• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <xen/xen.h>
15 
16 #ifdef DEBUG
17 /* For development, we want to crash whenever the ring is screwed. */
18 #define BAD_RING(_vq, fmt, args...)				\
19 	do {							\
20 		dev_err(&(_vq)->vq.vdev->dev,			\
21 			"%s:"fmt, (_vq)->vq.name, ##args);	\
22 		BUG();						\
23 	} while (0)
24 /* Caller is supposed to guarantee no reentry. */
25 #define START_USE(_vq)						\
26 	do {							\
27 		if ((_vq)->in_use)				\
28 			panic("%s:in_use = %i\n",		\
29 			      (_vq)->vq.name, (_vq)->in_use);	\
30 		(_vq)->in_use = __LINE__;			\
31 	} while (0)
32 #define END_USE(_vq) \
33 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
34 #define LAST_ADD_TIME_UPDATE(_vq)				\
35 	do {							\
36 		ktime_t now = ktime_get();			\
37 								\
38 		/* No kick or get, with .1 second between?  Warn. */ \
39 		if ((_vq)->last_add_time_valid)			\
40 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
41 				(_vq)->last_add_time)) > 100);	\
42 		(_vq)->last_add_time = now;			\
43 		(_vq)->last_add_time_valid = true;		\
44 	} while (0)
45 #define LAST_ADD_TIME_CHECK(_vq)				\
46 	do {							\
47 		if ((_vq)->last_add_time_valid) {		\
48 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
49 				      (_vq)->last_add_time)) > 100); \
50 		}						\
51 	} while (0)
52 #define LAST_ADD_TIME_INVALID(_vq)				\
53 	((_vq)->last_add_time_valid = false)
54 #else
55 #define BAD_RING(_vq, fmt, args...)				\
56 	do {							\
57 		dev_err(&_vq->vq.vdev->dev,			\
58 			"%s:"fmt, (_vq)->vq.name, ##args);	\
59 		(_vq)->broken = true;				\
60 	} while (0)
61 #define START_USE(vq)
62 #define END_USE(vq)
63 #define LAST_ADD_TIME_UPDATE(vq)
64 #define LAST_ADD_TIME_CHECK(vq)
65 #define LAST_ADD_TIME_INVALID(vq)
66 #endif
67 
68 struct vring_desc_state_split {
69 	void *data;			/* Data for callback. */
70 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
71 };
72 
73 struct vring_desc_state_packed {
74 	void *data;			/* Data for callback. */
75 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
76 	u16 num;			/* Descriptor list length. */
77 	u16 next;			/* The next desc state in a list. */
78 	u16 last;			/* The last desc state in a list. */
79 };
80 
81 struct vring_desc_extra_packed {
82 	dma_addr_t addr;		/* Buffer DMA addr. */
83 	u32 len;			/* Buffer length. */
84 	u16 flags;			/* Descriptor flags. */
85 };
86 
87 struct vring_virtqueue {
88 	struct virtqueue vq;
89 
90 	/* Is this a packed ring? */
91 	bool packed_ring;
92 
93 	/* Is DMA API used? */
94 	bool use_dma_api;
95 
96 	/* Can we use weak barriers? */
97 	bool weak_barriers;
98 
99 	/* Other side has made a mess, don't try any more. */
100 	bool broken;
101 
102 	/* Host supports indirect buffers */
103 	bool indirect;
104 
105 	/* Host publishes avail event idx */
106 	bool event;
107 
108 	/* Head of free buffer list. */
109 	unsigned int free_head;
110 	/* Number we've added since last sync. */
111 	unsigned int num_added;
112 
113 	/* Last used index we've seen. */
114 	u16 last_used_idx;
115 
116 	union {
117 		/* Available for split ring */
118 		struct {
119 			/* Actual memory layout for this queue. */
120 			struct vring vring;
121 
122 			/* Last written value to avail->flags */
123 			u16 avail_flags_shadow;
124 
125 			/*
126 			 * Last written value to avail->idx in
127 			 * guest byte order.
128 			 */
129 			u16 avail_idx_shadow;
130 
131 			/* Per-descriptor state. */
132 			struct vring_desc_state_split *desc_state;
133 
134 			/* DMA address and size information */
135 			dma_addr_t queue_dma_addr;
136 			size_t queue_size_in_bytes;
137 		} split;
138 
139 		/* Available for packed ring */
140 		struct {
141 			/* Actual memory layout for this queue. */
142 			struct {
143 				unsigned int num;
144 				struct vring_packed_desc *desc;
145 				struct vring_packed_desc_event *driver;
146 				struct vring_packed_desc_event *device;
147 			} vring;
148 
149 			/* Driver ring wrap counter. */
150 			bool avail_wrap_counter;
151 
152 			/* Device ring wrap counter. */
153 			bool used_wrap_counter;
154 
155 			/* Avail used flags. */
156 			u16 avail_used_flags;
157 
158 			/* Index of the next avail descriptor. */
159 			u16 next_avail_idx;
160 
161 			/*
162 			 * Last written value to driver->flags in
163 			 * guest byte order.
164 			 */
165 			u16 event_flags_shadow;
166 
167 			/* Per-descriptor state. */
168 			struct vring_desc_state_packed *desc_state;
169 			struct vring_desc_extra_packed *desc_extra;
170 
171 			/* DMA address and size information */
172 			dma_addr_t ring_dma_addr;
173 			dma_addr_t driver_event_dma_addr;
174 			dma_addr_t device_event_dma_addr;
175 			size_t ring_size_in_bytes;
176 			size_t event_size_in_bytes;
177 		} packed;
178 	};
179 
180 	/* How to notify other side. FIXME: commonalize hcalls! */
181 	bool (*notify)(struct virtqueue *vq);
182 
183 	/* DMA, allocation, and size information */
184 	bool we_own_ring;
185 
186 #ifdef DEBUG
187 	/* They're supposed to lock for us. */
188 	unsigned int in_use;
189 
190 	/* Figure out if their kicks are too delayed. */
191 	bool last_add_time_valid;
192 	ktime_t last_add_time;
193 #endif
194 };
195 
196 
197 /*
198  * Helpers.
199  */
200 
201 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
202 
virtqueue_use_indirect(struct virtqueue * _vq,unsigned int total_sg)203 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
204 					  unsigned int total_sg)
205 {
206 	struct vring_virtqueue *vq = to_vvq(_vq);
207 
208 	/*
209 	 * If the host supports indirect descriptor tables, and we have multiple
210 	 * buffers, then go indirect. FIXME: tune this threshold
211 	 */
212 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
213 }
214 
215 /*
216  * Modern virtio devices have feature bits to specify whether they need a
217  * quirk and bypass the IOMMU. If not there, just use the DMA API.
218  *
219  * If there, the interaction between virtio and DMA API is messy.
220  *
221  * On most systems with virtio, physical addresses match bus addresses,
222  * and it doesn't particularly matter whether we use the DMA API.
223  *
224  * On some systems, including Xen and any system with a physical device
225  * that speaks virtio behind a physical IOMMU, we must use the DMA API
226  * for virtio DMA to work at all.
227  *
228  * On other systems, including SPARC and PPC64, virtio-pci devices are
229  * enumerated as though they are behind an IOMMU, but the virtio host
230  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
231  * there or somehow map everything as the identity.
232  *
233  * For the time being, we preserve historic behavior and bypass the DMA
234  * API.
235  *
236  * TODO: install a per-device DMA ops structure that does the right thing
237  * taking into account all the above quirks, and use the DMA API
238  * unconditionally on data path.
239  */
240 
vring_use_dma_api(struct virtio_device * vdev)241 static bool vring_use_dma_api(struct virtio_device *vdev)
242 {
243 	if (!virtio_has_dma_quirk(vdev))
244 		return true;
245 
246 	/* Otherwise, we are left to guess. */
247 	/*
248 	 * In theory, it's possible to have a buggy QEMU-supposed
249 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
250 	 * such a configuration, virtio has never worked and will
251 	 * not work without an even larger kludge.  Instead, enable
252 	 * the DMA API if we're a Xen guest, which at least allows
253 	 * all of the sensible Xen configurations to work correctly.
254 	 */
255 	if (xen_domain())
256 		return true;
257 
258 	return false;
259 }
260 
virtio_max_dma_size(struct virtio_device * vdev)261 size_t virtio_max_dma_size(struct virtio_device *vdev)
262 {
263 	size_t max_segment_size = SIZE_MAX;
264 
265 	if (vring_use_dma_api(vdev))
266 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
267 
268 	return max_segment_size;
269 }
270 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
271 
vring_alloc_queue(struct virtio_device * vdev,size_t size,dma_addr_t * dma_handle,gfp_t flag)272 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
273 			      dma_addr_t *dma_handle, gfp_t flag)
274 {
275 	if (vring_use_dma_api(vdev)) {
276 		return dma_alloc_coherent(vdev->dev.parent, size,
277 					  dma_handle, flag);
278 	} else {
279 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
280 
281 		if (queue) {
282 			phys_addr_t phys_addr = virt_to_phys(queue);
283 			*dma_handle = (dma_addr_t)phys_addr;
284 
285 			/*
286 			 * Sanity check: make sure we dind't truncate
287 			 * the address.  The only arches I can find that
288 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
289 			 * are certain non-highmem MIPS and x86
290 			 * configurations, but these configurations
291 			 * should never allocate physical pages above 32
292 			 * bits, so this is fine.  Just in case, throw a
293 			 * warning and abort if we end up with an
294 			 * unrepresentable address.
