1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68 #include <linux/zswapd.h>
69
70 #include <trace/events/vmscan.h>
71
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76
77 /* Active memory cgroup to use from an interrupt context */
78 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79
80 /* Socket memory accounting disabled? */
81 static bool cgroup_memory_nosocket;
82
83 /* Kernel memory accounting disabled */
84 static bool cgroup_memory_nokmem = true;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 bool cgroup_memory_noswap __read_mostly;
89 #else
90 #define cgroup_memory_noswap 1
91 #endif
92
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101 }
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105
106 /*
107 * Cgroups above their limits are maintained in a RB-Tree, independent of
108 * their hierarchy representation
109 */
110
111 struct mem_cgroup_tree_per_node {
112 struct rb_root rb_root;
113 struct rb_node *rb_rightmost;
114 spinlock_t lock;
115 };
116
117 struct mem_cgroup_tree {
118 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 };
120
121 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122
123 /* for OOM */
124 struct mem_cgroup_eventfd_list {
125 struct list_head list;
126 struct eventfd_ctx *eventfd;
127 };
128
129 /*
130 * cgroup_event represents events which userspace want to receive.
131 */
132 struct mem_cgroup_event {
133 /*
134 * memcg which the event belongs to.
135 */
136 struct mem_cgroup *memcg;
137 /*
138 * eventfd to signal userspace about the event.
139 */
140 struct eventfd_ctx *eventfd;
141 /*
142 * Each of these stored in a list by the cgroup.
143 */
144 struct list_head list;
145 /*
146 * register_event() callback will be used to add new userspace
147 * waiter for changes related to this event. Use eventfd_signal()
148 * on eventfd to send notification to userspace.
149 */
150 int (*register_event)(struct mem_cgroup *memcg,
151 struct eventfd_ctx *eventfd, const char *args);
152 /*
153 * unregister_event() callback will be called when userspace closes
154 * the eventfd or on cgroup removing. This callback must be set,
155 * if you want provide notification functionality.
156 */
157 void (*unregister_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd);
159 /*
160 * All fields below needed to unregister event when
161 * userspace closes eventfd.
162 */
163 poll_table pt;
164 wait_queue_head_t *wqh;
165 wait_queue_entry_t wait;
166 struct work_struct remove;
167 };
168
169 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171
172 /* Stuffs for move charges at task migration. */
173 /*
174 * Types of charges to be moved.
175 */
176 #define MOVE_ANON 0x1U
177 #define MOVE_FILE 0x2U
178 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
179
180 /* "mc" and its members are protected by cgroup_mutex */
181 static struct move_charge_struct {
182 spinlock_t lock; /* for from, to */
183 struct mm_struct *mm;
184 struct mem_cgroup *from;
185 struct mem_cgroup *to;
186 unsigned long flags;
187 unsigned long precharge;
188 unsigned long moved_charge;
189 unsigned long moved_swap;
190 struct task_struct *moving_task; /* a task moving charges */
191 wait_queue_head_t waitq; /* a waitq for other context */
192 } mc = {
193 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195 };
196
197 /*
198 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199 * limit reclaim to prevent infinite loops, if they ever occur.
200 */
201 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
202 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203
204 /* for encoding cft->private value on file */
205 enum res_type {
206 _MEM,
207 _MEMSWAP,
208 _OOM_TYPE,
209 _KMEM,
210 _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val) ((val) & 0xffff)
216 /* Used for OOM nofiier */
217 #define OOM_CONTROL (0)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_css(struct vmpressure * vmpr)248 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249 {
250 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 extern spinlock_t css_set_lock;
255
obj_cgroup_release(struct percpu_ref * ref)256 static void obj_cgroup_release(struct percpu_ref *ref)
257 {
258 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259 struct mem_cgroup *memcg;
260 unsigned int nr_bytes;
261 unsigned int nr_pages;
262 unsigned long flags;
263
264 /*
265 * At this point all allocated objects are freed, and
266 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268 *
269 * The following sequence can lead to it:
270 * 1) CPU0: objcg == stock->cached_objcg
271 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272 * PAGE_SIZE bytes are charged
273 * 3) CPU1: a process from another memcg is allocating something,
274 * the stock if flushed,
275 * objcg->nr_charged_bytes = PAGE_SIZE - 92
276 * 5) CPU0: we do release this object,
277 * 92 bytes are added to stock->nr_bytes
278 * 6) CPU0: stock is flushed,
279 * 92 bytes are added to objcg->nr_charged_bytes
280 *
281 * In the result, nr_charged_bytes == PAGE_SIZE.
282 * This page will be uncharged in obj_cgroup_release().
283 */
284 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286 nr_pages = nr_bytes >> PAGE_SHIFT;
287
288 spin_lock_irqsave(&css_set_lock, flags);
289 memcg = obj_cgroup_memcg(objcg);
290 if (nr_pages)
291 __memcg_kmem_uncharge(memcg, nr_pages);
292 list_del(&objcg->list);
293 mem_cgroup_put(memcg);
294 spin_unlock_irqrestore(&css_set_lock, flags);
295
296 percpu_ref_exit(ref);
297 kfree_rcu(objcg, rcu);
298 }
299
obj_cgroup_alloc(void)300 static struct obj_cgroup *obj_cgroup_alloc(void)
301 {
302 struct obj_cgroup *objcg;
303 int ret;
304
305 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306 if (!objcg)
307 return NULL;
308
309 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310 GFP_KERNEL);
311 if (ret) {
312 kfree(objcg);
313 return NULL;
314 }
315 INIT_LIST_HEAD(&objcg->list);
316 return objcg;
317 }
318
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)319 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320 struct mem_cgroup *parent)
321 {
322 struct obj_cgroup *objcg, *iter;
323
324 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325
326 spin_lock_irq(&css_set_lock);
327
328 /* Move active objcg to the parent's list */
329 xchg(&objcg->memcg, parent);
330 css_get(&parent->css);
331 list_add(&objcg->list, &parent->objcg_list);
332
333 /* Move already reparented objcgs to the parent's list */
334 list_for_each_entry(iter, &memcg->objcg_list, list) {
335 css_get(&parent->css);
336 xchg(&iter->memcg, parent);
337 css_put(&memcg->css);
338 }
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&css_set_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * This will be used as a shrinker list's index.
348 * The main reason for not using cgroup id for this:
349 * this works better in sparse environments, where we have a lot of memcgs,
350 * but only a few kmem-limited. Or also, if we have, for instance, 200
351 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
352 * 200 entry array for that.
353 *
354 * The current size of the caches array is stored in memcg_nr_cache_ids. It
355 * will double each time we have to increase it.
356 */
357 static DEFINE_IDA(memcg_cache_ida);
358 int memcg_nr_cache_ids;
359
360 /* Protects memcg_nr_cache_ids */
361 static DECLARE_RWSEM(memcg_cache_ids_sem);
362
memcg_get_cache_ids(void)363 void memcg_get_cache_ids(void)
364 {
365 down_read(&memcg_cache_ids_sem);
366 }
367
memcg_put_cache_ids(void)368 void memcg_put_cache_ids(void)
369 {
370 up_read(&memcg_cache_ids_sem);
371 }
372
373 /*
374 * MIN_SIZE is different than 1, because we would like to avoid going through
375 * the alloc/free process all the time. In a small machine, 4 kmem-limited
376 * cgroups is a reasonable guess. In the future, it could be a parameter or
377 * tunable, but that is strictly not necessary.
378 *
379 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380 * this constant directly from cgroup, but it is understandable that this is
381 * better kept as an internal representation in cgroup.c. In any case, the
382 * cgrp_id space is not getting any smaller, and we don't have to necessarily
383 * increase ours as well if it increases.
384 */
385 #define MEMCG_CACHES_MIN_SIZE 4
386 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387
388 /*
389 * A lot of the calls to the cache allocation functions are expected to be
390 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391 * conditional to this static branch, we'll have to allow modules that does
392 * kmem_cache_alloc and the such to see this symbol as well
393 */
394 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395 EXPORT_SYMBOL(memcg_kmem_enabled_key);
396 #endif
397
398 static int memcg_shrinker_map_size;
399 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400
memcg_free_shrinker_map_rcu(struct rcu_head * head)401 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402 {
403 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404 }
405
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)406 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407 int size, int old_size)
408 {
409 struct memcg_shrinker_map *new, *old;
410 int nid;
411
412 lockdep_assert_held(&memcg_shrinker_map_mutex);
413
414 for_each_node(nid) {
415 old = rcu_dereference_protected(
416 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417 /* Not yet online memcg */
418 if (!old)
419 return 0;
420
421 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422 if (!new)
423 return -ENOMEM;
424
425 /* Set all old bits, clear all new bits */
426 memset(new->map, (int)0xff, old_size);
427 memset((void *)new->map + old_size, 0, size - old_size);
428
429 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431 }
432
433 return 0;
434 }
435
memcg_free_shrinker_maps(struct mem_cgroup * memcg)436 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup_per_node *pn;
439 struct memcg_shrinker_map *map;
440 int nid;
441
442 if (mem_cgroup_is_root(memcg))
443 return;
444
445 for_each_node(nid) {
446 pn = mem_cgroup_nodeinfo(memcg, nid);
447 map = rcu_dereference_protected(pn->shrinker_map, true);
448 if (map)
449 kvfree(map);
450 rcu_assign_pointer(pn->shrinker_map, NULL);
451 }
452 }
453
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)454 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455 {
456 struct memcg_shrinker_map *map;
457 int nid, size, ret = 0;
458
459 if (mem_cgroup_is_root(memcg))
460 return 0;
461
462 mutex_lock(&memcg_shrinker_map_mutex);
463 size = memcg_shrinker_map_size;
464 for_each_node(nid) {
465 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466 if (!map) {
467 memcg_free_shrinker_maps(memcg);
468 ret = -ENOMEM;
469 break;
470 }
471 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472 }
473 mutex_unlock(&memcg_shrinker_map_mutex);
474
475 return ret;
476 }
477
memcg_expand_shrinker_maps(int new_id)478 int memcg_expand_shrinker_maps(int new_id)
479 {
480 int size, old_size, ret = 0;
481 struct mem_cgroup *memcg;
482
483 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484 old_size = memcg_shrinker_map_size;
485 if (size <= old_size)
486 return 0;
487
488 mutex_lock(&memcg_shrinker_map_mutex);
489 if (!root_mem_cgroup)
490 goto unlock;
491
492 for_each_mem_cgroup(memcg) {
493 if (mem_cgroup_is_root(memcg))
494 continue;
495 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496 if (ret) {
497 mem_cgroup_iter_break(NULL, memcg);
498 goto unlock;
499 }
500 }
501 unlock:
502 if (!ret)
503 memcg_shrinker_map_size = size;
504 mutex_unlock(&memcg_shrinker_map_mutex);
505 return ret;
506 }
507
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)508 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509 {
510 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511 struct memcg_shrinker_map *map;
512
513 rcu_read_lock();
514 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515 /* Pairs with smp mb in shrink_slab() */
516 smp_mb__before_atomic();
517 set_bit(shrinker_id, map->map);
518 rcu_read_unlock();
519 }
520 }
521
522 /**
523 * mem_cgroup_css_from_page - css of the memcg associated with a page
524 * @page: page of interest
525 *
526 * If memcg is bound to the default hierarchy, css of the memcg associated
527 * with @page is returned. The returned css remains associated with @page
528 * until it is released.
529 *
530 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531 * is returned.
532 */
mem_cgroup_css_from_page(struct page * page)533 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534 {
535 struct mem_cgroup *memcg;
536
537 memcg = page->mem_cgroup;
538
539 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540 memcg = root_mem_cgroup;
541
542 return &memcg->css;
543 }
544
545 /**
546 * page_cgroup_ino - return inode number of the memcg a page is charged to
547 * @page: the page
548 *
549 * Look up the closest online ancestor of the memory cgroup @page is charged to
550 * and return its inode number or 0 if @page is not charged to any cgroup. It
551 * is safe to call this function without holding a reference to @page.
552 *
553 * Note, this function is inherently racy, because there is nothing to prevent
554 * the cgroup inode from getting torn down and potentially reallocated a moment
555 * after page_cgroup_ino() returns, so it only should be used by callers that
556 * do not care (such as procfs interfaces).
557 */
page_cgroup_ino(struct page * page)558 ino_t page_cgroup_ino(struct page *page)
559 {
560 struct mem_cgroup *memcg;
561 unsigned long ino = 0;
562
563 rcu_read_lock();
564 memcg = page->mem_cgroup;
565
566 /*
567 * The lowest bit set means that memcg isn't a valid
568 * memcg pointer, but a obj_cgroups pointer.
569 * In this case the page is shared and doesn't belong
570 * to any specific memory cgroup.
571 */
572 if ((unsigned long) memcg & 0x1UL)
573 memcg = NULL;
574
575 while (memcg && !(memcg->css.flags & CSS_ONLINE))
576 memcg = parent_mem_cgroup(memcg);
577 if (memcg)
578 ino = cgroup_ino(memcg->css.cgroup);
579 rcu_read_unlock();
580 return ino;
581 }
582
583 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)584 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585 {
586 int nid = page_to_nid(page);
587
588 return memcg->nodeinfo[nid];
589 }
590
591 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)592 soft_limit_tree_node(int nid)
593 {
594 return soft_limit_tree.rb_tree_per_node[nid];
595 }
596
597 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)598 soft_limit_tree_from_page(struct page *page)
599 {
600 int nid = page_to_nid(page);
601
602 return soft_limit_tree.rb_tree_per_node[nid];
603 }
604
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)605 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606 struct mem_cgroup_tree_per_node *mctz,
607 unsigned long new_usage_in_excess)
608 {
609 struct rb_node **p = &mctz->rb_root.rb_node;
610 struct rb_node *parent = NULL;
611 struct mem_cgroup_per_node *mz_node;
612 bool rightmost = true;
613
614 if (mz->on_tree)
615 return;
616
617 mz->usage_in_excess = new_usage_in_excess;
618 if (!mz->usage_in_excess)
619 return;
620 while (*p) {
621 parent = *p;
622 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623 tree_node);
624 if (mz->usage_in_excess < mz_node->usage_in_excess) {
625 p = &(*p)->rb_left;
626 rightmost = false;
627 }
628
629 /*
630 * We can't avoid mem cgroups that are over their soft
631 * limit by the same amount
632 */
633 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634 p = &(*p)->rb_right;
635 }
636
637 if (rightmost)
638 mctz->rb_rightmost = &mz->tree_node;
639
640 rb_link_node(&mz->tree_node, parent, p);
641 rb_insert_color(&mz->tree_node, &mctz->rb_root);
642 mz->on_tree = true;
643 }
644
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)645 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646 struct mem_cgroup_tree_per_node *mctz)
647 {
648 if (!mz->on_tree)
649 return;
650
651 if (&mz->tree_node == mctz->rb_rightmost)
652 mctz->rb_rightmost = rb_prev(&mz->tree_node);
653
654 rb_erase(&mz->tree_node, &mctz->rb_root);
655 mz->on_tree = false;
656 }
657
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)658 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659 struct mem_cgroup_tree_per_node *mctz)
660 {
661 unsigned long flags;
662
663 spin_lock_irqsave(&mctz->lock, flags);
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 spin_unlock_irqrestore(&mctz->lock, flags);
666 }
667
soft_limit_excess(struct mem_cgroup * memcg)668 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669 {
670 #ifdef CONFIG_HYPERHOLD_FILE_LRU
671 struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
672 struct lruvec *lruvec = &mz->lruvec;
673 unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
674 MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
675 MAX_NR_ZONES);
676 #else
677 unsigned long nr_pages = page_counter_read(&memcg->memory);
678 #endif
679 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
680 unsigned long excess = 0;
681
682 if (nr_pages > soft_limit)
683 excess = nr_pages - soft_limit;
684
685 return excess;
686 }
687
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)688 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
689 {
690 unsigned long excess;
691 struct mem_cgroup_per_node *mz;
692 struct mem_cgroup_tree_per_node *mctz;
693
694 mctz = soft_limit_tree_from_page(page);
695 if (!mctz)
696 return;
697 /*
698 * Necessary to update all ancestors when hierarchy is used.
699 * because their event counter is not touched.
700 */
701 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
702 mz = mem_cgroup_page_nodeinfo(memcg, page);
703 excess = soft_limit_excess(memcg);
704 /*
705 * We have to update the tree if mz is on RB-tree or
706 * mem is over its softlimit.
707 */
708 if (excess || mz->on_tree) {
709 unsigned long flags;
710
711 spin_lock_irqsave(&mctz->lock, flags);
712 /* if on-tree, remove it */
713 if (mz->on_tree)
714 __mem_cgroup_remove_exceeded(mz, mctz);
715 /*
716 * Insert again. mz->usage_in_excess will be updated.
717 * If excess is 0, no tree ops.
718 */
719 __mem_cgroup_insert_exceeded(mz, mctz, excess);
720 spin_unlock_irqrestore(&mctz->lock, flags);
721 }
722 }
723 }
724
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)725 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
726 {
727 struct mem_cgroup_tree_per_node *mctz;
728 struct mem_cgroup_per_node *mz;
729 int nid;
730
731 for_each_node(nid) {
732 mz = mem_cgroup_nodeinfo(memcg, nid);
733 mctz = soft_limit_tree_node(nid);
734 if (mctz)
735 mem_cgroup_remove_exceeded(mz, mctz);
736 }
737 }
738
739 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)740 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
741 {
742 struct mem_cgroup_per_node *mz;
743
744 retry:
745 mz = NULL;
746 if (!mctz->rb_rightmost)
747 goto done; /* Nothing to reclaim from */
748
749 mz = rb_entry(mctz->rb_rightmost,
750 struct mem_cgroup_per_node, tree_node);
751 /*
752 * Remove the node now but someone else can add it back,
753 * we will to add it back at the end of reclaim to its correct
754 * position in the tree.
755 */
756 __mem_cgroup_remove_exceeded(mz, mctz);
757 if (!soft_limit_excess(mz->memcg) ||
758 !css_tryget(&mz->memcg->css))
759 goto retry;
760 done:
761 return mz;
762 }
763
764 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)765 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
766 {
767 struct mem_cgroup_per_node *mz;
768
769 spin_lock_irq(&mctz->lock);
770 mz = __mem_cgroup_largest_soft_limit_node(mctz);
771 spin_unlock_irq(&mctz->lock);
772 return mz;
773 }
774
775 /**
776 * __mod_memcg_state - update cgroup memory statistics
777 * @memcg: the memory cgroup
778 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
779 * @val: delta to add to the counter, can be negative
780 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)781 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
782 {
783 long x, threshold = MEMCG_CHARGE_BATCH;
784
785 if (mem_cgroup_disabled())
786 return;
787
788 if (memcg_stat_item_in_bytes(idx))
789 threshold <<= PAGE_SHIFT;
790
791 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
792 if (unlikely(abs(x) > threshold)) {
793 struct mem_cgroup *mi;
794
795 /*
796 * Batch local counters to keep them in sync with
797 * the hierarchical ones.
