1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerNV OPAL high level interfaces
4 *
5 * Copyright 2011 IBM Corp.
6 */
7
8 #define pr_fmt(fmt) "opal: " fmt
9
10 #include <linux/printk.h>
11 #include <linux/types.h>
12 #include <linux/of.h>
13 #include <linux/of_fdt.h>
14 #include <linux/of_platform.h>
15 #include <linux/of_address.h>
16 #include <linux/interrupt.h>
17 #include <linux/notifier.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/kobject.h>
21 #include <linux/delay.h>
22 #include <linux/memblock.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/kmsg_dump.h>
26 #include <linux/console.h>
27 #include <linux/sched/debug.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33 #include <asm/imc-pmu.h>
34 #include <asm/bug.h>
35
36 #include "powernv.h"
37
38 #define OPAL_MSG_QUEUE_MAX 16
39
40 struct opal_msg_node {
41 struct list_head list;
42 struct opal_msg msg;
43 };
44
45 static DEFINE_SPINLOCK(msg_list_lock);
46 static LIST_HEAD(msg_list);
47
48 /* /sys/firmware/opal */
49 struct kobject *opal_kobj;
50
51 struct opal {
52 u64 base;
53 u64 entry;
54 u64 size;
55 } opal;
56
57 struct mcheck_recoverable_range {
58 u64 start_addr;
59 u64 end_addr;
60 u64 recover_addr;
61 };
62
63 static int msg_list_size;
64
65 static struct mcheck_recoverable_range *mc_recoverable_range;
66 static int mc_recoverable_range_len;
67
68 struct device_node *opal_node;
69 static DEFINE_SPINLOCK(opal_write_lock);
70 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
71 static uint32_t opal_heartbeat;
72 static struct task_struct *kopald_tsk;
73 static struct opal_msg *opal_msg;
74 static u32 opal_msg_size __ro_after_init;
75
opal_configure_cores(void)76 void opal_configure_cores(void)
77 {
78 u64 reinit_flags = 0;
79
80 /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
81 *
82 * It will preserve non volatile GPRs and HSPRG0/1. It will
83 * also restore HIDs and other SPRs to their original value
84 * but it might clobber a bunch.
85 */
86 #ifdef __BIG_ENDIAN__
87 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
88 #else
89 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
90 #endif
91
92 /*
93 * POWER9 always support running hash:
94 * ie. Host hash supports hash guests
95 * Host radix supports hash/radix guests
96 */
97 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
98 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
99 if (early_radix_enabled())
100 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
101 }
102
103 opal_reinit_cpus(reinit_flags);
104
105 /* Restore some bits */
106 if (cur_cpu_spec->cpu_restore)
107 cur_cpu_spec->cpu_restore();
108 }
109
early_init_dt_scan_opal(unsigned long node,const char * uname,int depth,void * data)110 int __init early_init_dt_scan_opal(unsigned long node,
111 const char *uname, int depth, void *data)
112 {
113 const void *basep, *entryp, *sizep;
114 int basesz, entrysz, runtimesz;
115
116 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
117 return 0;
118
119 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
120 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
121 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
122
123 if (!basep || !entryp || !sizep)
124 return 1;
125
126 opal.base = of_read_number(basep, basesz/4);
127 opal.entry = of_read_number(entryp, entrysz/4);
128 opal.size = of_read_number(sizep, runtimesz/4);
129
130 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
131 opal.base, basep, basesz);
132 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
133 opal.entry, entryp, entrysz);
134 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
135 opal.size, sizep, runtimesz);
136
137 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
138 powerpc_firmware_features |= FW_FEATURE_OPAL;
139 pr_debug("OPAL detected !\n");
140 } else {
141 panic("OPAL != V3 detected, no longer supported.\n");
142 }
143
144 return 1;
145 }
146
early_init_dt_scan_recoverable_ranges(unsigned long node,const char * uname,int depth,void * data)147 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
148 const char *uname, int depth, void *data)
149 {
150 int i, psize, size;
151 const __be32 *prop;
152
153 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
154 return 0;
155
156 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
157
158 if (!prop)
159 return 1;
160
161 pr_debug("Found machine check recoverable ranges.\n");
162
163 /*
164 * Calculate number of available entries.
165 *
166 * Each recoverable address range entry is (start address, len,
167 * recovery address), 2 cells each for start and recovery address,
168 * 1 cell for len, totalling 5 cells per entry.
169 */
170 mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
171
172 /* Sanity check */
173 if (!mc_recoverable_range_len)
174 return 1;
175
176 /* Size required to hold all the entries. */
177 size = mc_recoverable_range_len *
178 sizeof(struct mcheck_recoverable_range);
179
180 /*
181 * Allocate a buffer to hold the MC recoverable ranges.
