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1076 				struct inode * const inode)
1077 {
1078 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1079 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1080 	    likely(!(dir_mode & S_ISVTX)) ||
1081 	    uid_eq(inode->i_uid, dir_uid) ||
1082 	    uid_eq(current_fsuid(), inode->i_uid))
1083 		return 0;
1084 
1085 	if (likely(dir_mode & 0002) ||
1086 	    (dir_mode & 0020 &&
1087 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1088 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1089 		const char *operation = S_ISFIFO(inode->i_mode) ?
1090 					"sticky_create_fifo" :
1091 					"sticky_create_regular";
1092 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1093 		return -EACCES;
1094 	}
1095 	return 0;
1096 }
1097 
1098 /*
1099  * follow_up - Find the mountpoint of path's vfsmount
1100  *
1101  * Given a path, find the mountpoint of its source file system.
1102  * Replace @path with the path of the mountpoint in the parent mount.
1103  * Up is towards /.
1104  *
1105  * Return 1 if we went up a level and 0 if we were already at the
1106  * root.
1107  */
follow_up(struct path * path)1108 int follow_up(struct path *path)
1109 {
1110 	struct mount *mnt = real_mount(path->mnt);
1111 	struct mount *parent;
1112 	struct dentry *mountpoint;
1113 
1114 	read_seqlock_excl(&mount_lock);
1115 	parent = mnt->mnt_parent;
1116 	if (parent == mnt) {
1117 		read_sequnlock_excl(&mount_lock);
1118 		return 0;
1119 	}
1120 	mntget(&parent->mnt);
1121 	mountpoint = dget(mnt->mnt_mountpoint);
1122 	read_sequnlock_excl(&mount_lock);
1123 	dput(path->dentry);
1124 	path->dentry = mountpoint;
1125 	mntput(path->mnt);
1126 	path->mnt = &parent->mnt;
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130 
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1131 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1132 				  struct path *path, unsigned *seqp)
1133 {
1134 	while (mnt_has_parent(m)) {
1135 		struct dentry *mountpoint = m->mnt_mountpoint;
1136 
1137 		m = m->mnt_parent;
1138 		if (unlikely(root->dentry == mountpoint &&
1139 			     root->mnt == &m->mnt))
1140 			break;
1141 		if (mountpoint != m->mnt.mnt_root) {
1142 			path->mnt = &m->mnt;
1143 			path->dentry = mountpoint;
1144 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1145 			return true;
1146 		}
1147 	}
1148 	return false;
1149 }
1150 
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1151 static bool choose_mountpoint(struct mount *m, const struct path *root,
1152 			      struct path *path)
1153 {
1154 	bool found;
1155 
1156 	rcu_read_lock();
1157 	while (1) {
1158 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1159 
1160 		found = choose_mountpoint_rcu(m, root, path, &seq);
1161 		if (unlikely(!found)) {
1162 			if (!read_seqretry(&mount_lock, mseq))
1163 				break;
1164 		} else {
1165 			if (likely(__legitimize_path(path, seq, mseq)))
1166 				break;
1167 			rcu_read_unlock();
1168 			path_put(path);
1169 			rcu_read_lock();
1170 		}
1171 	}
1172 	rcu_read_unlock();
1173 	return found;
1174 }
1175 
1176 /*
1177  * Perform an automount
1178  * - return -EISDIR to tell follow_managed() to stop and return the path we
1179  *   were called with.
1180  */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1181 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1182 {
1183 	struct dentry *dentry = path->dentry;
1184 
1185 	/* We don't want to mount if someone's just doing a stat -
1186 	 * unless they're stat'ing a directory and appended a '/' to
1187 	 * the name.
1188 	 *
1189 	 * We do, however, want to mount if someone wants to open or
1190 	 * create a file of any type under the mountpoint, wants to
1191 	 * traverse through the mountpoint or wants to open the
1192 	 * mounted directory.  Also, autofs may mark negative dentries
1193 	 * as being automount points.  These will need the attentions
1194 	 * of the daemon to instantiate them before they can be used.
1195 	 */
1196 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1197 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1198 	    dentry->d_inode)
1199 		return -EISDIR;
1200 
1201 	if (count && (*count)++ >= MAXSYMLINKS)
1202 		return -ELOOP;
1203 
1204 	return finish_automount(dentry->d_op->d_automount(path), path);
1205 }
1206 
1207 /*
1208  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1209  * dentries are pinned but not locked here, so negative dentry can go
1210  * positive right under us.  Use of smp_load_acquire() provides a barrier
1211  * sufficient for ->d_inode and ->d_flags consistency.
1212  */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1213 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1214 			     int *count, unsigned lookup_flags)
1215 {
1216 	struct vfsmount *mnt = path->mnt;
1217 	bool need_mntput = false;
1218 	int ret = 0;
1219 
1220 	while (flags & DCACHE_MANAGED_DENTRY) {
1221 		/* Allow the filesystem to manage the transit without i_mutex
1222 		 * being held. */
1223 		if (flags & DCACHE_MANAGE_TRANSIT) {
1224 			ret = path->dentry->d_op->d_manage(path, false);
1225 			flags = smp_load_acquire(&path->dentry->d_flags);
1226 			if (ret < 0)
1227 				break;
1228 		}
1229 
1230 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1231 			struct vfsmount *mounted = lookup_mnt(path);
1232 			if (mounted) {		// ... in our namespace
1233 				dput(path->dentry);
1234 				if (need_mntput)
1235 					mntput(path->mnt);
1236 				path->mnt = mounted;
1237 				path->dentry = dget(mounted->mnt_root);
1238 				// here we know it's positive
1239 				flags = path->dentry->d_flags;
1240 				need_mntput = true;
1241 				continue;
1242 			}
1243 		}
1244 
1245 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1246 			break;
1247 
1248 		// uncovered automount point
1249 		ret = follow_automount(path, count, lookup_flags);
1250 		flags = smp_load_acquire(&path->dentry->d_flags);
1251 		if (ret < 0)
1252 			break;
1253 	}
1254 
1255 	if (ret == -EISDIR)
1256 		ret = 0;
1257 	// possible if you race with several mount --move
1258 	if (need_mntput && path->mnt == mnt)
1259 		mntput(path->mnt);
1260 	if (!ret && unlikely(d_flags_negative(flags)))
1261 		ret = -ENOENT;
1262 	*jumped = need_mntput;
1263 	return ret;
1264 }
1265 
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1266 static inline int traverse_mounts(struct path *path, bool *jumped,
1267 				  int *count, unsigned lookup_flags)
1268 {
1269 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1270 
1271 	/* fastpath */
1272 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1273 		*jumped = false;
1274 		if (unlikely(d_flags_negative(flags)))
1275 			return -ENOENT;
1276 		return 0;
1277 	}
1278 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1279 }
1280 
follow_down_one(struct path * path)1281 int follow_down_one(struct path *path)
1282 {
1283 	struct vfsmount *mounted;
1284 
1285 	mounted = lookup_mnt(path);
1286 	if (mounted) {
1287 		dput(path->dentry);
1288 		mntput(path->mnt);
1289 		path->mnt = mounted;
1290 		path->dentry = dget(mounted->mnt_root);
1291 		return 1;
1292 	}
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(follow_down_one);
1296 
1297 /*
1298  * Follow down to the covering mount currently visible to userspace.  At each
1299  * point, the filesystem owning that dentry may be queried as to whether the
1300  * caller is permitted to proceed or not.
1301  */
follow_down(struct path * path)1302 int follow_down(struct path *path)
1303 {
1304 	struct vfsmount *mnt = path->mnt;
1305 	bool jumped;
1306 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1307 
1308 	if (path->mnt != mnt)
1309 		mntput(mnt);
1310 	return ret;
1311 }
1312 EXPORT_SYMBOL(follow_down);
1313 
1314 /*
1315  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1316  * we meet a managed dentry that would need blocking.
1317  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1318 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1319 			       struct inode **inode, unsigned *seqp)
1320 {
1321 	struct dentry *dentry = path->dentry;
1322 	unsigned int flags = dentry->d_flags;
1323 
1324 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1325 		return true;
1326 
1327 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1328 		return false;
1329 
1330 	for (;;) {
1331 		/*
1332 		 * Don't forget we might have a non-mountpoint managed dentry
1333 		 * that wants to block transit.
1334 		 */
1335 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1336 			int res = dentry->d_op->d_manage(path, true);
1337 			if (res)
1338 				return res == -EISDIR;
1339 			flags = dentry->d_flags;
1340 		}
1341 
1342 		if (flags & DCACHE_MOUNTED) {
1343 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1344 			if (mounted) {
1345 				path->mnt = &mounted->mnt;
1346 				dentry = path->dentry = mounted->mnt.mnt_root;
1347 				nd->state |= ND_JUMPED;
1348 				*seqp = read_seqcount_begin(&dentry->d_seq);
1349 				*inode = dentry->d_inode;
1350 				/*
1351 				 * We don't need to re-check ->d_seq after this
1352 				 * ->d_inode read - there will be an RCU delay
1353 				 * between mount hash removal and ->mnt_root
1354 				 * becoming unpinned.
1355 				 */
1356 				flags = dentry->d_flags;
1357 				continue;
1358 			}
1359 			if (read_seqretry(&mount_lock, nd->m_seq))
1360 				return false;
1361 		}
1362 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1363 	}
1364 }
1365 
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path,struct inode ** inode,unsigned int * seqp)1366 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1367 			  struct path *path, struct inode **inode,
1368 			  unsigned int *seqp)
1369 {
1370 	bool jumped;
1371 	int ret;
1372 
1373 	path->mnt = nd->path.mnt;
1374 	path->dentry = dentry;
1375 	if (nd->flags & LOOKUP_RCU) {
1376 		unsigned int seq = *seqp;
1377 		if (unlikely(!*inode))
1378 			return -ENOENT;
1379 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1380 			return 0;
1381 		if (unlazy_child(nd, dentry, seq))
1382 			return -ECHILD;
1383 		// *path might've been clobbered by __follow_mount_rcu()
1384 		path->mnt = nd->path.mnt;
1385 		path->dentry = dentry;
1386 	}
1387 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1388 	if (jumped) {
1389 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1390 			ret = -EXDEV;
1391 		else
1392 			nd->state |= ND_JUMPED;
1393 	}
1394 	if (unlikely(ret)) {
1395 		dput(path->dentry);
1396 		if (path->mnt != nd->path.mnt)
1397 			mntput(path->mnt);
1398 	} else {
1399 		*inode = d_backing_inode(path->dentry);
1400 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1401 	}
1402 	return ret;
1403 }
1404 
1405 /*
1406  * This looks up the name in dcache and possibly revalidates the found dentry.
1407  * NULL is returned if the dentry does not exist in the cache.
1408  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1409 static struct dentry *lookup_dcache(const struct qstr *name,
1410 				    struct dentry *dir,
1411 				    unsigned int flags)
1412 {
1413 	struct dentry *dentry = d_lookup(dir, name);
1414 	if (dentry) {
1415 		int error = d_revalidate(dentry, flags);
1416 		if (unlikely(error <= 0)) {
1417 			if (!error)
1418 				d_invalidate(dentry);
1419 			dput(dentry);
1420 			return ERR_PTR(error);
1421 		}
1422 	}
1423 	return dentry;
1424 }
1425 
1426 /*
1427  * Parent directory has inode locked exclusive.  This is one
1428  * and only case when ->lookup() gets called on non in-lookup
1429  * dentries - as the matter of fact, this only gets called
1430  * when directory is guaranteed to have no in-lookup children
1431  * at all.
1432  */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1433 static struct dentry *__lookup_hash(const struct qstr *name,
1434 		struct dentry *base, unsigned int flags)
1435 {
1436 	struct dentry *dentry = lookup_dcache(name, base, flags);
1437 	struct dentry *old;
1438 	struct inode *dir = base->d_inode;
1439 
1440 	if (dentry)
1441 		return dentry;
1442 
1443 	/* Don't create child dentry for a dead directory. */
1444 	if (unlikely(IS_DEADDIR(dir)))
1445 		return ERR_PTR(-ENOENT);
1446 
1447 	dentry = d_alloc(base, name);
1448 	if (unlikely(!dentry))
1449 		return ERR_PTR(-ENOMEM);
1450 
1451 	old = dir->i_op->lookup(dir, dentry, flags);
1452 	if (unlikely(old)) {
1453 		dput(dentry);
1454 		dentry = old;
1455 	}
1456 	return dentry;
1457 }
1458 
lookup_fast(struct nameidata * nd,struct inode ** inode,unsigned * seqp)1459 static struct dentry *lookup_fast(struct nameidata *nd,
1460 				  struct inode **inode,
1461 			          unsigned *seqp)
1462 {
1463 	struct dentry *dentry, *parent = nd->path.dentry;
1464 	int status = 1;
1465 
1466 	/*
1467 	 * Rename seqlock is not required here because in the off chance
1468 	 * of a false negative due to a concurrent rename, the caller is
1469 	 * going to fall back to non-racy lookup.
1470 	 */
1471 	if (nd->flags & LOOKUP_RCU) {
1472 		unsigned seq;
1473 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1474 		if (unlikely(!dentry)) {
1475 			if (!try_to_unlazy(nd))
1476 				return ERR_PTR(-ECHILD);
1477 			return NULL;
1478 		}
1479 
1480 		/*
1481 		 * This sequence count validates that the inode matches
1482 		 * the dentry name information from lookup.
1483 		 */
1484 		*inode = d_backing_inode(dentry);
1485 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1486 			return ERR_PTR(-ECHILD);
1487 
1488 		/*
1489 		 * This sequence count validates that the parent had no
1490 		 * changes while we did the lookup of the dentry above.
1491 		 *
1492 		 * The memory barrier in read_seqcount_begin of child is
1493 		 *  enough, we can use __read_seqcount_retry here.