295 			 */
296 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
297 				free_pages_exact(queue, PAGE_ALIGN(size));
298 				return NULL;
299 			}
300 		}
301 		return queue;
302 	}
303 }
304 
vring_free_queue(struct virtio_device * vdev,size_t size,void * queue,dma_addr_t dma_handle)305 static void vring_free_queue(struct virtio_device *vdev, size_t size,
306 			     void *queue, dma_addr_t dma_handle)
307 {
308 	if (vring_use_dma_api(vdev))
309 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
310 	else
311 		free_pages_exact(queue, PAGE_ALIGN(size));
312 }
313 
314 /*
315  * The DMA ops on various arches are rather gnarly right now, and
316  * making all of the arch DMA ops work on the vring device itself
317  * is a mess.  For now, we use the parent device for DMA ops.
318  */
vring_dma_dev(const struct vring_virtqueue * vq)319 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
320 {
321 	return vq->vq.vdev->dev.parent;
322 }
323 
324 /* Map one sg entry. */
vring_map_one_sg(const struct vring_virtqueue * vq,struct scatterlist * sg,enum dma_data_direction direction)325 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
326 				   struct scatterlist *sg,
327 				   enum dma_data_direction direction)
328 {
329 	if (!vq->use_dma_api)
330 		return (dma_addr_t)sg_phys(sg);
331 
332 	/*
333 	 * We can't use dma_map_sg, because we don't use scatterlists in
334 	 * the way it expects (we don't guarantee that the scatterlist
335 	 * will exist for the lifetime of the mapping).
336 	 */
337 	return dma_map_page(vring_dma_dev(vq),
338 			    sg_page(sg), sg->offset, sg->length,
339 			    direction);
340 }
341 
vring_map_single(const struct vring_virtqueue * vq,void * cpu_addr,size_t size,enum dma_data_direction direction)342 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
343 				   void *cpu_addr, size_t size,
344 				   enum dma_data_direction direction)
345 {
346 	if (!vq->use_dma_api)
347 		return (dma_addr_t)virt_to_phys(cpu_addr);
348 
349 	return dma_map_single(vring_dma_dev(vq),
350 			      cpu_addr, size, direction);
351 }
352 
vring_mapping_error(const struct vring_virtqueue * vq,dma_addr_t addr)353 static int vring_mapping_error(const struct vring_virtqueue *vq,
354 			       dma_addr_t addr)
355 {
356 	if (!vq->use_dma_api)
357 		return 0;
358 
359 	return dma_mapping_error(vring_dma_dev(vq), addr);
360 }
361 
362 
363 /*
364  * Split ring specific functions - *_split().
365  */
366 
vring_unmap_one_split(const struct vring_virtqueue * vq,struct vring_desc * desc)367 static void vring_unmap_one_split(const struct vring_virtqueue *vq,
368 				  struct vring_desc *desc)
369 {
370 	u16 flags;
371 
372 	if (!vq->use_dma_api)
373 		return;
374 
375 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
376 
377 	if (flags & VRING_DESC_F_INDIRECT) {
378 		dma_unmap_single(vring_dma_dev(vq),
379 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
380 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
381 				 (flags & VRING_DESC_F_WRITE) ?
382 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
383 	} else {
384 		dma_unmap_page(vring_dma_dev(vq),
385 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
386 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
387 			       (flags & VRING_DESC_F_WRITE) ?
388 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
389 	}
390 }
391 
alloc_indirect_split(struct virtqueue * _vq,unsigned int total_sg,gfp_t gfp)392 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
393 					       unsigned int total_sg,
394 					       gfp_t gfp)
395 {
396 	struct vring_desc *desc;
397 	unsigned int i;
398 
399 	/*
400 	 * We require lowmem mappings for the descriptors because
401 	 * otherwise virt_to_phys will give us bogus addresses in the
402 	 * virtqueue.
403 	 */
404 	gfp &= ~__GFP_HIGHMEM;
405 
406 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
407 	if (!desc)
408 		return NULL;
409 
410 	for (i = 0; i < total_sg; i++)
411 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
412 	return desc;
413 }
414 
virtqueue_add_split(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)415 static inline int virtqueue_add_split(struct virtqueue *_vq,
416 				      struct scatterlist *sgs[],
417 				      unsigned int total_sg,
418 				      unsigned int out_sgs,
419 				      unsigned int in_sgs,
420 				      void *data,
421 				      void *ctx,
422 				      gfp_t gfp)
423 {
424 	struct vring_virtqueue *vq = to_vvq(_vq);
425 	struct scatterlist *sg;
426 	struct vring_desc *desc;
427 	unsigned int i, n, avail, descs_used, prev, err_idx;
428 	int head;
429 	bool indirect;
430 
431 	START_USE(vq);
432 
433 	BUG_ON(data == NULL);
434 	BUG_ON(ctx && vq->indirect);
435 
436 	if (unlikely(vq->broken)) {
437 		END_USE(vq);
438 		return -EIO;
439 	}
440 
441 	LAST_ADD_TIME_UPDATE(vq);
442 
443 	BUG_ON(total_sg == 0);
444 
445 	head = vq->free_head;
446 
447 	if (virtqueue_use_indirect(_vq, total_sg))
448 		desc = alloc_indirect_split(_vq, total_sg, gfp);
449 	else {
450 		desc = NULL;
451 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
452 	}
453 
454 	if (desc) {
455 		/* Use a single buffer which doesn't continue */
456 		indirect = true;
457 		/* Set up rest to use this indirect table. */
458 		i = 0;
459 		descs_used = 1;
460 	} else {
461 		indirect = false;
462 		desc = vq->split.vring.desc;
463 		i = head;
464 		descs_used = total_sg;
465 	}
466 
467 	if (vq->vq.num_free < descs_used) {
468 		pr_debug("Can't add buf len %i - avail = %i\n",
469 			 descs_used, vq->vq.num_free);
470 		/* FIXME: for historical reasons, we force a notify here if
471 		 * there are outgoing parts to the buffer.  Presumably the
472 		 * host should service the ring ASAP. */
473 		if (out_sgs)
474 			vq->notify(&vq->vq);
475 		if (indirect)
476 			kfree(desc);
477 		END_USE(vq);
478 		return -ENOSPC;
479 	}
480 
481 	for (n = 0; n < out_sgs; n++) {
482 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
483 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
484 			if (vring_mapping_error(vq, addr))
485 				goto unmap_release;
486 
487 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
488 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
489 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
490 			prev = i;
491 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
492 		}
493 	}
494 	for (; n < (out_sgs + in_sgs); n++) {
495 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
496 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
497 			if (vring_mapping_error(vq, addr))
498 				goto unmap_release;
499 
500 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
501 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
502 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
503 			prev = i;
504 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
505 		}
506 	}
507 	/* Last one doesn't continue. */
508 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
509 
510 	if (indirect) {
511 		/* Now that the indirect table is filled in, map it. */
512 		dma_addr_t addr = vring_map_single(
513 			vq, desc, total_sg * sizeof(struct vring_desc),
514 			DMA_TO_DEVICE);
515 		if (vring_mapping_error(vq, addr))
516 			goto unmap_release;
517 
518 		vq->split.vring.desc[head].flags = cpu_to_virtio16(_vq->vdev,
519 				VRING_DESC_F_INDIRECT);
520 		vq->split.vring.desc[head].addr = cpu_to_virtio64(_vq->vdev,
521 				addr);
522 
523 		vq->split.vring.desc[head].len = cpu_to_virtio32(_vq->vdev,
524 				total_sg * sizeof(struct vring_desc));
525 	}
526 
527 	/* We're using some buffers from the free list. */
528 	vq->vq.num_free -= descs_used;
529 
530 	/* Update free pointer */
531 	if (indirect)
532 		vq->free_head = virtio16_to_cpu(_vq->vdev,
533 					vq->split.vring.desc[head].next);
534 	else
535 		vq->free_head = i;
536 
537 	/* Store token and indirect buffer state. */
538 	vq->split.desc_state[head].data = data;
539 	if (indirect)
540 		vq->split.desc_state[head].indir_desc = desc;
541 	else
542 		vq->split.desc_state[head].indir_desc = ctx;
543 
544 	/* Put entry in available array (but don't update avail->idx until they
545 	 * do sync). */
546 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
547 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
548 
549 	/* Descriptors and available array need to be set before we expose the
550 	 * new available array entries. */
551 	virtio_wmb(vq->weak_barriers);
552 	vq->split.avail_idx_shadow++;
553 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
554 						vq->split.avail_idx_shadow);
555 	vq->num_added++;
556 
557 	pr_debug("Added buffer head %i to %p\n", head, vq);
558 	END_USE(vq);
559 
560 	/* This is very unlikely, but theoretically possible.  Kick
561 	 * just in case. */
562 	if (unlikely(vq->num_added == (1 << 16) - 1))
563 		virtqueue_kick(_vq);
564 
565 	return 0;
566 
567 unmap_release:
568 	err_idx = i;
569 
570 	if (indirect)
571 		i = 0;
572 	else
573 		i = head;
574 
575 	for (n = 0; n < total_sg; n++) {
576 		if (i == err_idx)
577 			break;
578 		vring_unmap_one_split(vq, &desc[i]);
579 		i = virtio16_to_cpu(_vq->vdev, desc[i].next);
580 	}
581 
582 	if (indirect)
583 		kfree(desc);
584 
585 	END_USE(vq);
586 	return -ENOMEM;
587 }
588 
virtqueue_kick_prepare_split(struct virtqueue * _vq)589 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
590 {
591 	struct vring_virtqueue *vq = to_vvq(_vq);
592 	u16 new, old;
593 	bool needs_kick;
594 
595 	START_USE(vq);
596 	/* We need to expose available array entries before checking avail
597 	 * event. */
598 	virtio_mb(vq->weak_barriers);
599 
600 	old = vq->split.avail_idx_shadow - vq->num_added;
601 	new = vq->split.avail_idx_shadow;
602 	vq->num_added = 0;
603 
604 	LAST_ADD_TIME_CHECK(vq);
605 	LAST_ADD_TIME_INVALID(vq);
606 
607 	if (vq->event) {
608 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
609 					vring_avail_event(&vq->split.vring)),
610 					      new, old);
611 	} else {