182 */
183 mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
184 if (!mc_recoverable_range)
185 panic("%s: Failed to allocate %u bytes align=0x%lx\n",
186 __func__, size, __alignof__(u64));
187
188 for (i = 0; i < mc_recoverable_range_len; i++) {
189 mc_recoverable_range[i].start_addr =
190 of_read_number(prop + (i * 5) + 0, 2);
191 mc_recoverable_range[i].end_addr =
192 mc_recoverable_range[i].start_addr +
193 of_read_number(prop + (i * 5) + 2, 1);
194 mc_recoverable_range[i].recover_addr =
195 of_read_number(prop + (i * 5) + 3, 2);
196
197 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
198 mc_recoverable_range[i].start_addr,
199 mc_recoverable_range[i].end_addr,
200 mc_recoverable_range[i].recover_addr);
201 }
202 return 1;
203 }
204
opal_register_exception_handlers(void)205 static int __init opal_register_exception_handlers(void)
206 {
207 #ifdef __BIG_ENDIAN__
208 u64 glue;
209
210 if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
211 return -ENODEV;
212
213 /* Hookup some exception handlers except machine check. We use the
214 * fwnmi area at 0x7000 to provide the glue space to OPAL
215 */
216 glue = 0x7000;
217
218 /*
219 * Only ancient OPAL firmware requires this.
220 * Specifically, firmware from FW810.00 (released June 2014)
221 * through FW810.20 (Released October 2014).
222 *
223 * Check if we are running on newer (post Oct 2014) firmware that
224 * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
225 * patch the HMI interrupt and we catch it directly in Linux.
226 *
227 * For older firmware (i.e < FW810.20), we fallback to old behavior and
228 * let OPAL patch the HMI vector and handle it inside OPAL firmware.
229 *
230 * For newer firmware we catch/handle the HMI directly in Linux.
231 */
232 if (!opal_check_token(OPAL_HANDLE_HMI)) {
233 pr_info("Old firmware detected, OPAL handles HMIs.\n");
234 opal_register_exception_handler(
235 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
236 0, glue);
237 glue += 128;
238 }
239
240 /*
241 * Only applicable to ancient firmware, all modern
242 * (post March 2015/skiboot 5.0) firmware will just return
243 * OPAL_UNSUPPORTED.
244 */
245 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
246 #endif
247
248 return 0;
249 }
250 machine_early_initcall(powernv, opal_register_exception_handlers);
251
queue_replay_msg(void * msg)252 static void queue_replay_msg(void *msg)
253 {
254 struct opal_msg_node *msg_node;
255
256 if (msg_list_size < OPAL_MSG_QUEUE_MAX) {
257 msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC);
258 if (msg_node) {
259 INIT_LIST_HEAD(&msg_node->list);
260 memcpy(&msg_node->msg, msg, sizeof(struct opal_msg));
261 list_add_tail(&msg_node->list, &msg_list);
262 msg_list_size++;
263 } else
264 pr_warn_once("message queue no memory\n");
265
266 if (msg_list_size >= OPAL_MSG_QUEUE_MAX)
267 pr_warn_once("message queue full\n");
268 }
269 }
270
dequeue_replay_msg(enum opal_msg_type msg_type)271 static void dequeue_replay_msg(enum opal_msg_type msg_type)
272 {
273 struct opal_msg_node *msg_node, *tmp;
274
275 list_for_each_entry_safe(msg_node, tmp, &msg_list, list) {
276 if (be32_to_cpu(msg_node->msg.msg_type) != msg_type)
277 continue;
278
279 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
280 msg_type,
281 &msg_node->msg);
282
283 list_del(&msg_node->list);
284 kfree(msg_node);
285 msg_list_size--;
286 }
287 }
288
289 /*
290 * Opal message notifier based on message type. Allow subscribers to get
291 * notified for specific messgae type.
292 */
opal_message_notifier_register(enum opal_msg_type msg_type,struct notifier_block * nb)293 int opal_message_notifier_register(enum opal_msg_type msg_type,
294 struct notifier_block *nb)
295 {
296 int ret;
297 unsigned long flags;
298
299 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
300 pr_warn("%s: Invalid arguments, msg_type:%d\n",
301 __func__, msg_type);
302 return -EINVAL;
303 }
304
305 spin_lock_irqsave(&msg_list_lock, flags);
306 ret = atomic_notifier_chain_register(
307 &opal_msg_notifier_head[msg_type], nb);
308
309 /*
310 * If the registration succeeded, replay any queued messages that came
311 * in prior to the notifier chain registration. msg_list_lock held here
312 * to ensure they're delivered prior to any subsequent messages.