1494 		 */
1495 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1496 			return ERR_PTR(-ECHILD);
1497 
1498 		*seqp = seq;
1499 		status = d_revalidate(dentry, nd->flags);
1500 		if (likely(status > 0))
1501 			return dentry;
1502 		if (unlazy_child(nd, dentry, seq))
1503 			return ERR_PTR(-ECHILD);
1504 		if (unlikely(status == -ECHILD))
1505 			/* we'd been told to redo it in non-rcu mode */
1506 			status = d_revalidate(dentry, nd->flags);
1507 	} else {
1508 		dentry = __d_lookup(parent, &nd->last);
1509 		if (unlikely(!dentry))
1510 			return NULL;
1511 		status = d_revalidate(dentry, nd->flags);
1512 	}
1513 	if (unlikely(status <= 0)) {
1514 		if (!status)
1515 			d_invalidate(dentry);
1516 		dput(dentry);
1517 		return ERR_PTR(status);
1518 	}
1519 	return dentry;
1520 }
1521 
1522 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1523 static struct dentry *__lookup_slow(const struct qstr *name,
1524 				    struct dentry *dir,
1525 				    unsigned int flags)
1526 {
1527 	struct dentry *dentry, *old;
1528 	struct inode *inode = dir->d_inode;
1529 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1530 
1531 	/* Don't go there if it's already dead */
1532 	if (unlikely(IS_DEADDIR(inode)))
1533 		return ERR_PTR(-ENOENT);
1534 again:
1535 	dentry = d_alloc_parallel(dir, name, &wq);
1536 	if (IS_ERR(dentry))
1537 		return dentry;
1538 	if (unlikely(!d_in_lookup(dentry))) {
1539 		int error = d_revalidate(dentry, flags);
1540 		if (unlikely(error <= 0)) {
1541 			if (!error) {
1542 				d_invalidate(dentry);
1543 				dput(dentry);
1544 				goto again;
1545 			}
1546 			dput(dentry);
1547 			dentry = ERR_PTR(error);
1548 		}
1549 	} else {
1550 		old = inode->i_op->lookup(inode, dentry, flags);
1551 		d_lookup_done(dentry);
1552 		if (unlikely(old)) {
1553 			dput(dentry);
1554 			dentry = old;
1555 		}
1556 	}
1557 	return dentry;
1558 }
1559 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1560 static struct dentry *lookup_slow(const struct qstr *name,
1561 				  struct dentry *dir,
1562 				  unsigned int flags)
1563 {
1564 	struct inode *inode = dir->d_inode;
1565 	struct dentry *res;
1566 	inode_lock_shared(inode);
1567 	res = __lookup_slow(name, dir, flags);
1568 	inode_unlock_shared(inode);
1569 	return res;
1570 }
1571 
may_lookup(struct nameidata * nd)1572 static inline int may_lookup(struct nameidata *nd)
1573 {
1574 	if (nd->flags & LOOKUP_RCU) {
1575 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1576 		if (err != -ECHILD || !try_to_unlazy(nd))
1577 			return err;
1578 	}
1579 	return inode_permission(nd->inode, MAY_EXEC);
1580 }
1581 
reserve_stack(struct nameidata * nd,struct path * link,unsigned seq)1582 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1583 {
1584 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1585 		return -ELOOP;
1586 
1587 	if (likely(nd->depth != EMBEDDED_LEVELS))
1588 		return 0;
1589 	if (likely(nd->stack != nd->internal))
1590 		return 0;
1591 	if (likely(nd_alloc_stack(nd)))
1592 		return 0;
1593 
1594 	if (nd->flags & LOOKUP_RCU) {
1595 		// we need to grab link before we do unlazy.  And we can't skip
1596 		// unlazy even if we fail to grab the link - cleanup needs it
1597 		bool grabbed_link = legitimize_path(nd, link, seq);
1598 
1599 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1600 			return -ECHILD;
1601 
1602 		if (nd_alloc_stack(nd))
1603 			return 0;
1604 	}
1605 	return -ENOMEM;
1606 }
1607 
1608 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1609 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq,int flags)1610 static const char *pick_link(struct nameidata *nd, struct path *link,
1611 		     struct inode *inode, unsigned seq, int flags)
1612 {
1613 	struct saved *last;
1614 	const char *res;
1615 	int error = reserve_stack(nd, link, seq);
1616 
1617 	if (unlikely(error)) {
1618 		if (!(nd->flags & LOOKUP_RCU))
1619 			path_put(link);
1620 		return ERR_PTR(error);
1621 	}
1622 	last = nd->stack + nd->depth++;
1623 	last->link = *link;
1624 	clear_delayed_call(&last->done);
1625 	last->seq = seq;
1626 
1627 	if (flags & WALK_TRAILING) {
1628 		error = may_follow_link(nd, inode);
1629 		if (unlikely(error))
1630 			return ERR_PTR(error);
1631 	}
1632 
1633 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1634 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1635 		return ERR_PTR(-ELOOP);
1636 
1637 	if (!(nd->flags & LOOKUP_RCU)) {
1638 		touch_atime(&last->link);
1639 		cond_resched();
1640 	} else if (atime_needs_update(&last->link, inode)) {
1641 		if (!try_to_unlazy(nd))
1642 			return ERR_PTR(-ECHILD);
1643 		touch_atime(&last->link);
1644 	}
1645 
1646 	error = security_inode_follow_link(link->dentry, inode,
1647 					   nd->flags & LOOKUP_RCU);
1648 	if (unlikely(error))
1649 		return ERR_PTR(error);
1650 
1651 	res = READ_ONCE(inode->i_link);
1652 	if (!res) {
1653 		const char * (*get)(struct dentry *, struct inode *,
1654 				struct delayed_call *);
1655 		get = inode->i_op->get_link;
1656 		if (nd->flags & LOOKUP_RCU) {
1657 			res = get(NULL, inode, &last->done);
1658 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1659 				res = get(link->dentry, inode, &last->done);
1660 		} else {
1661 			res = get(link->dentry, inode, &last->done);
1662 		}
1663 		if (!res)
1664 			goto all_done;
1665 		if (IS_ERR(res))
1666 			return res;
1667 	}
1668 	if (*res == '/') {
1669 		error = nd_jump_root(nd);
1670 		if (unlikely(error))
1671 			return ERR_PTR(error);
1672 		while (unlikely(*++res == '/'))
1673 			;
1674 	}
1675 	if (*res)
1676 		return res;
1677 all_done: // pure jump
1678 	put_link(nd);
1679 	return NULL;
1680 }
1681 
1682 /*
1683  * Do we need to follow links? We _really_ want to be able
1684  * to do this check without having to look at inode->i_op,
1685  * so we keep a cache of "no, this doesn't need follow_link"
1686  * for the common case.
1687  */
step_into(struct nameidata * nd,int flags,struct dentry * dentry,struct inode * inode,unsigned seq)1688 static const char *step_into(struct nameidata *nd, int flags,
1689 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1690 {
1691 	struct path path;
1692 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1693 
1694 	if (err < 0)
1695 		return ERR_PTR(err);
1696 	if (likely(!d_is_symlink(path.dentry)) ||
1697 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1698 	   (flags & WALK_NOFOLLOW)) {
1699 		/* not a symlink or should not follow */
1700 		if (!(nd->flags & LOOKUP_RCU)) {
1701 			dput(nd->path.dentry);
1702 			if (nd->path.mnt != path.mnt)
1703 				mntput(nd->path.mnt);
1704 		}
1705 		nd->path = path;
1706 		nd->inode = inode;
1707 		nd->seq = seq;
1708 		return NULL;
1709 	}
1710 	if (nd->flags & LOOKUP_RCU) {
1711 		/* make sure that d_is_symlink above matches inode */
1712 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1713 			return ERR_PTR(-ECHILD);
1714 	} else {
1715 		if (path.mnt == nd->path.mnt)
1716 			mntget(path.mnt);
1717 	}
1718 	return pick_link(nd, &path, inode, seq, flags);
1719 }
1720 
follow_dotdot_rcu(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1721 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1722 					struct inode **inodep,
1723 					unsigned *seqp)
1724 {
1725 	struct dentry *parent, *old;
1726 
1727 	if (path_equal(&nd->path, &nd->root))
1728 		goto in_root;
1729 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1730 		struct path path;
1731 		unsigned seq;
1732 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1733 					   &nd->root, &path, &seq))
1734 			goto in_root;
1735 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1736 			return ERR_PTR(-ECHILD);
1737 		nd->path = path;
1738 		nd->inode = path.dentry->d_inode;
1739 		nd->seq = seq;
1740 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1741 			return ERR_PTR(-ECHILD);
1742 		/* we know that mountpoint was pinned */
1743 	}
1744 	old = nd->path.dentry;
1745 	parent = old->d_parent;
1746 	*inodep = parent->d_inode;
1747 	*seqp = read_seqcount_begin(&parent->d_seq);
1748 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1749 		return ERR_PTR(-ECHILD);
1750 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1751 		return ERR_PTR(-ECHILD);
1752 	return parent;
1753 in_root:
1754 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1755 		return ERR_PTR(-ECHILD);
1756 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1757 		return ERR_PTR(-ECHILD);
1758 	return NULL;
1759 }
1760 
follow_dotdot(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1761 static struct dentry *follow_dotdot(struct nameidata *nd,
1762 				 struct inode **inodep,
1763 				 unsigned *seqp)
1764 {
1765 	struct dentry *parent;
1766 
1767 	if (path_equal(&nd->path, &nd->root))
1768 		goto in_root;
1769 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1770 		struct path path;
1771 
1772 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1773 				       &nd->root, &path))
1774 			goto in_root;
1775 		path_put(&nd->path);
1776 		nd->path = path;
1777 		nd->inode = path.dentry->d_inode;
1778 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1779 			return ERR_PTR(-EXDEV);
1780 	}
1781 	/* rare case of legitimate dget_parent()... */
1782 	parent = dget_parent(nd->path.dentry);
1783 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1784 		dput(parent);
1785 		return ERR_PTR(-ENOENT);
1786 	}
1787 	*seqp = 0;
1788 	*inodep = parent->d_inode;
1789 	return parent;
1790 
1791 in_root:
1792 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1793 		return ERR_PTR(-EXDEV);
1794 	dget(nd->path.dentry);
1795 	return NULL;
1796 }
1797 
handle_dots(struct nameidata * nd,int type)1798 static const char *handle_dots(struct nameidata *nd, int type)
1799 {
1800 	if (type == LAST_DOTDOT) {
1801 		const char *error = NULL;
1802 		struct dentry *parent;
1803 		struct inode *inode;
1804 		unsigned seq;
1805 
1806 		if (!nd->root.mnt) {
1807 			error = ERR_PTR(set_root(nd));
1808 			if (error)
1809 				return error;
1810 		}
1811 		if (nd->flags & LOOKUP_RCU)
1812 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1813 		else
1814 			parent = follow_dotdot(nd, &inode, &seq);
1815 		if (IS_ERR(parent))
1816 			return ERR_CAST(parent);
1817 		if (unlikely(!parent))
1818 			error = step_into(nd, WALK_NOFOLLOW,
1819 					 nd->path.dentry, nd->inode, nd->seq);
1820 		else
1821 			error = step_into(nd, WALK_NOFOLLOW,
1822 					 parent, inode, seq);
1823 		if (unlikely(error))
1824 			return error;
1825 
1826 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1827 			/*
1828 			 * If there was a racing rename or mount along our
1829 			 * path, then we can't be sure that ".." hasn't jumped
1830 			 * above nd->root (and so userspace should retry or use
1831 			 * some fallback).
1832 			 */
1833 			smp_rmb();
1834 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1835 				return ERR_PTR(-EAGAIN);
1836 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1837 				return ERR_PTR(-EAGAIN);
1838 		}
1839 	}
1840 	return NULL;
1841 }
1842 
walk_component(struct nameidata * nd,int flags)1843 static const char *walk_component(struct nameidata *nd, int flags)
1844 {
1845 	struct dentry *dentry;
1846 	struct inode *inode;
1847 	unsigned seq;
1848 	/*
1849 	 * "." and ".." are special - ".." especially so because it has
1850 	 * to be able to know about the current root directory and
1851 	 * parent relationships.
1852 	 */
1853 	if (unlikely(nd->last_type != LAST_NORM)) {
1854 		if (!(flags & WALK_MORE) && nd->depth)
1855 			put_link(nd);
1856 		return handle_dots(nd, nd->last_type);
1857 	}
1858 	dentry = lookup_fast(nd, &inode, &seq);
1859 	if (IS_ERR(dentry))
1860 		return ERR_CAST(dentry);
1861 	if (unlikely(!dentry)) {
1862 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1863 		if (IS_ERR(dentry))
1864 			return ERR_CAST(dentry);
1865 	}
1866 	if (!(flags & WALK_MORE) && nd->depth)
1867 		put_link(nd);
1868 	return step_into(nd, flags, dentry, inode, seq);
1869 }
1870 
1871 /*
1872  * We can do the critical dentry name comparison and hashing
1873  * operations one word at a time, but we are limited to:
1874  *
1875  * - Architectures with fast unaligned word accesses. We could
1876  *   do a "get_unaligned()" if this helps and is sufficiently
1877  *   fast.
1878  *
1879  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1880  *   do not trap on the (extremely unlikely) case of a page
1881  *   crossing operation.
1882  *
1883  * - Furthermore, we need an efficient 64-bit compile for the
1884  *   64-bit case in order to generate the "number of bytes in
1885  *   the final mask". Again, that could be replaced with a
1886  *   efficient population count instruction or similar.
1887  */
1888 #ifdef CONFIG_DCACHE_WORD_ACCESS
1889 
1890 #include <asm/word-at-a-time.h>
1891 
1892 #ifdef HASH_MIX
1893 
1894 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1895 
1896 #elif defined(CONFIG_64BIT)
1897 /*
1898  * Register pressure in the mixing function is an issue, particularly
1899  * on 32-bit x86, but almost any function requires one state value and
1900  * one temporary.  Instead, use a function designed for two state values
1901  * and no temporaries.
1902  *
1903  * This function cannot create a collision in only two iterations, so
1904  * we have two iterations to achieve avalanche.  In those two iterations,
1905  * we have six layers of mixing, which is enough to spread one bit's
1906  * influence out to 2^6 = 64 state bits.
1907  *
1908  * Rotate constants are scored by considering either 64 one-bit input
1909  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1910  * probability of that delta causing a change to each of the 128 output
1911  * bits, using a sample of random initial states.
1912  *
1913  * The Shannon entropy of the computed probabilities is then summed
1914  * to produce a score.  Ideally, any input change has a 50% chance of
1915  * toggling any given output bit.
1916  *
1917  * Mixing scores (in bits) for (12,45):
1918  * Input delta: 1-bit      2-bit
1919  * 1 round:     713.3    42542.6
1920  * 2 rounds:   2753.7   140389.8
1921  * 3 rounds:   5954.1   233458.2
1922  * 4 rounds:   7862.6   256672.2
1923  * Perfect:    8192     258048
1924  *            (64*128) (64*63/2 * 128)
1925  */
1926 #define HASH_MIX(x, y, a)	\
1927 	(	x ^= (a),	\
1928 	y ^= x,	x = rol64(x,12),\
1929 	x += y,	y = rol64(y,45),\
1930 	y *= 9			)
1931 
1932 /*
1933  * Fold two longs into one 32-bit hash value.  This must be fast, but
1934  * latency isn't quite as critical, as there is a fair bit of additional
1935  * work done before the hash value is used.