612 		needs_kick = !(vq->split.vring.used->flags &
613 					cpu_to_virtio16(_vq->vdev,
614 						VRING_USED_F_NO_NOTIFY));
615 	}
616 	END_USE(vq);
617 	return needs_kick;
618 }
619 
detach_buf_split(struct vring_virtqueue * vq,unsigned int head,void ** ctx)620 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
621 			     void **ctx)
622 {
623 	unsigned int i, j;
624 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
625 
626 	/* Clear data ptr. */
627 	vq->split.desc_state[head].data = NULL;
628 
629 	/* Put back on free list: unmap first-level descriptors and find end */
630 	i = head;
631 
632 	while (vq->split.vring.desc[i].flags & nextflag) {
633 		vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
634 		i = virtio16_to_cpu(vq->vq.vdev, vq->split.vring.desc[i].next);
635 		vq->vq.num_free++;
636 	}
637 
638 	vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
639 	vq->split.vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev,
640 						vq->free_head);
641 	vq->free_head = head;
642 
643 	/* Plus final descriptor */
644 	vq->vq.num_free++;
645 
646 	if (vq->indirect) {
647 		struct vring_desc *indir_desc =
648 				vq->split.desc_state[head].indir_desc;
649 		u32 len;
650 
651 		/* Free the indirect table, if any, now that it's unmapped. */
652 		if (!indir_desc)
653 			return;
654 
655 		len = virtio32_to_cpu(vq->vq.vdev,
656 				vq->split.vring.desc[head].len);
657 
658 		BUG_ON(!(vq->split.vring.desc[head].flags &
659 			 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
660 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
661 
662 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
663 			vring_unmap_one_split(vq, &indir_desc[j]);
664 
665 		kfree(indir_desc);
666 		vq->split.desc_state[head].indir_desc = NULL;
667 	} else if (ctx) {
668 		*ctx = vq->split.desc_state[head].indir_desc;
669 	}
670 }
671 
more_used_split(const struct vring_virtqueue * vq)672 static inline bool more_used_split(const struct vring_virtqueue *vq)
673 {
674 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
675 			vq->split.vring.used->idx);
676 }
677 
virtqueue_get_buf_ctx_split(struct virtqueue * _vq,unsigned int * len,void ** ctx)678 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
679 					 unsigned int *len,
680 					 void **ctx)
681 {
682 	struct vring_virtqueue *vq = to_vvq(_vq);
683 	void *ret;
684 	unsigned int i;
685 	u16 last_used;
686 
687 	START_USE(vq);
688 
689 	if (unlikely(vq->broken)) {
690 		END_USE(vq);
691 		return NULL;
692 	}
693 
694 	if (!more_used_split(vq)) {
695 		pr_debug("No more buffers in queue\n");
696 		END_USE(vq);
697 		return NULL;
698 	}
699 
700 	/* Only get used array entries after they have been exposed by host. */
701 	virtio_rmb(vq->weak_barriers);
702 
703 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
704 	i = virtio32_to_cpu(_vq->vdev,
705 			vq->split.vring.used->ring[last_used].id);
706 	*len = virtio32_to_cpu(_vq->vdev,
707 			vq->split.vring.used->ring[last_used].len);
708 
709 	if (unlikely(i >= vq->split.vring.num)) {
710 		BAD_RING(vq, "id %u out of range\n", i);
711 		return NULL;
712 	}
713 	if (unlikely(!vq->split.desc_state[i].data)) {
714 		BAD_RING(vq, "id %u is not a head!\n", i);
715 		return NULL;
716 	}
717 
718 	/* detach_buf_split clears data, so grab it now. */
719 	ret = vq->split.desc_state[i].data;
720 	detach_buf_split(vq, i, ctx);
721 	vq->last_used_idx++;
722 	/* If we expect an interrupt for the next entry, tell host
723 	 * by writing event index and flush out the write before
724 	 * the read in the next get_buf call. */
725 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
726 		virtio_store_mb(vq->weak_barriers,
727 				&vring_used_event(&vq->split.vring),
728 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
729 
730 	LAST_ADD_TIME_INVALID(vq);
731 
732 	END_USE(vq);
733 	return ret;
734 }
735 
virtqueue_disable_cb_split(struct virtqueue * _vq)736 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
737 {
738 	struct vring_virtqueue *vq = to_vvq(_vq);
739 
740 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
741 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
742 		if (!vq->event)
743 			vq->split.vring.avail->flags =
744 				cpu_to_virtio16(_vq->vdev,
745 						vq->split.avail_flags_shadow);
746 	}
747 }
748 
virtqueue_enable_cb_prepare_split(struct virtqueue * _vq)749 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
750 {
751 	struct vring_virtqueue *vq = to_vvq(_vq);
752 	u16 last_used_idx;
753 
754 	START_USE(vq);
755 
756 	/* We optimistically turn back on interrupts, then check if there was
757 	 * more to do. */
758 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
759 	 * either clear the flags bit or point the event index at the next
760 	 * entry. Always do both to keep code simple. */
761 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
762 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
763 		if (!vq->event)
764 			vq->split.vring.avail->flags =
765 				cpu_to_virtio16(_vq->vdev,
766 						vq->split.avail_flags_shadow);
767 	}
768 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
769 			last_used_idx = vq->last_used_idx);
770 	END_USE(vq);
771 	return last_used_idx;
772 }
773 
virtqueue_poll_split(struct virtqueue * _vq,unsigned last_used_idx)774 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
775 {
776 	struct vring_virtqueue *vq = to_vvq(_vq);
777 
778 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
779 			vq->split.vring.used->idx);
780 }
781 
virtqueue_enable_cb_delayed_split(struct virtqueue * _vq)782 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
783 {
784 	struct vring_virtqueue *vq = to_vvq(_vq);
785 	u16 bufs;
786 
787 	START_USE(vq);
788 
789 	/* We optimistically turn back on interrupts, then check if there was
790 	 * more to do. */
791 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
792 	 * either clear the flags bit or point the event index at the next
793 	 * entry. Always update the event index to keep code simple. */
794 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
795 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
796 		if (!vq->event)
797 			vq->split.vring.avail->flags =
798 				cpu_to_virtio16(_vq->vdev,
799 						vq->split.avail_flags_shadow);
800 	}
801 	/* TODO: tune this threshold */
802 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
803 
804 	virtio_store_mb(vq->weak_barriers,
805 			&vring_used_event(&vq->split.vring),
806 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
807 
808 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
809 					- vq->last_used_idx) > bufs)) {
810 		END_USE(vq);
811 		return false;
812 	}
813 
814 	END_USE(vq);
815 	return true;
816 }
817 
virtqueue_detach_unused_buf_split(struct virtqueue * _vq)818 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
819 {
820 	struct vring_virtqueue *vq = to_vvq(_vq);
821 	unsigned int i;
822 	void *buf;
823 
824 	START_USE(vq);
825 
826 	for (i = 0; i < vq->split.vring.num; i++) {
827 		if (!vq->split.desc_state[i].data)
828 			continue;
829 		/* detach_buf_split clears data, so grab it now. */
830 		buf = vq->split.desc_state[i].data;
831 		detach_buf_split(vq, i, NULL);
832 		vq->split.avail_idx_shadow--;
833 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
834 				vq->split.avail_idx_shadow);
835 		END_USE(vq);
836 		return buf;
837 	}
838 	/* That should have freed everything. */
839 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
840 
841 	END_USE(vq);
842 	return NULL;
843 }
844 
vring_create_virtqueue_split(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)845 static struct virtqueue *vring_create_virtqueue_split(
846 	unsigned int index,
847 	unsigned int num,
848 	unsigned int vring_align,
849 	struct virtio_device *vdev,
850 	bool weak_barriers,
851 	bool may_reduce_num,
852 	bool context,
853 	bool (*notify)(struct virtqueue *),
854 	void (*callback)(struct virtqueue *),
855 	const char *name)
856 {
857 	struct virtqueue *vq;
858 	void *queue = NULL;
859 	dma_addr_t dma_addr;
860 	size_t queue_size_in_bytes;
861 	struct vring vring;
862 
863 	/* We assume num is a power of 2. */
864 	if (num & (num - 1)) {
865 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
866 		return NULL;
867 	}
868 
869 	/* TODO: allocate each queue chunk individually */
870 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
871 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
872 					  &dma_addr,
873 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
874 		if (queue)
875 			break;
876 		if (!may_reduce_num)
877 			return NULL;
878 	}
879 
880 	if (!num)
881 		return NULL;
882 
883 	if (!queue) {
884 		/* Try to get a single page. You are my only hope! */
885 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
886 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
887 	}
888 	if (!queue)
889 		return NULL;
890 
891 	queue_size_in_bytes = vring_size(num, vring_align);
892 	vring_init(&vring, num, queue, vring_align);
893 
894 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
895 				   notify, callback, name);
896 	if (!vq) {
897 		vring_free_queue(vdev, queue_size_in_bytes, queue,
898 				 dma_addr);
899 		return NULL;
900 	}
901 
902 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
903 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
904 	to_vvq(vq)->we_own_ring = true;
905 
906 	return vq;
907 }
908 
909 
910 /*
911  * Packed ring specific functions - *_packed().
912  */
913 
vring_unmap_state_packed(const struct vring_virtqueue * vq,struct vring_desc_extra_packed * state)914 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
915 				     struct vring_desc_extra_packed *state)
916 {
917 	u16 flags;
918 
919 	if (!vq->use_dma_api)
920 		return;
921 
922 	flags = state->flags;
923 
924 	if (flags & VRING_DESC_F_INDIRECT) {
925 		dma_unmap_single(vring_dma_dev(vq),
926 				 state->addr, state->len,
927 				 (flags & VRING_DESC_F_WRITE) ?