313 */
314 if (ret == 0)
315 dequeue_replay_msg(msg_type);
316
317 spin_unlock_irqrestore(&msg_list_lock, flags);
318
319 return ret;
320 }
321 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
322
opal_message_notifier_unregister(enum opal_msg_type msg_type,struct notifier_block * nb)323 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
324 struct notifier_block *nb)
325 {
326 return atomic_notifier_chain_unregister(
327 &opal_msg_notifier_head[msg_type], nb);
328 }
329 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
330
opal_message_do_notify(uint32_t msg_type,void * msg)331 static void opal_message_do_notify(uint32_t msg_type, void *msg)
332 {
333 unsigned long flags;
334 bool queued = false;
335
336 spin_lock_irqsave(&msg_list_lock, flags);
337 if (opal_msg_notifier_head[msg_type].head == NULL) {
338 /*
339 * Queue up the msg since no notifiers have registered
340 * yet for this msg_type.
341 */
342 queue_replay_msg(msg);
343 queued = true;
344 }
345 spin_unlock_irqrestore(&msg_list_lock, flags);
346
347 if (queued)
348 return;
349
350 /* notify subscribers */
351 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
352 msg_type, msg);
353 }
354
opal_handle_message(void)355 static void opal_handle_message(void)
356 {
357 s64 ret;
358 u32 type;
359
360 ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
361 /* No opal message pending. */
362 if (ret == OPAL_RESOURCE)
363 return;
364
365 /* check for errors. */
366 if (ret) {
367 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
368 __func__, ret);
369 return;
370 }
371
372 type = be32_to_cpu(opal_msg->msg_type);
373
374 /* Sanity check */
375 if (type >= OPAL_MSG_TYPE_MAX) {
376 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
377 return;
378 }
379 opal_message_do_notify(type, (void *)opal_msg);
380 }
381
opal_message_notify(int irq,void * data)382 static irqreturn_t opal_message_notify(int irq, void *data)
383 {
384 opal_handle_message();
385 return IRQ_HANDLED;
386 }
387
opal_message_init(struct device_node * opal_node)388 static int __init opal_message_init(struct device_node *opal_node)
389 {
390 int ret, i, irq;
391
392 ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
393 if (ret) {
394 pr_notice("Failed to read opal-msg-size property\n");
395 opal_msg_size = sizeof(struct opal_msg);
396 }
397
398 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
399 if (!opal_msg) {
400 opal_msg_size = sizeof(struct opal_msg);
401 /* Try to allocate fixed message size */
402 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
403 BUG_ON(opal_msg == NULL);
404 }
405
406 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
407 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
408
409 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
410 if (!irq) {
411 pr_err("%s: Can't register OPAL event irq (%d)\n",
412 __func__, irq);
413 return irq;
414 }
415
416 ret = request_irq(irq, opal_message_notify,
417 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
418 if (ret) {
419 pr_err("%s: Can't request OPAL event irq (%d)\n",
420 __func__, ret);
421 return ret;
422 }
423
424 return 0;
425 }
426
opal_get_chars(uint32_t vtermno,char * buf,int count)427 int opal_get_chars(uint32_t vtermno, char *buf, int count)
428 {
429 s64 rc;
430 __be64 evt, len;
431
432 if (!opal.entry)
433 return -ENODEV;
434 opal_poll_events(&evt);
435 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
436 return 0;
437 len = cpu_to_be64(count);
438 rc = opal_console_read(vtermno, &len, buf);
439 if (rc == OPAL_SUCCESS)
440 return be64_to_cpu(len);
441 return 0;
442 }
443
__opal_put_chars(uint32_t vtermno,const char * data,int total_len,bool atomic)444 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
445 {
446 unsigned long flags = 0 /* shut up gcc */;
447 int written;
448 __be64 olen;
449 s64 rc;
450
451 if (!opal.entry)
452 return -ENODEV;
453
454 if (atomic)
455 spin_lock_irqsave(&opal_write_lock, flags);
456 rc = opal_console_write_buffer_space(vtermno, &olen);
457 if (rc || be64_to_cpu(olen) < total_len) {
458 /* Closed -> drop characters */
459 if (rc)
460 written = total_len;
461 else
462 written = -EAGAIN;
463 goto out;
464 }
465
466 /* Should not get a partial write here because space is available. */
467 olen = cpu_to_be64(total_len);
468 rc = opal_console_write(vtermno, &olen, data);
469 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
470 if (rc == OPAL_BUSY_EVENT)
471 opal_poll_events(NULL);
472 written = -EAGAIN;
473 goto out;
474 }
475
476 /* Closed or other error drop */
477 if (rc != OPAL_SUCCESS) {
478 written = opal_error_code(rc);
479 goto out;
480 }
481
482 written = be64_to_cpu(olen);
483 if (written < total_len) {
484 if (atomic) {
485 /* Should not happen */
486 pr_warn("atomic console write returned partial "
487 "len=%d written=%d\n", total_len, written);
488 }
489 if (!written)
490 written = -EAGAIN;
491 }
492
493 out:
494 if (atomic)
495 spin_unlock_irqrestore(&opal_write_lock, flags);
496
497 return written;
498 }
499
opal_put_chars(uint32_t vtermno,const char * data,int total_len)500 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
501 {
502 return __opal_put_chars(vtermno, data, total_len, false);
503 }
504
505 /*
506 * opal_put_chars_atomic will not perform partial-writes. Data will be
507 * atomically written to the terminal or not at all. This is not strictly
508 * true at the moment because console space can race with OPAL's console
509 * writes.