798 */
799 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
800 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
801 atomic_long_add(x, &mi->vmstats[idx]);
802 x = 0;
803 }
804 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
805 }
806
807 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)808 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
809 {
810 struct mem_cgroup *parent;
811
812 parent = parent_mem_cgroup(pn->memcg);
813 if (!parent)
814 return NULL;
815 return mem_cgroup_nodeinfo(parent, nid);
816 }
817
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)818 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
819 int val)
820 {
821 struct mem_cgroup_per_node *pn;
822 struct mem_cgroup *memcg;
823 long x, threshold = MEMCG_CHARGE_BATCH;
824
825 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
826 memcg = pn->memcg;
827
828 /* Update memcg */
829 __mod_memcg_state(memcg, idx, val);
830
831 /* Update lruvec */
832 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
833
834 if (vmstat_item_in_bytes(idx))
835 threshold <<= PAGE_SHIFT;
836
837 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
838 if (unlikely(abs(x) > threshold)) {
839 pg_data_t *pgdat = lruvec_pgdat(lruvec);
840 struct mem_cgroup_per_node *pi;
841
842 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
843 atomic_long_add(x, &pi->lruvec_stat[idx]);
844 x = 0;
845 }
846 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
847 }
848
849 /**
850 * __mod_lruvec_state - update lruvec memory statistics
851 * @lruvec: the lruvec
852 * @idx: the stat item
853 * @val: delta to add to the counter, can be negative
854 *
855 * The lruvec is the intersection of the NUMA node and a cgroup. This
856 * function updates the all three counters that are affected by a
857 * change of state at this level: per-node, per-cgroup, per-lruvec.
858 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)859 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
860 int val)
861 {
862 /* Update node */
863 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
864
865 /* Update memcg and lruvec */
866 if (!mem_cgroup_disabled()) {
867 #ifdef CONFIG_HYPERHOLD_FILE_LRU
868 if (is_node_lruvec(lruvec))
869 return;
870 #endif
871 __mod_memcg_lruvec_state(lruvec, idx, val);
872 }
873 }
874
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
876 {
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897 }
898
mod_memcg_obj_state(void * p,int idx,int val)899 void mod_memcg_obj_state(void *p, int idx, int val)
900 {
901 struct mem_cgroup *memcg;
902
903 rcu_read_lock();
904 memcg = mem_cgroup_from_obj(p);
905 if (memcg)
906 mod_memcg_state(memcg, idx, val);
907 rcu_read_unlock();
908 }
909
910 /**
911 * __count_memcg_events - account VM events in a cgroup
912 * @memcg: the memory cgroup
913 * @idx: the event item
914 * @count: the number of events that occured
915 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)916 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
917 unsigned long count)
918 {
919 unsigned long x;
920
921 if (mem_cgroup_disabled())
922 return;
923 #ifdef CONFIG_HYPERHOLD_FILE_LRU
924 if (!memcg)
925 return;
926 #endif
927
928 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
929 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
930 struct mem_cgroup *mi;
931
932 /*
933 * Batch local counters to keep them in sync with
934 * the hierarchical ones.
935 */
936 __this_cpu_add(memcg->vmstats_local->events[idx], x);
937 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
938 atomic_long_add(x, &mi->vmevents[idx]);
939 x = 0;
940 }
941 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
942 }
943
memcg_events(struct mem_cgroup * memcg,int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 return atomic_long_read(&memcg->vmevents[event]);
947 }
948
memcg_events_local(struct mem_cgroup * memcg,int event)949 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950 {
951 long x = 0;
952 int cpu;
953
954 for_each_possible_cpu(cpu)
955 x += per_cpu(memcg->vmstats_local->events[event], cpu);
956 return x;
957 }
958
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)959 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960 struct page *page,
961 int nr_pages)
962 {
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
965 __count_memcg_events(memcg, PGPGIN, 1);
966 else {
967 __count_memcg_events(memcg, PGPGOUT, 1);
968 nr_pages = -nr_pages; /* for event */
969 }
970
971 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
972 }
973
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)974 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
975 enum mem_cgroup_events_target target)
976 {
977 unsigned long val, next;
978
979 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
980 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
981 /* from time_after() in jiffies.h */
982 if ((long)(next - val) < 0) {
983 switch (target) {
984 case MEM_CGROUP_TARGET_THRESH:
985 next = val + THRESHOLDS_EVENTS_TARGET;
986 break;
987 case MEM_CGROUP_TARGET_SOFTLIMIT:
988 next = val + SOFTLIMIT_EVENTS_TARGET;
989 break;
990 default:
991 break;
992 }
993 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
994 return true;
995 }
996 return false;
997 }
998
999 /*
1000 * Check events in order.
1001 *
1002 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)1003 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 {
1005 /* threshold event is triggered in finer grain than soft limit */
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
1008 bool do_softlimit;
1009
1010 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1011 MEM_CGROUP_TARGET_SOFTLIMIT);
1012 mem_cgroup_threshold(memcg);
1013 if (unlikely(do_softlimit))
1014 mem_cgroup_update_tree(memcg, page);
1015 }
1016 }
1017
mem_cgroup_from_task(struct task_struct * p)1018 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1019 {
1020 /*
1021 * mm_update_next_owner() may clear mm->owner to NULL
1022 * if it races with swapoff, page migration, etc.
1023 * So this can be called with p == NULL.
1024 */
1025 if (unlikely(!p))
1026 return NULL;
1027
1028 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1029 }
1030 EXPORT_SYMBOL(mem_cgroup_from_task);
1031
1032 /**
1033 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1034 * @mm: mm from which memcg should be extracted. It can be NULL.
1035 *
1036 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1037 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1038 * returned.
1039 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1040 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 struct mem_cgroup *memcg;
1043
1044 if (mem_cgroup_disabled())
1045 return NULL;
1046
1047 rcu_read_lock();
1048 do {
1049 /*
1050 * Page cache insertions can happen withou an
1051 * actual mm context, e.g. during disk probing
1052 * on boot, loopback IO, acct() writes etc.
1053 */
1054 if (unlikely(!mm))
1055 memcg = root_mem_cgroup;
1056 else {
1057 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1058 if (unlikely(!memcg))
1059 memcg = root_mem_cgroup;
1060 }
1061 } while (!css_tryget(&memcg->css));
1062 rcu_read_unlock();
1063 return memcg;
1064 }
1065 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1066
1067 /**
1068 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1069 * @page: page from which memcg should be extracted.
1070 *
1071 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1072 * root_mem_cgroup is returned.
1073 */
get_mem_cgroup_from_page(struct page * page)1074 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1075 {
1076 struct mem_cgroup *memcg = page->mem_cgroup;
1077
1078 if (mem_cgroup_disabled())
1079 return NULL;
1080
1081 rcu_read_lock();
1082 /* Page should not get uncharged and freed memcg under us. */
1083 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084 memcg = root_mem_cgroup;
1085 rcu_read_unlock();
1086 return memcg;
1087 }
1088 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1089
active_memcg(void)1090 static __always_inline struct mem_cgroup *active_memcg(void)
1091 {
1092 if (in_interrupt())
1093 return this_cpu_read(int_active_memcg);
1094 else
1095 return current->active_memcg;
1096 }
1097
get_active_memcg(void)1098 static __always_inline struct mem_cgroup *get_active_memcg(void)
1099 {
1100 struct mem_cgroup *memcg;
1101
1102 rcu_read_lock();
1103 memcg = active_memcg();
1104 /* remote memcg must hold a ref. */
1105 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1106 memcg = root_mem_cgroup;
1107 rcu_read_unlock();
1108
1109 return memcg;
1110 }
1111
memcg_kmem_bypass(void)1112 static __always_inline bool memcg_kmem_bypass(void)
1113 {
1114 /* Allow remote memcg charging from any context. */
1115 if (unlikely(active_memcg()))
1116 return false;
1117
1118 /* Memcg to charge can't be determined. */
1119 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1120 return true;
1121
1122 return false;
1123 }
1124
1125 /**
1126 * If active memcg is set, do not fallback to current->mm->memcg.
1127 */
get_mem_cgroup_from_current(void)1128 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1129 {
1130 if (memcg_kmem_bypass())
1131 return NULL;
1132
1133 if (unlikely(active_memcg()))
1134 return get_active_memcg();
1135
1136 return get_mem_cgroup_from_mm(current->mm);
1137 }
1138
1139 /**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1156 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 struct mem_cgroup *prev,
1158 struct mem_cgroup_reclaim_cookie *reclaim)
1159 {
1160 struct mem_cgroup_reclaim_iter *iter;
1161 struct cgroup_subsys_state *css = NULL;
1162 struct mem_cgroup *memcg = NULL;
1163 struct mem_cgroup *pos = NULL;
1164
1165 if (mem_cgroup_disabled())
1166 return NULL;
1167
1168 if (!root)
1169 root = root_mem_cgroup;
1170
1171 if (prev && !reclaim)
1172 pos = prev;
1173
1174 if (!root->use_hierarchy && root != root_mem_cgroup) {
1175 if (prev)
1176 goto out;
1177 return root;
1178 }
1179
1180 rcu_read_lock();
1181
1182 if (reclaim) {
1183 struct mem_cgroup_per_node *mz;
1184
1185 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1186 iter = &mz->iter;
1187
1188 if (prev && reclaim->generation != iter->generation)
1189 goto out_unlock;
1190
1191 while (1) {
1192 pos = READ_ONCE(iter->position);
1193 if (!pos || css_tryget(&pos->css))
1194 break;
1195 /*
1196 * css reference reached zero, so iter->position will
1197 * be cleared by ->css_released. However, we should not
1198 * rely on this happening soon, because ->css_released
1199 * is called from a work queue, and by busy-waiting we
1200 * might block it. So we clear iter->position right
1201 * away.
1202 */
1203 (void)cmpxchg(&iter->position, pos, NULL);
1204 }
1205 }
1206
1207 if (pos)
1208 css = &pos->css;
1209
1210 for (;;) {
1211 css = css_next_descendant_pre(css, &root->css);
1212 if (!css) {
1213 /*
1214 * Reclaimers share the hierarchy walk, and a
1215 * new one might jump in right at the end of
1216 * the hierarchy - make sure they see at least
1217 * one group and restart from the beginning.
1218 */
1219 if (!prev)
1220 continue;
1221 break;
1222 }
1223
1224 /*
1225 * Verify the css and acquire a reference. The root
1226 * is provided by the caller, so we know it's alive
1227 * and kicking, and don't take an extra reference.
1228 */
1229 memcg = mem_cgroup_from_css(css);
1230
1231 if (css == &root->css)
1232 break;
1233
1234 if (css_tryget(css))
1235 break;
1236
1237 memcg = NULL;
1238 }
1239
1240 if (reclaim) {
1241 /*
1242 * The position could have already been updated by a competing
1243 * thread, so check that the value hasn't changed since we read
1244 * it to avoid reclaiming from the same cgroup twice.
1245 */
1246 (void)cmpxchg(&iter->position, pos, memcg);
1247
1248 if (pos)
1249 css_put(&pos->css);
1250
1251 if (!memcg)
1252 iter->generation++;
1253 else if (!prev)
1254 reclaim->generation = iter->generation;
1255 }
1256
1257 out_unlock:
1258 rcu_read_unlock();
1259 out:
1260 if (prev && prev != root)
1261 css_put(&prev->css);
1262
1263 return memcg;
1264 }
1265
1266 /**
1267 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1268 * @root: hierarchy root
1269 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1271 void mem_cgroup_iter_break(struct mem_cgroup *root,
1272 struct mem_cgroup *prev)
1273 {
1274 if (!root)
1275 root = root_mem_cgroup;
1276 if (prev && prev != root)
1277 css_put(&prev->css);
1278 }
1279
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1280 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1281 struct mem_cgroup *dead_memcg)
1282 {
1283 struct mem_cgroup_reclaim_iter *iter;
1284 struct mem_cgroup_per_node *mz;
1285 int nid;
1286
1287 for_each_node(nid) {
1288 mz = mem_cgroup_nodeinfo(from, nid);
1289 iter = &mz->iter;
1290 cmpxchg(&iter->position, dead_memcg, NULL);
1291 }
1292 }
1293
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1294 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1295 {
1296 struct mem_cgroup *memcg = dead_memcg;
1297 struct mem_cgroup *last;
1298
1299 do {
1300 __invalidate_reclaim_iterators(memcg, dead_memcg);
1301 last = memcg;
1302 } while ((memcg = parent_mem_cgroup(memcg)));
1303
1304 /*
1305 * When cgruop1 non-hierarchy mode is used,
1306 * parent_mem_cgroup() does not walk all the way up to the
1307 * cgroup root (root_mem_cgroup). So we have to handle
1308 * dead_memcg from cgroup root separately.
1309 */
1310 if (last != root_mem_cgroup)
1311 __invalidate_reclaim_iterators(root_mem_cgroup,
1312 dead_memcg);
1313 }
1314
1315 /**
1316 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1317 * @memcg: hierarchy root
1318 * @fn: function to call for each task
1319 * @arg: argument passed to @fn
1320 *
1321 * This function iterates over tasks attached to @memcg or to any of its
1322 * descendants and calls @fn for each task. If @fn returns a non-zero
1323 * value, the function breaks the iteration loop and returns the value.
1324 * Otherwise, it will iterate over all tasks and return 0.
1325 *
1326 * This function must not be called for the root memory cgroup.
1327 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1328 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329 int (*fn)(struct task_struct *, void *), void *arg)
1330 {
1331 struct mem_cgroup *iter;
1332 int ret = 0;
1333
1334 BUG_ON(memcg == root_mem_cgroup);
1335
1336 for_each_mem_cgroup_tree(iter, memcg) {
1337 struct css_task_iter it;
1338 struct task_struct *task;
1339
1340 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1341 while (!ret && (task = css_task_iter_next(&it)))
1342 ret = fn(task, arg);
1343 css_task_iter_end(&it);
1344 if (ret) {
1345 mem_cgroup_iter_break(memcg, iter);
1346 break;
1347 }
1348 }
1349 return ret;
1350 }
1351
1352 /**
1353 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1354 * @page: the page
1355 * @pgdat: pgdat of the page
1356 *
1357 * This function relies on page->mem_cgroup being stable - see the
1358 * access rules in commit_charge().
1359 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1360 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1361 {
1362 struct mem_cgroup_per_node *mz;
1363 struct mem_cgroup *memcg;
1364 struct lruvec *lruvec;
1365
1366 if (mem_cgroup_disabled()) {
1367 lruvec = &pgdat->__lruvec;
1368 goto out;
1369 }
1370
1371 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1372 if (page_is_file_lru(page) &&
1373 !is_prot_page(page)) {
1374 lruvec = node_lruvec(pgdat);
1375 goto out;
1376 }
1377 #endif
1378 memcg = page->mem_cgroup;
1379 /*
1380 * Swapcache readahead pages are added to the LRU - and
1381 * possibly migrated - before they are charged.
1382 */
1383 if (!memcg)
1384 memcg = root_mem_cgroup;
1385
1386 mz = mem_cgroup_page_nodeinfo(memcg, page);
1387 lruvec = &mz->lruvec;
1388 out:
1389 /*
1390 * Since a node can be onlined after the mem_cgroup was created,
1391 * we have to be prepared to initialize lruvec->zone here;
1392 * and if offlined then reonlined, we need to reinitialize it.
1393 */
1394 if (unlikely(lruvec->pgdat != pgdat))
1395 lruvec->pgdat = pgdat;
1396 return lruvec;
1397 }
1398
1399 /**
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
1403 * @zid: zone id of the accounted pages
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int zid, int nr_pages)
1412 {
1413 struct mem_cgroup_per_node *mz;
1414 unsigned long *lru_size;
1415 long size;
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
1420 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1421 if (is_node_lruvec(lruvec))
1422 return;
1423 #endif
1424 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1425 lru_size = &mz->lru_zone_size[zid][lru];
1426
1427 if (nr_pages < 0)
1428 *lru_size += nr_pages;
1429
1430 size = *lru_size;
1431 if (WARN_ONCE(size < 0,
1432 "%s(%p, %d, %d): lru_size %ld\n",
1433 __func__, lruvec, lru, nr_pages, size)) {
1434 VM_BUG_ON(1);
1435 *lru_size = 0;
1436 }
1437
1438 if (nr_pages > 0)
1439 *lru_size += nr_pages;
1440 }
1441
1442 /**
1443 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1444 * @memcg: the memory cgroup
1445 *
1446 * Returns the maximum amount of memory @mem can be charged with, in
1447 * pages.
1448 */
mem_cgroup_margin(struct mem_cgroup * memcg)1449 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1450 {
1451 unsigned long margin = 0;
1452 unsigned long count;
1453 unsigned long limit;
1454
1455 count = page_counter_read(&memcg->memory);
1456 limit = READ_ONCE(memcg->memory.max);
1457 if (count < limit)
1458 margin = limit - count;
1459
1460 if (do_memsw_account()) {
1461 count = page_counter_read(&memcg->memsw);
1462 limit = READ_ONCE(memcg->memsw.max);
1463 if (count < limit)
1464 margin = min(margin, limit - count);
1465 else
1466 margin = 0;
1467 }
1468
1469 return margin;
1470 }
1471
1472 /*
1473 * A routine for checking "mem" is under move_account() or not.
1474 *
1475 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1476 * moving cgroups. This is for waiting at high-memory pressure
1477 * caused by "move".
1478 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1479 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *from;
1482 struct mem_cgroup *to;
1483 bool ret = false;
1484 /*
1485 * Unlike task_move routines, we access mc.to, mc.from not under
1486 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1487 */
1488 spin_lock(&mc.lock);
1489 from = mc.from;
1490 to = mc.to;
1491 if (!from)
1492 goto unlock;
1493
1494 ret = mem_cgroup_is_descendant(from, memcg) ||
1495 mem_cgroup_is_descendant(to, memcg);
1496 unlock:
1497 spin_unlock(&mc.lock);
1498 return ret;
1499 }
1500
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1501 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502 {
1503 if (mc.moving_task && current != mc.moving_task) {
1504 if (mem_cgroup_under_move(memcg)) {
1505 DEFINE_WAIT(wait);
1506 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507 /* moving charge context might have finished. */
1508 if (mc.moving_task)
1509 schedule();
1510 finish_wait(&mc.waitq, &wait);
1511 return true;
1512 }
1513 }
1514 return false;
1515 }
1516
1517 struct memory_stat {
1518 const char *name;
1519 unsigned int ratio;
1520 unsigned int idx;
1521 };
1522
1523 static struct memory_stat memory_stats[] = {
1524 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1525 { "file", PAGE_SIZE, NR_FILE_PAGES },
1526 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1527 { "percpu", 1, MEMCG_PERCPU_B },
1528 { "sock", PAGE_SIZE, MEMCG_SOCK },
1529 { "shmem", PAGE_SIZE, NR_SHMEM },
1530 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1531 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1532 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1534 /*
1535 * The ratio will be initialized in memory_stats_init(). Because
1536 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1537 * constant(e.g. powerpc).
1538 */
1539 { "anon_thp", 0, NR_ANON_THPS },
1540 #endif
1541 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1542 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1543 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1544 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1545 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1546
1547 /*
1548 * Note: The slab_reclaimable and slab_unreclaimable must be
1549 * together and slab_reclaimable must be in front.
1550 */
1551 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1552 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1553
1554 /* The memory events */
1555 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1556 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1557 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1558 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1559 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1560 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1561 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1562 };
1563
memory_stats_init(void)1564 static int __init memory_stats_init(void)
1565 {
1566 int i;
1567
1568 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570 if (memory_stats[i].idx == NR_ANON_THPS)
1571 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1572 #endif
1573 VM_BUG_ON(!memory_stats[i].ratio);
1574 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1575 }
1576
1577 return 0;
1578 }
1579 pure_initcall(memory_stats_init);
1580
memory_stat_format(struct mem_cgroup * memcg)1581 static char *memory_stat_format(struct mem_cgroup *memcg)
1582 {
1583 struct seq_buf s;
1584 int i;
1585
1586 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1587 if (!s.buffer)
1588 return NULL;
1589
1590 /*
1591 * Provide statistics on the state of the memory subsystem as
1592 * well as cumulative event counters that show past behavior.