928 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
929 	} else {
930 		dma_unmap_page(vring_dma_dev(vq),
931 			       state->addr, state->len,
932 			       (flags & VRING_DESC_F_WRITE) ?
933 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
934 	}
935 }
936 
vring_unmap_desc_packed(const struct vring_virtqueue * vq,struct vring_packed_desc * desc)937 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
938 				   struct vring_packed_desc *desc)
939 {
940 	u16 flags;
941 
942 	if (!vq->use_dma_api)
943 		return;
944 
945 	flags = le16_to_cpu(desc->flags);
946 
947 	if (flags & VRING_DESC_F_INDIRECT) {
948 		dma_unmap_single(vring_dma_dev(vq),
949 				 le64_to_cpu(desc->addr),
950 				 le32_to_cpu(desc->len),
951 				 (flags & VRING_DESC_F_WRITE) ?
952 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
953 	} else {
954 		dma_unmap_page(vring_dma_dev(vq),
955 			       le64_to_cpu(desc->addr),
956 			       le32_to_cpu(desc->len),
957 			       (flags & VRING_DESC_F_WRITE) ?
958 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
959 	}
960 }
961 
alloc_indirect_packed(unsigned int total_sg,gfp_t gfp)962 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
963 						       gfp_t gfp)
964 {
965 	struct vring_packed_desc *desc;
966 
967 	/*
968 	 * We require lowmem mappings for the descriptors because
969 	 * otherwise virt_to_phys will give us bogus addresses in the
970 	 * virtqueue.
971 	 */
972 	gfp &= ~__GFP_HIGHMEM;
973 
974 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
975 
976 	return desc;
977 }
978 
virtqueue_add_indirect_packed(struct vring_virtqueue * vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)979 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
980 				       struct scatterlist *sgs[],
981 				       unsigned int total_sg,
982 				       unsigned int out_sgs,
983 				       unsigned int in_sgs,
984 				       void *data,
985 				       gfp_t gfp)
986 {
987 	struct vring_packed_desc *desc;
988 	struct scatterlist *sg;
989 	unsigned int i, n, err_idx;
990 	u16 head, id;
991 	dma_addr_t addr;
992 
993 	head = vq->packed.next_avail_idx;
994 	desc = alloc_indirect_packed(total_sg, gfp);
995 	if (!desc)
996 		return -ENOMEM;
997 
998 	if (unlikely(vq->vq.num_free < 1)) {
999 		pr_debug("Can't add buf len 1 - avail = 0\n");
1000 		kfree(desc);
1001 		END_USE(vq);
1002 		return -ENOSPC;
1003 	}
1004 
1005 	i = 0;
1006 	id = vq->free_head;
1007 	BUG_ON(id == vq->packed.vring.num);
1008 
1009 	for (n = 0; n < out_sgs + in_sgs; n++) {
1010 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1011 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1012 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1013 			if (vring_mapping_error(vq, addr))
1014 				goto unmap_release;
1015 
1016 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1017 						0 : VRING_DESC_F_WRITE);
1018 			desc[i].addr = cpu_to_le64(addr);
1019 			desc[i].len = cpu_to_le32(sg->length);
1020 			i++;
1021 		}
1022 	}
1023 
1024 	/* Now that the indirect table is filled in, map it. */
1025 	addr = vring_map_single(vq, desc,
1026 			total_sg * sizeof(struct vring_packed_desc),
1027 			DMA_TO_DEVICE);
1028 	if (vring_mapping_error(vq, addr))
1029 		goto unmap_release;
1030 
1031 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1032 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1033 				sizeof(struct vring_packed_desc));
1034 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1035 
1036 	if (vq->use_dma_api) {
1037 		vq->packed.desc_extra[id].addr = addr;
1038 		vq->packed.desc_extra[id].len = total_sg *
1039 				sizeof(struct vring_packed_desc);
1040 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1041 						  vq->packed.avail_used_flags;
1042 	}
1043 
1044 	/*
1045 	 * A driver MUST NOT make the first descriptor in the list
1046 	 * available before all subsequent descriptors comprising
1047 	 * the list are made available.
1048 	 */
1049 	virtio_wmb(vq->weak_barriers);
1050 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1051 						vq->packed.avail_used_flags);
1052 
1053 	/* We're using some buffers from the free list. */
1054 	vq->vq.num_free -= 1;
1055 
1056 	/* Update free pointer */
1057 	n = head + 1;
1058 	if (n >= vq->packed.vring.num) {
1059 		n = 0;
1060 		vq->packed.avail_wrap_counter ^= 1;
1061 		vq->packed.avail_used_flags ^=
1062 				1 << VRING_PACKED_DESC_F_AVAIL |
1063 				1 << VRING_PACKED_DESC_F_USED;
1064 	}
1065 	vq->packed.next_avail_idx = n;
1066 	vq->free_head = vq->packed.desc_state[id].next;
1067 
1068 	/* Store token and indirect buffer state. */
1069 	vq->packed.desc_state[id].num = 1;
1070 	vq->packed.desc_state[id].data = data;
1071 	vq->packed.desc_state[id].indir_desc = desc;
1072 	vq->packed.desc_state[id].last = id;
1073 
1074 	vq->num_added += 1;
1075 
1076 	pr_debug("Added buffer head %i to %p\n", head, vq);
1077 	END_USE(vq);
1078 
1079 	return 0;
1080 
1081 unmap_release:
1082 	err_idx = i;
1083 
1084 	for (i = 0; i < err_idx; i++)
1085 		vring_unmap_desc_packed(vq, &desc[i]);
1086 
1087 	kfree(desc);
1088 
1089 	END_USE(vq);
1090 	return -ENOMEM;
1091 }
1092 
virtqueue_add_packed(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)1093 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1094 				       struct scatterlist *sgs[],
1095 				       unsigned int total_sg,
1096 				       unsigned int out_sgs,
1097 				       unsigned int in_sgs,
1098 				       void *data,
1099 				       void *ctx,
1100 				       gfp_t gfp)
1101 {
1102 	struct vring_virtqueue *vq = to_vvq(_vq);
1103 	struct vring_packed_desc *desc;
1104 	struct scatterlist *sg;
1105 	unsigned int i, n, c, descs_used, err_idx;
1106 	__le16 head_flags, flags;
1107 	u16 head, id, prev, curr, avail_used_flags;
1108 	int err;
1109 
1110 	START_USE(vq);
1111 
1112 	BUG_ON(data == NULL);
1113 	BUG_ON(ctx && vq->indirect);
1114 
1115 	if (unlikely(vq->broken)) {
1116 		END_USE(vq);
1117 		return -EIO;
1118 	}
1119 
1120 	LAST_ADD_TIME_UPDATE(vq);
1121 
1122 	BUG_ON(total_sg == 0);
1123 
1124 	if (virtqueue_use_indirect(_vq, total_sg)) {
1125 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1126 						    in_sgs, data, gfp);
1127 		if (err != -ENOMEM) {
1128 			END_USE(vq);
1129 			return err;
1130 		}
1131 
1132 		/* fall back on direct */
1133 	}
1134 
1135 	head = vq->packed.next_avail_idx;
1136 	avail_used_flags = vq->packed.avail_used_flags;
1137 
1138 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1139 
1140 	desc = vq->packed.vring.desc;
1141 	i = head;
1142 	descs_used = total_sg;
1143 
1144 	if (unlikely(vq->vq.num_free < descs_used)) {
1145 		pr_debug("Can't add buf len %i - avail = %i\n",
1146 			 descs_used, vq->vq.num_free);
1147 		END_USE(vq);
1148 		return -ENOSPC;
1149 	}
1150 
1151 	id = vq->free_head;
1152 	BUG_ON(id == vq->packed.vring.num);
1153 
1154 	curr = id;
1155 	c = 0;
1156 	for (n = 0; n < out_sgs + in_sgs; n++) {
1157 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1158 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1159 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1160 			if (vring_mapping_error(vq, addr))
1161 				goto unmap_release;
1162 
1163 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1164 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1165 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1166 			if (i == head)
1167 				head_flags = flags;
1168 			else
1169 				desc[i].flags = flags;
1170 
1171 			desc[i].addr = cpu_to_le64(addr);
1172 			desc[i].len = cpu_to_le32(sg->length);
1173 			desc[i].id = cpu_to_le16(id);
1174 
1175 			if (unlikely(vq->use_dma_api)) {
1176 				vq->packed.desc_extra[curr].addr = addr;
1177 				vq->packed.desc_extra[curr].len = sg->length;
1178 				vq->packed.desc_extra[curr].flags =
1179 					le16_to_cpu(flags);
1180 			}
1181 			prev = curr;
1182 			curr = vq->packed.desc_state[curr].next;
1183 
1184 			if ((unlikely(++i >= vq->packed.vring.num))) {
1185 				i = 0;
1186 				vq->packed.avail_used_flags ^=
1187 					1 << VRING_PACKED_DESC_F_AVAIL |
1188 					1 << VRING_PACKED_DESC_F_USED;
1189 			}
1190 		}
1191 	}
1192 
1193 	if (i < head)
1194 		vq->packed.avail_wrap_counter ^= 1;
1195 
1196 	/* We're using some buffers from the free list. */
1197 	vq->vq.num_free -= descs_used;
1198 
1199 	/* Update free pointer */
1200 	vq->packed.next_avail_idx = i;
1201 	vq->free_head = curr;
1202 
1203 	/* Store token. */
1204 	vq->packed.desc_state[id].num = descs_used;
1205 	vq->packed.desc_state[id].data = data;
1206 	vq->packed.desc_state[id].indir_desc = ctx;
1207 	vq->packed.desc_state[id].last = prev;
1208 
1209 	/*
1210 	 * A driver MUST NOT make the first descriptor in the list
1211 	 * available before all subsequent descriptors comprising
1212 	 * the list are made available.