510 */
opal_put_chars_atomic(uint32_t vtermno,const char * data,int total_len)511 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
512 {
513 return __opal_put_chars(vtermno, data, total_len, true);
514 }
515
__opal_flush_console(uint32_t vtermno)516 static s64 __opal_flush_console(uint32_t vtermno)
517 {
518 s64 rc;
519
520 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
521 __be64 evt;
522
523 /*
524 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
525 * the console can still be flushed by calling the polling
526 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
527 */
528 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
529
530 opal_poll_events(&evt);
531 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
532 return OPAL_SUCCESS;
533 return OPAL_BUSY;
534
535 } else {
536 rc = opal_console_flush(vtermno);
537 if (rc == OPAL_BUSY_EVENT) {
538 opal_poll_events(NULL);
539 rc = OPAL_BUSY;
540 }
541 return rc;
542 }
543
544 }
545
546 /*
547 * opal_flush_console spins until the console is flushed
548 */
opal_flush_console(uint32_t vtermno)549 int opal_flush_console(uint32_t vtermno)
550 {
551 for (;;) {
552 s64 rc = __opal_flush_console(vtermno);
553
554 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
555 mdelay(1);
556 continue;
557 }
558
559 return opal_error_code(rc);
560 }
561 }
562
563 /*
564 * opal_flush_chars is an hvc interface that sleeps until the console is
565 * flushed if wait, otherwise it will return -EBUSY if the console has data,
566 * -EAGAIN if it has data and some of it was flushed.
567 */
opal_flush_chars(uint32_t vtermno,bool wait)568 int opal_flush_chars(uint32_t vtermno, bool wait)
569 {
570 for (;;) {
571 s64 rc = __opal_flush_console(vtermno);
572
573 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
574 if (wait) {
575 msleep(OPAL_BUSY_DELAY_MS);
576 continue;
577 }
578 if (rc == OPAL_PARTIAL)
579 return -EAGAIN;
580 }
581
582 return opal_error_code(rc);
583 }
584 }
585
opal_recover_mce(struct pt_regs * regs,struct machine_check_event * evt)586 static int opal_recover_mce(struct pt_regs *regs,
587 struct machine_check_event *evt)
588 {
589 int recovered = 0;
590
591 if (!(regs->msr & MSR_RI)) {
592 /* If MSR_RI isn't set, we cannot recover */
593 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
594 recovered = 0;
595 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
596 /* Platform corrected itself */
597 recovered = 1;
598 } else if (evt->severity == MCE_SEV_FATAL) {
599 /* Fatal machine check */
600 pr_err("Machine check interrupt is fatal\n");
601 recovered = 0;
602 }
603
604 if (!recovered && evt->sync_error) {
605 /*
606 * Try to kill processes if we get a synchronous machine check
607 * (e.g., one caused by execution of this instruction). This
608 * will devolve into a panic if we try to kill init or are in
609 * an interrupt etc.
610 *
611 * TODO: Queue up this address for hwpoisioning later.
612 * TODO: This is not quite right for d-side machine
613 * checks ->nip is not necessarily the important
614 * address.
615 */
616 if ((user_mode(regs))) {
617 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
618 recovered = 1;
619 } else if (die_will_crash()) {
620 /*
621 * die() would kill the kernel, so better to go via
622 * the platform reboot code that will log the
623 * machine check.
624 */
625 recovered = 0;
626 } else {
627 die("Machine check", regs, SIGBUS);
628 recovered = 1;
629 }
630 }
631
632 return recovered;
633 }
634
pnv_platform_error_reboot(struct pt_regs * regs,const char * msg)635 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
636 {
637 panic_flush_kmsg_start();
638
639 pr_emerg("Hardware platform error: %s\n", msg);
640 if (regs)
641 show_regs(regs);
642 smp_send_stop();
643
644 panic_flush_kmsg_end();
645
646 /*
647 * Don't bother to shut things down because this will
648 * xstop the system.
649 */
650 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
651 == OPAL_UNSUPPORTED) {
652 pr_emerg("Reboot type %d not supported for %s\n",
653 OPAL_REBOOT_PLATFORM_ERROR, msg);
654 }
655
656 /*
657 * We reached here. There can be three possibilities:
658 * 1. We are running on a firmware level that do not support
659 * opal_cec_reboot2()
660 * 2. We are running on a firmware level that do not support
661 * OPAL_REBOOT_PLATFORM_ERROR reboot type.