1593 *
1594 * This list is ordered following a combination of these gradients:
1595 * 1) generic big picture -> specifics and details
1596 * 2) reflecting userspace activity -> reflecting kernel heuristics
1597 *
1598 * Current memory state:
1599 */
1600
1601 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1602 u64 size;
1603
1604 size = memcg_page_state(memcg, memory_stats[i].idx);
1605 size *= memory_stats[i].ratio;
1606 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1610 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1611 seq_buf_printf(&s, "slab %llu\n", size);
1612 }
1613 }
1614
1615 /* Accumulated memory events */
1616
1617 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1618 memcg_events(memcg, PGFAULT));
1619 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1620 memcg_events(memcg, PGMAJFAULT));
1621 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1622 memcg_events(memcg, PGREFILL));
1623 seq_buf_printf(&s, "pgscan %lu\n",
1624 memcg_events(memcg, PGSCAN_KSWAPD) +
1625 memcg_events(memcg, PGSCAN_DIRECT));
1626 seq_buf_printf(&s, "pgsteal %lu\n",
1627 memcg_events(memcg, PGSTEAL_KSWAPD) +
1628 memcg_events(memcg, PGSTEAL_DIRECT));
1629 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1630 memcg_events(memcg, PGACTIVATE));
1631 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1632 memcg_events(memcg, PGDEACTIVATE));
1633 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1634 memcg_events(memcg, PGLAZYFREE));
1635 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1636 memcg_events(memcg, PGLAZYFREED));
1637
1638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1639 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1640 memcg_events(memcg, THP_FAULT_ALLOC));
1641 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1642 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1644
1645 /* The above should easily fit into one page */
1646 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1647
1648 return s.buffer;
1649 }
1650
1651 #define K(x) ((x) << (PAGE_SHIFT-10))
1652 /**
1653 * mem_cgroup_print_oom_context: Print OOM information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 * @p: Task that is going to be killed
1657 *
1658 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659 * enabled
1660 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1661 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1662 {
1663 rcu_read_lock();
1664
1665 if (memcg) {
1666 pr_cont(",oom_memcg=");
1667 pr_cont_cgroup_path(memcg->css.cgroup);
1668 } else
1669 pr_cont(",global_oom");
1670 if (p) {
1671 pr_cont(",task_memcg=");
1672 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1673 }
1674 rcu_read_unlock();
1675 }
1676
1677 /**
1678 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1679 * memory controller.
1680 * @memcg: The memory cgroup that went over limit
1681 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1682 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1683 {
1684 char *buf;
1685
1686 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1687 K((u64)page_counter_read(&memcg->memory)),
1688 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1690 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1691 K((u64)page_counter_read(&memcg->swap)),
1692 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1693 else {
1694 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->memsw)),
1696 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1697 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1698 K((u64)page_counter_read(&memcg->kmem)),
1699 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1700 }
1701
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(memcg->css.cgroup);
1704 pr_cont(":");
1705 buf = memory_stat_format(memcg);
1706 if (!buf)
1707 return;
1708 pr_info("%s", buf);
1709 kfree(buf);
1710 }
1711
1712 /*
1713 * Return the memory (and swap, if configured) limit for a memcg.
1714 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1715 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1716 {
1717 unsigned long max = READ_ONCE(memcg->memory.max);
1718
1719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1720 if (mem_cgroup_swappiness(memcg))
1721 max += min(READ_ONCE(memcg->swap.max),
1722 (unsigned long)total_swap_pages);
1723 } else { /* v1 */
1724 if (mem_cgroup_swappiness(memcg)) {
1725 /* Calculate swap excess capacity from memsw limit */
1726 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1727
1728 max += min(swap, (unsigned long)total_swap_pages);
1729 }
1730 }
1731 return max;
1732 }
1733
mem_cgroup_size(struct mem_cgroup * memcg)1734 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1735 {
1736 return page_counter_read(&memcg->memory);
1737 }
1738
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1739 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1740 int order)
1741 {
1742 struct oom_control oc = {
1743 .zonelist = NULL,
1744 .nodemask = NULL,
1745 .memcg = memcg,
1746 .gfp_mask = gfp_mask,
1747 .order = order,
1748 };
1749 bool ret = true;
1750
1751 if (mutex_lock_killable(&oom_lock))
1752 return true;
1753
1754 if (mem_cgroup_margin(memcg) >= (1 << order))
1755 goto unlock;
1756
1757 /*
1758 * A few threads which were not waiting at mutex_lock_killable() can
1759 * fail to bail out. Therefore, check again after holding oom_lock.
1760 */
1761 ret = task_is_dying() || out_of_memory(&oc);
1762
1763 unlock:
1764 mutex_unlock(&oom_lock);
1765 return ret;
1766 }
1767
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1768 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1769 pg_data_t *pgdat,
1770 gfp_t gfp_mask,
1771 unsigned long *total_scanned)
1772 {
1773 struct mem_cgroup *victim = NULL;
1774 int total = 0;
1775 int loop = 0;
1776 unsigned long excess;
1777 unsigned long nr_scanned;
1778 struct mem_cgroup_reclaim_cookie reclaim = {
1779 .pgdat = pgdat,
1780 };
1781
1782 excess = soft_limit_excess(root_memcg);
1783
1784 while (1) {
1785 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786 if (!victim) {
1787 loop++;
1788 if (loop >= 2) {
1789 /*
1790 * If we have not been able to reclaim
1791 * anything, it might because there are
1792 * no reclaimable pages under this hierarchy
1793 */
1794 if (!total)
1795 break;
1796 /*
1797 * We want to do more targeted reclaim.
1798 * excess >> 2 is not to excessive so as to
1799 * reclaim too much, nor too less that we keep
1800 * coming back to reclaim from this cgroup
1801 */
1802 if (total >= (excess >> 2) ||
1803 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804 break;
1805 }
1806 continue;
1807 }
1808 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1809 pgdat, &nr_scanned);
1810 *total_scanned += nr_scanned;
1811 if (!soft_limit_excess(root_memcg))
1812 break;
1813 }
1814 mem_cgroup_iter_break(root_memcg, victim);
1815 return total;
1816 }
1817
1818 #ifdef CONFIG_LOCKDEP
1819 static struct lockdep_map memcg_oom_lock_dep_map = {
1820 .name = "memcg_oom_lock",
1821 };
1822 #endif
1823
1824 static DEFINE_SPINLOCK(memcg_oom_lock);
1825
1826 /*
1827 * Check OOM-Killer is already running under our hierarchy.
1828 * If someone is running, return false.
1829 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1830 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1831 {
1832 struct mem_cgroup *iter, *failed = NULL;
1833
1834 spin_lock(&memcg_oom_lock);
1835
1836 for_each_mem_cgroup_tree(iter, memcg) {
1837 if (iter->oom_lock) {
1838 /*
1839 * this subtree of our hierarchy is already locked
1840 * so we cannot give a lock.
1841 */
1842 failed = iter;
1843 mem_cgroup_iter_break(memcg, iter);
1844 break;
1845 } else
1846 iter->oom_lock = true;
1847 }
1848
1849 if (failed) {
1850 /*
1851 * OK, we failed to lock the whole subtree so we have
1852 * to clean up what we set up to the failing subtree
1853 */
1854 for_each_mem_cgroup_tree(iter, memcg) {
1855 if (iter == failed) {
1856 mem_cgroup_iter_break(memcg, iter);
1857 break;
1858 }
1859 iter->oom_lock = false;
1860 }
1861 } else
1862 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1863
1864 spin_unlock(&memcg_oom_lock);
1865
1866 return !failed;
1867 }
1868
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1869 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1870 {
1871 struct mem_cgroup *iter;
1872
1873 spin_lock(&memcg_oom_lock);
1874 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1875 for_each_mem_cgroup_tree(iter, memcg)
1876 iter->oom_lock = false;
1877 spin_unlock(&memcg_oom_lock);
1878 }
1879
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1880 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1881 {
1882 struct mem_cgroup *iter;
1883
1884 spin_lock(&memcg_oom_lock);
1885 for_each_mem_cgroup_tree(iter, memcg)
1886 iter->under_oom++;
1887 spin_unlock(&memcg_oom_lock);
1888 }
1889
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1890 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1891 {
1892 struct mem_cgroup *iter;
1893
1894 /*
1895 * Be careful about under_oom underflows becase a child memcg
1896 * could have been added after mem_cgroup_mark_under_oom.
1897 */
1898 spin_lock(&memcg_oom_lock);
1899 for_each_mem_cgroup_tree(iter, memcg)
1900 if (iter->under_oom > 0)
1901 iter->under_oom--;
1902 spin_unlock(&memcg_oom_lock);
1903 }
1904
1905 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1906
1907 struct oom_wait_info {
1908 struct mem_cgroup *memcg;
1909 wait_queue_entry_t wait;
1910 };
1911
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1912 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1913 unsigned mode, int sync, void *arg)
1914 {
1915 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1916 struct mem_cgroup *oom_wait_memcg;
1917 struct oom_wait_info *oom_wait_info;
1918
1919 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1920 oom_wait_memcg = oom_wait_info->memcg;
1921
1922 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1923 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1924 return 0;
1925 return autoremove_wake_function(wait, mode, sync, arg);
1926 }
1927
memcg_oom_recover(struct mem_cgroup * memcg)1928 static void memcg_oom_recover(struct mem_cgroup *memcg)
1929 {
1930 /*
1931 * For the following lockless ->under_oom test, the only required
1932 * guarantee is that it must see the state asserted by an OOM when
1933 * this function is called as a result of userland actions
1934 * triggered by the notification of the OOM. This is trivially
1935 * achieved by invoking mem_cgroup_mark_under_oom() before
1936 * triggering notification.
1937 */
1938 if (memcg && memcg->under_oom)
1939 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1940 }
1941
1942 enum oom_status {
1943 OOM_SUCCESS,
1944 OOM_FAILED,
1945 OOM_ASYNC,
1946 OOM_SKIPPED
1947 };
1948
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1949 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1950 {
1951 enum oom_status ret;
1952 bool locked;
1953
1954 if (order > PAGE_ALLOC_COSTLY_ORDER)
1955 return OOM_SKIPPED;
1956
1957 memcg_memory_event(memcg, MEMCG_OOM);
1958
1959 /*
1960 * We are in the middle of the charge context here, so we
1961 * don't want to block when potentially sitting on a callstack
1962 * that holds all kinds of filesystem and mm locks.
1963 *
1964 * cgroup1 allows disabling the OOM killer and waiting for outside
1965 * handling until the charge can succeed; remember the context and put
1966 * the task to sleep at the end of the page fault when all locks are
1967 * released.
1968 *
1969 * On the other hand, in-kernel OOM killer allows for an async victim
1970 * memory reclaim (oom_reaper) and that means that we are not solely
1971 * relying on the oom victim to make a forward progress and we can
1972 * invoke the oom killer here.
1973 *
1974 * Please note that mem_cgroup_out_of_memory might fail to find a
1975 * victim and then we have to bail out from the charge path.
1976 */
1977 if (memcg->oom_kill_disable) {
1978 if (!current->in_user_fault)
1979 return OOM_SKIPPED;
1980 css_get(&memcg->css);
1981 current->memcg_in_oom = memcg;
1982 current->memcg_oom_gfp_mask = mask;
1983 current->memcg_oom_order = order;
1984
1985 return OOM_ASYNC;
1986 }
1987
1988 mem_cgroup_mark_under_oom(memcg);
1989
1990 locked = mem_cgroup_oom_trylock(memcg);
1991
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1994
1995 mem_cgroup_unmark_under_oom(memcg);
1996 if (mem_cgroup_out_of_memory(memcg, mask, order))
1997 ret = OOM_SUCCESS;
1998 else
1999 ret = OOM_FAILED;
2000
2001 if (locked)
2002 mem_cgroup_oom_unlock(memcg);
2003
2004 return ret;
2005 }
2006
2007 /**
2008 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2009 * @handle: actually kill/wait or just clean up the OOM state
2010 *
2011 * This has to be called at the end of a page fault if the memcg OOM
2012 * handler was enabled.
2013 *
2014 * Memcg supports userspace OOM handling where failed allocations must
2015 * sleep on a waitqueue until the userspace task resolves the
2016 * situation. Sleeping directly in the charge context with all kinds
2017 * of locks held is not a good idea, instead we remember an OOM state
2018 * in the task and mem_cgroup_oom_synchronize() has to be called at
2019 * the end of the page fault to complete the OOM handling.
2020 *
2021 * Returns %true if an ongoing memcg OOM situation was detected and
2022 * completed, %false otherwise.
2023 */
mem_cgroup_oom_synchronize(bool handle)2024 bool mem_cgroup_oom_synchronize(bool handle)
2025 {
2026 struct mem_cgroup *memcg = current->memcg_in_oom;
2027 struct oom_wait_info owait;
2028 bool locked;
2029
2030 /* OOM is global, do not handle */
2031 if (!memcg)
2032 return false;
2033
2034 if (!handle)
2035 goto cleanup;
2036
2037 owait.memcg = memcg;
2038 owait.wait.flags = 0;
2039 owait.wait.func = memcg_oom_wake_function;
2040 owait.wait.private = current;
2041 INIT_LIST_HEAD(&owait.wait.entry);
2042
2043 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2044 mem_cgroup_mark_under_oom(memcg);
2045
2046 locked = mem_cgroup_oom_trylock(memcg);
2047
2048 if (locked)
2049 mem_cgroup_oom_notify(memcg);
2050
2051 if (locked && !memcg->oom_kill_disable) {
2052 mem_cgroup_unmark_under_oom(memcg);
2053 finish_wait(&memcg_oom_waitq, &owait.wait);
2054 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2055 current->memcg_oom_order);
2056 } else {
2057 schedule();
2058 mem_cgroup_unmark_under_oom(memcg);
2059 finish_wait(&memcg_oom_waitq, &owait.wait);
2060 }
2061
2062 if (locked) {
2063 mem_cgroup_oom_unlock(memcg);
2064 /*
2065 * There is no guarantee that an OOM-lock contender
2066 * sees the wakeups triggered by the OOM kill
2067 * uncharges. Wake any sleepers explicitely.
2068 */
2069 memcg_oom_recover(memcg);
2070 }
2071 cleanup:
2072 current->memcg_in_oom = NULL;
2073 css_put(&memcg->css);
2074 return true;
2075 }
2076
2077 /**
2078 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2079 * @victim: task to be killed by the OOM killer
2080 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2081 *
2082 * Returns a pointer to a memory cgroup, which has to be cleaned up
2083 * by killing all belonging OOM-killable tasks.
2084 *
2085 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2086 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2087 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2088 struct mem_cgroup *oom_domain)
2089 {
2090 struct mem_cgroup *oom_group = NULL;
2091 struct mem_cgroup *memcg;
2092
2093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2094 return NULL;
2095
2096 if (!oom_domain)
2097 oom_domain = root_mem_cgroup;
2098
2099 rcu_read_lock();
2100
2101 memcg = mem_cgroup_from_task(victim);
2102 if (memcg == root_mem_cgroup)
2103 goto out;
2104
2105 /*
2106 * If the victim task has been asynchronously moved to a different
2107 * memory cgroup, we might end up killing tasks outside oom_domain.
2108 * In this case it's better to ignore memory.group.oom.
2109 */
2110 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2111 goto out;
2112
2113 /*
2114 * Traverse the memory cgroup hierarchy from the victim task's
2115 * cgroup up to the OOMing cgroup (or root) to find the
2116 * highest-level memory cgroup with oom.group set.
2117 */
2118 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2119 if (memcg->oom_group)
2120 oom_group = memcg;
2121
2122 if (memcg == oom_domain)
2123 break;
2124 }
2125
2126 if (oom_group)
2127 css_get(&oom_group->css);
2128 out:
2129 rcu_read_unlock();
2130
2131 return oom_group;
2132 }
2133
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2134 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2135 {
2136 pr_info("Tasks in ");
2137 pr_cont_cgroup_path(memcg->css.cgroup);
2138 pr_cont(" are going to be killed due to memory.oom.group set\n");
2139 }
2140
2141 /**
2142 * lock_page_memcg - lock a page->mem_cgroup binding
2143 * @page: the page
2144 *
2145 * This function protects unlocked LRU pages from being moved to
2146 * another cgroup.
2147 *
2148 * It ensures lifetime of the returned memcg. Caller is responsible
2149 * for the lifetime of the page; __unlock_page_memcg() is available
2150 * when @page might get freed inside the locked section.
2151 */
lock_page_memcg(struct page * page)2152 struct mem_cgroup *lock_page_memcg(struct page *page)
2153 {
2154 struct page *head = compound_head(page); /* rmap on tail pages */
2155 struct mem_cgroup *memcg;
2156 unsigned long flags;
2157
2158 /*
2159 * The RCU lock is held throughout the transaction. The fast
2160 * path can get away without acquiring the memcg->move_lock
2161 * because page moving starts with an RCU grace period.
2162 *
2163 * The RCU lock also protects the memcg from being freed when
2164 * the page state that is going to change is the only thing
2165 * preventing the page itself from being freed. E.g. writeback
2166 * doesn't hold a page reference and relies on PG_writeback to
2167 * keep off truncation, migration and so forth.
2168 */
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
2172 return NULL;
2173 again:
2174 memcg = head->mem_cgroup;
2175 if (unlikely(!memcg))
2176 return NULL;
2177
2178 if (atomic_read(&memcg->moving_account) <= 0)
2179 return memcg;
2180
2181 spin_lock_irqsave(&memcg->move_lock, flags);
2182 if (memcg != head->mem_cgroup) {
2183 spin_unlock_irqrestore(&memcg->move_lock, flags);
2184 goto again;
2185 }
2186
2187 /*
2188 * When charge migration first begins, we can have locked and
2189 * unlocked page stat updates happening concurrently. Track
2190 * the task who has the lock for unlock_page_memcg().
2191 */
2192 memcg->move_lock_task = current;
2193 memcg->move_lock_flags = flags;
2194
2195 return memcg;
2196 }
2197 EXPORT_SYMBOL(lock_page_memcg);
2198
2199 /**
2200 * __unlock_page_memcg - unlock and unpin a memcg
2201 * @memcg: the memcg
2202 *
2203 * Unlock and unpin a memcg returned by lock_page_memcg().
2204 */
__unlock_page_memcg(struct mem_cgroup * memcg)2205 void __unlock_page_memcg(struct mem_cgroup *memcg)
2206 {
2207 if (memcg && memcg->move_lock_task == current) {
2208 unsigned long flags = memcg->move_lock_flags;
2209
2210 memcg->move_lock_task = NULL;
2211 memcg->move_lock_flags = 0;
2212
2213 spin_unlock_irqrestore(&memcg->move_lock, flags);
2214 }
2215
2216 rcu_read_unlock();
2217 }
2218
2219 /**
2220 * unlock_page_memcg - unlock a page->mem_cgroup binding
2221 * @page: the page
2222 */
unlock_page_memcg(struct page * page)2223 void unlock_page_memcg(struct page *page)
2224 {
2225 struct page *head = compound_head(page);
2226
2227 __unlock_page_memcg(head->mem_cgroup);
2228 }
2229 EXPORT_SYMBOL(unlock_page_memcg);
2230
2231 struct memcg_stock_pcp {
2232 struct mem_cgroup *cached; /* this never be root cgroup */
2233 unsigned int nr_pages;
2234
2235 #ifdef CONFIG_MEMCG_KMEM
2236 struct obj_cgroup *cached_objcg;
2237 unsigned int nr_bytes;
2238 #endif
2239
2240 struct work_struct work;
2241 unsigned long flags;
2242 #define FLUSHING_CACHED_CHARGE 0
2243 };
2244 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2245 static DEFINE_MUTEX(percpu_charge_mutex);
2246
2247 #ifdef CONFIG_MEMCG_KMEM
2248 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2249 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2250 struct mem_cgroup *root_memcg);
2251
2252 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2253 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2254 {
2255 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 struct mem_cgroup *root_memcg)
2258 {
2259 return false;
2260 }
2261 #endif
2262
2263 /**
2264 * consume_stock: Try to consume stocked charge on this cpu.
2265 * @memcg: memcg to consume from.
2266 * @nr_pages: how many pages to charge.