1936  */
fold_hash(unsigned long x,unsigned long y)1937 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1938 {
1939 	y ^= x * GOLDEN_RATIO_64;
1940 	y *= GOLDEN_RATIO_64;
1941 	return y >> 32;
1942 }
1943 
1944 #else	/* 32-bit case */
1945 
1946 /*
1947  * Mixing scores (in bits) for (7,20):
1948  * Input delta: 1-bit      2-bit
1949  * 1 round:     330.3     9201.6
1950  * 2 rounds:   1246.4    25475.4
1951  * 3 rounds:   1907.1    31295.1
1952  * 4 rounds:   2042.3    31718.6
1953  * Perfect:    2048      31744
1954  *            (32*64)   (32*31/2 * 64)
1955  */
1956 #define HASH_MIX(x, y, a)	\
1957 	(	x ^= (a),	\
1958 	y ^= x,	x = rol32(x, 7),\
1959 	x += y,	y = rol32(y,20),\
1960 	y *= 9			)
1961 
fold_hash(unsigned long x,unsigned long y)1962 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1963 {
1964 	/* Use arch-optimized multiply if one exists */
1965 	return __hash_32(y ^ __hash_32(x));
1966 }
1967 
1968 #endif
1969 
1970 /*
1971  * Return the hash of a string of known length.  This is carfully
1972  * designed to match hash_name(), which is the more critical function.
1973  * In particular, we must end by hashing a final word containing 0..7
1974  * payload bytes, to match the way that hash_name() iterates until it
1975  * finds the delimiter after the name.
1976  */
full_name_hash(const void * salt,const char * name,unsigned int len)1977 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1978 {
1979 	unsigned long a, x = 0, y = (unsigned long)salt;
1980 
1981 	for (;;) {
1982 		if (!len)
1983 			goto done;
1984 		a = load_unaligned_zeropad(name);
1985 		if (len < sizeof(unsigned long))
1986 			break;
1987 		HASH_MIX(x, y, a);
1988 		name += sizeof(unsigned long);
1989 		len -= sizeof(unsigned long);
1990 	}
1991 	x ^= a & bytemask_from_count(len);
1992 done:
1993 	return fold_hash(x, y);
1994 }
1995 EXPORT_SYMBOL(full_name_hash);
1996 
1997 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)1998 u64 hashlen_string(const void *salt, const char *name)
1999 {
2000 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2001 	unsigned long adata, mask, len;
2002 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2003 
2004 	len = 0;
2005 	goto inside;
2006 
2007 	do {
2008 		HASH_MIX(x, y, a);
2009 		len += sizeof(unsigned long);
2010 inside:
2011 		a = load_unaligned_zeropad(name+len);
2012 	} while (!has_zero(a, &adata, &constants));
2013 
2014 	adata = prep_zero_mask(a, adata, &constants);
2015 	mask = create_zero_mask(adata);
2016 	x ^= a & zero_bytemask(mask);
2017 
2018 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2019 }
2020 EXPORT_SYMBOL(hashlen_string);
2021 
2022 /*
2023  * Calculate the length and hash of the path component, and
2024  * return the "hash_len" as the result.
2025  */
hash_name(const void * salt,const char * name)2026 static inline u64 hash_name(const void *salt, const char *name)
2027 {
2028 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2029 	unsigned long adata, bdata, mask, len;
2030 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2031 
2032 	len = 0;
2033 	goto inside;
2034 
2035 	do {
2036 		HASH_MIX(x, y, a);
2037 		len += sizeof(unsigned long);
2038 inside:
2039 		a = load_unaligned_zeropad(name+len);
2040 		b = a ^ REPEAT_BYTE('/');
2041 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2042 
2043 	adata = prep_zero_mask(a, adata, &constants);
2044 	bdata = prep_zero_mask(b, bdata, &constants);
2045 	mask = create_zero_mask(adata | bdata);
2046 	x ^= a & zero_bytemask(mask);
2047 
2048 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2049 }
2050 
2051 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2052 
2053 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2054 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2055 {
2056 	unsigned long hash = init_name_hash(salt);
2057 	while (len--)
2058 		hash = partial_name_hash((unsigned char)*name++, hash);
2059 	return end_name_hash(hash);
2060 }
2061 EXPORT_SYMBOL(full_name_hash);
2062 
2063 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2064 u64 hashlen_string(const void *salt, const char *name)
2065 {
2066 	unsigned long hash = init_name_hash(salt);
2067 	unsigned long len = 0, c;
2068 
2069 	c = (unsigned char)*name;
2070 	while (c) {
2071 		len++;
2072 		hash = partial_name_hash(c, hash);
2073 		c = (unsigned char)name[len];
2074 	}
2075 	return hashlen_create(end_name_hash(hash), len);
2076 }
2077 EXPORT_SYMBOL(hashlen_string);
2078 
2079 /*
2080  * We know there's a real path component here of at least
2081  * one character.
2082  */
hash_name(const void * salt,const char * name)2083 static inline u64 hash_name(const void *salt, const char *name)
2084 {
2085 	unsigned long hash = init_name_hash(salt);
2086 	unsigned long len = 0, c;
2087 
2088 	c = (unsigned char)*name;
2089 	do {
2090 		len++;
2091 		hash = partial_name_hash(c, hash);
2092 		c = (unsigned char)name[len];
2093 	} while (c && c != '/');
2094 	return hashlen_create(end_name_hash(hash), len);
2095 }
2096 
2097 #endif
2098 
2099 /*
2100  * Name resolution.
2101  * This is the basic name resolution function, turning a pathname into
2102  * the final dentry. We expect 'base' to be positive and a directory.
2103  *
2104  * Returns 0 and nd will have valid dentry and mnt on success.
2105  * Returns error and drops reference to input namei data on failure.
2106  */
link_path_walk(const char * name,struct nameidata * nd)2107 static int link_path_walk(const char *name, struct nameidata *nd)
2108 {
2109 	int depth = 0; // depth <= nd->depth
2110 	int err;
2111 
2112 	nd->last_type = LAST_ROOT;
2113 	nd->flags |= LOOKUP_PARENT;
2114 	if (IS_ERR(name))
2115 		return PTR_ERR(name);
2116 	while (*name=='/')
2117 		name++;
2118 	if (!*name)
2119 		return 0;
2120 
2121 	/* At this point we know we have a real path component. */
2122 	for(;;) {
2123 		const char *link;
2124 		u64 hash_len;
2125 		int type;
2126 
2127 		err = may_lookup(nd);
2128 		if (err)
2129 			return err;
2130 
2131 		hash_len = hash_name(nd->path.dentry, name);
2132 
2133 		type = LAST_NORM;
2134 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2135 			case 2:
2136 				if (name[1] == '.') {
2137 					type = LAST_DOTDOT;
2138 					nd->state |= ND_JUMPED;
2139 				}
2140 				break;
2141 			case 1:
2142 				type = LAST_DOT;
2143 		}
2144 		if (likely(type == LAST_NORM)) {
2145 			struct dentry *parent = nd->path.dentry;
2146 			nd->state &= ~ND_JUMPED;
2147 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2148 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2149 				err = parent->d_op->d_hash(parent, &this);
2150 				if (err < 0)
2151 					return err;
2152 				hash_len = this.hash_len;
2153 				name = this.name;
2154 			}
2155 		}
2156 
2157 		nd->last.hash_len = hash_len;
2158 		nd->last.name = name;
2159 		nd->last_type = type;
2160 
2161 		name += hashlen_len(hash_len);
2162 		if (!*name)
2163 			goto OK;
2164 		/*
2165 		 * If it wasn't NUL, we know it was '/'. Skip that
2166 		 * slash, and continue until no more slashes.
2167 		 */
2168 		do {
2169 			name++;
2170 		} while (unlikely(*name == '/'));
2171 		if (unlikely(!*name)) {
2172 OK:
2173 			/* pathname or trailing symlink, done */
2174 			if (!depth) {
2175 				nd->dir_uid = nd->inode->i_uid;
2176 				nd->dir_mode = nd->inode->i_mode;
2177 				nd->flags &= ~LOOKUP_PARENT;
2178 				return 0;
2179 			}
2180 			/* last component of nested symlink */
2181 			name = nd->stack[--depth].name;
2182 			link = walk_component(nd, 0);
2183 		} else {
2184 			/* not the last component */
2185 			link = walk_component(nd, WALK_MORE);
2186 		}
2187 		if (unlikely(link)) {
2188 			if (IS_ERR(link))
2189 				return PTR_ERR(link);
2190 			/* a symlink to follow */
2191 			nd->stack[depth++].name = name;
2192 			name = link;
2193 			continue;
2194 		}
2195 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2196 			if (nd->flags & LOOKUP_RCU) {
2197 				if (!try_to_unlazy(nd))
2198 					return -ECHILD;
2199 			}
2200 			return -ENOTDIR;
2201 		}
2202 	}
2203 }
2204 
2205 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2206 static const char *path_init(struct nameidata *nd, unsigned flags)
2207 {
2208 	int error;
2209 	const char *s = nd->name->name;
2210 
2211 	if (!*s)
2212 		flags &= ~LOOKUP_RCU;
2213 	if (flags & LOOKUP_RCU)
2214 		rcu_read_lock();
2215 
2216 	nd->flags = flags;
2217 	nd->state |= ND_JUMPED;
2218 	nd->depth = 0;
2219 
2220 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2221 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2222 	smp_rmb();
2223 
2224 	if (nd->state & ND_ROOT_PRESET) {
2225 		struct dentry *root = nd->root.dentry;
2226 		struct inode *inode = root->d_inode;
2227 		if (*s && unlikely(!d_can_lookup(root)))
2228 			return ERR_PTR(-ENOTDIR);
2229 		nd->path = nd->root;
2230 		nd->inode = inode;
2231 		if (flags & LOOKUP_RCU) {
2232 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 			nd->root_seq = nd->seq;
2234 		} else {
2235 			path_get(&nd->path);
2236 		}
2237 		return s;
2238 	}
2239 
2240 	nd->root.mnt = NULL;
2241 	nd->path.mnt = NULL;
2242 	nd->path.dentry = NULL;
2243 
2244 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2245 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2246 		error = nd_jump_root(nd);
2247 		if (unlikely(error))
2248 			return ERR_PTR(error);
2249 		return s;
2250 	}
2251 
2252 	/* Relative pathname -- get the starting-point it is relative to. */
2253 	if (nd->dfd == AT_FDCWD) {
2254 		if (flags & LOOKUP_RCU) {
2255 			struct fs_struct *fs = current->fs;
2256 			unsigned seq;
2257 
2258 			do {
2259 				seq = read_seqcount_begin(&fs->seq);
2260 				nd->path = fs->pwd;
2261 				nd->inode = nd->path.dentry->d_inode;
2262 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2263 			} while (read_seqcount_retry(&fs->seq, seq));
2264 		} else {
2265 			get_fs_pwd(current->fs, &nd->path);
2266 			nd->inode = nd->path.dentry->d_inode;
2267 		}
2268 	} else {
2269 		/* Caller must check execute permissions on the starting path component */
2270 		struct fd f = fdget_raw(nd->dfd);
2271 		struct dentry *dentry;
2272 
2273 		if (!f.file)
2274 			return ERR_PTR(-EBADF);
2275 
2276 		dentry = f.file->f_path.dentry;
2277 
2278 		if (*s && unlikely(!d_can_lookup(dentry))) {
2279 			fdput(f);
2280 			return ERR_PTR(-ENOTDIR);
2281 		}
2282 
2283 		nd->path = f.file->f_path;
2284 		if (flags & LOOKUP_RCU) {
2285 			nd->inode = nd->path.dentry->d_inode;
2286 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2287 		} else {
2288 			path_get(&nd->path);
2289 			nd->inode = nd->path.dentry->d_inode;
2290 		}
2291 		fdput(f);
2292 	}
2293 
2294 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2295 	if (flags & LOOKUP_IS_SCOPED) {
2296 		nd->root = nd->path;
2297 		if (flags & LOOKUP_RCU) {
2298 			nd->root_seq = nd->seq;
2299 		} else {
2300 			path_get(&nd->root);
2301 			nd->state |= ND_ROOT_GRABBED;
2302 		}
2303 	}
2304 	return s;
2305 }
2306 
lookup_last(struct nameidata * nd)2307 static inline const char *lookup_last(struct nameidata *nd)
2308 {
2309 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2310 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2311 
2312 	return walk_component(nd, WALK_TRAILING);
2313 }
2314 
handle_lookup_down(struct nameidata * nd)2315 static int handle_lookup_down(struct nameidata *nd)
2316 {
2317 	if (!(nd->flags & LOOKUP_RCU))
2318 		dget(nd->path.dentry);
2319 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2320 			nd->path.dentry, nd->inode, nd->seq));
2321 }
2322 
2323 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2324 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2325 {
2326 	const char *s = path_init(nd, flags);
2327 	int err;
2328 
2329 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2330 		err = handle_lookup_down(nd);
2331 		if (unlikely(err < 0))
2332 			s = ERR_PTR(err);
2333 	}
2334 
2335 	while (!(err = link_path_walk(s, nd)) &&
2336 	       (s = lookup_last(nd)) != NULL)
2337 		;
2338 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2339 		err = handle_lookup_down(nd);
2340 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2341 	}
2342 	if (!err)
2343 		err = complete_walk(nd);
2344 
2345 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2346 		if (!d_can_lookup(nd->path.dentry))
2347 			err = -ENOTDIR;
2348 	if (!err) {
2349 		*path = nd->path;
2350 		nd->path.mnt = NULL;
2351 		nd->path.dentry = NULL;
2352 	}
2353 	terminate_walk(nd);
2354 	return err;
2355 }
2356 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2357 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2358 		    struct path *path, struct path *root)
2359 {
2360 	int retval;
2361 	struct nameidata nd;
2362 	if (IS_ERR(name))
2363 		return PTR_ERR(name);
2364 	set_nameidata(&nd, dfd, name);
2365 	if (unlikely(root)) {
2366 		nd.root = *root;
2367 		nd.state = ND_ROOT_PRESET;
2368 	}
2369 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2370 	if (unlikely(retval == -ECHILD))
2371 		retval = path_lookupat(&nd, flags, path);
2372 	if (unlikely(retval == -ESTALE))
2373 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2374 
2375 	if (likely(!retval))
2376 		audit_inode(name, path->dentry,
2377 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2378 	restore_nameidata();
2379 	putname(name);
2380 	return retval;
2381 }
2382 
2383 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2384 static int path_parentat(struct nameidata *nd, unsigned flags,
2385 				struct path *parent)
2386 {
2387 	const char *s = path_init(nd, flags);
2388 	int err = link_path_walk(s, nd);
2389 	if (!err)
2390 		err = complete_walk(nd);
2391 	if (!err) {
2392 		*parent = nd->path;
2393 		nd->path.mnt = NULL;
2394 		nd->path.dentry = NULL;
2395 	}
2396 	terminate_walk(nd);
2397 	return err;
2398 }
2399 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2400 static struct filename *filename_parentat(int dfd, struct filename *name,
2401 				unsigned int flags, struct path *parent,
2402 				struct qstr *last, int *type)
2403 {
2404 	int retval;
2405 	struct nameidata nd;
2406 
2407 	if (IS_ERR(name))
2408 		return name;
2409 	set_nameidata(&nd, dfd, name);
2410 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2411 	if (unlikely(retval == -ECHILD))
2412 		retval = path_parentat(&nd, flags, parent);
2413 	if (unlikely(retval == -ESTALE))
2414 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2415 	if (likely(!retval)) {
2416 		*last = nd.last;
2417 		*type = nd.last_type;
2418 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2419 	} else {
2420 		putname(name);
2421 		name = ERR_PTR(retval);
2422 	}
2423 	restore_nameidata();
2424 	return name;
2425 }
2426 
2427 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2428 struct dentry *kern_path_locked(const char *name, struct path *path)
2429 {
2430 	struct filename *filename;
2431 	struct dentry *d;
2432 	struct qstr last;
2433 	int type;
2434 
2435 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2436 				    &last, &type);
2437 	if (IS_ERR(filename))
2438 		return ERR_CAST(filename);
2439 	if (unlikely(type != LAST_NORM)) {
2440 		path_put(path);
2441 		putname(filename);
2442 		return ERR_PTR(-EINVAL);
2443 	}
2444 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2445 	d = __lookup_hash(&last, path->dentry, 0);
2446 	if (IS_ERR(d)) {
2447 		inode_unlock(path->dentry->d_inode);
2448 		path_put(path);
2449 	}
2450 	putname(filename);
2451 	return d;
2452 }
2453 
kern_path(const char * name,unsigned int flags,struct path * path)2454 int kern_path(const char *name, unsigned int flags, struct path *path)
2455 {
2456 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2457 			       flags, path, NULL);
2458 }
2459 EXPORT_SYMBOL(kern_path);
2460 
2461 /**
2462  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2463  * @dentry:  pointer to dentry of the base directory
2464  * @mnt: pointer to vfs mount of the base directory
2465  * @name: pointer to file name
2466  * @flags: lookup flags
2467  * @path: pointer to struct path to fill
2468  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2469 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2470 		    const char *name, unsigned int flags,
2471 		    struct path *path)
2472 {
2473 	struct path root = {.mnt = mnt, .dentry = dentry};
2474 	/* the first argument of filename_lookup() is ignored with root */
2475 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2476 			       flags , path, &root);
2477 }
2478 EXPORT_SYMBOL(vfs_path_lookup);
2479 
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2480 static int lookup_one_len_common(const char *name, struct dentry *base,
2481 				 int len, struct qstr *this)
2482 {
2483 	this->name = name;
2484 	this->len = len;
2485 	this->hash = full_name_hash(base, name, len);
2486 	if (!len)
2487 		return -EACCES;
2488 
2489 	if (unlikely(name[0] == '.')) {
2490 		if (len < 2 || (len == 2 && name[1] == '.'))