662 * 3. We are running on FSP based system that does not need
663 * opal to trigger checkstop explicitly for error analysis.
664 * The FSP PRD component would have already got notified
665 * about this error through other channels.
666 * 4. We are running on a newer skiboot that by default does
667 * not cause a checkstop, drops us back to the kernel to
668 * extract context and state at the time of the error.
669 */
670
671 panic(msg);
672 }
673
opal_machine_check(struct pt_regs * regs)674 int opal_machine_check(struct pt_regs *regs)
675 {
676 struct machine_check_event evt;
677
678 if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
679 return 0;
680
681 /* Print things out */
682 if (evt.version != MCE_V1) {
683 pr_err("Machine Check Exception, Unknown event version %d !\n",
684 evt.version);
685 return 0;
686 }
687 machine_check_print_event_info(&evt, user_mode(regs), false);
688
689 if (opal_recover_mce(regs, &evt))
690 return 1;
691
692 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
693 }
694
695 /* Early hmi handler called in real mode. */
opal_hmi_exception_early(struct pt_regs * regs)696 int opal_hmi_exception_early(struct pt_regs *regs)
697 {
698 s64 rc;
699
700 /*
701 * call opal hmi handler. Pass paca address as token.
702 * The return value OPAL_SUCCESS is an indication that there is
703 * an HMI event generated waiting to pull by Linux.
704 */
705 rc = opal_handle_hmi();
706 if (rc == OPAL_SUCCESS) {
707 local_paca->hmi_event_available = 1;
708 return 1;
709 }
710 return 0;
711 }
712
opal_hmi_exception_early2(struct pt_regs * regs)713 int opal_hmi_exception_early2(struct pt_regs *regs)
714 {
715 s64 rc;
716 __be64 out_flags;
717
718 /*
719 * call opal hmi handler.
720 * Check 64-bit flag mask to find out if an event was generated,
721 * and whether TB is still valid or not etc.
722 */
723 rc = opal_handle_hmi2(&out_flags);
724 if (rc != OPAL_SUCCESS)
725 return 0;
726
727 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
728 local_paca->hmi_event_available = 1;
729 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
730 tb_invalid = true;
731 return 1;
732 }
733
734 /* HMI exception handler called in virtual mode when irqs are next enabled. */
opal_handle_hmi_exception(struct pt_regs * regs)735 int opal_handle_hmi_exception(struct pt_regs *regs)
736 {
737 /*
738 * Check if HMI event is available.
739 * if Yes, then wake kopald to process them.
740 */
741 if (!local_paca->hmi_event_available)
742 return 0;
743
744 local_paca->hmi_event_available = 0;
745 opal_wake_poller();
746
747 return 1;
748 }
749
find_recovery_address(uint64_t nip)750 static uint64_t find_recovery_address(uint64_t nip)
751 {
752 int i;
753
754 for (i = 0; i < mc_recoverable_range_len; i++)
755 if ((nip >= mc_recoverable_range[i].start_addr) &&
756 (nip < mc_recoverable_range[i].end_addr))
757 return mc_recoverable_range[i].recover_addr;
758 return 0;
759 }
760
opal_mce_check_early_recovery(struct pt_regs * regs)761 bool opal_mce_check_early_recovery(struct pt_regs *regs)
762 {
763 uint64_t recover_addr = 0;
764
765 if (!opal.base || !opal.size)
766 goto out;
767
768 if ((regs->nip >= opal.base) &&
769 (regs->nip < (opal.base + opal.size)))
770 recover_addr = find_recovery_address(regs->nip);
771
772 /*
773 * Setup regs->nip to rfi into fixup address.