2267 *
2268 * The charges will only happen if @memcg matches the current cpu's memcg
2269 * stock, and at least @nr_pages are available in that stock. Failure to
2270 * service an allocation will refill the stock.
2271 *
2272 * returns true if successful, false otherwise.
2273 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2274 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2275 {
2276 struct memcg_stock_pcp *stock;
2277 unsigned long flags;
2278 bool ret = false;
2279
2280 if (nr_pages > MEMCG_CHARGE_BATCH)
2281 return ret;
2282
2283 local_irq_save(flags);
2284
2285 stock = this_cpu_ptr(&memcg_stock);
2286 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2287 stock->nr_pages -= nr_pages;
2288 ret = true;
2289 }
2290
2291 local_irq_restore(flags);
2292
2293 return ret;
2294 }
2295
2296 /*
2297 * Returns stocks cached in percpu and reset cached information.
2298 */
drain_stock(struct memcg_stock_pcp * stock)2299 static void drain_stock(struct memcg_stock_pcp *stock)
2300 {
2301 struct mem_cgroup *old = stock->cached;
2302
2303 if (!old)
2304 return;
2305
2306 if (stock->nr_pages) {
2307 page_counter_uncharge(&old->memory, stock->nr_pages);
2308 if (do_memsw_account())
2309 page_counter_uncharge(&old->memsw, stock->nr_pages);
2310 stock->nr_pages = 0;
2311 }
2312
2313 css_put(&old->css);
2314 stock->cached = NULL;
2315 }
2316
drain_local_stock(struct work_struct * dummy)2317 static void drain_local_stock(struct work_struct *dummy)
2318 {
2319 struct memcg_stock_pcp *stock;
2320 unsigned long flags;
2321
2322 /*
2323 * The only protection from memory hotplug vs. drain_stock races is
2324 * that we always operate on local CPU stock here with IRQ disabled
2325 */
2326 local_irq_save(flags);
2327
2328 stock = this_cpu_ptr(&memcg_stock);
2329 drain_obj_stock(stock);
2330 drain_stock(stock);
2331 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2332
2333 local_irq_restore(flags);
2334 }
2335
2336 /*
2337 * Cache charges(val) to local per_cpu area.
2338 * This will be consumed by consume_stock() function, later.
2339 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2340 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2341 {
2342 struct memcg_stock_pcp *stock;
2343 unsigned long flags;
2344
2345 local_irq_save(flags);
2346
2347 stock = this_cpu_ptr(&memcg_stock);
2348 if (stock->cached != memcg) { /* reset if necessary */
2349 drain_stock(stock);
2350 css_get(&memcg->css);
2351 stock->cached = memcg;
2352 }
2353 stock->nr_pages += nr_pages;
2354
2355 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2356 drain_stock(stock);
2357
2358 local_irq_restore(flags);
2359 }
2360
2361 /*
2362 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363 * of the hierarchy under it.
2364 */
drain_all_stock(struct mem_cgroup * root_memcg)2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367 int cpu, curcpu;
2368
2369 /* If someone's already draining, avoid adding running more workers. */
2370 if (!mutex_trylock(&percpu_charge_mutex))
2371 return;
2372 /*
2373 * Notify other cpus that system-wide "drain" is running
2374 * We do not care about races with the cpu hotplug because cpu down
2375 * as well as workers from this path always operate on the local
2376 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377 */
2378 curcpu = get_cpu();
2379 for_each_online_cpu(cpu) {
2380 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2381 struct mem_cgroup *memcg;
2382 bool flush = false;
2383
2384 rcu_read_lock();
2385 memcg = stock->cached;
2386 if (memcg && stock->nr_pages &&
2387 mem_cgroup_is_descendant(memcg, root_memcg))
2388 flush = true;
2389 if (obj_stock_flush_required(stock, root_memcg))
2390 flush = true;
2391 rcu_read_unlock();
2392
2393 if (flush &&
2394 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2395 if (cpu == curcpu)
2396 drain_local_stock(&stock->work);
2397 else
2398 schedule_work_on(cpu, &stock->work);
2399 }
2400 }
2401 put_cpu();
2402 mutex_unlock(&percpu_charge_mutex);
2403 }
2404
memcg_hotplug_cpu_dead(unsigned int cpu)2405 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2406 {
2407 struct memcg_stock_pcp *stock;
2408 struct mem_cgroup *memcg, *mi;
2409
2410 stock = &per_cpu(memcg_stock, cpu);
2411 drain_stock(stock);
2412
2413 for_each_mem_cgroup(memcg) {
2414 int i;
2415
2416 for (i = 0; i < MEMCG_NR_STAT; i++) {
2417 int nid;
2418 long x;
2419
2420 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2421 if (x)
2422 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2423 atomic_long_add(x, &memcg->vmstats[i]);
2424
2425 if (i >= NR_VM_NODE_STAT_ITEMS)
2426 continue;
2427
2428 for_each_node(nid) {
2429 struct mem_cgroup_per_node *pn;
2430
2431 pn = mem_cgroup_nodeinfo(memcg, nid);
2432 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2433 if (x)
2434 do {
2435 atomic_long_add(x, &pn->lruvec_stat[i]);
2436 } while ((pn = parent_nodeinfo(pn, nid)));
2437 }
2438 }
2439
2440 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2441 long x;
2442
2443 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2444 if (x)
2445 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2446 atomic_long_add(x, &memcg->vmevents[i]);
2447 }
2448 }
2449
2450 return 0;
2451 }
2452
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2453 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2454 unsigned int nr_pages,
2455 gfp_t gfp_mask)
2456 {
2457 unsigned long nr_reclaimed = 0;
2458
2459 do {
2460 unsigned long pflags;
2461
2462 if (page_counter_read(&memcg->memory) <=
2463 READ_ONCE(memcg->memory.high))
2464 continue;
2465
2466 memcg_memory_event(memcg, MEMCG_HIGH);
2467
2468 psi_memstall_enter(&pflags);
2469 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2470 gfp_mask, true);
2471 psi_memstall_leave(&pflags);
2472 } while ((memcg = parent_mem_cgroup(memcg)) &&
2473 !mem_cgroup_is_root(memcg));
2474
2475 return nr_reclaimed;
2476 }
2477
high_work_func(struct work_struct * work)2478 static void high_work_func(struct work_struct *work)
2479 {
2480 struct mem_cgroup *memcg;
2481
2482 memcg = container_of(work, struct mem_cgroup, high_work);
2483 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2484 }
2485
2486 /*
2487 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2488 * enough to still cause a significant slowdown in most cases, while still
2489 * allowing diagnostics and tracing to proceed without becoming stuck.
2490 */
2491 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2492
2493 /*
2494 * When calculating the delay, we use these either side of the exponentiation to
2495 * maintain precision and scale to a reasonable number of jiffies (see the table
2496 * below.
2497 *
2498 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2499 * overage ratio to a delay.
2500 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2501 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2502 * to produce a reasonable delay curve.
2503 *
2504 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2505 * reasonable delay curve compared to precision-adjusted overage, not
2506 * penalising heavily at first, but still making sure that growth beyond the
2507 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2508 * example, with a high of 100 megabytes:
2509 *
2510 * +-------+------------------------+
2511 * | usage | time to allocate in ms |
2512 * +-------+------------------------+
2513 * | 100M | 0 |
2514 * | 101M | 6 |
2515 * | 102M | 25 |
2516 * | 103M | 57 |
2517 * | 104M | 102 |
2518 * | 105M | 159 |
2519 * | 106M | 230 |
2520 * | 107M | 313 |
2521 * | 108M | 409 |
2522 * | 109M | 518 |
2523 * | 110M | 639 |
2524 * | 111M | 774 |
2525 * | 112M | 921 |
2526 * | 113M | 1081 |
2527 * | 114M | 1254 |
2528 * | 115M | 1439 |
2529 * | 116M | 1638 |
2530 * | 117M | 1849 |
2531 * | 118M | 2000 |
2532 * | 119M | 2000 |
2533 * | 120M | 2000 |
2534 * +-------+------------------------+
2535 */
2536 #define MEMCG_DELAY_PRECISION_SHIFT 20
2537 #define MEMCG_DELAY_SCALING_SHIFT 14
2538
calculate_overage(unsigned long usage,unsigned long high)2539 static u64 calculate_overage(unsigned long usage, unsigned long high)
2540 {
2541 u64 overage;
2542
2543 if (usage <= high)
2544 return 0;
2545
2546 /*
2547 * Prevent division by 0 in overage calculation by acting as if
2548 * it was a threshold of 1 page
2549 */
2550 high = max(high, 1UL);
2551
2552 overage = usage - high;
2553 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2554 return div64_u64(overage, high);
2555 }
2556
mem_find_max_overage(struct mem_cgroup * memcg)2557 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2558 {
2559 u64 overage, max_overage = 0;
2560
2561 do {
2562 overage = calculate_overage(page_counter_read(&memcg->memory),
2563 READ_ONCE(memcg->memory.high));
2564 max_overage = max(overage, max_overage);
2565 } while ((memcg = parent_mem_cgroup(memcg)) &&
2566 !mem_cgroup_is_root(memcg));
2567
2568 return max_overage;
2569 }
2570
swap_find_max_overage(struct mem_cgroup * memcg)2571 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2572 {
2573 u64 overage, max_overage = 0;
2574
2575 do {
2576 overage = calculate_overage(page_counter_read(&memcg->swap),
2577 READ_ONCE(memcg->swap.high));
2578 if (overage)
2579 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2580 max_overage = max(overage, max_overage);
2581 } while ((memcg = parent_mem_cgroup(memcg)) &&
2582 !mem_cgroup_is_root(memcg));
2583
2584 return max_overage;
2585 }
2586
2587 /*
2588 * Get the number of jiffies that we should penalise a mischievous cgroup which
2589 * is exceeding its memory.high by checking both it and its ancestors.
2590 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2591 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2592 unsigned int nr_pages,
2593 u64 max_overage)
2594 {
2595 unsigned long penalty_jiffies;
2596
2597 if (!max_overage)
2598 return 0;
2599
2600 /*
2601 * We use overage compared to memory.high to calculate the number of
2602 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2603 * fairly lenient on small overages, and increasingly harsh when the
2604 * memcg in question makes it clear that it has no intention of stopping
2605 * its crazy behaviour, so we exponentially increase the delay based on
2606 * overage amount.
2607 */
2608 penalty_jiffies = max_overage * max_overage * HZ;
2609 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2610 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2611
2612 /*
2613 * Factor in the task's own contribution to the overage, such that four
2614 * N-sized allocations are throttled approximately the same as one
2615 * 4N-sized allocation.
2616 *
2617 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2618 * larger the current charge patch is than that.
2619 */
2620 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2621 }
2622
2623 /*
2624 * Scheduled by try_charge() to be executed from the userland return path
2625 * and reclaims memory over the high limit.
2626 */
mem_cgroup_handle_over_high(void)2627 void mem_cgroup_handle_over_high(void)
2628 {
2629 unsigned long penalty_jiffies;
2630 unsigned long pflags;
2631 unsigned long nr_reclaimed;
2632 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2633 int nr_retries = MAX_RECLAIM_RETRIES;
2634 struct mem_cgroup *memcg;
2635 bool in_retry = false;
2636
2637 if (likely(!nr_pages))
2638 return;
2639
2640 memcg = get_mem_cgroup_from_mm(current->mm);
2641 current->memcg_nr_pages_over_high = 0;
2642
2643 retry_reclaim:
2644 /*
2645 * The allocating task should reclaim at least the batch size, but for
2646 * subsequent retries we only want to do what's necessary to prevent oom
2647 * or breaching resource isolation.
2648 *
2649 * This is distinct from memory.max or page allocator behaviour because
2650 * memory.high is currently batched, whereas memory.max and the page
2651 * allocator run every time an allocation is made.
2652 */
2653 nr_reclaimed = reclaim_high(memcg,
2654 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2655 GFP_KERNEL);
2656
2657 /*
2658 * memory.high is breached and reclaim is unable to keep up. Throttle
2659 * allocators proactively to slow down excessive growth.
2660 */
2661 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2662 mem_find_max_overage(memcg));
2663
2664 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2665 swap_find_max_overage(memcg));
2666
2667 /*
2668 * Clamp the max delay per usermode return so as to still keep the
2669 * application moving forwards and also permit diagnostics, albeit
2670 * extremely slowly.
2671 */
2672 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2673
2674 /*
2675 * Don't sleep if the amount of jiffies this memcg owes us is so low
2676 * that it's not even worth doing, in an attempt to be nice to those who
2677 * go only a small amount over their memory.high value and maybe haven't
2678 * been aggressively reclaimed enough yet.
2679 */
2680 if (penalty_jiffies <= HZ / 100)
2681 goto out;
2682
2683 /*
2684 * If reclaim is making forward progress but we're still over
2685 * memory.high, we want to encourage that rather than doing allocator
2686 * throttling.
2687 */
2688 if (nr_reclaimed || nr_retries--) {
2689 in_retry = true;
2690 goto retry_reclaim;
2691 }
2692
2693 /*
2694 * If we exit early, we're guaranteed to die (since
2695 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2696 * need to account for any ill-begotten jiffies to pay them off later.
2697 */
2698 psi_memstall_enter(&pflags);
2699 schedule_timeout_killable(penalty_jiffies);
2700 psi_memstall_leave(&pflags);
2701
2702 out:
2703 css_put(&memcg->css);
2704 }
2705
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2706 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2707 unsigned int nr_pages)
2708 {
2709 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2710 int nr_retries = MAX_RECLAIM_RETRIES;
2711 struct mem_cgroup *mem_over_limit;
2712 struct page_counter *counter;
2713 enum oom_status oom_status;
2714 unsigned long nr_reclaimed;
2715 bool passed_oom = false;
2716 bool may_swap = true;
2717 bool drained = false;
2718 unsigned long pflags;
2719
2720 if (mem_cgroup_is_root(memcg))
2721 return 0;
2722 retry:
2723 if (consume_stock(memcg, nr_pages))
2724 return 0;
2725
2726 if (!do_memsw_account() ||
2727 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2728 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2729 goto done_restock;
2730 if (do_memsw_account())
2731 page_counter_uncharge(&memcg->memsw, batch);
2732 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2733 } else {
2734 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2735 may_swap = false;
2736 }
2737
2738 if (batch > nr_pages) {
2739 batch = nr_pages;
2740 goto retry;
2741 }
2742
2743 /*
2744 * Memcg doesn't have a dedicated reserve for atomic
2745 * allocations. But like the global atomic pool, we need to
2746 * put the burden of reclaim on regular allocation requests
2747 * and let these go through as privileged allocations.
2748 */
2749 if (gfp_mask & __GFP_ATOMIC)
2750 goto force;
2751
2752 /*
2753 * Prevent unbounded recursion when reclaim operations need to
2754 * allocate memory. This might exceed the limits temporarily,
2755 * but we prefer facilitating memory reclaim and getting back
2756 * under the limit over triggering OOM kills in these cases.
2757 */
2758 if (unlikely(current->flags & PF_MEMALLOC))
2759 goto force;
2760
2761 if (unlikely(task_in_memcg_oom(current)))
2762 goto nomem;
2763
2764 if (!gfpflags_allow_blocking(gfp_mask))
2765 goto nomem;
2766
2767 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2768
2769 psi_memstall_enter(&pflags);
2770 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2771 gfp_mask, may_swap);
2772 psi_memstall_leave(&pflags);
2773
2774 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2775 goto retry;
2776
2777 if (!drained) {
2778 drain_all_stock(mem_over_limit);
2779 drained = true;
2780 goto retry;
2781 }
2782
2783 if (gfp_mask & __GFP_NORETRY)
2784 goto nomem;
2785 /*
2786 * Even though the limit is exceeded at this point, reclaim
2787 * may have been able to free some pages. Retry the charge
2788 * before killing the task.
2789 *
2790 * Only for regular pages, though: huge pages are rather
2791 * unlikely to succeed so close to the limit, and we fall back
2792 * to regular pages anyway in case of failure.
2793 */
2794 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2795 goto retry;
2796 /*
2797 * At task move, charge accounts can be doubly counted. So, it's
2798 * better to wait until the end of task_move if something is going on.
2799 */
2800 if (mem_cgroup_wait_acct_move(mem_over_limit))
2801 goto retry;
2802
2803 if (nr_retries--)
2804 goto retry;
2805
2806 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2807 goto nomem;
2808
2809 if (gfp_mask & __GFP_NOFAIL)
2810 goto force;
2811
2812 /* Avoid endless loop for tasks bypassed by the oom killer */
2813 if (passed_oom && task_is_dying())
2814 goto nomem;
2815
2816 /*
2817 * keep retrying as long as the memcg oom killer is able to make
2818 * a forward progress or bypass the charge if the oom killer
2819 * couldn't make any progress.
2820 */
2821 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2822 get_order(nr_pages * PAGE_SIZE));
2823 if (oom_status == OOM_SUCCESS) {
2824 passed_oom = true;
2825 nr_retries = MAX_RECLAIM_RETRIES;
2826 goto retry;
2827 }
2828 nomem:
2829 if (!(gfp_mask & __GFP_NOFAIL))
2830 return -ENOMEM;
2831 force:
2832 /*
2833 * The allocation either can't fail or will lead to more memory
2834 * being freed very soon. Allow memory usage go over the limit
2835 * temporarily by force charging it.
2836 */
2837 page_counter_charge(&memcg->memory, nr_pages);
2838 if (do_memsw_account())
2839 page_counter_charge(&memcg->memsw, nr_pages);
2840
2841 return 0;
2842
2843 done_restock:
2844 if (batch > nr_pages)
2845 refill_stock(memcg, batch - nr_pages);
2846
2847 /*
2848 * If the hierarchy is above the normal consumption range, schedule
2849 * reclaim on returning to userland. We can perform reclaim here
2850 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2851 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2852 * not recorded as it most likely matches current's and won't
2853 * change in the meantime. As high limit is checked again before
2854 * reclaim, the cost of mismatch is negligible.
2855 */
2856 do {
2857 bool mem_high, swap_high;
2858
2859 mem_high = page_counter_read(&memcg->memory) >
2860 READ_ONCE(memcg->memory.high);
2861 swap_high = page_counter_read(&memcg->swap) >
2862 READ_ONCE(memcg->swap.high);
2863
2864 /* Don't bother a random interrupted task */
2865 if (in_interrupt()) {
2866 if (mem_high) {
2867 schedule_work(&memcg->high_work);
2868 break;
2869 }
2870 continue;
2871 }
2872
2873 if (mem_high || swap_high) {
2874 /*
2875 * The allocating tasks in this cgroup will need to do
2876 * reclaim or be throttled to prevent further growth
2877 * of the memory or swap footprints.
2878 *
2879 * Target some best-effort fairness between the tasks,
2880 * and distribute reclaim work and delay penalties
2881 * based on how much each task is actually allocating.
2882 */
2883 current->memcg_nr_pages_over_high += batch;
2884 set_notify_resume(current);
2885 break;
2886 }
2887 } while ((memcg = parent_mem_cgroup(memcg)));
2888
2889 return 0;
2890 }
2891
2892 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2893 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2894 {
2895 if (mem_cgroup_is_root(memcg))
2896 return;
2897
2898 page_counter_uncharge(&memcg->memory, nr_pages);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg->memsw, nr_pages);
2901 }
2902 #endif
2903
commit_charge(struct page * page,struct mem_cgroup * memcg)2904 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2905 {
2906 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2907 /*
2908 * Any of the following ensures page->mem_cgroup stability:
2909 *
2910 * - the page lock
2911 * - LRU isolation
2912 * - lock_page_memcg()
2913 * - exclusive reference
2914 */
2915 page->mem_cgroup = memcg;
2916 }
2917
2918 #ifdef CONFIG_MEMCG_KMEM
2919 /*
2920 * The allocated objcg pointers array is not accounted directly.