2491 			return -EACCES;
2492 	}
2493 
2494 	while (len--) {
2495 		unsigned int c = *(const unsigned char *)name++;
2496 		if (c == '/' || c == '\0')
2497 			return -EACCES;
2498 	}
2499 	/*
2500 	 * See if the low-level filesystem might want
2501 	 * to use its own hash..
2502 	 */
2503 	if (base->d_flags & DCACHE_OP_HASH) {
2504 		int err = base->d_op->d_hash(base, this);
2505 		if (err < 0)
2506 			return err;
2507 	}
2508 
2509 	return inode_permission(base->d_inode, MAY_EXEC);
2510 }
2511 
2512 /**
2513  * try_lookup_one_len - filesystem helper to lookup single pathname component
2514  * @name:	pathname component to lookup
2515  * @base:	base directory to lookup from
2516  * @len:	maximum length @len should be interpreted to
2517  *
2518  * Look up a dentry by name in the dcache, returning NULL if it does not
2519  * currently exist.  The function does not try to create a dentry.
2520  *
2521  * Note that this routine is purely a helper for filesystem usage and should
2522  * not be called by generic code.
2523  *
2524  * The caller must hold base->i_mutex.
2525  */
try_lookup_one_len(const char * name,struct dentry * base,int len)2526 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2527 {
2528 	struct qstr this;
2529 	int err;
2530 
2531 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2532 
2533 	err = lookup_one_len_common(name, base, len, &this);
2534 	if (err)
2535 		return ERR_PTR(err);
2536 
2537 	return lookup_dcache(&this, base, 0);
2538 }
2539 EXPORT_SYMBOL(try_lookup_one_len);
2540 
2541 /**
2542  * lookup_one_len - filesystem helper to lookup single pathname component
2543  * @name:	pathname component to lookup
2544  * @base:	base directory to lookup from
2545  * @len:	maximum length @len should be interpreted to
2546  *
2547  * Note that this routine is purely a helper for filesystem usage and should
2548  * not be called by generic code.
2549  *
2550  * The caller must hold base->i_mutex.
2551  */
lookup_one_len(const char * name,struct dentry * base,int len)2552 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2553 {
2554 	struct dentry *dentry;
2555 	struct qstr this;
2556 	int err;
2557 
2558 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2559 
2560 	err = lookup_one_len_common(name, base, len, &this);
2561 	if (err)
2562 		return ERR_PTR(err);
2563 
2564 	dentry = lookup_dcache(&this, base, 0);
2565 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2566 }
2567 EXPORT_SYMBOL(lookup_one_len);
2568 
2569 /**
2570  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2571  * @name:	pathname component to lookup
2572  * @base:	base directory to lookup from
2573  * @len:	maximum length @len should be interpreted to
2574  *
2575  * Note that this routine is purely a helper for filesystem usage and should
2576  * not be called by generic code.
2577  *
2578  * Unlike lookup_one_len, it should be called without the parent
2579  * i_mutex held, and will take the i_mutex itself if necessary.
2580  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2581 struct dentry *lookup_one_len_unlocked(const char *name,
2582 				       struct dentry *base, int len)
2583 {
2584 	struct qstr this;
2585 	int err;
2586 	struct dentry *ret;
2587 
2588 	err = lookup_one_len_common(name, base, len, &this);
2589 	if (err)
2590 		return ERR_PTR(err);
2591 
2592 	ret = lookup_dcache(&this, base, 0);
2593 	if (!ret)
2594 		ret = lookup_slow(&this, base, 0);
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL(lookup_one_len_unlocked);
2598 
2599 /*
2600  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2601  * on negatives.  Returns known positive or ERR_PTR(); that's what
2602  * most of the users want.  Note that pinned negative with unlocked parent
2603  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2604  * need to be very careful; pinned positives have ->d_inode stable, so
2605  * this one avoids such problems.
2606  */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2607 struct dentry *lookup_positive_unlocked(const char *name,
2608 				       struct dentry *base, int len)
2609 {
2610 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2611 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2612 		dput(ret);
2613 		ret = ERR_PTR(-ENOENT);
2614 	}
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL(lookup_positive_unlocked);
2618 
2619 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2620 int path_pts(struct path *path)
2621 {
2622 	/* Find something mounted on "pts" in the same directory as
2623 	 * the input path.
2624 	 */
2625 	struct dentry *parent = dget_parent(path->dentry);
2626 	struct dentry *child;
2627 	struct qstr this = QSTR_INIT("pts", 3);
2628 
2629 	if (unlikely(!path_connected(path->mnt, parent))) {
2630 		dput(parent);
2631 		return -ENOENT;
2632 	}
2633 	dput(path->dentry);
2634 	path->dentry = parent;
2635 	child = d_hash_and_lookup(parent, &this);
2636 	if (!child)
2637 		return -ENOENT;
2638 
2639 	path->dentry = child;
2640 	dput(parent);
2641 	follow_down(path);
2642 	return 0;
2643 }
2644 #endif
2645 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2646 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2647 		 struct path *path, int *empty)
2648 {
2649 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2650 			       flags, path, NULL);
2651 }
2652 EXPORT_SYMBOL(user_path_at_empty);
2653 
__check_sticky(struct inode * dir,struct inode * inode)2654 int __check_sticky(struct inode *dir, struct inode *inode)
2655 {
2656 	kuid_t fsuid = current_fsuid();
2657 
2658 	if (uid_eq(inode->i_uid, fsuid))
2659 		return 0;
2660 	if (uid_eq(dir->i_uid, fsuid))
2661 		return 0;
2662 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2663 }
2664 EXPORT_SYMBOL(__check_sticky);
2665 
2666 /*
2667  *	Check whether we can remove a link victim from directory dir, check
2668  *  whether the type of victim is right.
2669  *  1. We can't do it if dir is read-only (done in permission())
2670  *  2. We should have write and exec permissions on dir
2671  *  3. We can't remove anything from append-only dir
2672  *  4. We can't do anything with immutable dir (done in permission())
2673  *  5. If the sticky bit on dir is set we should either
2674  *	a. be owner of dir, or
2675  *	b. be owner of victim, or
2676  *	c. have CAP_FOWNER capability
2677  *  6. If the victim is append-only or immutable we can't do antyhing with
2678  *     links pointing to it.
2679  *  7. If the victim has an unknown uid or gid we can't change the inode.
2680  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2681  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2682  * 10. We can't remove a root or mountpoint.
2683  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2684  *     nfs_async_unlink().
2685  */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2686 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2687 {
2688 	struct inode *inode = d_backing_inode(victim);
2689 	int error;
2690 
2691 	if (d_is_negative(victim))
2692 		return -ENOENT;
2693 	BUG_ON(!inode);
2694 
2695 	BUG_ON(victim->d_parent->d_inode != dir);
2696 
2697 	/* Inode writeback is not safe when the uid or gid are invalid. */
2698 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2699 		return -EOVERFLOW;
2700 
2701 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2702 
2703 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2704 	if (error)
2705 		return error;
2706 	if (IS_APPEND(dir))
2707 		return -EPERM;
2708 
2709 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2710 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2711 		return -EPERM;
2712 	if (isdir) {
2713 		if (!d_is_dir(victim))
2714 			return -ENOTDIR;
2715 		if (IS_ROOT(victim))
2716 			return -EBUSY;
2717 	} else if (d_is_dir(victim))
2718 		return -EISDIR;
2719 	if (IS_DEADDIR(dir))
2720 		return -ENOENT;
2721 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2722 		return -EBUSY;
2723 	return 0;
2724 }
2725 
2726 /*	Check whether we can create an object with dentry child in directory
2727  *  dir.
2728  *  1. We can't do it if child already exists (open has special treatment for
2729  *     this case, but since we are inlined it's OK)
2730  *  2. We can't do it if dir is read-only (done in permission())
2731  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2732  *  4. We should have write and exec permissions on dir
2733  *  5. We can't do it if dir is immutable (done in permission())
2734  */
may_create(struct inode * dir,struct dentry * child)2735 static inline int may_create(struct inode *dir, struct dentry *child)
2736 {
2737 	struct user_namespace *s_user_ns;
2738 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2739 	if (child->d_inode)
2740 		return -EEXIST;
2741 	if (IS_DEADDIR(dir))
2742 		return -ENOENT;
2743 	s_user_ns = dir->i_sb->s_user_ns;
2744 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2745 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2746 		return -EOVERFLOW;
2747 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748 }
2749 
2750 /*
2751  * p1 and p2 should be directories on the same fs.
2752  */
lock_rename(struct dentry * p1,struct dentry * p2)2753 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2754 {
2755 	struct dentry *p;
2756 
2757 	if (p1 == p2) {
2758 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2759 		return NULL;
2760 	}
2761 
2762 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2763 
2764 	p = d_ancestor(p2, p1);
2765 	if (p) {
2766 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2767 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2768 		return p;
2769 	}
2770 
2771 	p = d_ancestor(p1, p2);
2772 	if (p) {
2773 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2774 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2775 		return p;
2776 	}
2777 
2778 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2780 	return NULL;
2781 }
2782 EXPORT_SYMBOL(lock_rename);
2783 
unlock_rename(struct dentry * p1,struct dentry * p2)2784 void unlock_rename(struct dentry *p1, struct dentry *p2)
2785 {
2786 	inode_unlock(p1->d_inode);
2787 	if (p1 != p2) {
2788 		inode_unlock(p2->d_inode);
2789 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2790 	}
2791 }
2792 EXPORT_SYMBOL(unlock_rename);
2793 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2794 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2795 		bool want_excl)
2796 {
2797 	int error = may_create(dir, dentry);
2798 	if (error)
2799 		return error;
2800 
2801 	if (!dir->i_op->create)
2802 		return -EACCES;	/* shouldn't it be ENOSYS? */
2803 	mode &= S_IALLUGO;
2804 	mode |= S_IFREG;
2805 	error = security_inode_create(dir, dentry, mode);
2806 	if (error)
2807 		return error;
2808 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2809 	if (!error)
2810 		fsnotify_create(dir, dentry);
2811 	return error;
2812 }
2813 EXPORT_SYMBOL(vfs_create);
2814 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)2815 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2816 		int (*f)(struct dentry *, umode_t, void *),
2817 		void *arg)
2818 {
2819 	struct inode *dir = dentry->d_parent->d_inode;
2820 	int error = may_create(dir, dentry);
2821 	if (error)
2822 		return error;
2823 
2824 	mode &= S_IALLUGO;
2825 	mode |= S_IFREG;
2826 	error = security_inode_create(dir, dentry, mode);
2827 	if (error)
2828 		return error;
2829 	error = f(dentry, mode, arg);
2830 	if (!error)
2831 		fsnotify_create(dir, dentry);
2832 	return error;
2833 }
2834 EXPORT_SYMBOL(vfs_mkobj);
2835 
may_open_dev(const struct path * path)2836 bool may_open_dev(const struct path *path)
2837 {
2838 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2839 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2840 }
2841 
may_open(const struct path * path,int acc_mode,int flag)2842 static int may_open(const struct path *path, int acc_mode, int flag)
2843 {
2844 	struct dentry *dentry = path->dentry;
2845 	struct inode *inode = dentry->d_inode;
2846 	int error;
2847 
2848 	if (!inode)
2849 		return -ENOENT;
2850 
2851 	switch (inode->i_mode & S_IFMT) {
2852 	case S_IFLNK:
2853 		return -ELOOP;
2854 	case S_IFDIR:
2855 		if (acc_mode & MAY_WRITE)
2856 			return -EISDIR;
2857 		if (acc_mode & MAY_EXEC)
2858 			return -EACCES;
2859 		break;
2860 	case S_IFBLK:
2861 	case S_IFCHR:
2862 		if (!may_open_dev(path))
2863 			return -EACCES;
2864 		fallthrough;
2865 	case S_IFIFO:
2866 	case S_IFSOCK:
2867 		if (acc_mode & MAY_EXEC)
2868 			return -EACCES;
2869 		flag &= ~O_TRUNC;
2870 		break;
2871 	case S_IFREG:
2872 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2873 			return -EACCES;
2874 		break;
2875 	}
2876 
2877 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2878 	if (error)
2879 		return error;
2880 
2881 	/*
2882 	 * An append-only file must be opened in append mode for writing.