774 */
775 if (recover_addr)
776 regs->nip = recover_addr;
777
778 out:
779 return !!recover_addr;
780 }
781
opal_sysfs_init(void)782 static int opal_sysfs_init(void)
783 {
784 opal_kobj = kobject_create_and_add("opal", firmware_kobj);
785 if (!opal_kobj) {
786 pr_warn("kobject_create_and_add opal failed\n");
787 return -ENOMEM;
788 }
789
790 return 0;
791 }
792
export_attr_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)793 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
794 struct bin_attribute *bin_attr, char *buf,
795 loff_t off, size_t count)
796 {
797 return memory_read_from_buffer(buf, count, &off, bin_attr->private,
798 bin_attr->size);
799 }
800
opal_add_one_export(struct kobject * parent,const char * export_name,struct device_node * np,const char * prop_name)801 static int opal_add_one_export(struct kobject *parent, const char *export_name,
802 struct device_node *np, const char *prop_name)
803 {
804 struct bin_attribute *attr = NULL;
805 const char *name = NULL;
806 u64 vals[2];
807 int rc;
808
809 rc = of_property_read_u64_array(np, prop_name, &vals[0], 2);
810 if (rc)
811 goto out;
812
813 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
814 if (!attr) {
815 rc = -ENOMEM;
816 goto out;
817 }
818 name = kstrdup(export_name, GFP_KERNEL);
819 if (!name) {
820 rc = -ENOMEM;
821 goto out;
822 }
823
824 sysfs_bin_attr_init(attr);
825 attr->attr.name = name;
826 attr->attr.mode = 0400;
827 attr->read = export_attr_read;
828 attr->private = __va(vals[0]);
829 attr->size = vals[1];
830
831 rc = sysfs_create_bin_file(parent, attr);
832 out:
833 if (rc) {
834 kfree(name);
835 kfree(attr);
836 }
837
838 return rc;
839 }
840
opal_add_exported_attrs(struct device_node * np,struct kobject * kobj)841 static void opal_add_exported_attrs(struct device_node *np,
842 struct kobject *kobj)
843 {
844 struct device_node *child;
845 struct property *prop;
846
847 for_each_property_of_node(np, prop) {
848 int rc;
849
850 if (!strcmp(prop->name, "name") ||
851 !strcmp(prop->name, "phandle"))
852 continue;
853
854 rc = opal_add_one_export(kobj, prop->name, np, prop->name);
855 if (rc) {
856 pr_warn("Unable to add export %pOF/%s, rc = %d!\n",
857 np, prop->name, rc);
858 }
859 }
860
861 for_each_child_of_node(np, child) {
862 struct kobject *child_kobj;
863
864 child_kobj = kobject_create_and_add(child->name, kobj);
865 if (!child_kobj) {
866 pr_err("Unable to create export dir for %pOF\n", child);
867 continue;
868 }
869
870 opal_add_exported_attrs(child, child_kobj);
871 }
872 }
873
874 /*
875 * opal_export_attrs: creates a sysfs node for each property listed in
876 * the device-tree under /ibm,opal/firmware/exports/
877 * All new sysfs nodes are created under /opal/exports/.
878 * This allows for reserved memory regions (e.g. HDAT) to be read.
879 * The new sysfs nodes are only readable by root.
880 */
opal_export_attrs(void)881 static void opal_export_attrs(void)
882 {
883 struct device_node *np;
884 struct kobject *kobj;
885 int rc;
886
887 np = of_find_node_by_path("/ibm,opal/firmware/exports");
888 if (!np)
889 return;
890
891 /* Create new 'exports' directory - /sys/firmware/opal/exports */
892 kobj = kobject_create_and_add("exports", opal_kobj);
893 if (!kobj) {
894 pr_warn("kobject_create_and_add() of exports failed\n");
895 return;
896 }
897
898 opal_add_exported_attrs(np, kobj);
899
900 /*
901 * NB: symbol_map existed before the generic export interface so it
902 * lives under the top level opal_kobj.
903 */
904 rc = opal_add_one_export(opal_kobj, "symbol_map",
905 np->parent, "symbol-map");
906 if (rc)
907 pr_warn("Error %d creating OPAL symbols file\n", rc);
908
909 of_node_put(np);
910 }
911
opal_dump_region_init(void)912 static void __init opal_dump_region_init(void)
913 {
914 void *addr;
915 uint64_t size;
916 int rc;
917
918 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
919 return;
920
921 /* Register kernel log buffer */
922 addr = log_buf_addr_get();
923 if (addr == NULL)
924 return;
925
926 size = log_buf_len_get();
927 if (size == 0)
928 return;
929
930 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
931 __pa(addr), size);
932 /* Don't warn if this is just an older OPAL that doesn't
933 * know about that call
934 */
935 if (rc && rc != OPAL_UNSUPPORTED)
936 pr_warn("DUMP: Failed to register kernel log buffer. "
937 "rc = %d\n", rc);
938 }
939
opal_pdev_init(const char * compatible)940 static void opal_pdev_init(const char *compatible)