2921 * Moreover, it should not come from DMA buffer and is not readily
2922 * reclaimable. So those GFP bits should be masked off.
2923 */
2924 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2925
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2926 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2927 gfp_t gfp)
2928 {
2929 unsigned int objects = objs_per_slab_page(s, page);
2930 void *vec;
2931
2932 gfp &= ~OBJCGS_CLEAR_MASK;
2933 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2934 page_to_nid(page));
2935 if (!vec)
2936 return -ENOMEM;
2937
2938 if (cmpxchg(&page->obj_cgroups, NULL,
2939 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2940 kfree(vec);
2941 else
2942 kmemleak_not_leak(vec);
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949 *
2950 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2951 * cgroup_mutex, etc.
2952 */
mem_cgroup_from_obj(void * p)2953 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2954 {
2955 struct page *page;
2956
2957 if (mem_cgroup_disabled())
2958 return NULL;
2959
2960 page = virt_to_head_page(p);
2961
2962 /*
2963 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2964 * or a pointer to obj_cgroup vector. In the latter case the lowest
2965 * bit of the pointer is set.
2966 * The page->mem_cgroup pointer can be asynchronously changed
2967 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2968 * from a valid memcg pointer to objcg vector or back.
2969 */
2970 if (!page->mem_cgroup)
2971 return NULL;
2972
2973 /*
2974 * Slab objects are accounted individually, not per-page.
2975 * Memcg membership data for each individual object is saved in
2976 * the page->obj_cgroups.
2977 */
2978 if (page_has_obj_cgroups(page)) {
2979 struct obj_cgroup *objcg;
2980 unsigned int off;
2981
2982 off = obj_to_index(page->slab_cache, page, p);
2983 objcg = page_obj_cgroups(page)[off];
2984 if (objcg)
2985 return obj_cgroup_memcg(objcg);
2986
2987 return NULL;
2988 }
2989
2990 /* All other pages use page->mem_cgroup */
2991 return page->mem_cgroup;
2992 }
2993
get_obj_cgroup_from_current(void)2994 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2995 {
2996 struct obj_cgroup *objcg = NULL;
2997 struct mem_cgroup *memcg;
2998
2999 if (memcg_kmem_bypass())
3000 return NULL;
3001
3002 rcu_read_lock();
3003 if (unlikely(active_memcg()))
3004 memcg = active_memcg();
3005 else
3006 memcg = mem_cgroup_from_task(current);
3007
3008 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3009 objcg = rcu_dereference(memcg->objcg);
3010 if (objcg && obj_cgroup_tryget(objcg))
3011 break;
3012 objcg = NULL;
3013 }
3014 rcu_read_unlock();
3015
3016 return objcg;
3017 }
3018
memcg_alloc_cache_id(void)3019 static int memcg_alloc_cache_id(void)
3020 {
3021 int id, size;
3022 int err;
3023
3024 id = ida_simple_get(&memcg_cache_ida,
3025 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3026 if (id < 0)
3027 return id;
3028
3029 if (id < memcg_nr_cache_ids)
3030 return id;
3031
3032 /*
3033 * There's no space for the new id in memcg_caches arrays,
3034 * so we have to grow them.
3035 */
3036 down_write(&memcg_cache_ids_sem);
3037
3038 size = 2 * (id + 1);
3039 if (size < MEMCG_CACHES_MIN_SIZE)
3040 size = MEMCG_CACHES_MIN_SIZE;
3041 else if (size > MEMCG_CACHES_MAX_SIZE)
3042 size = MEMCG_CACHES_MAX_SIZE;
3043
3044 err = memcg_update_all_list_lrus(size);
3045 if (!err)
3046 memcg_nr_cache_ids = size;
3047
3048 up_write(&memcg_cache_ids_sem);
3049
3050 if (err) {
3051 ida_simple_remove(&memcg_cache_ida, id);
3052 return err;
3053 }
3054 return id;
3055 }
3056
memcg_free_cache_id(int id)3057 static void memcg_free_cache_id(int id)
3058 {
3059 ida_simple_remove(&memcg_cache_ida, id);
3060 }
3061
3062 /**
3063 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3064 * @memcg: memory cgroup to charge
3065 * @gfp: reclaim mode
3066 * @nr_pages: number of pages to charge
3067 *
3068 * Returns 0 on success, an error code on failure.
3069 */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3070 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3071 unsigned int nr_pages)
3072 {
3073 struct page_counter *counter;
3074 int ret;
3075
3076 ret = try_charge(memcg, gfp, nr_pages);
3077 if (ret)
3078 return ret;
3079
3080 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3081 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3082
3083 /*
3084 * Enforce __GFP_NOFAIL allocation because callers are not
3085 * prepared to see failures and likely do not have any failure
3086 * handling code.
3087 */
3088 if (gfp & __GFP_NOFAIL) {
3089 page_counter_charge(&memcg->kmem, nr_pages);
3090 return 0;
3091 }
3092 cancel_charge(memcg, nr_pages);
3093 return -ENOMEM;
3094 }
3095 return 0;
3096 }
3097
3098 /**
3099 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3100 * @memcg: memcg to uncharge
3101 * @nr_pages: number of pages to uncharge
3102 */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3103 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3104 {
3105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3106 page_counter_uncharge(&memcg->kmem, nr_pages);
3107
3108 refill_stock(memcg, nr_pages);
3109 }
3110
3111 /**
3112 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3113 * @page: page to charge
3114 * @gfp: reclaim mode
3115 * @order: allocation order
3116 *
3117 * Returns 0 on success, an error code on failure.
3118 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3119 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3120 {
3121 struct mem_cgroup *memcg;
3122 int ret = 0;
3123
3124 memcg = get_mem_cgroup_from_current();
3125 if (memcg && !mem_cgroup_is_root(memcg)) {
3126 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3127 if (!ret) {
3128 page->mem_cgroup = memcg;
3129 __SetPageKmemcg(page);
3130 return 0;
3131 }
3132 css_put(&memcg->css);
3133 }
3134 return ret;
3135 }
3136
3137 /**
3138 * __memcg_kmem_uncharge_page: uncharge a kmem page
3139 * @page: page to uncharge
3140 * @order: allocation order
3141 */
__memcg_kmem_uncharge_page(struct page * page,int order)3142 void __memcg_kmem_uncharge_page(struct page *page, int order)
3143 {
3144 struct mem_cgroup *memcg = page->mem_cgroup;
3145 unsigned int nr_pages = 1 << order;
3146
3147 if (!memcg)
3148 return;
3149
3150 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3151 __memcg_kmem_uncharge(memcg, nr_pages);
3152 page->mem_cgroup = NULL;
3153 css_put(&memcg->css);
3154
3155 /* slab pages do not have PageKmemcg flag set */
3156 if (PageKmemcg(page))
3157 __ClearPageKmemcg(page);
3158 }
3159
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3160 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3161 {
3162 struct memcg_stock_pcp *stock;
3163 unsigned long flags;
3164 bool ret = false;
3165
3166 local_irq_save(flags);
3167
3168 stock = this_cpu_ptr(&memcg_stock);
3169 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3170 stock->nr_bytes -= nr_bytes;
3171 ret = true;
3172 }
3173
3174 local_irq_restore(flags);
3175
3176 return ret;
3177 }
3178
drain_obj_stock(struct memcg_stock_pcp * stock)3179 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3180 {
3181 struct obj_cgroup *old = stock->cached_objcg;
3182
3183 if (!old)
3184 return;
3185
3186 if (stock->nr_bytes) {
3187 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3188 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3189
3190 if (nr_pages) {
3191 struct mem_cgroup *memcg;
3192
3193 rcu_read_lock();
3194 retry:
3195 memcg = obj_cgroup_memcg(old);
3196 if (unlikely(!css_tryget(&memcg->css)))
3197 goto retry;
3198 rcu_read_unlock();
3199
3200 __memcg_kmem_uncharge(memcg, nr_pages);
3201 css_put(&memcg->css);
3202 }
3203
3204 /*
3205 * The leftover is flushed to the centralized per-memcg value.
3206 * On the next attempt to refill obj stock it will be moved
3207 * to a per-cpu stock (probably, on an other CPU), see
3208 * refill_obj_stock().
3209 *
3210 * How often it's flushed is a trade-off between the memory
3211 * limit enforcement accuracy and potential CPU contention,
3212 * so it might be changed in the future.
3213 */
3214 atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 stock->nr_bytes = 0;
3216 }
3217
3218 obj_cgroup_put(old);
3219 stock->cached_objcg = NULL;
3220 }
3221
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3223 struct mem_cgroup *root_memcg)
3224 {
3225 struct mem_cgroup *memcg;
3226
3227 if (stock->cached_objcg) {
3228 memcg = obj_cgroup_memcg(stock->cached_objcg);
3229 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3230 return true;
3231 }
3232
3233 return false;
3234 }
3235
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3236 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3237 {
3238 struct memcg_stock_pcp *stock;
3239 unsigned long flags;
3240
3241 local_irq_save(flags);
3242
3243 stock = this_cpu_ptr(&memcg_stock);
3244 if (stock->cached_objcg != objcg) { /* reset if necessary */
3245 drain_obj_stock(stock);
3246 obj_cgroup_get(objcg);
3247 stock->cached_objcg = objcg;
3248 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3249 }
3250 stock->nr_bytes += nr_bytes;
3251
3252 if (stock->nr_bytes > PAGE_SIZE)
3253 drain_obj_stock(stock);
3254
3255 local_irq_restore(flags);
3256 }
3257
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3259 {
3260 struct mem_cgroup *memcg;
3261 unsigned int nr_pages, nr_bytes;
3262 int ret;
3263
3264 if (consume_obj_stock(objcg, size))
3265 return 0;
3266
3267 /*
3268 * In theory, memcg->nr_charged_bytes can have enough
3269 * pre-charged bytes to satisfy the allocation. However,
3270 * flushing memcg->nr_charged_bytes requires two atomic
3271 * operations, and memcg->nr_charged_bytes can't be big,
3272 * so it's better to ignore it and try grab some new pages.
3273 * memcg->nr_charged_bytes will be flushed in
3274 * refill_obj_stock(), called from this function or
3275 * independently later.
3276 */
3277 rcu_read_lock();
3278 retry:
3279 memcg = obj_cgroup_memcg(objcg);
3280 if (unlikely(!css_tryget(&memcg->css)))
3281 goto retry;
3282 rcu_read_unlock();
3283
3284 nr_pages = size >> PAGE_SHIFT;
3285 nr_bytes = size & (PAGE_SIZE - 1);
3286
3287 if (nr_bytes)
3288 nr_pages += 1;
3289
3290 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3291 if (!ret && nr_bytes)
3292 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3293
3294 css_put(&memcg->css);
3295 return ret;
3296 }
3297
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3298 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3299 {
3300 refill_obj_stock(objcg, size);
3301 }
3302
3303 #endif /* CONFIG_MEMCG_KMEM */
3304
3305 /*
3306 * Because head->mem_cgroup is not set on tails, set it now.
3307 */
split_page_memcg(struct page * head,unsigned int nr)3308 void split_page_memcg(struct page *head, unsigned int nr)
3309 {
3310 struct mem_cgroup *memcg = head->mem_cgroup;
3311 int kmemcg = PageKmemcg(head);
3312 int i;
3313
3314 if (mem_cgroup_disabled() || !memcg)
3315 return;
3316
3317 for (i = 1; i < nr; i++) {
3318 head[i].mem_cgroup = memcg;
3319 if (kmemcg)
3320 __SetPageKmemcg(head + i);
3321 }
3322 css_get_many(&memcg->css, nr - 1);
3323 }
3324
3325 #ifdef CONFIG_MEMCG_SWAP
3326 /**
3327 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3328 * @entry: swap entry to be moved
3329 * @from: mem_cgroup which the entry is moved from
3330 * @to: mem_cgroup which the entry is moved to
3331 *
3332 * It succeeds only when the swap_cgroup's record for this entry is the same
3333 * as the mem_cgroup's id of @from.
3334 *
3335 * Returns 0 on success, -EINVAL on failure.
3336 *
3337 * The caller must have charged to @to, IOW, called page_counter_charge() about
3338 * both res and memsw, and called css_get().
3339 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3340 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3341 struct mem_cgroup *from, struct mem_cgroup *to)
3342 {
3343 unsigned short old_id, new_id;
3344
3345 old_id = mem_cgroup_id(from);
3346 new_id = mem_cgroup_id(to);
3347
3348 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3349 mod_memcg_state(from, MEMCG_SWAP, -1);
3350 mod_memcg_state(to, MEMCG_SWAP, 1);
3351 return 0;
3352 }
3353 return -EINVAL;
3354 }
3355 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3356 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3357 struct mem_cgroup *from, struct mem_cgroup *to)
3358 {
3359 return -EINVAL;
3360 }
3361 #endif
3362
3363 static DEFINE_MUTEX(memcg_max_mutex);
3364
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3365 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3366 unsigned long max, bool memsw)
3367 {
3368 bool enlarge = false;
3369 bool drained = false;
3370 int ret;
3371 bool limits_invariant;
3372 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3373
3374 do {
3375 if (signal_pending(current)) {
3376 ret = -EINTR;
3377 break;
3378 }
3379
3380 mutex_lock(&memcg_max_mutex);
3381 /*
3382 * Make sure that the new limit (memsw or memory limit) doesn't
3383 * break our basic invariant rule memory.max <= memsw.max.
3384 */
3385 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3386 max <= memcg->memsw.max;
3387 if (!limits_invariant) {
3388 mutex_unlock(&memcg_max_mutex);
3389 ret = -EINVAL;
3390 break;
3391 }
3392 if (max > counter->max)
3393 enlarge = true;
3394 ret = page_counter_set_max(counter, max);
3395 mutex_unlock(&memcg_max_mutex);
3396
3397 if (!ret)
3398 break;
3399
3400 if (!drained) {
3401 drain_all_stock(memcg);
3402 drained = true;
3403 continue;
3404 }
3405
3406 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3407 GFP_KERNEL, !memsw)) {
3408 ret = -EBUSY;
3409 break;
3410 }
3411 } while (true);
3412
3413 if (!ret && enlarge)
3414 memcg_oom_recover(memcg);
3415
3416 return ret;
3417 }
3418
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3419 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3420 gfp_t gfp_mask,
3421 unsigned long *total_scanned)
3422 {
3423 unsigned long nr_reclaimed = 0;
3424 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3425 unsigned long reclaimed;
3426 int loop = 0;
3427 struct mem_cgroup_tree_per_node *mctz;
3428 unsigned long excess;
3429 unsigned long nr_scanned;
3430
3431 if (order > 0)
3432 return 0;
3433
3434 mctz = soft_limit_tree_node(pgdat->node_id);
3435
3436 /*
3437 * Do not even bother to check the largest node if the root
3438 * is empty. Do it lockless to prevent lock bouncing. Races
3439 * are acceptable as soft limit is best effort anyway.
3440 */
3441 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3442 return 0;
3443
3444 /*
3445 * This loop can run a while, specially if mem_cgroup's continuously
3446 * keep exceeding their soft limit and putting the system under
3447 * pressure
3448 */
3449 do {
3450 if (next_mz)
3451 mz = next_mz;
3452 else
3453 mz = mem_cgroup_largest_soft_limit_node(mctz);
3454 if (!mz)
3455 break;
3456
3457 nr_scanned = 0;
3458 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3459 gfp_mask, &nr_scanned);
3460 nr_reclaimed += reclaimed;
3461 *total_scanned += nr_scanned;
3462 spin_lock_irq(&mctz->lock);
3463 __mem_cgroup_remove_exceeded(mz, mctz);
3464
3465 /*
3466 * If we failed to reclaim anything from this memory cgroup
3467 * it is time to move on to the next cgroup
3468 */
3469 next_mz = NULL;
3470 if (!reclaimed)
3471 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3472
3473 excess = soft_limit_excess(mz->memcg);
3474 /*
3475 * One school of thought says that we should not add
3476 * back the node to the tree if reclaim returns 0.
3477 * But our reclaim could return 0, simply because due
3478 * to priority we are exposing a smaller subset of
3479 * memory to reclaim from. Consider this as a longer
3480 * term TODO.
3481 */
3482 /* If excess == 0, no tree ops */
3483 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3484 spin_unlock_irq(&mctz->lock);
3485 css_put(&mz->memcg->css);
3486 loop++;
3487 /*
3488 * Could not reclaim anything and there are no more
3489 * mem cgroups to try or we seem to be looping without
3490 * reclaiming anything.
3491 */
3492 if (!nr_reclaimed &&
3493 (next_mz == NULL ||
3494 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3495 break;
3496 } while (!nr_reclaimed);
3497 if (next_mz)
3498 css_put(&next_mz->memcg->css);
3499 return nr_reclaimed;
3500 }
3501
3502 /*
3503 * Test whether @memcg has children, dead or alive. Note that this
3504 * function doesn't care whether @memcg has use_hierarchy enabled and
3505 * returns %true if there are child csses according to the cgroup
3506 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3507 */
memcg_has_children(struct mem_cgroup * memcg)3508 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3509 {
3510 bool ret;
3511
3512 rcu_read_lock();
3513 ret = css_next_child(NULL, &memcg->css);
3514 rcu_read_unlock();
3515 return ret;
3516 }
3517
3518 /*
3519 * Reclaims as many pages from the given memcg as possible.
3520 *
3521 * Caller is responsible for holding css reference for memcg.
3522 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3523 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3524 {
3525 int nr_retries = MAX_RECLAIM_RETRIES;
3526
3527 /* we call try-to-free pages for make this cgroup empty */
3528 lru_add_drain_all();
3529
3530 drain_all_stock(memcg);
3531
3532 /* try to free all pages in this cgroup */
3533 while (nr_retries && page_counter_read(&memcg->memory)) {
3534 int progress;
3535
3536 if (signal_pending(current))
3537 return -EINTR;
3538
3539 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3540 GFP_KERNEL, true);
3541 if (!progress) {
3542 nr_retries--;
3543 /* maybe some writeback is necessary */
3544 congestion_wait(BLK_RW_ASYNC, HZ/10);
3545 }
3546
3547 }
3548
3549 return 0;
3550 }
3551
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3552 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3553 char *buf, size_t nbytes,
3554 loff_t off)
3555 {
3556 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3557
3558 if (mem_cgroup_is_root(memcg))
3559 return -EINVAL;
3560 return mem_cgroup_force_empty(memcg) ?: nbytes;
3561 }
3562
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3563 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3564 struct cftype *cft)
3565 {
3566 return mem_cgroup_from_css(css)->use_hierarchy;
3567 }
3568
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3569 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3570 struct cftype *cft, u64 val)
3571 {
3572 int retval = 0;
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3575
3576 if (memcg->use_hierarchy == val)
3577 return 0;
3578
3579 /*
3580 * If parent's use_hierarchy is set, we can't make any modifications
3581 * in the child subtrees. If it is unset, then the change can
3582 * occur, provided the current cgroup has no children.
3583 *
3584 * For the root cgroup, parent_mem is NULL, we allow value to be
3585 * set if there are no children.