2883 	 */
2884 	if (IS_APPEND(inode)) {
2885 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2886 			return -EPERM;
2887 		if (flag & O_TRUNC)
2888 			return -EPERM;
2889 	}
2890 
2891 	/* O_NOATIME can only be set by the owner or superuser */
2892 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2893 		return -EPERM;
2894 
2895 	return 0;
2896 }
2897 
handle_truncate(struct file * filp)2898 static int handle_truncate(struct file *filp)
2899 {
2900 	const struct path *path = &filp->f_path;
2901 	struct inode *inode = path->dentry->d_inode;
2902 	int error = get_write_access(inode);
2903 	if (error)
2904 		return error;
2905 	/*
2906 	 * Refuse to truncate files with mandatory locks held on them.
2907 	 */
2908 	error = locks_verify_locked(filp);
2909 	if (!error)
2910 		error = security_path_truncate(path);
2911 	if (!error) {
2912 		error = do_truncate(path->dentry, 0,
2913 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2914 				    filp);
2915 	}
2916 	put_write_access(inode);
2917 	return error;
2918 }
2919 
open_to_namei_flags(int flag)2920 static inline int open_to_namei_flags(int flag)
2921 {
2922 	if ((flag & O_ACCMODE) == 3)
2923 		flag--;
2924 	return flag;
2925 }
2926 
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)2927 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2928 {
2929 	struct user_namespace *s_user_ns;
2930 	int error = security_path_mknod(dir, dentry, mode, 0);
2931 	if (error)
2932 		return error;
2933 
2934 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2935 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2936 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2937 		return -EOVERFLOW;
2938 
2939 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2940 	if (error)
2941 		return error;
2942 
2943 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2944 }
2945 
2946 /*
2947  * Attempt to atomically look up, create and open a file from a negative
2948  * dentry.
2949  *
2950  * Returns 0 if successful.  The file will have been created and attached to
2951  * @file by the filesystem calling finish_open().
2952  *
2953  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2954  * be set.  The caller will need to perform the open themselves.  @path will
2955  * have been updated to point to the new dentry.  This may be negative.
2956  *
2957  * Returns an error code otherwise.
2958  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)2959 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2960 				  struct file *file,
2961 				  int open_flag, umode_t mode)
2962 {
2963 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2964 	struct inode *dir =  nd->path.dentry->d_inode;
2965 	int error;
2966 
2967 	if (nd->flags & LOOKUP_DIRECTORY)
2968 		open_flag |= O_DIRECTORY;
2969 
2970 	file->f_path.dentry = DENTRY_NOT_SET;
2971 	file->f_path.mnt = nd->path.mnt;
2972 	error = dir->i_op->atomic_open(dir, dentry, file,
2973 				       open_to_namei_flags(open_flag), mode);
2974 	d_lookup_done(dentry);
2975 	if (!error) {
2976 		if (file->f_mode & FMODE_OPENED) {
2977 			if (unlikely(dentry != file->f_path.dentry)) {
2978 				dput(dentry);
2979 				dentry = dget(file->f_path.dentry);
2980 			}
2981 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2982 			error = -EIO;
2983 		} else {
2984 			if (file->f_path.dentry) {
2985 				dput(dentry);
2986 				dentry = file->f_path.dentry;
2987 			}
2988 			if (unlikely(d_is_negative(dentry)))
2989 				error = -ENOENT;
2990 		}
2991 	}
2992 	if (error) {
2993 		dput(dentry);
2994 		dentry = ERR_PTR(error);
2995 	}
2996 	return dentry;
2997 }
2998 
2999 /*
3000  * Look up and maybe create and open the last component.
3001  *
3002  * Must be called with parent locked (exclusive in O_CREAT case).
3003  *
3004  * Returns 0 on success, that is, if
3005  *  the file was successfully atomically created (if necessary) and opened, or
3006  *  the file was not completely opened at this time, though lookups and
3007  *  creations were performed.
3008  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3009  * In the latter case dentry returned in @path might be negative if O_CREAT
3010  * hadn't been specified.
3011  *
3012  * An error code is returned on failure.
3013  */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3014 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3015 				  const struct open_flags *op,
3016 				  bool got_write)
3017 {
3018 	struct dentry *dir = nd->path.dentry;
3019 	struct inode *dir_inode = dir->d_inode;
3020 	int open_flag = op->open_flag;
3021 	struct dentry *dentry;
3022 	int error, create_error = 0;
3023 	umode_t mode = op->mode;
3024 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3025 
3026 	if (unlikely(IS_DEADDIR(dir_inode)))
3027 		return ERR_PTR(-ENOENT);
3028 
3029 	file->f_mode &= ~FMODE_CREATED;
3030 	dentry = d_lookup(dir, &nd->last);
3031 	for (;;) {
3032 		if (!dentry) {
3033 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3034 			if (IS_ERR(dentry))
3035 				return dentry;
3036 		}
3037 		if (d_in_lookup(dentry))
3038 			break;
3039 
3040 		error = d_revalidate(dentry, nd->flags);
3041 		if (likely(error > 0))
3042 			break;
3043 		if (error)
3044 			goto out_dput;
3045 		d_invalidate(dentry);
3046 		dput(dentry);
3047 		dentry = NULL;
3048 	}
3049 	if (dentry->d_inode) {
3050 		/* Cached positive dentry: will open in f_op->open */
3051 		return dentry;
3052 	}
3053 
3054 	/*
3055 	 * Checking write permission is tricky, bacuse we don't know if we are
3056 	 * going to actually need it: O_CREAT opens should work as long as the
3057 	 * file exists.  But checking existence breaks atomicity.  The trick is
3058 	 * to check access and if not granted clear O_CREAT from the flags.
3059 	 *
3060 	 * Another problem is returing the "right" error value (e.g. for an
3061 	 * O_EXCL open we want to return EEXIST not EROFS).
3062 	 */
3063 	if (unlikely(!got_write))
3064 		open_flag &= ~O_TRUNC;
3065 	if (open_flag & O_CREAT) {
3066 		if (open_flag & O_EXCL)
3067 			open_flag &= ~O_TRUNC;
3068 		if (!IS_POSIXACL(dir->d_inode))
3069 			mode &= ~current_umask();
3070 		if (likely(got_write))
3071 			create_error = may_o_create(&nd->path, dentry, mode);
3072 		else
3073 			create_error = -EROFS;
3074 	}
3075 	if (create_error)
3076 		open_flag &= ~O_CREAT;
3077 	if (dir_inode->i_op->atomic_open) {
3078 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3079 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3080 			dentry = ERR_PTR(create_error);
3081 		return dentry;
3082 	}
3083 
3084 	if (d_in_lookup(dentry)) {
3085 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3086 							     nd->flags);
3087 		d_lookup_done(dentry);
3088 		if (unlikely(res)) {
3089 			if (IS_ERR(res)) {
3090 				error = PTR_ERR(res);
3091 				goto out_dput;
3092 			}
3093 			dput(dentry);
3094 			dentry = res;
3095 		}
3096 	}
3097 
3098 	/* Negative dentry, just create the file */
3099 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3100 		file->f_mode |= FMODE_CREATED;
3101 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3102 		if (!dir_inode->i_op->create) {
3103 			error = -EACCES;
3104 			goto out_dput;
3105 		}
3106 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3107 						open_flag & O_EXCL);
3108 		if (error)
3109 			goto out_dput;
3110 	}
3111 	if (unlikely(create_error) && !dentry->d_inode) {
3112 		error = create_error;
3113 		goto out_dput;
3114 	}
3115 	return dentry;
3116 
3117 out_dput:
3118 	dput(dentry);
3119 	return ERR_PTR(error);
3120 }
3121 
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3122 static const char *open_last_lookups(struct nameidata *nd,
3123 		   struct file *file, const struct open_flags *op)
3124 {
3125 	struct dentry *dir = nd->path.dentry;
3126 	int open_flag = op->open_flag;
3127 	bool got_write = false;
3128 	unsigned seq;
3129 	struct inode *inode;
3130 	struct dentry *dentry;
3131 	const char *res;
3132 
3133 	nd->flags |= op->intent;
3134 
3135 	if (nd->last_type != LAST_NORM) {
3136 		if (nd->depth)
3137 			put_link(nd);
3138 		return handle_dots(nd, nd->last_type);
3139 	}
3140 
3141 	if (!(open_flag & O_CREAT)) {
3142 		if (nd->last.name[nd->last.len])
3143 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3144 		/* we _can_ be in RCU mode here */
3145 		dentry = lookup_fast(nd, &inode, &seq);
3146 		if (IS_ERR(dentry))
3147 			return ERR_CAST(dentry);
3148 		if (likely(dentry))
3149 			goto finish_lookup;
3150 
3151 		BUG_ON(nd->flags & LOOKUP_RCU);
3152 	} else {
3153 		/* create side of things */
3154 		if (nd->flags & LOOKUP_RCU) {
3155 			if (!try_to_unlazy(nd))
3156 				return ERR_PTR(-ECHILD);
3157 		}
3158 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3159 		/* trailing slashes? */
3160 		if (unlikely(nd->last.name[nd->last.len]))
3161 			return ERR_PTR(-EISDIR);
3162 	}
3163 
3164 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3165 		got_write = !mnt_want_write(nd->path.mnt);
3166 		/*
3167 		 * do _not_ fail yet - we might not need that or fail with
3168 		 * a different error; let lookup_open() decide; we'll be
3169 		 * dropping this one anyway.