941 {
942 struct device_node *np;
943
944 for_each_compatible_node(np, NULL, compatible)
945 of_platform_device_create(np, NULL, NULL);
946 }
947
opal_imc_init_dev(void)948 static void __init opal_imc_init_dev(void)
949 {
950 struct device_node *np;
951
952 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
953 if (np)
954 of_platform_device_create(np, NULL, NULL);
955 }
956
kopald(void * unused)957 static int kopald(void *unused)
958 {
959 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
960
961 set_freezable();
962 do {
963 try_to_freeze();
964
965 opal_handle_events();
966
967 set_current_state(TASK_INTERRUPTIBLE);
968 if (opal_have_pending_events())
969 __set_current_state(TASK_RUNNING);
970 else
971 schedule_timeout(timeout);
972
973 } while (!kthread_should_stop());
974
975 return 0;
976 }
977
opal_wake_poller(void)978 void opal_wake_poller(void)
979 {
980 if (kopald_tsk)
981 wake_up_process(kopald_tsk);
982 }
983
opal_init_heartbeat(void)984 static void opal_init_heartbeat(void)
985 {
986 /* Old firwmware, we assume the HVC heartbeat is sufficient */
987 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
988 &opal_heartbeat) != 0)
989 opal_heartbeat = 0;
990
991 if (opal_heartbeat)
992 kopald_tsk = kthread_run(kopald, NULL, "kopald");
993 }
994
opal_init(void)995 static int __init opal_init(void)
996 {
997 struct device_node *np, *consoles, *leds;
998 int rc;
999
1000 opal_node = of_find_node_by_path("/ibm,opal");
1001 if (!opal_node) {
1002 pr_warn("Device node not found\n");
1003 return -ENODEV;
1004 }
1005
1006 /* Register OPAL consoles if any ports */
1007 consoles = of_find_node_by_path("/ibm,opal/consoles");
1008 if (consoles) {
1009 for_each_child_of_node(consoles, np) {
1010 if (!of_node_name_eq(np, "serial"))
1011 continue;
1012 of_platform_device_create(np, NULL, NULL);
1013 }
1014 of_node_put(consoles);
1015 }
1016
1017 /* Initialise OPAL messaging system */
1018 opal_message_init(opal_node);
1019
1020 /* Initialise OPAL asynchronous completion interface */
1021 opal_async_comp_init();
1022
1023 /* Initialise OPAL sensor interface */
1024 opal_sensor_init();
1025
1026 /* Initialise OPAL hypervisor maintainence interrupt handling */
1027 opal_hmi_handler_init();
1028
1029 /* Create i2c platform devices */
1030 opal_pdev_init("ibm,opal-i2c");
1031
1032 /* Handle non-volatile memory devices */
1033 opal_pdev_init("pmem-region");
1034
1035 /* Setup a heatbeat thread if requested by OPAL */
1036 opal_init_heartbeat();
1037
1038 /* Detect In-Memory Collection counters and create devices*/
1039 opal_imc_init_dev();
1040
1041 /* Create leds platform devices */
1042 leds = of_find_node_by_path("/ibm,opal/leds");
1043 if (leds) {
1044 of_platform_device_create(leds, "opal_leds", NULL);
1045 of_node_put(leds);
1046 }
1047
1048 /* Initialise OPAL message log interface */
1049 opal_msglog_init();
1050
1051 /* Create "opal" kobject under /sys/firmware */
1052 rc = opal_sysfs_init();
1053 if (rc == 0) {
1054 /* Setup dump region interface */
1055 opal_dump_region_init();
1056 /* Setup error log interface */
1057 rc = opal_elog_init();
1058 /* Setup code update interface */
1059 opal_flash_update_init();
1060 /* Setup platform dump extract interface */
1061 opal_platform_dump_init();
1062 /* Setup system parameters interface */
1063 opal_sys_param_init();
1064 /* Setup message log sysfs interface. */
1065 opal_msglog_sysfs_init();
1066 /* Add all export properties*/
1067 opal_export_attrs();
1068 }
1069
1070 /* Initialize platform devices: IPMI backend, PRD & flash interface */
1071 opal_pdev_init("ibm,opal-ipmi");
1072 opal_pdev_init("ibm,opal-flash");
1073 opal_pdev_init("ibm,opal-prd");
1074
1075 /* Initialise platform device: oppanel interface */
1076 opal_pdev_init("ibm,opal-oppanel");
1077
1078 /* Initialise OPAL kmsg dumper for flushing console on panic */
1079 opal_kmsg_init();
1080
1081 /* Initialise OPAL powercap interface */
1082 opal_powercap_init();
1083
1084 /* Initialise OPAL Power-Shifting-Ratio interface */
1085 opal_psr_init();
1086
1087 /* Initialise OPAL sensor groups */
1088 opal_sensor_groups_init();
1089
1090 /* Initialise OPAL Power control interface */
1091 opal_power_control_init();
1092
1093 /* Initialize OPAL secure variables */
1094 opal_pdev_init("ibm,secvar-backend");
1095
1096 return 0;
1097 }
1098 machine_subsys_initcall(powernv, opal_init);
1099
opal_shutdown(void)1100 void opal_shutdown(void)
1101 {
1102 long rc = OPAL_BUSY;
1103