3586 */
3587 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3588 (val == 1 || val == 0)) {
3589 if (!memcg_has_children(memcg))
3590 memcg->use_hierarchy = val;
3591 else
3592 retval = -EBUSY;
3593 } else
3594 retval = -EINVAL;
3595
3596 return retval;
3597 }
3598
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3599 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3600 {
3601 unsigned long val;
3602
3603 if (mem_cgroup_is_root(memcg)) {
3604 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3605 memcg_page_state(memcg, NR_ANON_MAPPED);
3606 if (swap)
3607 val += memcg_page_state(memcg, MEMCG_SWAP);
3608 } else {
3609 if (!swap)
3610 val = page_counter_read(&memcg->memory);
3611 else
3612 val = page_counter_read(&memcg->memsw);
3613 }
3614 return val;
3615 }
3616
3617 enum {
3618 RES_USAGE,
3619 RES_LIMIT,
3620 RES_MAX_USAGE,
3621 RES_FAILCNT,
3622 RES_SOFT_LIMIT,
3623 };
3624
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3625 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3626 struct cftype *cft)
3627 {
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3629 struct page_counter *counter;
3630
3631 switch (MEMFILE_TYPE(cft->private)) {
3632 case _MEM:
3633 counter = &memcg->memory;
3634 break;
3635 case _MEMSWAP:
3636 counter = &memcg->memsw;
3637 break;
3638 case _KMEM:
3639 counter = &memcg->kmem;
3640 break;
3641 case _TCP:
3642 counter = &memcg->tcpmem;
3643 break;
3644 default:
3645 BUG();
3646 }
3647
3648 switch (MEMFILE_ATTR(cft->private)) {
3649 case RES_USAGE:
3650 if (counter == &memcg->memory)
3651 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3652 if (counter == &memcg->memsw)
3653 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3654 return (u64)page_counter_read(counter) * PAGE_SIZE;
3655 case RES_LIMIT:
3656 return (u64)counter->max * PAGE_SIZE;
3657 case RES_MAX_USAGE:
3658 return (u64)counter->watermark * PAGE_SIZE;
3659 case RES_FAILCNT:
3660 return counter->failcnt;
3661 case RES_SOFT_LIMIT:
3662 return (u64)memcg->soft_limit * PAGE_SIZE;
3663 default:
3664 BUG();
3665 }
3666 }
3667
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3668 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3669 {
3670 unsigned long stat[MEMCG_NR_STAT] = {0};
3671 struct mem_cgroup *mi;
3672 int node, cpu, i;
3673
3674 for_each_online_cpu(cpu)
3675 for (i = 0; i < MEMCG_NR_STAT; i++)
3676 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3677
3678 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3679 for (i = 0; i < MEMCG_NR_STAT; i++)
3680 atomic_long_add(stat[i], &mi->vmstats[i]);
3681
3682 for_each_node(node) {
3683 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3684 struct mem_cgroup_per_node *pi;
3685
3686 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3687 stat[i] = 0;
3688
3689 for_each_online_cpu(cpu)
3690 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3691 stat[i] += per_cpu(
3692 pn->lruvec_stat_cpu->count[i], cpu);
3693
3694 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3695 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3696 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3697 }
3698 }
3699
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3700 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3701 {
3702 unsigned long events[NR_VM_EVENT_ITEMS];
3703 struct mem_cgroup *mi;
3704 int cpu, i;
3705
3706 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3707 events[i] = 0;
3708
3709 for_each_online_cpu(cpu)
3710 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3711 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3712 cpu);
3713
3714 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3715 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3716 atomic_long_add(events[i], &mi->vmevents[i]);
3717 }
3718
3719 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3720 static int memcg_online_kmem(struct mem_cgroup *memcg)
3721 {
3722 struct obj_cgroup *objcg;
3723 int memcg_id;
3724
3725 if (cgroup_memory_nokmem)
3726 return 0;
3727
3728 BUG_ON(memcg->kmemcg_id >= 0);
3729 BUG_ON(memcg->kmem_state);
3730
3731 memcg_id = memcg_alloc_cache_id();
3732 if (memcg_id < 0)
3733 return memcg_id;
3734
3735 objcg = obj_cgroup_alloc();
3736 if (!objcg) {
3737 memcg_free_cache_id(memcg_id);
3738 return -ENOMEM;
3739 }
3740 objcg->memcg = memcg;
3741 rcu_assign_pointer(memcg->objcg, objcg);
3742
3743 static_branch_enable(&memcg_kmem_enabled_key);
3744
3745 /*
3746 * A memory cgroup is considered kmem-online as soon as it gets
3747 * kmemcg_id. Setting the id after enabling static branching will
3748 * guarantee no one starts accounting before all call sites are
3749 * patched.
3750 */
3751 memcg->kmemcg_id = memcg_id;
3752 memcg->kmem_state = KMEM_ONLINE;
3753
3754 return 0;
3755 }
3756
memcg_offline_kmem(struct mem_cgroup * memcg)3757 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3758 {
3759 struct cgroup_subsys_state *css;
3760 struct mem_cgroup *parent, *child;
3761 int kmemcg_id;
3762
3763 if (memcg->kmem_state != KMEM_ONLINE)
3764 return;
3765
3766 memcg->kmem_state = KMEM_ALLOCATED;
3767
3768 parent = parent_mem_cgroup(memcg);
3769 if (!parent)
3770 parent = root_mem_cgroup;
3771
3772 memcg_reparent_objcgs(memcg, parent);
3773
3774 kmemcg_id = memcg->kmemcg_id;
3775 BUG_ON(kmemcg_id < 0);
3776
3777 /*
3778 * Change kmemcg_id of this cgroup and all its descendants to the
3779 * parent's id, and then move all entries from this cgroup's list_lrus
3780 * to ones of the parent. After we have finished, all list_lrus
3781 * corresponding to this cgroup are guaranteed to remain empty. The
3782 * ordering is imposed by list_lru_node->lock taken by
3783 * memcg_drain_all_list_lrus().
3784 */
3785 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3786 css_for_each_descendant_pre(css, &memcg->css) {
3787 child = mem_cgroup_from_css(css);
3788 BUG_ON(child->kmemcg_id != kmemcg_id);
3789 child->kmemcg_id = parent->kmemcg_id;
3790 if (!memcg->use_hierarchy)
3791 break;
3792 }
3793 rcu_read_unlock();
3794
3795 memcg_drain_all_list_lrus(kmemcg_id, parent);
3796
3797 memcg_free_cache_id(kmemcg_id);
3798 }
3799
memcg_free_kmem(struct mem_cgroup * memcg)3800 static void memcg_free_kmem(struct mem_cgroup *memcg)
3801 {
3802 /* css_alloc() failed, offlining didn't happen */
3803 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3804 memcg_offline_kmem(memcg);
3805 }
3806 #else
memcg_online_kmem(struct mem_cgroup * memcg)3807 static int memcg_online_kmem(struct mem_cgroup *memcg)
3808 {
3809 return 0;
3810 }
memcg_offline_kmem(struct mem_cgroup * memcg)3811 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3812 {
3813 }
memcg_free_kmem(struct mem_cgroup * memcg)3814 static void memcg_free_kmem(struct mem_cgroup *memcg)
3815 {
3816 }
3817 #endif /* CONFIG_MEMCG_KMEM */
3818
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3819 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3820 unsigned long max)
3821 {
3822 int ret;
3823
3824 mutex_lock(&memcg_max_mutex);
3825 ret = page_counter_set_max(&memcg->kmem, max);
3826 mutex_unlock(&memcg_max_mutex);
3827 return ret;
3828 }
3829
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3830 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3831 {
3832 int ret;
3833
3834 mutex_lock(&memcg_max_mutex);
3835
3836 ret = page_counter_set_max(&memcg->tcpmem, max);
3837 if (ret)
3838 goto out;
3839
3840 if (!memcg->tcpmem_active) {
3841 /*
3842 * The active flag needs to be written after the static_key
3843 * update. This is what guarantees that the socket activation
3844 * function is the last one to run. See mem_cgroup_sk_alloc()
3845 * for details, and note that we don't mark any socket as
3846 * belonging to this memcg until that flag is up.
3847 *
3848 * We need to do this, because static_keys will span multiple
3849 * sites, but we can't control their order. If we mark a socket
3850 * as accounted, but the accounting functions are not patched in
3851 * yet, we'll lose accounting.
3852 *
3853 * We never race with the readers in mem_cgroup_sk_alloc(),
3854 * because when this value change, the code to process it is not
3855 * patched in yet.
3856 */
3857 static_branch_inc(&memcg_sockets_enabled_key);
3858 memcg->tcpmem_active = true;
3859 }
3860 out:
3861 mutex_unlock(&memcg_max_mutex);
3862 return ret;
3863 }
3864
3865 /*
3866 * The user of this function is...
3867 * RES_LIMIT.
3868 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3869 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3870 char *buf, size_t nbytes, loff_t off)
3871 {
3872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3873 unsigned long nr_pages;
3874 int ret;
3875
3876 buf = strstrip(buf);
3877 ret = page_counter_memparse(buf, "-1", &nr_pages);
3878 if (ret)
3879 return ret;
3880
3881 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3882 case RES_LIMIT:
3883 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3884 ret = -EINVAL;
3885 break;
3886 }
3887 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3888 case _MEM:
3889 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3890 break;
3891 case _MEMSWAP:
3892 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3893 break;
3894 case _KMEM:
3895 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3896 "Please report your usecase to linux-mm@kvack.org if you "
3897 "depend on this functionality.\n");
3898 ret = memcg_update_kmem_max(memcg, nr_pages);
3899 break;
3900 case _TCP:
3901 ret = memcg_update_tcp_max(memcg, nr_pages);
3902 break;
3903 }
3904 break;
3905 case RES_SOFT_LIMIT:
3906 memcg->soft_limit = nr_pages;
3907 ret = 0;
3908 break;
3909 }
3910 return ret ?: nbytes;
3911 }
3912
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3913 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3914 size_t nbytes, loff_t off)
3915 {
3916 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3917 struct page_counter *counter;
3918
3919 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3920 case _MEM:
3921 counter = &memcg->memory;
3922 break;
3923 case _MEMSWAP:
3924 counter = &memcg->memsw;
3925 break;
3926 case _KMEM:
3927 counter = &memcg->kmem;
3928 break;
3929 case _TCP:
3930 counter = &memcg->tcpmem;
3931 break;
3932 default:
3933 BUG();
3934 }
3935
3936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3937 case RES_MAX_USAGE:
3938 page_counter_reset_watermark(counter);
3939 break;
3940 case RES_FAILCNT:
3941 counter->failcnt = 0;
3942 break;
3943 default:
3944 BUG();
3945 }
3946
3947 return nbytes;
3948 }
3949
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3950 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3951 struct cftype *cft)
3952 {
3953 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3954 }
3955
3956 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3957 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3958 struct cftype *cft, u64 val)
3959 {
3960 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3961
3962 if (val & ~MOVE_MASK)
3963 return -EINVAL;
3964
3965 /*
3966 * No kind of locking is needed in here, because ->can_attach() will
3967 * check this value once in the beginning of the process, and then carry
3968 * on with stale data. This means that changes to this value will only
3969 * affect task migrations starting after the change.
3970 */
3971 memcg->move_charge_at_immigrate = val;
3972 return 0;
3973 }
3974 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3975 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3976 struct cftype *cft, u64 val)
3977 {
3978 return -ENOSYS;
3979 }
3980 #endif
3981
3982 #ifdef CONFIG_NUMA
3983
3984 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3985 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3986 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3987
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3988 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3989 int nid, unsigned int lru_mask, bool tree)
3990 {
3991 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3992 unsigned long nr = 0;
3993 enum lru_list lru;
3994
3995 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3996
3997 for_each_lru(lru) {
3998 if (!(BIT(lru) & lru_mask))
3999 continue;
4000 if (tree)
4001 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4002 else
4003 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4004 }
4005 return nr;
4006 }
4007
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4008 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4009 unsigned int lru_mask,
4010 bool tree)
4011 {
4012 unsigned long nr = 0;
4013 enum lru_list lru;
4014
4015 for_each_lru(lru) {
4016 if (!(BIT(lru) & lru_mask))
4017 continue;
4018 if (tree)
4019 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4020 else
4021 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4022 }
4023 return nr;
4024 }
4025
memcg_numa_stat_show(struct seq_file * m,void * v)4026 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4027 {
4028 struct numa_stat {
4029 const char *name;
4030 unsigned int lru_mask;
4031 };
4032
4033 static const struct numa_stat stats[] = {
4034 { "total", LRU_ALL },
4035 { "file", LRU_ALL_FILE },
4036 { "anon", LRU_ALL_ANON },
4037 { "unevictable", BIT(LRU_UNEVICTABLE) },
4038 };
4039 const struct numa_stat *stat;
4040 int nid;
4041 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4042
4043 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4044 seq_printf(m, "%s=%lu", stat->name,
4045 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046 false));
4047 for_each_node_state(nid, N_MEMORY)
4048 seq_printf(m, " N%d=%lu", nid,
4049 mem_cgroup_node_nr_lru_pages(memcg, nid,
4050 stat->lru_mask, false));
4051 seq_putc(m, '\n');
4052 }
4053
4054 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4055
4056 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4057 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4058 true));
4059 for_each_node_state(nid, N_MEMORY)
4060 seq_printf(m, " N%d=%lu", nid,
4061 mem_cgroup_node_nr_lru_pages(memcg, nid,
4062 stat->lru_mask, true));
4063 seq_putc(m, '\n');
4064 }
4065
4066 return 0;
4067 }
4068 #endif /* CONFIG_NUMA */
4069
4070 static const unsigned int memcg1_stats[] = {
4071 NR_FILE_PAGES,
4072 NR_ANON_MAPPED,
4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4074 NR_ANON_THPS,
4075 #endif
4076 NR_SHMEM,
4077 NR_FILE_MAPPED,
4078 NR_FILE_DIRTY,
4079 NR_WRITEBACK,
4080 MEMCG_SWAP,
4081 };
4082
4083 static const char *const memcg1_stat_names[] = {
4084 "cache",
4085 "rss",
4086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4087 "rss_huge",
4088 #endif
4089 "shmem",
4090 "mapped_file",
4091 "dirty",
4092 "writeback",
4093 "swap",
4094 };
4095
4096 /* Universal VM events cgroup1 shows, original sort order */
4097 static const unsigned int memcg1_events[] = {
4098 PGPGIN,
4099 PGPGOUT,
4100 PGFAULT,
4101 PGMAJFAULT,
4102 };
4103
memcg_stat_show(struct seq_file * m,void * v)4104 static int memcg_stat_show(struct seq_file *m, void *v)
4105 {
4106 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4107 unsigned long memory, memsw;
4108 struct mem_cgroup *mi;
4109 unsigned int i;
4110
4111 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4112
4113 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4114 unsigned long nr;
4115
4116 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4117 continue;
4118 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4120 if (memcg1_stats[i] == NR_ANON_THPS)
4121 nr *= HPAGE_PMD_NR;
4122 #endif
4123 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4124 }
4125
4126 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4127 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4128 memcg_events_local(memcg, memcg1_events[i]));
4129
4130 for (i = 0; i < NR_LRU_LISTS; i++)
4131 seq_printf(m, "%s %lu\n", lru_list_name(i),
4132 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4133 PAGE_SIZE);
4134
4135 /* Hierarchical information */
4136 memory = memsw = PAGE_COUNTER_MAX;
4137 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4138 memory = min(memory, READ_ONCE(mi->memory.max));
4139 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4140 }
4141 seq_printf(m, "hierarchical_memory_limit %llu\n",
4142 (u64)memory * PAGE_SIZE);
4143 if (do_memsw_account())
4144 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4145 (u64)memsw * PAGE_SIZE);
4146
4147 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4148 unsigned long nr;
4149
4150 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4151 continue;
4152 nr = memcg_page_state(memcg, memcg1_stats[i]);
4153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4154 if (memcg1_stats[i] == NR_ANON_THPS)
4155 nr *= HPAGE_PMD_NR;
4156 #endif
4157 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4158 (u64)nr * PAGE_SIZE);
4159 }
4160
4161 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4162 seq_printf(m, "total_%s %llu\n",
4163 vm_event_name(memcg1_events[i]),
4164 (u64)memcg_events(memcg, memcg1_events[i]));
4165
4166 for (i = 0; i < NR_LRU_LISTS; i++)
4167 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4168 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4169 PAGE_SIZE);
4170
4171 #ifdef CONFIG_DEBUG_VM
4172 {
4173 pg_data_t *pgdat;
4174 struct mem_cgroup_per_node *mz;
4175 unsigned long anon_cost = 0;
4176 unsigned long file_cost = 0;
4177
4178 for_each_online_pgdat(pgdat) {
4179 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4180
4181 anon_cost += mz->lruvec.anon_cost;
4182 file_cost += mz->lruvec.file_cost;
4183 }
4184 seq_printf(m, "anon_cost %lu\n", anon_cost);
4185 seq_printf(m, "file_cost %lu\n", file_cost);
4186 }
4187 #endif
4188
4189 #ifdef CONFIG_HYPERHOLD_DEBUG
4190 memcg_eswap_info_show(m);
4191 #endif
4192 return 0;
4193 }
4194
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4195 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4196 struct cftype *cft)
4197 {
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199
4200 return mem_cgroup_swappiness(memcg);
4201 }
4202
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4203 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4204 struct cftype *cft, u64 val)
4205 {
4206 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4207
4208 if (val > 200)
4209 return -EINVAL;
4210
4211 if (css->parent)
4212 memcg->swappiness = val;
4213 else
4214 vm_swappiness = val;
4215
4216 return 0;
4217 }
4218
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4219 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4220 {
4221 struct mem_cgroup_threshold_ary *t;
4222 unsigned long usage;
4223 int i;
4224
4225 rcu_read_lock();
4226 if (!swap)
4227 t = rcu_dereference(memcg->thresholds.primary);
4228 else
4229 t = rcu_dereference(memcg->memsw_thresholds.primary);
4230
4231 if (!t)
4232 goto unlock;
4233
4234 usage = mem_cgroup_usage(memcg, swap);
4235
4236 /*
4237 * current_threshold points to threshold just below or equal to usage.
4238 * If it's not true, a threshold was crossed after last
4239 * call of __mem_cgroup_threshold().
4240 */
4241 i = t->current_threshold;
4242
4243 /*
4244 * Iterate backward over array of thresholds starting from
4245 * current_threshold and check if a threshold is crossed.
4246 * If none of thresholds below usage is crossed, we read
4247 * only one element of the array here.
4248 */
4249 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4250 eventfd_signal(t->entries[i].eventfd, 1);
4251
4252 /* i = current_threshold + 1 */
4253 i++;
4254
4255 /*
4256 * Iterate forward over array of thresholds starting from
4257 * current_threshold+1 and check if a threshold is crossed.
4258 * If none of thresholds above usage is crossed, we read
4259 * only one element of the array here.