3170 		 */
3171 	}
3172 	if (open_flag & O_CREAT)
3173 		inode_lock(dir->d_inode);
3174 	else
3175 		inode_lock_shared(dir->d_inode);
3176 	dentry = lookup_open(nd, file, op, got_write);
3177 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3178 		fsnotify_create(dir->d_inode, dentry);
3179 	if (open_flag & O_CREAT)
3180 		inode_unlock(dir->d_inode);
3181 	else
3182 		inode_unlock_shared(dir->d_inode);
3183 
3184 	if (got_write)
3185 		mnt_drop_write(nd->path.mnt);
3186 
3187 	if (IS_ERR(dentry))
3188 		return ERR_CAST(dentry);
3189 
3190 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3191 		dput(nd->path.dentry);
3192 		nd->path.dentry = dentry;
3193 		return NULL;
3194 	}
3195 
3196 finish_lookup:
3197 	if (nd->depth)
3198 		put_link(nd);
3199 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3200 	if (unlikely(res))
3201 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3202 	return res;
3203 }
3204 
3205 /*
3206  * Handle the last step of open()
3207  */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3208 static int do_open(struct nameidata *nd,
3209 		   struct file *file, const struct open_flags *op)
3210 {
3211 	int open_flag = op->open_flag;
3212 	bool do_truncate;
3213 	int acc_mode;
3214 	int error;
3215 
3216 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3217 		error = complete_walk(nd);
3218 		if (error)
3219 			return error;
3220 	}
3221 	if (!(file->f_mode & FMODE_CREATED))
3222 		audit_inode(nd->name, nd->path.dentry, 0);
3223 	if (open_flag & O_CREAT) {
3224 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3225 			return -EEXIST;
3226 		if (d_is_dir(nd->path.dentry))
3227 			return -EISDIR;
3228 		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3229 					     d_backing_inode(nd->path.dentry));
3230 		if (unlikely(error))
3231 			return error;
3232 	}
3233 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3234 		return -ENOTDIR;
3235 
3236 	do_truncate = false;
3237 	acc_mode = op->acc_mode;
3238 	if (file->f_mode & FMODE_CREATED) {
3239 		/* Don't check for write permission, don't truncate */
3240 		open_flag &= ~O_TRUNC;
3241 		acc_mode = 0;
3242 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3243 		error = mnt_want_write(nd->path.mnt);
3244 		if (error)
3245 			return error;
3246 		do_truncate = true;
3247 	}
3248 	error = may_open(&nd->path, acc_mode, open_flag);
3249 	if (!error && !(file->f_mode & FMODE_OPENED))
3250 		error = vfs_open(&nd->path, file);
3251 	if (!error)
3252 		error = ima_file_check(file, op->acc_mode);
3253 	if (!error && do_truncate)
3254 		error = handle_truncate(file);
3255 	if (unlikely(error > 0)) {
3256 		WARN_ON(1);
3257 		error = -EINVAL;
3258 	}
3259 	if (do_truncate)
3260 		mnt_drop_write(nd->path.mnt);
3261 	return error;
3262 }
3263 
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3264 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3265 {
3266 	struct dentry *child = NULL;
3267 	struct inode *dir = dentry->d_inode;
3268 	struct inode *inode;
3269 	int error;
3270 
3271 	/* we want directory to be writable */
3272 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3273 	if (error)
3274 		goto out_err;
3275 	error = -EOPNOTSUPP;
3276 	if (!dir->i_op->tmpfile)
3277 		goto out_err;
3278 	error = -ENOMEM;
3279 	child = d_alloc(dentry, &slash_name);
3280 	if (unlikely(!child))
3281 		goto out_err;
3282 	error = dir->i_op->tmpfile(dir, child, mode);
3283 	if (error)
3284 		goto out_err;
3285 	error = -ENOENT;
3286 	inode = child->d_inode;
3287 	if (unlikely(!inode))
3288 		goto out_err;
3289 	if (!(open_flag & O_EXCL)) {
3290 		spin_lock(&inode->i_lock);
3291 		inode->i_state |= I_LINKABLE;
3292 		spin_unlock(&inode->i_lock);
3293 	}
3294 	ima_post_create_tmpfile(inode);
3295 	return child;
3296 
3297 out_err:
3298 	dput(child);
3299 	return ERR_PTR(error);
3300 }
3301 EXPORT_SYMBOL(vfs_tmpfile);
3302 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3303 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3304 		const struct open_flags *op,
3305 		struct file *file)
3306 {
3307 	struct dentry *child;
3308 	struct path path;
3309 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3310 	if (unlikely(error))
3311 		return error;
3312 	error = mnt_want_write(path.mnt);
3313 	if (unlikely(error))
3314 		goto out;
3315 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3316 	error = PTR_ERR(child);
3317 	if (IS_ERR(child))
3318 		goto out2;
3319 	dput(path.dentry);
3320 	path.dentry = child;
3321 	audit_inode(nd->name, child, 0);
3322 	/* Don't check for other permissions, the inode was just created */
3323 	error = may_open(&path, 0, op->open_flag);
3324 	if (error)
3325 		goto out2;
3326 	file->f_path.mnt = path.mnt;
3327 	error = finish_open(file, child, NULL);
3328 out2:
3329 	mnt_drop_write(path.mnt);
3330 out:
3331 	path_put(&path);
3332 	return error;
3333 }
3334 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3335 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3336 {
3337 	struct path path;
3338 	int error = path_lookupat(nd, flags, &path);
3339 	if (!error) {
3340 		audit_inode(nd->name, path.dentry, 0);
3341 		error = vfs_open(&path, file);
3342 		path_put(&path);
3343 	}
3344 	return error;
3345 }
3346 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3347 static struct file *path_openat(struct nameidata *nd,
3348 			const struct open_flags *op, unsigned flags)
3349 {
3350 	struct file *file;
3351 	int error;
3352 
3353 	file = alloc_empty_file(op->open_flag, current_cred());
3354 	if (IS_ERR(file))
3355 		return file;
3356 
3357 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3358 		error = do_tmpfile(nd, flags, op, file);
3359 	} else if (unlikely(file->f_flags & O_PATH)) {
3360 		error = do_o_path(nd, flags, file);
3361 	} else {
3362 		const char *s = path_init(nd, flags);
3363 		while (!(error = link_path_walk(s, nd)) &&
3364 		       (s = open_last_lookups(nd, file, op)) != NULL)
3365 			;
3366 		if (!error)
3367 			error = do_open(nd, file, op);
3368 		terminate_walk(nd);
3369 	}
3370 	if (likely(!error)) {
3371 		if (likely(file->f_mode & FMODE_OPENED))
3372 			return file;
3373 		WARN_ON(1);
3374 		error = -EINVAL;
3375 	}
3376 	fput(file);
3377 	if (error == -EOPENSTALE) {
3378 		if (flags & LOOKUP_RCU)
3379 			error = -ECHILD;
3380 		else
3381 			error = -ESTALE;
3382 	}
3383 	return ERR_PTR(error);
3384 }
3385 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3386 struct file *do_filp_open(int dfd, struct filename *pathname,
3387 		const struct open_flags *op)
3388 {
3389 	struct nameidata nd;
3390 	int flags = op->lookup_flags;
3391 	struct file *filp;
3392 
3393 	set_nameidata(&nd, dfd, pathname);
3394 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3395 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3396 		filp = path_openat(&nd, op, flags);
3397 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3398 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3399 	restore_nameidata();
3400 	return filp;
3401 }
3402 
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3403 struct file *do_file_open_root(const struct path *root,
3404 		const char *name, const struct open_flags *op)
3405 {
3406 	struct nameidata nd;
3407 	struct file *file;
3408 	struct filename *filename;
3409 	int flags = op->lookup_flags;
3410 
3411 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3412 		return ERR_PTR(-ELOOP);
3413 
3414 	filename = getname_kernel(name);
3415 	if (IS_ERR(filename))
3416 		return ERR_CAST(filename);
3417 
3418 	set_nameidata(&nd, -1, filename);
3419 	nd.root = *root;
3420 	nd.state = ND_ROOT_PRESET;
3421 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3422 	if (unlikely(file == ERR_PTR(-ECHILD)))
3423 		file = path_openat(&nd, op, flags);
3424 	if (unlikely(file == ERR_PTR(-ESTALE)))
3425 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3426 	restore_nameidata();
3427 	putname(filename);
3428 	return file;
3429 }
3430 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3431 static struct dentry *filename_create(int dfd, struct filename *name,
3432 				struct path *path, unsigned int lookup_flags)
3433 {
3434 	struct dentry *dentry = ERR_PTR(-EEXIST);
3435 	struct qstr last;
3436 	int type;
3437 	int err2;
3438 	int error;
3439 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3440 
3441 	/*
3442 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3443 	 * other flags passed in are ignored!
3444 	 */
3445 	lookup_flags &= LOOKUP_REVAL;
3446 
3447 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3448 	if (IS_ERR(name))
3449 		return ERR_CAST(name);
3450 
3451 	/*
3452 	 * Yucky last component or no last component at all?
3453 	 * (foo/., foo/.., /////)
3454 	 */
3455 	if (unlikely(type != LAST_NORM))
3456 		goto out;
3457 
3458 	/* don't fail immediately if it's r/o, at least try to report other errors */
3459 	err2 = mnt_want_write(path->mnt);
3460 	/*
3461 	 * Do the final lookup.
3462 	 */
3463 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3464 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3465 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3466 	if (IS_ERR(dentry))
3467 		goto unlock;
3468 
3469 	error = -EEXIST;
3470 	if (d_is_positive(dentry))
3471 		goto fail;
3472 
3473 	/*
3474 	 * Special case - lookup gave negative, but... we had foo/bar/
3475 	 * From the vfs_mknod() POV we just have a negative dentry -
3476 	 * all is fine. Let's be bastards - you had / on the end, you've
3477 	 * been asking for (non-existent) directory. -ENOENT for you.
3478 	 */
3479 	if (unlikely(!is_dir && last.name[last.len])) {
3480 		error = -ENOENT;
3481 		goto fail;
3482 	}
3483 	if (unlikely(err2)) {
3484 		error = err2;
3485 		goto fail;
3486 	}
3487 	putname(name);
3488 	return dentry;
3489 fail:
3490 	dput(dentry);
3491 	dentry = ERR_PTR(error);
3492 unlock:
3493 	inode_unlock(path->dentry->d_inode);
3494 	if (!err2)
3495 		mnt_drop_write(path->mnt);
3496 out:
3497 	path_put(path);
3498 	putname(name);
3499 	return dentry;
3500 }
3501 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3502 struct dentry *kern_path_create(int dfd, const char *pathname,
3503 				struct path *path, unsigned int lookup_flags)
3504 {
3505 	return filename_create(dfd, getname_kernel(pathname),
3506 				path, lookup_flags);
3507 }
3508 EXPORT_SYMBOL(kern_path_create);
3509 
done_path_create(struct path * path,struct dentry * dentry)3510 void done_path_create(struct path *path, struct dentry *dentry)
3511 {
3512 	dput(dentry);
3513 	inode_unlock(path->dentry->d_inode);
3514 	mnt_drop_write(path->mnt);
3515 	path_put(path);
3516 }
3517 EXPORT_SYMBOL(done_path_create);
3518 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3519 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3520 				struct path *path, unsigned int lookup_flags)
3521 {
3522 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3523 }
3524 EXPORT_SYMBOL(user_path_create);
3525 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3526 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3527 {
3528 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3529 	int error = may_create(dir, dentry);
3530 
3531 	if (error)
3532 		return error;
3533 
3534 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3535 	    !capable(CAP_MKNOD))
3536 		return -EPERM;
3537 
3538 	if (!dir->i_op->mknod)
3539 		return -EPERM;
3540 
3541 	error = devcgroup_inode_mknod(mode, dev);
3542 	if (error)
3543 		return error;
3544 
3545 	error = security_inode_mknod(dir, dentry, mode, dev);
3546 	if (error)
3547 		return error;
3548 
3549 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3550 	if (!error)
3551 		fsnotify_create(dir, dentry);
3552 	return error;
3553 }
3554 EXPORT_SYMBOL(vfs_mknod);
3555 
may_mknod(umode_t mode)3556 static int may_mknod(umode_t mode)
3557 {
3558 	switch (mode & S_IFMT) {
3559 	case S_IFREG:
3560 	case S_IFCHR:
3561 	case S_IFBLK:
3562 	case S_IFIFO:
3563 	case S_IFSOCK:
3564 	case 0: /* zero mode translates to S_IFREG */
3565 		return 0;
3566 	case S_IFDIR:
3567 		return -EPERM;
3568 	default:
3569 		return -EINVAL;
3570 	}
3571 }
3572 
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3573 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3574 		unsigned int dev)
3575 {
3576 	struct dentry *dentry;
3577 	struct path path;
3578 	int error;
3579 	unsigned int lookup_flags = 0;
3580 
3581 	error = may_mknod(mode);
3582 	if (error)
3583 		return error;
3584 retry:
3585 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3586 	if (IS_ERR(dentry))
3587 		return PTR_ERR(dentry);
3588 
3589 	if (!IS_POSIXACL(path.dentry->d_inode))
3590 		mode &= ~current_umask();
3591 	error = security_path_mknod(&path, dentry, mode, dev);
3592 	if (error)
3593 		goto out;
3594 	switch (mode & S_IFMT) {
3595 		case 0: case S_IFREG:
3596 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3597 			if (!error)
3598 				ima_post_path_mknod(dentry);
3599 			break;
3600 		case S_IFCHR: case S_IFBLK:
3601 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3602 					new_decode_dev(dev));
3603 			break;
3604 		case S_IFIFO: case S_IFSOCK:
3605 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3606 			break;
3607 	}
3608 out:
3609 	done_path_create(&path, dentry);
3610 	if (retry_estale(error, lookup_flags)) {
3611 		lookup_flags |= LOOKUP_REVAL;
3612 		goto retry;
3613 	}
3614 	return error;
3615 }
3616 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3617 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3618 		unsigned int, dev)
3619 {
3620 	return do_mknodat(dfd, filename, mode, dev);
3621 }
3622 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3623 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3624 {
3625 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3626 }
3627 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3628 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3629 {
3630 	int error = may_create(dir, dentry);
3631 	unsigned max_links = dir->i_sb->s_max_links;
3632 
3633 	if (error)
3634 		return error;
3635 
3636 	if (!dir->i_op->mkdir)
3637 		return -EPERM;
3638 
3639 	mode &= (S_IRWXUGO|S_ISVTX);
3640 	error = security_inode_mkdir(dir, dentry, mode);
3641 	if (error)
3642 		return error;
3643 
3644 	if (max_links && dir->i_nlink >= max_links)
3645 		return -EMLINK;
3646 
3647 	error = dir->i_op->mkdir(dir, dentry, mode);
3648 	if (!error)
3649 		fsnotify_mkdir(dir, dentry);
3650 	return error;
3651 }
3652 EXPORT_SYMBOL(vfs_mkdir);
3653 
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3654 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3655 {
3656 	struct dentry *dentry;
3657 	struct path path;
3658 	int error;
3659 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3660 
3661 retry:
3662 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3663 	if (IS_ERR(dentry))
3664 		return PTR_ERR(dentry);
3665 
3666 	if (!IS_POSIXACL(path.dentry->d_inode))
3667 		mode &= ~current_umask();
3668 	error = security_path_mkdir(&path, dentry, mode);
3669 	if (!error)
3670 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3671 	done_path_create(&path, dentry);
3672 	if (retry_estale(error, lookup_flags)) {
3673 		lookup_flags |= LOOKUP_REVAL;
3674 		goto retry;
3675 	}
3676 	return error;
3677 }
3678 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3679 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3680 {
3681 	return do_mkdirat(dfd, pathname, mode);
3682 }
3683 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3684 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3685 {
3686 	return do_mkdirat(AT_FDCWD, pathname, mode);
3687 }
3688 
vfs_rmdir(struct inode * dir,struct dentry * dentry)3689 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3690 {
3691 	int error = may_delete(dir, dentry, 1);
3692 
3693 	if (error)
3694 		return error;
3695 
3696 	if (!dir->i_op->rmdir)
3697 		return -EPERM;
3698 
3699 	dget(dentry);
3700 	inode_lock(dentry->d_inode);
3701 
3702 	error = -EBUSY;
3703 	if (is_local_mountpoint(dentry))
3704 		goto out;
3705 
3706 	error = security_inode_rmdir(dir, dentry);
3707 	if (error)
3708 		goto out;
3709 
3710 	error = dir->i_op->rmdir(dir, dentry);
3711 	if (error)
3712 		goto out;
3713 
3714 	shrink_dcache_parent(dentry);
3715 	dentry->d_inode->i_flags |= S_DEAD;
3716 	dont_mount(dentry);
3717 	detach_mounts(dentry);
3718 
3719 out:
3720 	inode_unlock(dentry->d_inode);
3721 	dput(dentry);
3722 	if (!error)
3723 		d_delete_notify(dir, dentry);
3724 	return error;
3725 }
3726 EXPORT_SYMBOL(vfs_rmdir);
3727 
do_rmdir(int dfd,struct filename * name)3728 long do_rmdir(int dfd, struct filename *name)
3729 {
3730 	int error = 0;
3731 	struct dentry *dentry;
3732 	struct path path;
3733 	struct qstr last;
3734 	int type;
3735 	unsigned int lookup_flags = 0;
3736 retry:
3737 	name = filename_parentat(dfd, name, lookup_flags,
3738 				&path, &last, &type);
3739 	if (IS_ERR(name))
3740 		return PTR_ERR(name);
3741 
3742 	switch (type) {
3743 	case LAST_DOTDOT:
3744 		error = -ENOTEMPTY;
3745 		goto exit1;
3746 	case LAST_DOT:
3747 		error = -EINVAL;
3748 		goto exit1;
3749 	case LAST_ROOT:
3750 		error = -EBUSY;
3751 		goto exit1;
3752 	}
3753 
3754 	error = mnt_want_write(path.mnt);
3755 	if (error)
3756 		goto exit1;
3757 
3758 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3759 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3760 	error = PTR_ERR(dentry);
3761 	if (IS_ERR(dentry))
3762 		goto exit2;
3763 	if (!dentry->d_inode) {
3764 		error = -ENOENT;
3765 		goto exit3;
3766 	}
3767 	error = security_path_rmdir(&path, dentry);
3768 	if (error)
3769 		goto exit3;
3770 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3771 exit3:
3772 	dput(dentry);
3773 exit2:
3774 	inode_unlock(path.dentry->d_inode);
3775 	mnt_drop_write(path.mnt);
3776 exit1:
3777 	path_put(&path);
3778 	if (retry_estale(error, lookup_flags)) {
3779 		lookup_flags |= LOOKUP_REVAL;
3780 		goto retry;
3781 	}
3782 	putname(name);
3783 	return error;
3784 }
3785 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3786 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3787 {
3788 	return do_rmdir(AT_FDCWD, getname(pathname));
3789 }
3790 
3791 /**
3792  * vfs_unlink - unlink a filesystem object
3793  * @dir:	parent directory
3794  * @dentry:	victim
3795  * @delegated_inode: returns victim inode, if the inode is delegated.