1104 opal_event_shutdown();
1105
1106 /*
1107 * Then sync with OPAL which ensure anything that can
1108 * potentially write to our memory has completed such
1109 * as an ongoing dump retrieval
1110 */
1111 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
1112 rc = opal_sync_host_reboot();
1113 if (rc == OPAL_BUSY)
1114 opal_poll_events(NULL);
1115 else
1116 mdelay(10);
1117 }
1118
1119 /* Unregister memory dump region */
1120 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
1121 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
1122 }
1123
1124 /* Export this so that test modules can use it */
1125 EXPORT_SYMBOL_GPL(opal_invalid_call);
1126 EXPORT_SYMBOL_GPL(opal_xscom_read);
1127 EXPORT_SYMBOL_GPL(opal_xscom_write);
1128 EXPORT_SYMBOL_GPL(opal_ipmi_send);
1129 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
1130 EXPORT_SYMBOL_GPL(opal_flash_read);
1131 EXPORT_SYMBOL_GPL(opal_flash_write);
1132 EXPORT_SYMBOL_GPL(opal_flash_erase);
1133 EXPORT_SYMBOL_GPL(opal_prd_msg);
1134 EXPORT_SYMBOL_GPL(opal_check_token);
1135
1136 /* Convert a region of vmalloc memory to an opal sg list */
opal_vmalloc_to_sg_list(void * vmalloc_addr,unsigned long vmalloc_size)1137 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1138 unsigned long vmalloc_size)
1139 {
1140 struct opal_sg_list *sg, *first = NULL;
1141 unsigned long i = 0;
1142
1143 sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1144 if (!sg)
1145 goto nomem;
1146
1147 first = sg;
1148
1149 while (vmalloc_size > 0) {
1150 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1151 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1152
1153 sg->entry[i].data = cpu_to_be64(data);
1154 sg->entry[i].length = cpu_to_be64(length);
1155 i++;
1156
1157 if (i >= SG_ENTRIES_PER_NODE) {
1158 struct opal_sg_list *next;
1159
1160 next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1161 if (!next)
1162 goto nomem;
1163
1164 sg->length = cpu_to_be64(
1165 i * sizeof(struct opal_sg_entry) + 16);
1166 i = 0;
1167 sg->next = cpu_to_be64(__pa(next));
1168 sg = next;
1169 }
1170
1171 vmalloc_addr += length;
1172 vmalloc_size -= length;
1173 }
1174
1175 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1176
1177 return first;
1178
1179 nomem:
1180 pr_err("%s : Failed to allocate memory\n", __func__);
1181 opal_free_sg_list(first);
1182 return NULL;
1183 }
1184
opal_free_sg_list(struct opal_sg_list * sg)1185 void opal_free_sg_list(struct opal_sg_list *sg)
1186 {
1187 while (sg) {
1188 uint64_t next = be64_to_cpu(sg->next);
1189
1190 kfree(sg);
1191
1192 if (next)
1193 sg = __va(next);
1194 else
1195 sg = NULL;
1196 }
1197 }
1198
opal_error_code(int rc)1199 int opal_error_code(int rc)
1200 {
1201 switch (rc) {
1202 case OPAL_SUCCESS: return 0;
1203
1204 case OPAL_PARAMETER: return -EINVAL;
1205 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
1206 case OPAL_BUSY:
1207 case OPAL_BUSY_EVENT: return -EBUSY;
1208 case OPAL_NO_MEM: return -ENOMEM;
1209 case OPAL_PERMISSION: return -EPERM;
1210
1211 case OPAL_UNSUPPORTED: return -EIO;
1212 case OPAL_HARDWARE: return -EIO;
1213 case OPAL_INTERNAL_ERROR: return -EIO;
1214 case OPAL_TIMEOUT: return -ETIMEDOUT;
1215 default:
1216 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1217 return -EIO;
1218 }
1219 }
1220
powernv_set_nmmu_ptcr(unsigned long ptcr)1221 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1222 {
1223 int rc;
1224
1225 if (firmware_has_feature(FW_FEATURE_OPAL)) {
1226 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1227 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1228 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1229 }
1230 }
1231
1232 EXPORT_SYMBOL_GPL(opal_poll_events);
1233 EXPORT_SYMBOL_GPL(opal_rtc_read);
1234 EXPORT_SYMBOL_GPL(opal_rtc_write);
1235 EXPORT_SYMBOL_GPL(opal_tpo_read);
1236 EXPORT_SYMBOL_GPL(opal_tpo_write);
1237 EXPORT_SYMBOL_GPL(opal_i2c_request);
1238 /* Export these symbols for PowerNV LED class driver */
1239 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1240 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1241 /* Export this symbol for PowerNV Operator Panel class driver */
1242 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1243 /* Export this for KVM */
1244 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1245 EXPORT_SYMBOL_GPL(opal_int_eoi);
1246 EXPORT_SYMBOL_GPL(opal_error_code);
1247 /* Export the below symbol for NX compression */
1248 EXPORT_SYMBOL(opal_nx_coproc_init);
1249