4260 */
4261 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4262 eventfd_signal(t->entries[i].eventfd, 1);
4263
4264 /* Update current_threshold */
4265 t->current_threshold = i - 1;
4266 unlock:
4267 rcu_read_unlock();
4268 }
4269
mem_cgroup_threshold(struct mem_cgroup * memcg)4270 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4271 {
4272 while (memcg) {
4273 __mem_cgroup_threshold(memcg, false);
4274 if (do_memsw_account())
4275 __mem_cgroup_threshold(memcg, true);
4276
4277 memcg = parent_mem_cgroup(memcg);
4278 }
4279 }
4280
compare_thresholds(const void * a,const void * b)4281 static int compare_thresholds(const void *a, const void *b)
4282 {
4283 const struct mem_cgroup_threshold *_a = a;
4284 const struct mem_cgroup_threshold *_b = b;
4285
4286 if (_a->threshold > _b->threshold)
4287 return 1;
4288
4289 if (_a->threshold < _b->threshold)
4290 return -1;
4291
4292 return 0;
4293 }
4294
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4295 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4296 {
4297 struct mem_cgroup_eventfd_list *ev;
4298
4299 spin_lock(&memcg_oom_lock);
4300
4301 list_for_each_entry(ev, &memcg->oom_notify, list)
4302 eventfd_signal(ev->eventfd, 1);
4303
4304 spin_unlock(&memcg_oom_lock);
4305 return 0;
4306 }
4307
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4308 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4309 {
4310 struct mem_cgroup *iter;
4311
4312 for_each_mem_cgroup_tree(iter, memcg)
4313 mem_cgroup_oom_notify_cb(iter);
4314 }
4315
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4316 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4317 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4318 {
4319 struct mem_cgroup_thresholds *thresholds;
4320 struct mem_cgroup_threshold_ary *new;
4321 unsigned long threshold;
4322 unsigned long usage;
4323 int i, size, ret;
4324
4325 ret = page_counter_memparse(args, "-1", &threshold);
4326 if (ret)
4327 return ret;
4328
4329 mutex_lock(&memcg->thresholds_lock);
4330
4331 if (type == _MEM) {
4332 thresholds = &memcg->thresholds;
4333 usage = mem_cgroup_usage(memcg, false);
4334 } else if (type == _MEMSWAP) {
4335 thresholds = &memcg->memsw_thresholds;
4336 usage = mem_cgroup_usage(memcg, true);
4337 } else
4338 BUG();
4339
4340 /* Check if a threshold crossed before adding a new one */
4341 if (thresholds->primary)
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4345
4346 /* Allocate memory for new array of thresholds */
4347 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4348 if (!new) {
4349 ret = -ENOMEM;
4350 goto unlock;
4351 }
4352 new->size = size;
4353
4354 /* Copy thresholds (if any) to new array */
4355 if (thresholds->primary)
4356 memcpy(new->entries, thresholds->primary->entries,
4357 flex_array_size(new, entries, size - 1));
4358
4359 /* Add new threshold */
4360 new->entries[size - 1].eventfd = eventfd;
4361 new->entries[size - 1].threshold = threshold;
4362
4363 /* Sort thresholds. Registering of new threshold isn't time-critical */
4364 sort(new->entries, size, sizeof(*new->entries),
4365 compare_thresholds, NULL);
4366
4367 /* Find current threshold */
4368 new->current_threshold = -1;
4369 for (i = 0; i < size; i++) {
4370 if (new->entries[i].threshold <= usage) {
4371 /*
4372 * new->current_threshold will not be used until
4373 * rcu_assign_pointer(), so it's safe to increment
4374 * it here.
4375 */
4376 ++new->current_threshold;
4377 } else
4378 break;
4379 }
4380
4381 /* Free old spare buffer and save old primary buffer as spare */
4382 kfree(thresholds->spare);
4383 thresholds->spare = thresholds->primary;
4384
4385 rcu_assign_pointer(thresholds->primary, new);
4386
4387 /* To be sure that nobody uses thresholds */
4388 synchronize_rcu();
4389
4390 unlock:
4391 mutex_unlock(&memcg->thresholds_lock);
4392
4393 return ret;
4394 }
4395
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4396 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4397 struct eventfd_ctx *eventfd, const char *args)
4398 {
4399 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4400 }
4401
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4402 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4403 struct eventfd_ctx *eventfd, const char *args)
4404 {
4405 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4406 }
4407
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4408 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4409 struct eventfd_ctx *eventfd, enum res_type type)
4410 {
4411 struct mem_cgroup_thresholds *thresholds;
4412 struct mem_cgroup_threshold_ary *new;
4413 unsigned long usage;
4414 int i, j, size, entries;
4415
4416 mutex_lock(&memcg->thresholds_lock);
4417
4418 if (type == _MEM) {
4419 thresholds = &memcg->thresholds;
4420 usage = mem_cgroup_usage(memcg, false);
4421 } else if (type == _MEMSWAP) {
4422 thresholds = &memcg->memsw_thresholds;
4423 usage = mem_cgroup_usage(memcg, true);
4424 } else
4425 BUG();
4426
4427 if (!thresholds->primary)
4428 goto unlock;
4429
4430 /* Check if a threshold crossed before removing */
4431 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4432
4433 /* Calculate new number of threshold */
4434 size = entries = 0;
4435 for (i = 0; i < thresholds->primary->size; i++) {
4436 if (thresholds->primary->entries[i].eventfd != eventfd)
4437 size++;
4438 else
4439 entries++;
4440 }
4441
4442 new = thresholds->spare;
4443
4444 /* If no items related to eventfd have been cleared, nothing to do */
4445 if (!entries)
4446 goto unlock;
4447
4448 /* Set thresholds array to NULL if we don't have thresholds */
4449 if (!size) {
4450 kfree(new);
4451 new = NULL;
4452 goto swap_buffers;
4453 }
4454
4455 new->size = size;
4456
4457 /* Copy thresholds and find current threshold */
4458 new->current_threshold = -1;
4459 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd == eventfd)
4461 continue;
4462
4463 new->entries[j] = thresholds->primary->entries[i];
4464 if (new->entries[j].threshold <= usage) {
4465 /*
4466 * new->current_threshold will not be used
4467 * until rcu_assign_pointer(), so it's safe to increment
4468 * it here.
4469 */
4470 ++new->current_threshold;
4471 }
4472 j++;
4473 }
4474
4475 swap_buffers:
4476 /* Swap primary and spare array */
4477 thresholds->spare = thresholds->primary;
4478
4479 rcu_assign_pointer(thresholds->primary, new);
4480
4481 /* To be sure that nobody uses thresholds */
4482 synchronize_rcu();
4483
4484 /* If all events are unregistered, free the spare array */
4485 if (!new) {
4486 kfree(thresholds->spare);
4487 thresholds->spare = NULL;
4488 }
4489 unlock:
4490 mutex_unlock(&memcg->thresholds_lock);
4491 }
4492
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4493 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4494 struct eventfd_ctx *eventfd)
4495 {
4496 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4497 }
4498
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4499 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4500 struct eventfd_ctx *eventfd)
4501 {
4502 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4503 }
4504
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4505 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4506 struct eventfd_ctx *eventfd, const char *args)
4507 {
4508 struct mem_cgroup_eventfd_list *event;
4509
4510 event = kmalloc(sizeof(*event), GFP_KERNEL);
4511 if (!event)
4512 return -ENOMEM;
4513
4514 spin_lock(&memcg_oom_lock);
4515
4516 event->eventfd = eventfd;
4517 list_add(&event->list, &memcg->oom_notify);
4518
4519 /* already in OOM ? */
4520 if (memcg->under_oom)
4521 eventfd_signal(eventfd, 1);
4522 spin_unlock(&memcg_oom_lock);
4523
4524 return 0;
4525 }
4526
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4527 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4528 struct eventfd_ctx *eventfd)
4529 {
4530 struct mem_cgroup_eventfd_list *ev, *tmp;
4531
4532 spin_lock(&memcg_oom_lock);
4533
4534 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4535 if (ev->eventfd == eventfd) {
4536 list_del(&ev->list);
4537 kfree(ev);
4538 }
4539 }
4540
4541 spin_unlock(&memcg_oom_lock);
4542 }
4543
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4544 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4545 {
4546 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4547
4548 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4549 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4550 seq_printf(sf, "oom_kill %lu\n",
4551 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4552 return 0;
4553 }
4554
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4555 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4556 struct cftype *cft, u64 val)
4557 {
4558 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4559
4560 /* cannot set to root cgroup and only 0 and 1 are allowed */
4561 if (!css->parent || !((val == 0) || (val == 1)))
4562 return -EINVAL;
4563
4564 memcg->oom_kill_disable = val;
4565 if (!val)
4566 memcg_oom_recover(memcg);
4567
4568 return 0;
4569 }
4570
4571 #ifdef CONFIG_CGROUP_WRITEBACK
4572
4573 #include <trace/events/writeback.h>
4574
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4575 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4576 {
4577 return wb_domain_init(&memcg->cgwb_domain, gfp);
4578 }
4579
memcg_wb_domain_exit(struct mem_cgroup * memcg)4580 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4581 {
4582 wb_domain_exit(&memcg->cgwb_domain);
4583 }
4584
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4585 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4586 {
4587 wb_domain_size_changed(&memcg->cgwb_domain);
4588 }
4589
mem_cgroup_wb_domain(struct bdi_writeback * wb)4590 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4591 {
4592 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4593
4594 if (!memcg->css.parent)
4595 return NULL;
4596
4597 return &memcg->cgwb_domain;
4598 }
4599
4600 /*
4601 * idx can be of type enum memcg_stat_item or node_stat_item.
4602 * Keep in sync with memcg_exact_page().
4603 */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4604 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4605 {
4606 long x = atomic_long_read(&memcg->vmstats[idx]);
4607 int cpu;
4608
4609 for_each_online_cpu(cpu)
4610 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4611 if (x < 0)
4612 x = 0;
4613 return x;
4614 }
4615
4616 /**
4617 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4618 * @wb: bdi_writeback in question
4619 * @pfilepages: out parameter for number of file pages
4620 * @pheadroom: out parameter for number of allocatable pages according to memcg
4621 * @pdirty: out parameter for number of dirty pages
4622 * @pwriteback: out parameter for number of pages under writeback
4623 *
4624 * Determine the numbers of file, headroom, dirty, and writeback pages in
4625 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4626 * is a bit more involved.
4627 *
4628 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4629 * headroom is calculated as the lowest headroom of itself and the
4630 * ancestors. Note that this doesn't consider the actual amount of
4631 * available memory in the system. The caller should further cap
4632 * *@pheadroom accordingly.
4633 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4634 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4635 unsigned long *pheadroom, unsigned long *pdirty,
4636 unsigned long *pwriteback)
4637 {
4638 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4639 struct mem_cgroup *parent;
4640
4641 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4642
4643 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4644 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4645 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4646 *pheadroom = PAGE_COUNTER_MAX;
4647
4648 while ((parent = parent_mem_cgroup(memcg))) {
4649 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4650 READ_ONCE(memcg->memory.high));
4651 unsigned long used = page_counter_read(&memcg->memory);
4652
4653 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4654 memcg = parent;
4655 }
4656 }
4657
4658 /*
4659 * Foreign dirty flushing
4660 *
4661 * There's an inherent mismatch between memcg and writeback. The former
4662 * trackes ownership per-page while the latter per-inode. This was a
4663 * deliberate design decision because honoring per-page ownership in the
4664 * writeback path is complicated, may lead to higher CPU and IO overheads
4665 * and deemed unnecessary given that write-sharing an inode across
4666 * different cgroups isn't a common use-case.
4667 *
4668 * Combined with inode majority-writer ownership switching, this works well
4669 * enough in most cases but there are some pathological cases. For
4670 * example, let's say there are two cgroups A and B which keep writing to
4671 * different but confined parts of the same inode. B owns the inode and
4672 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4673 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4674 * triggering background writeback. A will be slowed down without a way to
4675 * make writeback of the dirty pages happen.
4676 *
4677 * Conditions like the above can lead to a cgroup getting repatedly and
4678 * severely throttled after making some progress after each
4679 * dirty_expire_interval while the underyling IO device is almost
4680 * completely idle.
4681 *
4682 * Solving this problem completely requires matching the ownership tracking
4683 * granularities between memcg and writeback in either direction. However,
4684 * the more egregious behaviors can be avoided by simply remembering the
4685 * most recent foreign dirtying events and initiating remote flushes on
4686 * them when local writeback isn't enough to keep the memory clean enough.
4687 *
4688 * The following two functions implement such mechanism. When a foreign
4689 * page - a page whose memcg and writeback ownerships don't match - is
4690 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4691 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4692 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4693 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4694 * foreign bdi_writebacks which haven't expired. Both the numbers of
4695 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4696 * limited to MEMCG_CGWB_FRN_CNT.
4697 *
4698 * The mechanism only remembers IDs and doesn't hold any object references.
4699 * As being wrong occasionally doesn't matter, updates and accesses to the
4700 * records are lockless and racy.
4701 */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4702 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4703 struct bdi_writeback *wb)
4704 {
4705 struct mem_cgroup *memcg = page->mem_cgroup;
4706 struct memcg_cgwb_frn *frn;
4707 u64 now = get_jiffies_64();
4708 u64 oldest_at = now;
4709 int oldest = -1;
4710 int i;
4711
4712 trace_track_foreign_dirty(page, wb);
4713
4714 /*
4715 * Pick the slot to use. If there is already a slot for @wb, keep
4716 * using it. If not replace the oldest one which isn't being
4717 * written out.
4718 */
4719 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4720 frn = &memcg->cgwb_frn[i];
4721 if (frn->bdi_id == wb->bdi->id &&
4722 frn->memcg_id == wb->memcg_css->id)
4723 break;
4724 if (time_before64(frn->at, oldest_at) &&
4725 atomic_read(&frn->done.cnt) == 1) {
4726 oldest = i;
4727 oldest_at = frn->at;
4728 }
4729 }
4730
4731 if (i < MEMCG_CGWB_FRN_CNT) {
4732 /*
4733 * Re-using an existing one. Update timestamp lazily to
4734 * avoid making the cacheline hot. We want them to be
4735 * reasonably up-to-date and significantly shorter than
4736 * dirty_expire_interval as that's what expires the record.
4737 * Use the shorter of 1s and dirty_expire_interval / 8.
4738 */
4739 unsigned long update_intv =
4740 min_t(unsigned long, HZ,
4741 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4742
4743 if (time_before64(frn->at, now - update_intv))
4744 frn->at = now;
4745 } else if (oldest >= 0) {
4746 /* replace the oldest free one */
4747 frn = &memcg->cgwb_frn[oldest];
4748 frn->bdi_id = wb->bdi->id;
4749 frn->memcg_id = wb->memcg_css->id;
4750 frn->at = now;
4751 }
4752 }
4753
4754 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4755 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4756 {
4757 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4758 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4759 u64 now = jiffies_64;
4760 int i;
4761
4762 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4763 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4764
4765 /*
4766 * If the record is older than dirty_expire_interval,
4767 * writeback on it has already started. No need to kick it
4768 * off again. Also, don't start a new one if there's
4769 * already one in flight.
4770 */
4771 if (time_after64(frn->at, now - intv) &&
4772 atomic_read(&frn->done.cnt) == 1) {
4773 frn->at = 0;
4774 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4775 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4776 WB_REASON_FOREIGN_FLUSH,
4777 &frn->done);
4778 }
4779 }
4780 }
4781
4782 #else /* CONFIG_CGROUP_WRITEBACK */
4783
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4784 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4785 {
4786 return 0;
4787 }
4788
memcg_wb_domain_exit(struct mem_cgroup * memcg)4789 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4790 {
4791 }
4792
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4793 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4794 {
4795 }
4796
4797 #endif /* CONFIG_CGROUP_WRITEBACK */
4798
4799 /*
4800 * DO NOT USE IN NEW FILES.
4801 *
4802 * "cgroup.event_control" implementation.
4803 *
4804 * This is way over-engineered. It tries to support fully configurable
4805 * events for each user. Such level of flexibility is completely
4806 * unnecessary especially in the light of the planned unified hierarchy.
4807 *
4808 * Please deprecate this and replace with something simpler if at all
4809 * possible.
4810 */
4811
4812 /*
4813 * Unregister event and free resources.
4814 *
4815 * Gets called from workqueue.
4816 */
memcg_event_remove(struct work_struct * work)4817 static void memcg_event_remove(struct work_struct *work)
4818 {
4819 struct mem_cgroup_event *event =
4820 container_of(work, struct mem_cgroup_event, remove);
4821 struct mem_cgroup *memcg = event->memcg;
4822
4823 remove_wait_queue(event->wqh, &event->wait);
4824
4825 event->unregister_event(memcg, event->eventfd);
4826
4827 /* Notify userspace the event is going away. */
4828 eventfd_signal(event->eventfd, 1);
4829
4830 eventfd_ctx_put(event->eventfd);
4831 kfree(event);
4832 css_put(&memcg->css);
4833 }
4834
4835 /*
4836 * Gets called on EPOLLHUP on eventfd when user closes it.
4837 *
4838 * Called with wqh->lock held and interrupts disabled.
4839 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4840 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4841 int sync, void *key)
4842 {
4843 struct mem_cgroup_event *event =
4844 container_of(wait, struct mem_cgroup_event, wait);
4845 struct mem_cgroup *memcg = event->memcg;
4846 __poll_t flags = key_to_poll(key);
4847
4848 if (flags & EPOLLHUP) {
4849 /*
4850 * If the event has been detached at cgroup removal, we
4851 * can simply return knowing the other side will cleanup
4852 * for us.
4853 *
4854 * We can't race against event freeing since the other
4855 * side will require wqh->lock via remove_wait_queue(),
4856 * which we hold.
4857 */
4858 spin_lock(&memcg->event_list_lock);
4859 if (!list_empty(&event->list)) {
4860 list_del_init(&event->list);
4861 /*
4862 * We are in atomic context, but cgroup_event_remove()
4863 * may sleep, so we have to call it in workqueue.
4864 */
4865 schedule_work(&event->remove);
4866 }
4867 spin_unlock(&memcg->event_list_lock);
4868 }
4869
4870 return 0;
4871 }
4872
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4873 static void memcg_event_ptable_queue_proc(struct file *file,
4874 wait_queue_head_t *wqh, poll_table *pt)
4875 {
4876 struct mem_cgroup_event *event =
4877 container_of(pt, struct mem_cgroup_event, pt);
4878
4879 event->wqh = wqh;
4880 add_wait_queue(wqh, &event->wait);
4881 }
4882
4883 /*
4884 * DO NOT USE IN NEW FILES.
4885 *
4886 * Parse input and register new cgroup event handler.
4887 *
4888 * Input must be in format '<event_fd> <control_fd> <args>'.
4889 * Interpretation of args is defined by control file implementation.
4890 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4891 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4892 char *buf, size_t nbytes, loff_t off)
4893 {
4894 struct cgroup_subsys_state *css = of_css(of);
4895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4896 struct mem_cgroup_event *event;
4897 struct cgroup_subsys_state *cfile_css;
4898 unsigned int efd, cfd;
4899 struct fd efile;
4900 struct fd cfile;
4901 const char *name;
4902 char *endp;
4903 int ret;
4904
4905 buf = strstrip(buf);
4906
4907 efd = simple_strtoul(buf, &endp, 10);
4908 if (*endp != ' ')
4909 return -EINVAL;
4910 buf = endp + 1;
4911
4912 cfd = simple_strtoul(buf, &endp, 10);
4913 if ((*endp != ' ') && (*endp != '\0'))
4914 return -EINVAL;
4915 buf = endp + 1;
4916
4917 event = kzalloc(sizeof(*event), GFP_KERNEL);
4918 if (!event)
4919 return -ENOMEM;
4920
4921 event->memcg = memcg;
4922 INIT_LIST_HEAD(&event->list);
4923 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4924 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4925 INIT_WORK(&event->remove, memcg_event_remove);
4926
4927 efile = fdget(efd);
4928 if (!efile.file) {
4929 ret = -EBADF;
4930 goto out_kfree;
4931 }
4932
4933 event->eventfd = eventfd_ctx_fileget(efile.file);
4934 if (IS_ERR(event->eventfd)) {
4935 ret = PTR_ERR(event->eventfd);
4936 goto out_put_efile;
4937 }
4938
4939 cfile = fdget(cfd);
4940 if (!cfile.file) {
4941 ret = -EBADF;
4942 goto out_put_eventfd;
4943 }
4944
4945 /* the process need read permission on control file */
4946 /* AV: shouldn't we check that it's been opened for read instead? */
4947 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4948 if (ret < 0)
4949 goto out_put_cfile;
4950
4951 /*
4952 * Determine the event callbacks and set them in @event. This used
4953 * to be done via struct cftype but cgroup core no longer knows
4954 * about these events. The following is crude but the whole thing
4955 * is for compatibility anyway.
4956 *
4957 * DO NOT ADD NEW FILES.