1213 	 */
1214 	virtio_wmb(vq->weak_barriers);
1215 	vq->packed.vring.desc[head].flags = head_flags;
1216 	vq->num_added += descs_used;
1217 
1218 	pr_debug("Added buffer head %i to %p\n", head, vq);
1219 	END_USE(vq);
1220 
1221 	return 0;
1222 
1223 unmap_release:
1224 	err_idx = i;
1225 	i = head;
1226 
1227 	vq->packed.avail_used_flags = avail_used_flags;
1228 
1229 	for (n = 0; n < total_sg; n++) {
1230 		if (i == err_idx)
1231 			break;
1232 		vring_unmap_desc_packed(vq, &desc[i]);
1233 		i++;
1234 		if (i >= vq->packed.vring.num)
1235 			i = 0;
1236 	}
1237 
1238 	END_USE(vq);
1239 	return -EIO;
1240 }
1241 
virtqueue_kick_prepare_packed(struct virtqueue * _vq)1242 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1243 {
1244 	struct vring_virtqueue *vq = to_vvq(_vq);
1245 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1246 	bool needs_kick;
1247 	union {
1248 		struct {
1249 			__le16 off_wrap;
1250 			__le16 flags;
1251 		};
1252 		u32 u32;
1253 	} snapshot;
1254 
1255 	START_USE(vq);
1256 
1257 	/*
1258 	 * We need to expose the new flags value before checking notification
1259 	 * suppressions.
1260 	 */
1261 	virtio_mb(vq->weak_barriers);
1262 
1263 	old = vq->packed.next_avail_idx - vq->num_added;
1264 	new = vq->packed.next_avail_idx;
1265 	vq->num_added = 0;
1266 
1267 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1268 	flags = le16_to_cpu(snapshot.flags);
1269 
1270 	LAST_ADD_TIME_CHECK(vq);
1271 	LAST_ADD_TIME_INVALID(vq);
1272 
1273 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1274 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1275 		goto out;
1276 	}
1277 
1278 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1279 
1280 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1281 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1282 	if (wrap_counter != vq->packed.avail_wrap_counter)
1283 		event_idx -= vq->packed.vring.num;
1284 
1285 	needs_kick = vring_need_event(event_idx, new, old);
1286 out:
1287 	END_USE(vq);
1288 	return needs_kick;
1289 }
1290 
detach_buf_packed(struct vring_virtqueue * vq,unsigned int id,void ** ctx)1291 static void detach_buf_packed(struct vring_virtqueue *vq,
1292 			      unsigned int id, void **ctx)
1293 {
1294 	struct vring_desc_state_packed *state = NULL;
1295 	struct vring_packed_desc *desc;
1296 	unsigned int i, curr;
1297 
1298 	state = &vq->packed.desc_state[id];
1299 
1300 	/* Clear data ptr. */
1301 	state->data = NULL;
1302 
1303 	vq->packed.desc_state[state->last].next = vq->free_head;
1304 	vq->free_head = id;
1305 	vq->vq.num_free += state->num;
1306 
1307 	if (unlikely(vq->use_dma_api)) {
1308 		curr = id;
1309 		for (i = 0; i < state->num; i++) {
1310 			vring_unmap_state_packed(vq,
1311 				&vq->packed.desc_extra[curr]);
1312 			curr = vq->packed.desc_state[curr].next;
1313 		}
1314 	}
1315 
1316 	if (vq->indirect) {
1317 		u32 len;
1318 
1319 		/* Free the indirect table, if any, now that it's unmapped. */
1320 		desc = state->indir_desc;
1321 		if (!desc)
1322 			return;
1323 
1324 		if (vq->use_dma_api) {
1325 			len = vq->packed.desc_extra[id].len;
1326 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1327 					i++)
1328 				vring_unmap_desc_packed(vq, &desc[i]);
1329 		}
1330 		kfree(desc);
1331 		state->indir_desc = NULL;
1332 	} else if (ctx) {
1333 		*ctx = state->indir_desc;
1334 	}
1335 }
1336 
is_used_desc_packed(const struct vring_virtqueue * vq,u16 idx,bool used_wrap_counter)1337 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1338 				       u16 idx, bool used_wrap_counter)
1339 {
1340 	bool avail, used;
1341 	u16 flags;
1342 
1343 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1344 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1345 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1346 
1347 	return avail == used && used == used_wrap_counter;
1348 }
1349 
more_used_packed(const struct vring_virtqueue * vq)1350 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1351 {
1352 	return is_used_desc_packed(vq, vq->last_used_idx,
1353 			vq->packed.used_wrap_counter);
1354 }
1355 
virtqueue_get_buf_ctx_packed(struct virtqueue * _vq,unsigned int * len,void ** ctx)1356 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1357 					  unsigned int *len,
1358 					  void **ctx)
1359 {
1360 	struct vring_virtqueue *vq = to_vvq(_vq);
1361 	u16 last_used, id;
1362 	void *ret;
1363 
1364 	START_USE(vq);
1365 
1366 	if (unlikely(vq->broken)) {
1367 		END_USE(vq);
1368 		return NULL;
1369 	}
1370 
1371 	if (!more_used_packed(vq)) {
1372 		pr_debug("No more buffers in queue\n");
1373 		END_USE(vq);
1374 		return NULL;
1375 	}
1376 
1377 	/* Only get used elements after they have been exposed by host. */
1378 	virtio_rmb(vq->weak_barriers);
1379 
1380 	last_used = vq->last_used_idx;
1381 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1382 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1383 
1384 	if (unlikely(id >= vq->packed.vring.num)) {
1385 		BAD_RING(vq, "id %u out of range\n", id);
1386 		return NULL;
1387 	}
1388 	if (unlikely(!vq->packed.desc_state[id].data)) {
1389 		BAD_RING(vq, "id %u is not a head!\n", id);
1390 		return NULL;
1391 	}
1392 
1393 	/* detach_buf_packed clears data, so grab it now. */
1394 	ret = vq->packed.desc_state[id].data;
1395 	detach_buf_packed(vq, id, ctx);
1396 
1397 	vq->last_used_idx += vq->packed.desc_state[id].num;
1398 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1399 		vq->last_used_idx -= vq->packed.vring.num;
1400 		vq->packed.used_wrap_counter ^= 1;
1401 	}
1402 
1403 	/*
1404 	 * If we expect an interrupt for the next entry, tell host
1405 	 * by writing event index and flush out the write before
1406 	 * the read in the next get_buf call.
1407 	 */
1408 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1409 		virtio_store_mb(vq->weak_barriers,
1410 				&vq->packed.vring.driver->off_wrap,
1411 				cpu_to_le16(vq->last_used_idx |
1412 					(vq->packed.used_wrap_counter <<
1413 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1414 
1415 	LAST_ADD_TIME_INVALID(vq);
1416 
1417 	END_USE(vq);
1418 	return ret;
1419 }
1420 
virtqueue_disable_cb_packed(struct virtqueue * _vq)1421 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1422 {
1423 	struct vring_virtqueue *vq = to_vvq(_vq);
1424 
1425 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1426 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1427 		vq->packed.vring.driver->flags =
1428 			cpu_to_le16(vq->packed.event_flags_shadow);
1429 	}
1430 }
1431 
virtqueue_enable_cb_prepare_packed(struct virtqueue * _vq)1432 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1433 {
1434 	struct vring_virtqueue *vq = to_vvq(_vq);
1435 
1436 	START_USE(vq);
1437 
1438 	/*
1439 	 * We optimistically turn back on interrupts, then check if there was
1440 	 * more to do.
1441 	 */
1442 
1443 	if (vq->event) {
1444 		vq->packed.vring.driver->off_wrap =
1445 			cpu_to_le16(vq->last_used_idx |
1446 				(vq->packed.used_wrap_counter <<
1447 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1448 		/*
1449 		 * We need to update event offset and event wrap
1450 		 * counter first before updating event flags.
1451 		 */
1452 		virtio_wmb(vq->weak_barriers);
1453 	}
1454 
1455 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1456 		vq->packed.event_flags_shadow = vq->event ?
1457 				VRING_PACKED_EVENT_FLAG_DESC :
1458 				VRING_PACKED_EVENT_FLAG_ENABLE;
1459 		vq->packed.vring.driver->flags =
1460 				cpu_to_le16(vq->packed.event_flags_shadow);
1461 	}
1462 
1463 	END_USE(vq);
1464 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1465 			VRING_PACKED_EVENT_F_WRAP_CTR);
1466 }
1467 
virtqueue_poll_packed(struct virtqueue * _vq,u16 off_wrap)1468 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1469 {
1470 	struct vring_virtqueue *vq = to_vvq(_vq);
1471 	bool wrap_counter;
1472 	u16 used_idx;
1473 
1474 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1475 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1476 
1477 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1478 }
1479 
virtqueue_enable_cb_delayed_packed(struct virtqueue * _vq)1480 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1481 {
1482 	struct vring_virtqueue *vq = to_vvq(_vq);
1483 	u16 used_idx, wrap_counter;
1484 	u16 bufs;
1485 
1486 	START_USE(vq);
1487 
1488 	/*
1489 	 * We optimistically turn back on interrupts, then check if there was
1490 	 * more to do.
1491 	 */
1492 
1493 	if (vq->event) {
1494 		/* TODO: tune this threshold */
1495 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1496 		wrap_counter = vq->packed.used_wrap_counter;
1497 
1498 		used_idx = vq->last_used_idx + bufs;
1499 		if (used_idx >= vq->packed.vring.num) {
1500 			used_idx -= vq->packed.vring.num;
1501 			wrap_counter ^= 1;
1502 		}
1503 
1504 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1505 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1506 
1507 		/*
1508 		 * We need to update event offset and event wrap
1509 		 * counter first before updating event flags.