3796  *
3797  * The caller must hold dir->i_mutex.
3798  *
3799  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3800  * return a reference to the inode in delegated_inode.  The caller
3801  * should then break the delegation on that inode and retry.  Because
3802  * breaking a delegation may take a long time, the caller should drop
3803  * dir->i_mutex before doing so.
3804  *
3805  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3806  * be appropriate for callers that expect the underlying filesystem not
3807  * to be NFS exported.
3808  */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3809 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3810 {
3811 	struct inode *target = dentry->d_inode;
3812 	int error = may_delete(dir, dentry, 0);
3813 
3814 	if (error)
3815 		return error;
3816 
3817 	if (!dir->i_op->unlink)
3818 		return -EPERM;
3819 
3820 	inode_lock(target);
3821 	if (is_local_mountpoint(dentry))
3822 		error = -EBUSY;
3823 	else {
3824 		error = security_inode_unlink(dir, dentry);
3825 		if (!error) {
3826 			error = try_break_deleg(target, delegated_inode);
3827 			if (error)
3828 				goto out;
3829 			error = dir->i_op->unlink(dir, dentry);
3830 			if (!error) {
3831 				dont_mount(dentry);
3832 				detach_mounts(dentry);
3833 			}
3834 		}
3835 	}
3836 out:
3837 	inode_unlock(target);
3838 
3839 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3840 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
3841 		fsnotify_unlink(dir, dentry);
3842 	} else if (!error) {
3843 		fsnotify_link_count(target);
3844 		d_delete_notify(dir, dentry);
3845 	}
3846 
3847 	return error;
3848 }
3849 EXPORT_SYMBOL(vfs_unlink);
3850 
3851 /*
3852  * Make sure that the actual truncation of the file will occur outside its
3853  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3854  * writeout happening, and we don't want to prevent access to the directory
3855  * while waiting on the I/O.
3856  */
do_unlinkat(int dfd,struct filename * name)3857 long do_unlinkat(int dfd, struct filename *name)
3858 {
3859 	int error;
3860 	struct dentry *dentry;
3861 	struct path path;
3862 	struct qstr last;
3863 	int type;
3864 	struct inode *inode = NULL;
3865 	struct inode *delegated_inode = NULL;
3866 	unsigned int lookup_flags = 0;
3867 retry:
3868 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3869 	if (IS_ERR(name))
3870 		return PTR_ERR(name);
3871 
3872 	error = -EISDIR;
3873 	if (type != LAST_NORM)
3874 		goto exit1;
3875 
3876 	error = mnt_want_write(path.mnt);
3877 	if (error)
3878 		goto exit1;
3879 retry_deleg:
3880 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3881 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3882 	error = PTR_ERR(dentry);
3883 	if (!IS_ERR(dentry)) {
3884 		/* Why not before? Because we want correct error value */
3885 		if (last.name[last.len])
3886 			goto slashes;
3887 		inode = dentry->d_inode;
3888 		if (d_is_negative(dentry))
3889 			goto slashes;
3890 		ihold(inode);
3891 		error = security_path_unlink(&path, dentry);
3892 		if (error)
3893 			goto exit2;
3894 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3895 exit2:
3896 		dput(dentry);
3897 	}
3898 	inode_unlock(path.dentry->d_inode);
3899 	if (inode)
3900 		iput(inode);	/* truncate the inode here */
3901 	inode = NULL;
3902 	if (delegated_inode) {
3903 		error = break_deleg_wait(&delegated_inode);
3904 		if (!error)
3905 			goto retry_deleg;
3906 	}
3907 	mnt_drop_write(path.mnt);
3908 exit1:
3909 	path_put(&path);
3910 	if (retry_estale(error, lookup_flags)) {
3911 		lookup_flags |= LOOKUP_REVAL;
3912 		inode = NULL;
3913 		goto retry;
3914 	}
3915 	putname(name);
3916 	return error;
3917 
3918 slashes:
3919 	if (d_is_negative(dentry))
3920 		error = -ENOENT;
3921 	else if (d_is_dir(dentry))
3922 		error = -EISDIR;
3923 	else
3924 		error = -ENOTDIR;
3925 	goto exit2;
3926 }
3927 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)3928 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3929 {
3930 	if ((flag & ~AT_REMOVEDIR) != 0)
3931 		return -EINVAL;
3932 
3933 	if (flag & AT_REMOVEDIR)
3934 		return do_rmdir(dfd, getname(pathname));
3935 	return do_unlinkat(dfd, getname(pathname));
3936 }
3937 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)3938 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3939 {
3940 	return do_unlinkat(AT_FDCWD, getname(pathname));
3941 }
3942 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)3943 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3944 {
3945 	int error = may_create(dir, dentry);
3946 
3947 	if (error)
3948 		return error;
3949 
3950 	if (!dir->i_op->symlink)
3951 		return -EPERM;
3952 
3953 	error = security_inode_symlink(dir, dentry, oldname);
3954 	if (error)
3955 		return error;
3956 
3957 	error = dir->i_op->symlink(dir, dentry, oldname);
3958 	if (!error)
3959 		fsnotify_create(dir, dentry);
3960 	return error;
3961 }
3962 EXPORT_SYMBOL(vfs_symlink);
3963 
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)3964 static long do_symlinkat(const char __user *oldname, int newdfd,
3965 		  const char __user *newname)
3966 {
3967 	int error;
3968 	struct filename *from;
3969 	struct dentry *dentry;
3970 	struct path path;
3971 	unsigned int lookup_flags = 0;
3972 
3973 	from = getname(oldname);
3974 	if (IS_ERR(from))
3975 		return PTR_ERR(from);
3976 retry:
3977 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3978 	error = PTR_ERR(dentry);
3979 	if (IS_ERR(dentry))
3980 		goto out_putname;
3981 
3982 	error = security_path_symlink(&path, dentry, from->name);
3983 	if (!error)
3984 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3985 	done_path_create(&path, dentry);
3986 	if (retry_estale(error, lookup_flags)) {
3987 		lookup_flags |= LOOKUP_REVAL;
3988 		goto retry;
3989 	}
3990 out_putname:
3991 	putname(from);
3992 	return error;
3993 }
3994 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)3995 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3996 		int, newdfd, const char __user *, newname)
3997 {
3998 	return do_symlinkat(oldname, newdfd, newname);
3999 }
4000 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4001 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4002 {
4003 	return do_symlinkat(oldname, AT_FDCWD, newname);
4004 }
4005 
4006 /**
4007  * vfs_link - create a new link
4008  * @old_dentry:	object to be linked
4009  * @dir:	new parent
4010  * @new_dentry:	where to create the new link
4011  * @delegated_inode: returns inode needing a delegation break
4012  *
4013  * The caller must hold dir->i_mutex
4014  *
4015  * If vfs_link discovers a delegation on the to-be-linked file in need
4016  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4017  * inode in delegated_inode.  The caller should then break the delegation
4018  * and retry.  Because breaking a delegation may take a long time, the
4019  * caller should drop the i_mutex before doing so.
4020  *
4021  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4022  * be appropriate for callers that expect the underlying filesystem not
4023  * to be NFS exported.
4024  */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4025 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4026 {
4027 	struct inode *inode = old_dentry->d_inode;
4028 	unsigned max_links = dir->i_sb->s_max_links;
4029 	int error;
4030 
4031 	if (!inode)
4032 		return -ENOENT;
4033 
4034 	error = may_create(dir, new_dentry);
4035 	if (error)
4036 		return error;
4037 
4038 	if (dir->i_sb != inode->i_sb)
4039 		return -EXDEV;
4040 
4041 	/*
4042 	 * A link to an append-only or immutable file cannot be created.
4043 	 */
4044 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4045 		return -EPERM;
4046 	/*
4047 	 * Updating the link count will likely cause i_uid and i_gid to
4048 	 * be writen back improperly if their true value is unknown to
4049 	 * the vfs.
4050 	 */
4051 	if (HAS_UNMAPPED_ID(inode))
4052 		return -EPERM;
4053 	if (!dir->i_op->link)
4054 		return -EPERM;
4055 	if (S_ISDIR(inode->i_mode))
4056 		return -EPERM;
4057 
4058 	error = security_inode_link(old_dentry, dir, new_dentry);
4059 	if (error)
4060 		return error;
4061 
4062 	inode_lock(inode);
4063 	/* Make sure we don't allow creating hardlink to an unlinked file */
4064 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4065 		error =  -ENOENT;
4066 	else if (max_links && inode->i_nlink >= max_links)
4067 		error = -EMLINK;
4068 	else {
4069 		error = try_break_deleg(inode, delegated_inode);
4070 		if (!error)
4071 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4072 	}
4073 
4074 	if (!error && (inode->i_state & I_LINKABLE)) {
4075 		spin_lock(&inode->i_lock);
4076 		inode->i_state &= ~I_LINKABLE;
4077 		spin_unlock(&inode->i_lock);
4078 	}
4079 	inode_unlock(inode);
4080 	if (!error)
4081 		fsnotify_link(dir, inode, new_dentry);
4082 	return error;
4083 }
4084 EXPORT_SYMBOL(vfs_link);
4085 
4086 /*
4087  * Hardlinks are often used in delicate situations.  We avoid
4088  * security-related surprises by not following symlinks on the
4089  * newname.  --KAB
4090  *
4091  * We don't follow them on the oldname either to be compatible
4092  * with linux 2.0, and to avoid hard-linking to directories
4093  * and other special files.  --ADM
4094  */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4095 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4096 	      const char __user *newname, int flags)
4097 {
4098 	struct dentry *new_dentry;
4099 	struct path old_path, new_path;
4100 	struct inode *delegated_inode = NULL;
4101 	int how = 0;
4102 	int error;
4103 
4104 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4105 		return -EINVAL;
4106 	/*
4107 	 * To use null names we require CAP_DAC_READ_SEARCH
4108 	 * This ensures that not everyone will be able to create
4109 	 * handlink using the passed filedescriptor.
4110 	 */
4111 	if (flags & AT_EMPTY_PATH) {
4112 		if (!capable(CAP_DAC_READ_SEARCH))
4113 			return -ENOENT;
4114 		how = LOOKUP_EMPTY;
4115 	}
4116 
4117 	if (flags & AT_SYMLINK_FOLLOW)
4118 		how |= LOOKUP_FOLLOW;
4119 retry:
4120 	error = user_path_at(olddfd, oldname, how, &old_path);
4121 	if (error)
4122 		return error;
4123 
4124 	new_dentry = user_path_create(newdfd, newname, &new_path,
4125 					(how & LOOKUP_REVAL));
4126 	error = PTR_ERR(new_dentry);
4127 	if (IS_ERR(new_dentry))
4128 		goto out;
4129 
4130 	error = -EXDEV;
4131 	if (old_path.mnt != new_path.mnt)
4132 		goto out_dput;
4133 	error = may_linkat(&old_path);
4134 	if (unlikely(error))
4135 		goto out_dput;
4136 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4137 	if (error)
4138 		goto out_dput;
4139 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4140 out_dput:
4141 	done_path_create(&new_path, new_dentry);
4142 	if (delegated_inode) {
4143 		error = break_deleg_wait(&delegated_inode);
4144 		if (!error) {
4145 			path_put(&old_path);
4146 			goto retry;
4147 		}
4148 	}
4149 	if (retry_estale(error, how)) {
4150 		path_put(&old_path);
4151 		how |= LOOKUP_REVAL;
4152 		goto retry;
4153 	}
4154 out:
4155 	path_put(&old_path);
4156 
4157 	return error;
4158 }
4159 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4160 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4161 		int, newdfd, const char __user *, newname, int, flags)
4162 {
4163 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4164 }
4165 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4166 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4167 {
4168 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4169 }
4170 
4171 /**
4172  * vfs_rename - rename a filesystem object
4173  * @old_dir:	parent of source
4174  * @old_dentry:	source
4175  * @new_dir:	parent of destination
4176  * @new_dentry:	destination
4177  * @delegated_inode: returns an inode needing a delegation break
4178  * @flags:	rename flags
4179  *
4180  * The caller must hold multiple mutexes--see lock_rename()).
4181  *
4182  * If vfs_rename discovers a delegation in need of breaking at either
4183  * the source or destination, it will return -EWOULDBLOCK and return a
4184  * reference to the inode in delegated_inode.  The caller should then
4185  * break the delegation and retry.  Because breaking a delegation may
4186  * take a long time, the caller should drop all locks before doing
4187  * so.
4188  *
4189  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4190  * be appropriate for callers that expect the underlying filesystem not
4191  * to be NFS exported.
4192  *
4193  * The worst of all namespace operations - renaming directory. "Perverted"
4194  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4195  * Problems:
4196  *
4197  *	a) we can get into loop creation.
4198  *	b) race potential - two innocent renames can create a loop together.
4199  *	   That's where 4.4 screws up. Current fix: serialization on
4200  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4201  *	   story.
4202  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4203  *	   and source (if it is not a directory).
4204  *	   And that - after we got ->i_mutex on parents (until then we don't know
4205  *	   whether the target exists).  Solution: try to be smart with locking
4206  *	   order for inodes.  We rely on the fact that tree topology may change
4207  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4208  *	   move will be locked.  Thus we can rank directories by the tree
4209  *	   (ancestors first) and rank all non-directories after them.