1510 		 */
1511 		virtio_wmb(vq->weak_barriers);
1512 	}
1513 
1514 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1515 		vq->packed.event_flags_shadow = vq->event ?
1516 				VRING_PACKED_EVENT_FLAG_DESC :
1517 				VRING_PACKED_EVENT_FLAG_ENABLE;
1518 		vq->packed.vring.driver->flags =
1519 				cpu_to_le16(vq->packed.event_flags_shadow);
1520 	}
1521 
1522 	/*
1523 	 * We need to update event suppression structure first
1524 	 * before re-checking for more used buffers.
1525 	 */
1526 	virtio_mb(vq->weak_barriers);
1527 
1528 	if (is_used_desc_packed(vq,
1529 				vq->last_used_idx,
1530 				vq->packed.used_wrap_counter)) {
1531 		END_USE(vq);
1532 		return false;
1533 	}
1534 
1535 	END_USE(vq);
1536 	return true;
1537 }
1538 
virtqueue_detach_unused_buf_packed(struct virtqueue * _vq)1539 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1540 {
1541 	struct vring_virtqueue *vq = to_vvq(_vq);
1542 	unsigned int i;
1543 	void *buf;
1544 
1545 	START_USE(vq);
1546 
1547 	for (i = 0; i < vq->packed.vring.num; i++) {
1548 		if (!vq->packed.desc_state[i].data)
1549 			continue;
1550 		/* detach_buf clears data, so grab it now. */
1551 		buf = vq->packed.desc_state[i].data;
1552 		detach_buf_packed(vq, i, NULL);
1553 		END_USE(vq);
1554 		return buf;
1555 	}
1556 	/* That should have freed everything. */
1557 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1558 
1559 	END_USE(vq);
1560 	return NULL;
1561 }
1562 
vring_create_virtqueue_packed(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)1563 static struct virtqueue *vring_create_virtqueue_packed(
1564 	unsigned int index,
1565 	unsigned int num,
1566 	unsigned int vring_align,
1567 	struct virtio_device *vdev,
1568 	bool weak_barriers,
1569 	bool may_reduce_num,
1570 	bool context,
1571 	bool (*notify)(struct virtqueue *),
1572 	void (*callback)(struct virtqueue *),
1573 	const char *name)
1574 {
1575 	struct vring_virtqueue *vq;
1576 	struct vring_packed_desc *ring;
1577 	struct vring_packed_desc_event *driver, *device;
1578 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1579 	size_t ring_size_in_bytes, event_size_in_bytes;
1580 	unsigned int i;
1581 
1582 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1583 
1584 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1585 				 &ring_dma_addr,
1586 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1587 	if (!ring)
1588 		goto err_ring;
1589 
1590 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1591 
1592 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1593 				   &driver_event_dma_addr,
1594 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1595 	if (!driver)
1596 		goto err_driver;
1597 
1598 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1599 				   &device_event_dma_addr,
1600 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1601 	if (!device)
1602 		goto err_device;
1603 
1604 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1605 	if (!vq)
1606 		goto err_vq;
1607 
1608 	vq->vq.callback = callback;
1609 	vq->vq.vdev = vdev;
1610 	vq->vq.name = name;
1611 	vq->vq.num_free = num;
1612 	vq->vq.index = index;
1613 	vq->we_own_ring = true;
1614 	vq->notify = notify;
1615 	vq->weak_barriers = weak_barriers;
1616 	vq->broken = false;
1617 	vq->last_used_idx = 0;
1618 	vq->num_added = 0;
1619 	vq->packed_ring = true;
1620 	vq->use_dma_api = vring_use_dma_api(vdev);
1621 #ifdef DEBUG
1622 	vq->in_use = false;
1623 	vq->last_add_time_valid = false;
1624 #endif
1625 
1626 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1627 		!context;
1628 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1629 
1630 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1631 		vq->weak_barriers = false;
1632 
1633 	vq->packed.ring_dma_addr = ring_dma_addr;
1634 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1635 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1636 
1637 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1638 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1639 
1640 	vq->packed.vring.num = num;
1641 	vq->packed.vring.desc = ring;
1642 	vq->packed.vring.driver = driver;
1643 	vq->packed.vring.device = device;
1644 
1645 	vq->packed.next_avail_idx = 0;
1646 	vq->packed.avail_wrap_counter = 1;
1647 	vq->packed.used_wrap_counter = 1;
1648 	vq->packed.event_flags_shadow = 0;
1649 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1650 
1651 	vq->packed.desc_state = kmalloc_array(num,
1652 			sizeof(struct vring_desc_state_packed),
1653 			GFP_KERNEL);
1654 	if (!vq->packed.desc_state)
1655 		goto err_desc_state;
1656 
1657 	memset(vq->packed.desc_state, 0,
1658 		num * sizeof(struct vring_desc_state_packed));
1659 
1660 	/* Put everything in free lists. */
1661 	vq->free_head = 0;
1662 	for (i = 0; i < num-1; i++)
1663 		vq->packed.desc_state[i].next = i + 1;
1664 
1665 	vq->packed.desc_extra = kmalloc_array(num,
1666 			sizeof(struct vring_desc_extra_packed),
1667 			GFP_KERNEL);
1668 	if (!vq->packed.desc_extra)
1669 		goto err_desc_extra;
1670 
1671 	memset(vq->packed.desc_extra, 0,
1672 		num * sizeof(struct vring_desc_extra_packed));
1673 
1674 	/* No callback?  Tell other side not to bother us. */
1675 	if (!callback) {
1676 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1677 		vq->packed.vring.driver->flags =
1678 			cpu_to_le16(vq->packed.event_flags_shadow);
1679 	}
1680 
1681 	spin_lock(&vdev->vqs_list_lock);
1682 	list_add_tail(&vq->vq.list, &vdev->vqs);
1683 	spin_unlock(&vdev->vqs_list_lock);
1684 	return &vq->vq;
1685 
1686 err_desc_extra:
1687 	kfree(vq->packed.desc_state);
1688 err_desc_state:
1689 	kfree(vq);
1690 err_vq:
1691 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1692 err_device:
1693 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1694 err_driver:
1695 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1696 err_ring:
1697 	return NULL;
1698 }
1699 
1700 
1701 /*
1702  * Generic functions and exported symbols.
1703  */
1704 
virtqueue_add(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)1705 static inline int virtqueue_add(struct virtqueue *_vq,
1706 				struct scatterlist *sgs[],
1707 				unsigned int total_sg,
1708 				unsigned int out_sgs,
1709 				unsigned int in_sgs,
1710 				void *data,
1711 				void *ctx,
1712 				gfp_t gfp)
1713 {
1714 	struct vring_virtqueue *vq = to_vvq(_vq);
1715 
1716 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1717 					out_sgs, in_sgs, data, ctx, gfp) :
1718 				 virtqueue_add_split(_vq, sgs, total_sg,
1719 					out_sgs, in_sgs, data, ctx, gfp);
1720 }
1721 
1722 /**
1723  * virtqueue_add_sgs - expose buffers to other end
1724  * @_vq: the struct virtqueue we're talking about.
1725  * @sgs: array of terminated scatterlists.
1726  * @out_sgs: the number of scatterlists readable by other side
1727  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1728  * @data: the token identifying the buffer.
1729  * @gfp: how to do memory allocations (if necessary).
1730  *
1731  * Caller must ensure we don't call this with other virtqueue operations
1732  * at the same time (except where noted).
1733  *
1734  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1735  */
virtqueue_add_sgs(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)1736 int virtqueue_add_sgs(struct virtqueue *_vq,
1737 		      struct scatterlist *sgs[],
1738 		      unsigned int out_sgs,
1739 		      unsigned int in_sgs,
1740 		      void *data,
1741 		      gfp_t gfp)
1742 {
1743 	unsigned int i, total_sg = 0;
1744 
1745 	/* Count them first. */
1746 	for (i = 0; i < out_sgs + in_sgs; i++) {
1747 		struct scatterlist *sg;
1748 
1749 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1750 			total_sg++;
1751 	}
1752 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1753 			     data, NULL, gfp);
1754 }
1755 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1756 
1757 /**
1758  * virtqueue_add_outbuf - expose output buffers to other end
1759  * @vq: the struct virtqueue we're talking about.
1760  * @sg: scatterlist (must be well-formed and terminated!)
1761  * @num: the number of entries in @sg readable by other side
1762  * @data: the token identifying the buffer.
1763  * @gfp: how to do memory allocations (if necessary).
1764  *
1765  * Caller must ensure we don't call this with other virtqueue operations
1766  * at the same time (except where noted).
1767  *
1768  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1769  */
virtqueue_add_outbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)1770 int virtqueue_add_outbuf(struct virtqueue *vq,
1771 			 struct scatterlist *sg, unsigned int num,
1772 			 void *data,
1773 			 gfp_t gfp)
1774 {
1775 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1776 }
1777 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1778 
1779 /**
1780  * virtqueue_add_inbuf - expose input buffers to other end
1781  * @vq: the struct virtqueue we're talking about.
1782  * @sg: scatterlist (must be well-formed and terminated!)
1783  * @num: the number of entries in @sg writable by other side
1784  * @data: the token identifying the buffer.
1785  * @gfp: how to do memory allocations (if necessary).
1786  *
1787  * Caller must ensure we don't call this with other virtqueue operations
1788  * at the same time (except where noted).
1789  *
1790  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1791  */
virtqueue_add_inbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)1792 int virtqueue_add_inbuf(struct virtqueue *vq,
1793 			struct scatterlist *sg, unsigned int num,
1794 			void *data,
1795 			gfp_t gfp)
1796 {
1797 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1798 }
1799 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1800 
1801 /**
1802  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1803  * @vq: the struct virtqueue we're talking about.
1804  * @sg: scatterlist (must be well-formed and terminated!)
1805  * @num: the number of entries in @sg writable by other side
1806  * @data: the token identifying the buffer.
1807  * @ctx: extra context for the token
1808  * @gfp: how to do memory allocations (if necessary).
1809  *
1810  * Caller must ensure we don't call this with other virtqueue operations
1811  * at the same time (except where noted).
1812  *
1813  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1814  */
virtqueue_add_inbuf_ctx(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,void * ctx,gfp_t gfp)1815 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1816 			struct scatterlist *sg, unsigned int num,
1817 			void *data,
1818 			void *ctx,
1819 			gfp_t gfp)
1820 {
1821 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1822 }
1823 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1824 
1825 /**
1826  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1827  * @_vq: the struct virtqueue
1828  *
1829  * Instead of virtqueue_kick(), you can do:
1830  *	if (virtqueue_kick_prepare(vq))
1831  *		virtqueue_notify(vq);
1832  *
1833  * This is sometimes useful because the virtqueue_kick_prepare() needs
1834  * to be serialized, but the actual virtqueue_notify() call does not.
1835  */
virtqueue_kick_prepare(struct virtqueue * _vq)1836 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1837 {
1838 	struct vring_virtqueue *vq = to_vvq(_vq);
1839 
1840 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1841 				 virtqueue_kick_prepare_split(_vq);
1842 }
1843 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1844 
1845 /**
1846  * virtqueue_notify - second half of split virtqueue_kick call.
1847  * @_vq: the struct virtqueue
1848  *
1849  * This does not need to be serialized.
1850  *
1851  * Returns false if host notify failed or queue is broken, otherwise true.
1852  */
virtqueue_notify(struct virtqueue * _vq)1853 bool virtqueue_notify(struct virtqueue *_vq)
1854 {
1855 	struct vring_virtqueue *vq = to_vvq(_vq);
1856 
1857 	if (unlikely(vq->broken))
1858 		return false;
1859 
1860 	/* Prod other side to tell it about changes. */
1861 	if (!vq->notify(_vq)) {
1862 		vq->broken = true;
1863 		return false;
1864 	}
1865 	return true;
1866 }
1867 EXPORT_SYMBOL_GPL(virtqueue_notify);
1868 
1869 /**
1870  * virtqueue_kick - update after add_buf
1871  * @vq: the struct virtqueue
1872  *
1873  * After one or more virtqueue_add_* calls, invoke this to kick
1874  * the other side.
1875  *
1876  * Caller must ensure we don't call this with other virtqueue
1877  * operations at the same time (except where noted).
1878  *
1879  * Returns false if kick failed, otherwise true.
1880  */
virtqueue_kick(struct virtqueue * vq)1881 bool virtqueue_kick(struct virtqueue *vq)
1882 {
1883 	if (virtqueue_kick_prepare(vq))
1884 		return virtqueue_notify(vq);
1885 	return true;
1886 }
1887 EXPORT_SYMBOL_GPL(virtqueue_kick);
1888 
1889 /**
1890  * virtqueue_get_buf - get the next used buffer
1891  * @_vq: the struct virtqueue we're talking about.
1892  * @len: the length written into the buffer
1893  * @ctx: extra context for the token
1894  *
1895  * If the device wrote data into the buffer, @len will be set to the
1896  * amount written.  This means you don't need to clear the buffer
1897  * beforehand to ensure there's no data leakage in the case of short
1898  * writes.
1899  *
1900  * Caller must ensure we don't call this with other virtqueue
1901  * operations at the same time (except where noted).
1902  *
1903  * Returns NULL if there are no used buffers, or the "data" token
1904  * handed to virtqueue_add_*().
1905  */
virtqueue_get_buf_ctx(struct virtqueue * _vq,unsigned int * len,void ** ctx)1906 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1907 			    void **ctx)
1908 {
1909 	struct vring_virtqueue *vq = to_vvq(_vq);
1910 
1911 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1912 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1913 }
1914 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1915 
virtqueue_get_buf(struct virtqueue * _vq,unsigned int * len)1916 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1917 {
1918 	return virtqueue_get_buf_ctx(_vq, len, NULL);
1919 }
1920 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1921 /**
1922  * virtqueue_disable_cb - disable callbacks
1923  * @_vq: the struct virtqueue we're talking about.
1924  *
1925  * Note that this is not necessarily synchronous, hence unreliable and only
1926  * useful as an optimization.
1927  *
1928  * Unlike other operations, this need not be serialized.
1929  */
virtqueue_disable_cb(struct virtqueue * _vq)1930 void virtqueue_disable_cb(struct virtqueue *_vq)
1931 {
1932 	struct vring_virtqueue *vq = to_vvq(_vq);
1933 
1934 	if (vq->packed_ring)
1935 		virtqueue_disable_cb_packed(_vq);
1936 	else
1937 		virtqueue_disable_cb_split(_vq);
1938 }
1939 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
1940 
1941 /**
1942  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
1943  * @_vq: the struct virtqueue we're talking about.
1944  *
1945  * This re-enables callbacks; it returns current queue state
1946  * in an opaque unsigned value. This value should be later tested by
1947  * virtqueue_poll, to detect a possible race between the driver checking for
1948  * more work, and enabling callbacks.
1949  *
1950  * Caller must ensure we don't call this with other virtqueue
1951  * operations at the same time (except where noted).
1952  */
virtqueue_enable_cb_prepare(struct virtqueue * _vq)1953 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
1954 {
1955 	struct vring_virtqueue *vq = to_vvq(_vq);
1956 
1957 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
1958 				 virtqueue_enable_cb_prepare_split(_vq);
1959 }
1960 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
1961 
1962 /**
1963  * virtqueue_poll - query pending used buffers
1964  * @_vq: the struct virtqueue we're talking about.
1965  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
1966  *
1967  * Returns "true" if there are pending used buffers in the queue.
1968  *
1969  * This does not need to be serialized.
1970  */
virtqueue_poll(struct virtqueue * _vq,unsigned last_used_idx)1971 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
1972 {
1973 	struct vring_virtqueue *vq = to_vvq(_vq);
1974 
1975 	if (unlikely(vq->broken))
1976 		return false;
1977 
1978 	virtio_mb(vq->weak_barriers);
1979 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
1980 				 virtqueue_poll_split(_vq, last_used_idx);
1981 }
1982 EXPORT_SYMBOL_GPL(virtqueue_poll);
1983 
1984 /**
1985  * virtqueue_enable_cb - restart callbacks after disable_cb.
1986  * @_vq: the struct virtqueue we're talking about.
1987  *
1988  * This re-enables callbacks; it returns "false" if there are pending
1989  * buffers in the queue, to detect a possible race between the driver
1990  * checking for more work, and enabling callbacks.
1991  *
1992  * Caller must ensure we don't call this with other virtqueue
1993  * operations at the same time (except where noted).
1994  */
virtqueue_enable_cb(struct virtqueue * _vq)1995 bool virtqueue_enable_cb(struct virtqueue *_vq)
1996 {
1997 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
1998 
1999 	return !virtqueue_poll(_vq, last_used_idx);
2000 }
2001 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2002 
2003 /**
2004  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2005  * @_vq: the struct virtqueue we're talking about.
2006  *
2007  * This re-enables callbacks but hints to the other side to delay
2008  * interrupts until most of the available buffers have been processed;
2009  * it returns "false" if there are many pending buffers in the queue,
2010  * to detect a possible race between the driver checking for more work,
2011  * and enabling callbacks.
2012  *
2013  * Caller must ensure we don't call this with other virtqueue
2014  * operations at the same time (except where noted).
2015  */
virtqueue_enable_cb_delayed(struct virtqueue * _vq)2016 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2017 {
2018 	struct vring_virtqueue *vq = to_vvq(_vq);
2019 
2020 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2021 				 virtqueue_enable_cb_delayed_split(_vq);
2022 }
2023 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2024 
2025 /**
2026  * virtqueue_detach_unused_buf - detach first unused buffer
2027  * @_vq: the struct virtqueue we're talking about.
2028  *
2029  * Returns NULL or the "data" token handed to virtqueue_add_*().
2030  * This is not valid on an active queue; it is useful only for device
2031  * shutdown.