4210  *	   That works since everybody except rename does "lock parent, lookup,
4211  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4212  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4213  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4214  *	   we'd better make sure that there's no link(2) for them.
4215  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4216  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4217  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4218  *	   ->i_mutex on parents, which works but leads to some truly excessive
4219  *	   locking].
4220  */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4221 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4222 	       struct inode *new_dir, struct dentry *new_dentry,
4223 	       struct inode **delegated_inode, unsigned int flags)
4224 {
4225 	int error;
4226 	bool is_dir = d_is_dir(old_dentry);
4227 	struct inode *source = old_dentry->d_inode;
4228 	struct inode *target = new_dentry->d_inode;
4229 	bool new_is_dir = false;
4230 	unsigned max_links = new_dir->i_sb->s_max_links;
4231 	struct name_snapshot old_name;
4232 
4233 	if (source == target)
4234 		return 0;
4235 
4236 	error = may_delete(old_dir, old_dentry, is_dir);
4237 	if (error)
4238 		return error;
4239 
4240 	if (!target) {
4241 		error = may_create(new_dir, new_dentry);
4242 	} else {
4243 		new_is_dir = d_is_dir(new_dentry);
4244 
4245 		if (!(flags & RENAME_EXCHANGE))
4246 			error = may_delete(new_dir, new_dentry, is_dir);
4247 		else
4248 			error = may_delete(new_dir, new_dentry, new_is_dir);
4249 	}
4250 	if (error)
4251 		return error;
4252 
4253 	if (!old_dir->i_op->rename)
4254 		return -EPERM;
4255 
4256 	/*
4257 	 * If we are going to change the parent - check write permissions,
4258 	 * we'll need to flip '..'.
4259 	 */
4260 	if (new_dir != old_dir) {
4261 		if (is_dir) {
4262 			error = inode_permission(source, MAY_WRITE);
4263 			if (error)
4264 				return error;
4265 		}
4266 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4267 			error = inode_permission(target, MAY_WRITE);
4268 			if (error)
4269 				return error;
4270 		}
4271 	}
4272 
4273 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4274 				      flags);
4275 	if (error)
4276 		return error;
4277 
4278 	take_dentry_name_snapshot(&old_name, old_dentry);
4279 	dget(new_dentry);
4280 	if (!is_dir || (flags & RENAME_EXCHANGE))
4281 		lock_two_nondirectories(source, target);
4282 	else if (target)
4283 		inode_lock(target);
4284 
4285 	error = -EBUSY;
4286 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4287 		goto out;
4288 
4289 	if (max_links && new_dir != old_dir) {
4290 		error = -EMLINK;
4291 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4292 			goto out;
4293 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4294 		    old_dir->i_nlink >= max_links)
4295 			goto out;
4296 	}
4297 	if (!is_dir) {
4298 		error = try_break_deleg(source, delegated_inode);
4299 		if (error)
4300 			goto out;
4301 	}
4302 	if (target && !new_is_dir) {
4303 		error = try_break_deleg(target, delegated_inode);
4304 		if (error)
4305 			goto out;
4306 	}
4307 	error = old_dir->i_op->rename(old_dir, old_dentry,
4308 				       new_dir, new_dentry, flags);
4309 	if (error)
4310 		goto out;
4311 
4312 	if (!(flags & RENAME_EXCHANGE) && target) {
4313 		if (is_dir) {
4314 			shrink_dcache_parent(new_dentry);
4315 			target->i_flags |= S_DEAD;
4316 		}
4317 		dont_mount(new_dentry);
4318 		detach_mounts(new_dentry);
4319 	}
4320 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4321 		if (!(flags & RENAME_EXCHANGE))
4322 			d_move(old_dentry, new_dentry);
4323 		else
4324 			d_exchange(old_dentry, new_dentry);
4325 	}
4326 out:
4327 	if (!is_dir || (flags & RENAME_EXCHANGE))
4328 		unlock_two_nondirectories(source, target);
4329 	else if (target)
4330 		inode_unlock(target);
4331 	dput(new_dentry);
4332 	if (!error) {
4333 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4334 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4335 		if (flags & RENAME_EXCHANGE) {
4336 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4337 				      new_is_dir, NULL, new_dentry);
4338 		}
4339 	}
4340 	release_dentry_name_snapshot(&old_name);
4341 
4342 	return error;
4343 }
4344 EXPORT_SYMBOL(vfs_rename);
4345 
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4346 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4347 			const char __user *newname, unsigned int flags)
4348 {
4349 	struct dentry *old_dentry, *new_dentry;
4350 	struct dentry *trap;
4351 	struct path old_path, new_path;
4352 	struct qstr old_last, new_last;
4353 	int old_type, new_type;
4354 	struct inode *delegated_inode = NULL;
4355 	struct filename *from;
4356 	struct filename *to;
4357 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4358 	bool should_retry = false;
4359 	int error;
4360 
4361 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4362 		return -EINVAL;
4363 
4364 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4365 	    (flags & RENAME_EXCHANGE))
4366 		return -EINVAL;
4367 
4368 	if (flags & RENAME_EXCHANGE)
4369 		target_flags = 0;
4370 
4371 retry:
4372 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4373 				&old_path, &old_last, &old_type);
4374 	if (IS_ERR(from)) {
4375 		error = PTR_ERR(from);
4376 		goto exit;
4377 	}
4378 
4379 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4380 				&new_path, &new_last, &new_type);
4381 	if (IS_ERR(to)) {
4382 		error = PTR_ERR(to);
4383 		goto exit1;
4384 	}
4385 
4386 	error = -EXDEV;
4387 	if (old_path.mnt != new_path.mnt)
4388 		goto exit2;
4389 
4390 	error = -EBUSY;
4391 	if (old_type != LAST_NORM)
4392 		goto exit2;
4393 
4394 	if (flags & RENAME_NOREPLACE)
4395 		error = -EEXIST;
4396 	if (new_type != LAST_NORM)
4397 		goto exit2;
4398 
4399 	error = mnt_want_write(old_path.mnt);
4400 	if (error)
4401 		goto exit2;
4402 
4403 retry_deleg:
4404 	trap = lock_rename(new_path.dentry, old_path.dentry);
4405 
4406 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4407 	error = PTR_ERR(old_dentry);
4408 	if (IS_ERR(old_dentry))
4409 		goto exit3;
4410 	/* source must exist */
4411 	error = -ENOENT;
4412 	if (d_is_negative(old_dentry))
4413 		goto exit4;
4414 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4415 	error = PTR_ERR(new_dentry);
4416 	if (IS_ERR(new_dentry))
4417 		goto exit4;
4418 	error = -EEXIST;
4419 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4420 		goto exit5;
4421 	if (flags & RENAME_EXCHANGE) {
4422 		error = -ENOENT;
4423 		if (d_is_negative(new_dentry))
4424 			goto exit5;
4425 
4426 		if (!d_is_dir(new_dentry)) {
4427 			error = -ENOTDIR;
4428 			if (new_last.name[new_last.len])
4429 				goto exit5;
4430 		}
4431 	}
4432 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4433 	if (!d_is_dir(old_dentry)) {
4434 		error = -ENOTDIR;
4435 		if (old_last.name[old_last.len])
4436 			goto exit5;
4437 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4438 			goto exit5;
4439 	}
4440 	/* source should not be ancestor of target */
4441 	error = -EINVAL;
4442 	if (old_dentry == trap)
4443 		goto exit5;
4444 	/* target should not be an ancestor of source */
4445 	if (!(flags & RENAME_EXCHANGE))
4446 		error = -ENOTEMPTY;
4447 	if (new_dentry == trap)
4448 		goto exit5;
4449 
4450 	error = security_path_rename(&old_path, old_dentry,
4451 				     &new_path, new_dentry, flags);
4452 	if (error)
4453 		goto exit5;
4454 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4455 			   new_path.dentry->d_inode, new_dentry,
4456 			   &delegated_inode, flags);
4457 exit5:
4458 	dput(new_dentry);
4459 exit4:
4460 	dput(old_dentry);
4461 exit3:
4462 	unlock_rename(new_path.dentry, old_path.dentry);
4463 	if (delegated_inode) {
4464 		error = break_deleg_wait(&delegated_inode);
4465 		if (!error)
4466 			goto retry_deleg;
4467 	}
4468 	mnt_drop_write(old_path.mnt);
4469 exit2:
4470 	if (retry_estale(error, lookup_flags))
4471 		should_retry = true;
4472 	path_put(&new_path);
4473 	putname(to);
4474 exit1:
4475 	path_put(&old_path);
4476 	putname(from);
4477 	if (should_retry) {
4478 		should_retry = false;
4479 		lookup_flags |= LOOKUP_REVAL;
4480 		goto retry;
4481 	}
4482 exit:
4483 	return error;
4484 }
4485 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4486 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4487 		int, newdfd, const char __user *, newname, unsigned int, flags)
4488 {
4489 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4490 }
4491 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4492 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4493 		int, newdfd, const char __user *, newname)
4494 {
4495 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4496 }
4497 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4498 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4499 {
4500 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4501 }
4502 
readlink_copy(char __user * buffer,int buflen,const char * link)4503 int readlink_copy(char __user *buffer, int buflen, const char *link)
4504 {
4505 	int len = PTR_ERR(link);
4506 	if (IS_ERR(link))
4507 		goto out;
4508 
4509 	len = strlen(link);
4510 	if (len > (unsigned) buflen)
4511 		len = buflen;
4512 	if (copy_to_user(buffer, link, len))
4513 		len = -EFAULT;
4514 out:
4515 	return len;
4516 }
4517 
4518 /**
4519  * vfs_readlink - copy symlink body into userspace buffer
4520  * @dentry: dentry on which to get symbolic link
4521  * @buffer: user memory pointer
4522  * @buflen: size of buffer
4523  *
4524  * Does not touch atime.  That's up to the caller if necessary
4525  *
4526  * Does not call security hook.
4527  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4528 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4529 {
4530 	struct inode *inode = d_inode(dentry);
4531 	DEFINE_DELAYED_CALL(done);
4532 	const char *link;
4533 	int res;
4534 
4535 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4536 		if (unlikely(inode->i_op->readlink))
4537 			return inode->i_op->readlink(dentry, buffer, buflen);
4538 
4539 		if (!d_is_symlink(dentry))
4540 			return -EINVAL;
4541 
4542 		spin_lock(&inode->i_lock);
4543 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4544 		spin_unlock(&inode->i_lock);
4545 	}
4546 
4547 	link = READ_ONCE(inode->i_link);
4548 	if (!link) {
4549 		link = inode->i_op->get_link(dentry, inode, &done);
4550 		if (IS_ERR(link))
4551 			return PTR_ERR(link);
4552 	}
4553 	res = readlink_copy(buffer, buflen, link);
4554 	do_delayed_call(&done);
4555 	return res;
4556 }
4557 EXPORT_SYMBOL(vfs_readlink);
4558 
4559 /**
4560  * vfs_get_link - get symlink body
4561  * @dentry: dentry on which to get symbolic link
4562  * @done: caller needs to free returned data with this
4563  *
4564  * Calls security hook and i_op->get_link() on the supplied inode.
4565  *
4566  * It does not touch atime.  That's up to the caller if necessary.
4567  *
4568  * Does not work on "special" symlinks like /proc/$$/fd/N
4569  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4570 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4571 {
4572 	const char *res = ERR_PTR(-EINVAL);
4573 	struct inode *inode = d_inode(dentry);
4574 
4575 	if (d_is_symlink(dentry)) {
4576 		res = ERR_PTR(security_inode_readlink(dentry));
4577 		if (!res)
4578 			res = inode->i_op->get_link(dentry, inode, done);
4579 	}
4580 	return res;
4581 }
4582 EXPORT_SYMBOL(vfs_get_link);
4583 
4584 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4585 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4586 			  struct delayed_call *callback)
4587 {
4588 	char *kaddr;
4589 	struct page *page;
4590 	struct address_space *mapping = inode->i_mapping;
4591 
4592 	if (!dentry) {
4593 		page = find_get_page(mapping, 0);
4594 		if (!page)
4595 			return ERR_PTR(-ECHILD);
4596 		if (!PageUptodate(page)) {
4597 			put_page(page);
4598 			return ERR_PTR(-ECHILD);
4599 		}
4600 	} else {
4601 		page = read_mapping_page(mapping, 0, NULL);
4602 		if (IS_ERR(page))
4603 			return (char*)page;
4604 	}
4605 	set_delayed_call(callback, page_put_link, page);
4606 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4607 	kaddr = page_address(page);
4608 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4609 	return kaddr;
4610 }
4611 
4612 EXPORT_SYMBOL(page_get_link);
4613 
page_put_link(void * arg)4614 void page_put_link(void *arg)
4615 {
4616 	put_page(arg);
4617 }
4618 EXPORT_SYMBOL(page_put_link);
4619 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4620 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4621 {
4622 	DEFINE_DELAYED_CALL(done);
4623 	int res = readlink_copy(buffer, buflen,
4624 				page_get_link(dentry, d_inode(dentry),
4625 					      &done));
4626 	do_delayed_call(&done);
4627 	return res;
4628 }
4629 EXPORT_SYMBOL(page_readlink);
4630 
4631 /*
4632  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4633  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4634 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4635 {
4636 	struct address_space *mapping = inode->i_mapping;
4637 	struct page *page;
4638 	void *fsdata;
4639 	int err;
4640 	unsigned int flags = 0;
4641 	if (nofs)
4642 		flags |= AOP_FLAG_NOFS;
4643 
4644 retry:
4645 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4646 				flags, &page, &fsdata);
4647 	if (err)
4648 		goto fail;
4649 
4650 	memcpy(page_address(page), symname, len-1);
4651 
4652 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4653 							page, fsdata);
4654 	if (err < 0)
4655 		goto fail;
4656 	if (err < len-1)
4657 		goto retry;
4658 
4659 	mark_inode_dirty(inode);
4660 	return 0;
4661 fail:
4662 	return err;
4663 }
4664 EXPORT_SYMBOL(__page_symlink);
4665 
page_symlink(struct inode * inode,const char * symname,int len)4666 int page_symlink(struct inode *inode, const char *symname, int len)
4667 {
4668 	return __page_symlink(inode, symname, len,
4669 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4670 }
4671 EXPORT_SYMBOL(page_symlink);
4672 
4673 const struct inode_operations page_symlink_inode_operations = {
4674 	.get_link	= page_get_link,
4675 };
4676 EXPORT_SYMBOL(page_symlink_inode_operations);
4677