2032  */
virtqueue_detach_unused_buf(struct virtqueue * _vq)2033 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2034 {
2035 	struct vring_virtqueue *vq = to_vvq(_vq);
2036 
2037 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2038 				 virtqueue_detach_unused_buf_split(_vq);
2039 }
2040 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2041 
more_used(const struct vring_virtqueue * vq)2042 static inline bool more_used(const struct vring_virtqueue *vq)
2043 {
2044 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2045 }
2046 
vring_interrupt(int irq,void * _vq)2047 irqreturn_t vring_interrupt(int irq, void *_vq)
2048 {
2049 	struct vring_virtqueue *vq = to_vvq(_vq);
2050 
2051 	if (!more_used(vq)) {
2052 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2053 		return IRQ_NONE;
2054 	}
2055 
2056 	if (unlikely(vq->broken))
2057 		return IRQ_HANDLED;
2058 
2059 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2060 	if (vq->vq.callback)
2061 		vq->vq.callback(&vq->vq);
2062 
2063 	return IRQ_HANDLED;
2064 }
2065 EXPORT_SYMBOL_GPL(vring_interrupt);
2066 
2067 /* Only available for split ring */
__vring_new_virtqueue(unsigned int index,struct vring vring,struct virtio_device * vdev,bool weak_barriers,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)2068 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2069 					struct vring vring,
2070 					struct virtio_device *vdev,
2071 					bool weak_barriers,
2072 					bool context,
2073 					bool (*notify)(struct virtqueue *),
2074 					void (*callback)(struct virtqueue *),
2075 					const char *name)
2076 {
2077 	unsigned int i;
2078 	struct vring_virtqueue *vq;
2079 
2080 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2081 		return NULL;
2082 
2083 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2084 	if (!vq)
2085 		return NULL;
2086 
2087 	vq->packed_ring = false;
2088 	vq->vq.callback = callback;
2089 	vq->vq.vdev = vdev;
2090 	vq->vq.name = name;
2091 	vq->vq.num_free = vring.num;
2092 	vq->vq.index = index;
2093 	vq->we_own_ring = false;
2094 	vq->notify = notify;
2095 	vq->weak_barriers = weak_barriers;
2096 	vq->broken = false;
2097 	vq->last_used_idx = 0;
2098 	vq->num_added = 0;
2099 	vq->use_dma_api = vring_use_dma_api(vdev);
2100 #ifdef DEBUG
2101 	vq->in_use = false;
2102 	vq->last_add_time_valid = false;
2103 #endif
2104 
2105 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2106 		!context;
2107 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2108 
2109 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2110 		vq->weak_barriers = false;
2111 
2112 	vq->split.queue_dma_addr = 0;
2113 	vq->split.queue_size_in_bytes = 0;
2114 
2115 	vq->split.vring = vring;
2116 	vq->split.avail_flags_shadow = 0;
2117 	vq->split.avail_idx_shadow = 0;
2118 
2119 	/* No callback?  Tell other side not to bother us. */
2120 	if (!callback) {
2121 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2122 		if (!vq->event)
2123 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2124 					vq->split.avail_flags_shadow);
2125 	}
2126 
2127 	vq->split.desc_state = kmalloc_array(vring.num,
2128 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2129 	if (!vq->split.desc_state) {
2130 		kfree(vq);
2131 		return NULL;
2132 	}
2133 
2134 	/* Put everything in free lists. */
2135 	vq->free_head = 0;
2136 	for (i = 0; i < vring.num-1; i++)
2137 		vq->split.vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
2138 	memset(vq->split.desc_state, 0, vring.num *
2139 			sizeof(struct vring_desc_state_split));
2140 
2141 	spin_lock(&vdev->vqs_list_lock);
2142 	list_add_tail(&vq->vq.list, &vdev->vqs);
2143 	spin_unlock(&vdev->vqs_list_lock);
2144 	return &vq->vq;
2145 }
2146 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2147 
vring_create_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)2148 struct virtqueue *vring_create_virtqueue(
2149 	unsigned int index,
2150 	unsigned int num,
2151 	unsigned int vring_align,
2152 	struct virtio_device *vdev,
2153 	bool weak_barriers,
2154 	bool may_reduce_num,
2155 	bool context,
2156 	bool (*notify)(struct virtqueue *),
2157 	void (*callback)(struct virtqueue *),
2158 	const char *name)
2159 {
2160 
2161 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2162 		return vring_create_virtqueue_packed(index, num, vring_align,
2163 				vdev, weak_barriers, may_reduce_num,
2164 				context, notify, callback, name);
2165 
2166 	return vring_create_virtqueue_split(index, num, vring_align,
2167 			vdev, weak_barriers, may_reduce_num,
2168 			context, notify, callback, name);
2169 }
2170 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2171 
2172 /* Only available for split ring */
vring_new_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool context,void * pages,bool (* notify)(struct virtqueue * vq),void (* callback)(struct virtqueue * vq),const char * name)2173 struct virtqueue *vring_new_virtqueue(unsigned int index,
2174 				      unsigned int num,
2175 				      unsigned int vring_align,
2176 				      struct virtio_device *vdev,
2177 				      bool weak_barriers,
2178 				      bool context,
2179 				      void *pages,
2180 				      bool (*notify)(struct virtqueue *vq),
2181 				      void (*callback)(struct virtqueue *vq),
2182 				      const char *name)
2183 {
2184 	struct vring vring;
2185 
2186 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2187 		return NULL;
2188 
2189 	vring_init(&vring, num, pages, vring_align);
2190 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2191 				     notify, callback, name);
2192 }
2193 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2194 
vring_del_virtqueue(struct virtqueue * _vq)2195 void vring_del_virtqueue(struct virtqueue *_vq)
2196 {
2197 	struct vring_virtqueue *vq = to_vvq(_vq);
2198 
2199 	if (vq->we_own_ring) {
2200 		if (vq->packed_ring) {
2201 			vring_free_queue(vq->vq.vdev,
2202 					 vq->packed.ring_size_in_bytes,
2203 					 vq->packed.vring.desc,
2204 					 vq->packed.ring_dma_addr);
2205 
2206 			vring_free_queue(vq->vq.vdev,
2207 					 vq->packed.event_size_in_bytes,
2208 					 vq->packed.vring.driver,
2209 					 vq->packed.driver_event_dma_addr);
2210 
2211 			vring_free_queue(vq->vq.vdev,
2212 					 vq->packed.event_size_in_bytes,
2213 					 vq->packed.vring.device,
2214 					 vq->packed.device_event_dma_addr);
2215 
2216 			kfree(vq->packed.desc_state);
2217 			kfree(vq->packed.desc_extra);
2218 		} else {
2219 			vring_free_queue(vq->vq.vdev,
2220 					 vq->split.queue_size_in_bytes,
2221 					 vq->split.vring.desc,
2222 					 vq->split.queue_dma_addr);
2223 		}
2224 	}
2225 	if (!vq->packed_ring)
2226 		kfree(vq->split.desc_state);
2227 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2228 	list_del(&_vq->list);
2229 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2230 	kfree(vq);
2231 }
2232 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2233 
2234 /* Manipulates transport-specific feature bits. */
vring_transport_features(struct virtio_device * vdev)2235 void vring_transport_features(struct virtio_device *vdev)
2236 {
2237 	unsigned int i;
2238 
2239 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2240 		switch (i) {
2241 		case VIRTIO_RING_F_INDIRECT_DESC:
2242 			break;
2243 		case VIRTIO_RING_F_EVENT_IDX:
2244 			break;
2245 		case VIRTIO_F_VERSION_1:
2246 			break;
2247 		case VIRTIO_F_ACCESS_PLATFORM:
2248 			break;
2249 		case VIRTIO_F_RING_PACKED:
2250 			break;
2251 		case VIRTIO_F_ORDER_PLATFORM:
2252 			break;
2253 		default:
2254 			/* We don't understand this bit. */
2255 			__virtio_clear_bit(vdev, i);
2256 		}
2257 	}
2258 }
2259 EXPORT_SYMBOL_GPL(vring_transport_features);
2260 
2261 /**
2262  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2263  * @_vq: the struct virtqueue containing the vring of interest.
2264  *
2265  * Returns the size of the vring.  This is mainly used for boasting to
2266  * userspace.  Unlike other operations, this need not be serialized.
2267  */
virtqueue_get_vring_size(struct virtqueue * _vq)2268 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2269 {
2270 
2271 	struct vring_virtqueue *vq = to_vvq(_vq);
2272 
2273 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2274 }
2275 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2276 
virtqueue_is_broken(struct virtqueue * _vq)2277 bool virtqueue_is_broken(struct virtqueue *_vq)
2278 {
2279 	struct vring_virtqueue *vq = to_vvq(_vq);
2280 
2281 	return READ_ONCE(vq->broken);
2282 }
2283 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2284 
2285 /*
2286  * This should prevent the device from being used, allowing drivers to
2287  * recover.  You may need to grab appropriate locks to flush.
2288  */
virtio_break_device(struct virtio_device * dev)2289 void virtio_break_device(struct virtio_device *dev)
2290 {
2291 	struct virtqueue *_vq;
2292 
2293 	spin_lock(&dev->vqs_list_lock);
2294 	list_for_each_entry(_vq, &dev->vqs, list) {
2295 		struct vring_virtqueue *vq = to_vvq(_vq);
2296 
2297 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2298 		WRITE_ONCE(vq->broken, true);
2299 	}
2300 	spin_unlock(&dev->vqs_list_lock);
2301 }
2302 EXPORT_SYMBOL_GPL(virtio_break_device);
2303 
virtqueue_get_desc_addr(struct virtqueue * _vq)2304 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2305 {
2306 	struct vring_virtqueue *vq = to_vvq(_vq);
2307 
2308 	BUG_ON(!vq->we_own_ring);
2309 
2310 	if (vq->packed_ring)
2311 		return vq->packed.ring_dma_addr;
2312 
2313 	return vq->split.queue_dma_addr;
2314 }
2315 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2316 
virtqueue_get_avail_addr(struct virtqueue * _vq)2317 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2318 {
2319 	struct vring_virtqueue *vq = to_vvq(_vq);
2320 
2321 	BUG_ON(!vq->we_own_ring);
2322 
2323 	if (vq->packed_ring)
2324 		return vq->packed.driver_event_dma_addr;
2325 
2326 	return vq->split.queue_dma_addr +
2327 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2328 }
2329 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2330 
virtqueue_get_used_addr(struct virtqueue * _vq)2331 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2332 {
2333 	struct vring_virtqueue *vq = to_vvq(_vq);
2334 
2335 	BUG_ON(!vq->we_own_ring);
2336 
2337 	if (vq->packed_ring)
2338 		return vq->packed.device_event_dma_addr;
2339 
2340 	return vq->split.queue_dma_addr +
2341 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2342 }
2343 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2344 
2345 /* Only available for split ring */
virtqueue_get_vring(struct virtqueue * vq)2346 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2347 {
2348 	return &to_vvq(vq)->split.vring;
2349 }
2350 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2351 
2352 MODULE_LICENSE("GPL");
2353