4958 */
4959 name = cfile.file->f_path.dentry->d_name.name;
4960
4961 if (!strcmp(name, "memory.usage_in_bytes")) {
4962 event->register_event = mem_cgroup_usage_register_event;
4963 event->unregister_event = mem_cgroup_usage_unregister_event;
4964 } else if (!strcmp(name, "memory.oom_control")) {
4965 event->register_event = mem_cgroup_oom_register_event;
4966 event->unregister_event = mem_cgroup_oom_unregister_event;
4967 } else if (!strcmp(name, "memory.pressure_level")) {
4968 event->register_event = vmpressure_register_event;
4969 event->unregister_event = vmpressure_unregister_event;
4970 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4971 event->register_event = memsw_cgroup_usage_register_event;
4972 event->unregister_event = memsw_cgroup_usage_unregister_event;
4973 } else {
4974 ret = -EINVAL;
4975 goto out_put_cfile;
4976 }
4977
4978 /*
4979 * Verify @cfile should belong to @css. Also, remaining events are
4980 * automatically removed on cgroup destruction but the removal is
4981 * asynchronous, so take an extra ref on @css.
4982 */
4983 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4984 &memory_cgrp_subsys);
4985 ret = -EINVAL;
4986 if (IS_ERR(cfile_css))
4987 goto out_put_cfile;
4988 if (cfile_css != css) {
4989 css_put(cfile_css);
4990 goto out_put_cfile;
4991 }
4992
4993 ret = event->register_event(memcg, event->eventfd, buf);
4994 if (ret)
4995 goto out_put_css;
4996
4997 vfs_poll(efile.file, &event->pt);
4998
4999 spin_lock(&memcg->event_list_lock);
5000 list_add(&event->list, &memcg->event_list);
5001 spin_unlock(&memcg->event_list_lock);
5002
5003 fdput(cfile);
5004 fdput(efile);
5005
5006 return nbytes;
5007
5008 out_put_css:
5009 css_put(css);
5010 out_put_cfile:
5011 fdput(cfile);
5012 out_put_eventfd:
5013 eventfd_ctx_put(event->eventfd);
5014 out_put_efile:
5015 fdput(efile);
5016 out_kfree:
5017 kfree(event);
5018
5019 return ret;
5020 }
5021
5022 static struct cftype mem_cgroup_legacy_files[] = {
5023 {
5024 .name = "usage_in_bytes",
5025 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5026 .read_u64 = mem_cgroup_read_u64,
5027 },
5028 {
5029 .name = "max_usage_in_bytes",
5030 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5031 .write = mem_cgroup_reset,
5032 .read_u64 = mem_cgroup_read_u64,
5033 },
5034 {
5035 .name = "limit_in_bytes",
5036 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5037 .write = mem_cgroup_write,
5038 .read_u64 = mem_cgroup_read_u64,
5039 },
5040 {
5041 .name = "soft_limit_in_bytes",
5042 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5043 .write = mem_cgroup_write,
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
5046 {
5047 .name = "failcnt",
5048 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5049 .write = mem_cgroup_reset,
5050 .read_u64 = mem_cgroup_read_u64,
5051 },
5052 {
5053 .name = "stat",
5054 .seq_show = memcg_stat_show,
5055 },
5056 {
5057 .name = "force_empty",
5058 .write = mem_cgroup_force_empty_write,
5059 },
5060 {
5061 .name = "use_hierarchy",
5062 .write_u64 = mem_cgroup_hierarchy_write,
5063 .read_u64 = mem_cgroup_hierarchy_read,
5064 },
5065 {
5066 .name = "cgroup.event_control", /* XXX: for compat */
5067 .write = memcg_write_event_control,
5068 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5069 },
5070 {
5071 .name = "swappiness",
5072 .read_u64 = mem_cgroup_swappiness_read,
5073 .write_u64 = mem_cgroup_swappiness_write,
5074 },
5075 {
5076 .name = "move_charge_at_immigrate",
5077 .read_u64 = mem_cgroup_move_charge_read,
5078 .write_u64 = mem_cgroup_move_charge_write,
5079 },
5080 {
5081 .name = "oom_control",
5082 .seq_show = mem_cgroup_oom_control_read,
5083 .write_u64 = mem_cgroup_oom_control_write,
5084 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5085 },
5086 {
5087 .name = "pressure_level",
5088 },
5089 #ifdef CONFIG_NUMA
5090 {
5091 .name = "numa_stat",
5092 .seq_show = memcg_numa_stat_show,
5093 },
5094 #endif
5095 {
5096 .name = "kmem.limit_in_bytes",
5097 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5098 .write = mem_cgroup_write,
5099 .read_u64 = mem_cgroup_read_u64,
5100 },
5101 {
5102 .name = "kmem.usage_in_bytes",
5103 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5104 .read_u64 = mem_cgroup_read_u64,
5105 },
5106 {
5107 .name = "kmem.failcnt",
5108 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5109 .write = mem_cgroup_reset,
5110 .read_u64 = mem_cgroup_read_u64,
5111 },
5112 {
5113 .name = "kmem.max_usage_in_bytes",
5114 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5115 .write = mem_cgroup_reset,
5116 .read_u64 = mem_cgroup_read_u64,
5117 },
5118 #if defined(CONFIG_MEMCG_KMEM) && \
5119 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5120 {
5121 .name = "kmem.slabinfo",
5122 .seq_show = memcg_slab_show,
5123 },
5124 #endif
5125 {
5126 .name = "kmem.tcp.limit_in_bytes",
5127 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5128 .write = mem_cgroup_write,
5129 .read_u64 = mem_cgroup_read_u64,
5130 },
5131 {
5132 .name = "kmem.tcp.usage_in_bytes",
5133 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5134 .read_u64 = mem_cgroup_read_u64,
5135 },
5136 {
5137 .name = "kmem.tcp.failcnt",
5138 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5139 .write = mem_cgroup_reset,
5140 .read_u64 = mem_cgroup_read_u64,
5141 },
5142 {
5143 .name = "kmem.tcp.max_usage_in_bytes",
5144 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5145 .write = mem_cgroup_reset,
5146 .read_u64 = mem_cgroup_read_u64,
5147 },
5148 { }, /* terminate */
5149 };
5150
5151 /*
5152 * Private memory cgroup IDR
5153 *
5154 * Swap-out records and page cache shadow entries need to store memcg
5155 * references in constrained space, so we maintain an ID space that is
5156 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5157 * memory-controlled cgroups to 64k.
5158 *
5159 * However, there usually are many references to the offline CSS after
5160 * the cgroup has been destroyed, such as page cache or reclaimable
5161 * slab objects, that don't need to hang on to the ID. We want to keep
5162 * those dead CSS from occupying IDs, or we might quickly exhaust the
5163 * relatively small ID space and prevent the creation of new cgroups
5164 * even when there are much fewer than 64k cgroups - possibly none.
5165 *
5166 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5167 * be freed and recycled when it's no longer needed, which is usually
5168 * when the CSS is offlined.
5169 *
5170 * The only exception to that are records of swapped out tmpfs/shmem
5171 * pages that need to be attributed to live ancestors on swapin. But
5172 * those references are manageable from userspace.
5173 */
5174
5175 static DEFINE_IDR(mem_cgroup_idr);
5176
mem_cgroup_id_remove(struct mem_cgroup * memcg)5177 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5178 {
5179 if (memcg->id.id > 0) {
5180 idr_remove(&mem_cgroup_idr, memcg->id.id);
5181 memcg->id.id = 0;
5182 }
5183 }
5184
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5185 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5186 unsigned int n)
5187 {
5188 refcount_add(n, &memcg->id.ref);
5189 }
5190
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5191 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5192 {
5193 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5194 mem_cgroup_id_remove(memcg);
5195
5196 /* Memcg ID pins CSS */
5197 css_put(&memcg->css);
5198 }
5199 }
5200
mem_cgroup_id_put(struct mem_cgroup * memcg)5201 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5202 {
5203 mem_cgroup_id_put_many(memcg, 1);
5204 }
5205
5206 /**
5207 * mem_cgroup_from_id - look up a memcg from a memcg id
5208 * @id: the memcg id to look up
5209 *
5210 * Caller must hold rcu_read_lock().
5211 */
mem_cgroup_from_id(unsigned short id)5212 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5213 {
5214 WARN_ON_ONCE(!rcu_read_lock_held());
5215 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5216 if (id == -1)
5217 return NULL;
5218 #endif
5219 return idr_find(&mem_cgroup_idr, id);
5220 }
5221
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5222 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5223 {
5224 struct mem_cgroup_per_node *pn;
5225 int tmp = node;
5226 /*
5227 * This routine is called against possible nodes.
5228 * But it's BUG to call kmalloc() against offline node.
5229 *
5230 * TODO: this routine can waste much memory for nodes which will
5231 * never be onlined. It's better to use memory hotplug callback
5232 * function.
5233 */
5234 if (!node_state(node, N_NORMAL_MEMORY))
5235 tmp = -1;
5236 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5237 if (!pn)
5238 return 1;
5239
5240 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5241 GFP_KERNEL_ACCOUNT);
5242 if (!pn->lruvec_stat_local) {
5243 kfree(pn);
5244 return 1;
5245 }
5246
5247 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5248 GFP_KERNEL_ACCOUNT);
5249 if (!pn->lruvec_stat_cpu) {
5250 free_percpu(pn->lruvec_stat_local);
5251 kfree(pn);
5252 return 1;
5253 }
5254
5255 lruvec_init(&pn->lruvec);
5256 pn->usage_in_excess = 0;
5257 pn->lruvec.pgdat = NODE_DATA(node);
5258 pn->on_tree = false;
5259 pn->memcg = memcg;
5260
5261 memcg->nodeinfo[node] = pn;
5262 return 0;
5263 }
5264
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5265 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5266 {
5267 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5268
5269 if (!pn)
5270 return;
5271
5272 free_percpu(pn->lruvec_stat_cpu);
5273 free_percpu(pn->lruvec_stat_local);
5274 kfree(pn);
5275 }
5276
__mem_cgroup_free(struct mem_cgroup * memcg)5277 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5278 {
5279 int node;
5280
5281 for_each_node(node)
5282 free_mem_cgroup_per_node_info(memcg, node);
5283 free_percpu(memcg->vmstats_percpu);
5284 free_percpu(memcg->vmstats_local);
5285 kfree(memcg);
5286 }
5287
mem_cgroup_free(struct mem_cgroup * memcg)5288 static void mem_cgroup_free(struct mem_cgroup *memcg)
5289 {
5290 memcg_wb_domain_exit(memcg);
5291 /*
5292 * Flush percpu vmstats and vmevents to guarantee the value correctness
5293 * on parent's and all ancestor levels.
5294 */
5295 memcg_flush_percpu_vmstats(memcg);
5296 memcg_flush_percpu_vmevents(memcg);
5297 __mem_cgroup_free(memcg);
5298 }
5299
mem_cgroup_alloc(void)5300 static struct mem_cgroup *mem_cgroup_alloc(void)
5301 {
5302 struct mem_cgroup *memcg;
5303 unsigned int size;
5304 int node;
5305 int __maybe_unused i;
5306 long error = -ENOMEM;
5307
5308 size = sizeof(struct mem_cgroup);
5309 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5310
5311 memcg = kzalloc(size, GFP_KERNEL);
5312 if (!memcg)
5313 return ERR_PTR(error);
5314
5315 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5316 1, MEM_CGROUP_ID_MAX,
5317 GFP_KERNEL);
5318 if (memcg->id.id < 0) {
5319 error = memcg->id.id;
5320 goto fail;
5321 }
5322
5323 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5324 GFP_KERNEL_ACCOUNT);
5325 if (!memcg->vmstats_local)
5326 goto fail;
5327
5328 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5329 GFP_KERNEL_ACCOUNT);
5330 if (!memcg->vmstats_percpu)
5331 goto fail;
5332
5333 for_each_node(node)
5334 if (alloc_mem_cgroup_per_node_info(memcg, node))
5335 goto fail;
5336
5337 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5338 goto fail;
5339
5340 INIT_WORK(&memcg->high_work, high_work_func);
5341 INIT_LIST_HEAD(&memcg->oom_notify);
5342 mutex_init(&memcg->thresholds_lock);
5343 spin_lock_init(&memcg->move_lock);
5344 vmpressure_init(&memcg->vmpressure);
5345 INIT_LIST_HEAD(&memcg->event_list);
5346 spin_lock_init(&memcg->event_list_lock);
5347 memcg->socket_pressure = jiffies;
5348 #ifdef CONFIG_MEMCG_KMEM
5349 memcg->kmemcg_id = -1;
5350 INIT_LIST_HEAD(&memcg->objcg_list);
5351 #endif
5352 #ifdef CONFIG_CGROUP_WRITEBACK
5353 INIT_LIST_HEAD(&memcg->cgwb_list);
5354 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5355 memcg->cgwb_frn[i].done =
5356 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5357 #endif
5358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5359 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5360 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5361 memcg->deferred_split_queue.split_queue_len = 0;
5362 #endif
5363
5364 #ifdef CONFIG_HYPERHOLD_MEMCG
5365 if (unlikely(!score_head_inited)) {
5366 INIT_LIST_HEAD(&score_head);
5367 score_head_inited = true;
5368 }
5369 #endif
5370
5371 #ifdef CONFIG_HYPERHOLD_MEMCG
5372 INIT_LIST_HEAD(&memcg->score_node);
5373 #endif
5374 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5375 return memcg;
5376 fail:
5377 mem_cgroup_id_remove(memcg);
5378 __mem_cgroup_free(memcg);
5379 return ERR_PTR(error);
5380 }
5381
5382 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5383 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5384 {
5385 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5386 struct mem_cgroup *memcg, *old_memcg;
5387 long error = -ENOMEM;
5388
5389 old_memcg = set_active_memcg(parent);
5390 memcg = mem_cgroup_alloc();
5391 set_active_memcg(old_memcg);
5392 if (IS_ERR(memcg))
5393 return ERR_CAST(memcg);
5394
5395 #ifdef CONFIG_HYPERHOLD_MEMCG
5396 atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5397 #endif
5398 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5399 atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5400 atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5401 atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5402 #endif
5403 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5404 memcg->soft_limit = PAGE_COUNTER_MAX;
5405 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5406 if (parent) {
5407 memcg->swappiness = mem_cgroup_swappiness(parent);
5408 memcg->oom_kill_disable = parent->oom_kill_disable;
5409 }
5410 if (!parent) {
5411 page_counter_init(&memcg->memory, NULL);
5412 page_counter_init(&memcg->swap, NULL);
5413 page_counter_init(&memcg->kmem, NULL);
5414 page_counter_init(&memcg->tcpmem, NULL);
5415 } else if (parent->use_hierarchy) {
5416 memcg->use_hierarchy = true;
5417 page_counter_init(&memcg->memory, &parent->memory);
5418 page_counter_init(&memcg->swap, &parent->swap);
5419 page_counter_init(&memcg->kmem, &parent->kmem);
5420 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5421 } else {
5422 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5423 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5424 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5425 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5426 /*
5427 * Deeper hierachy with use_hierarchy == false doesn't make
5428 * much sense so let cgroup subsystem know about this
5429 * unfortunate state in our controller.
5430 */
5431 if (parent != root_mem_cgroup)
5432 memory_cgrp_subsys.broken_hierarchy = true;
5433 }
5434
5435 /* The following stuff does not apply to the root */
5436 if (!parent) {
5437 root_mem_cgroup = memcg;
5438 return &memcg->css;
5439 }
5440
5441 error = memcg_online_kmem(memcg);
5442 if (error)
5443 goto fail;
5444
5445 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5446 static_branch_inc(&memcg_sockets_enabled_key);
5447
5448 return &memcg->css;
5449 fail:
5450 mem_cgroup_id_remove(memcg);
5451 mem_cgroup_free(memcg);
5452 return ERR_PTR(error);
5453 }
5454
mem_cgroup_css_online(struct cgroup_subsys_state * css)5455 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5456 {
5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5458
5459 /*
5460 * A memcg must be visible for memcg_expand_shrinker_maps()
5461 * by the time the maps are allocated. So, we allocate maps
5462 * here, when for_each_mem_cgroup() can't skip it.
5463 */
5464 if (memcg_alloc_shrinker_maps(memcg)) {
5465 mem_cgroup_id_remove(memcg);
5466 return -ENOMEM;
5467 }
5468
5469 #ifdef CONFIG_HYPERHOLD_MEMCG
5470 memcg_app_score_update(memcg);
5471 css_get(css);
5472 #endif
5473
5474 /* Online state pins memcg ID, memcg ID pins CSS */
5475 refcount_set(&memcg->id.ref, 1);
5476 css_get(css);
5477 return 0;
5478 }
5479
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5480 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5481 {
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 struct mem_cgroup_event *event, *tmp;
5484
5485 #ifdef CONFIG_HYPERHOLD_MEMCG
5486 unsigned long flags;
5487
5488 write_lock_irqsave(&score_list_lock, flags);
5489 list_del_init(&memcg->score_node);
5490 write_unlock_irqrestore(&score_list_lock, flags);
5491 css_put(css);
5492 #endif
5493
5494 /*
5495 * Unregister events and notify userspace.
5496 * Notify userspace about cgroup removing only after rmdir of cgroup
5497 * directory to avoid race between userspace and kernelspace.
5498 */
5499 spin_lock(&memcg->event_list_lock);
5500 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5501 list_del_init(&event->list);
5502 schedule_work(&event->remove);
5503 }
5504 spin_unlock(&memcg->event_list_lock);
5505
5506 page_counter_set_min(&memcg->memory, 0);
5507 page_counter_set_low(&memcg->memory, 0);
5508
5509 memcg_offline_kmem(memcg);
5510 wb_memcg_offline(memcg);
5511
5512 drain_all_stock(memcg);
5513
5514 mem_cgroup_id_put(memcg);
5515 }
5516
mem_cgroup_css_released(struct cgroup_subsys_state * css)5517 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5518 {
5519 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5520
5521 invalidate_reclaim_iterators(memcg);
5522 }
5523
mem_cgroup_css_free(struct cgroup_subsys_state * css)5524 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5525 {
5526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5527 int __maybe_unused i;
5528
5529 #ifdef CONFIG_CGROUP_WRITEBACK
5530 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5531 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5532 #endif
5533 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5534 static_branch_dec(&memcg_sockets_enabled_key);
5535
5536 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5537 static_branch_dec(&memcg_sockets_enabled_key);
5538
5539 vmpressure_cleanup(&memcg->vmpressure);
5540 cancel_work_sync(&memcg->high_work);
5541 mem_cgroup_remove_from_trees(memcg);
5542 memcg_free_shrinker_maps(memcg);
5543 memcg_free_kmem(memcg);
5544 mem_cgroup_free(memcg);
5545 }
5546
5547 /**
5548 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5549 * @css: the target css
5550 *
5551 * Reset the states of the mem_cgroup associated with @css. This is
5552 * invoked when the userland requests disabling on the default hierarchy
5553 * but the memcg is pinned through dependency. The memcg should stop
5554 * applying policies and should revert to the vanilla state as it may be
5555 * made visible again.
5556 *
5557 * The current implementation only resets the essential configurations.
5558 * This needs to be expanded to cover all the visible parts.
5559 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5560 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5561 {
5562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5563
5564 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5565 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5566 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5567 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5568 page_counter_set_min(&memcg->memory, 0);
5569 page_counter_set_low(&memcg->memory, 0);
5570 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5571 memcg->soft_limit = PAGE_COUNTER_MAX;
5572 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5573 memcg_wb_domain_size_changed(memcg);
5574 }
5575
5576 #ifdef CONFIG_MMU
5577 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5578 static int mem_cgroup_do_precharge(unsigned long count)
5579 {
5580 int ret;
5581
5582 /* Try a single bulk charge without reclaim first, kswapd may wake */
5583 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5584 if (!ret) {
5585 mc.precharge += count;
5586 return ret;
5587 }
5588
5589 /* Try charges one by one with reclaim, but do not retry */
5590 while (count--) {
5591 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5592 if (ret)
5593 return ret;
5594 mc.precharge++;
5595 cond_resched();
5596 }
5597 return 0;
5598 }
5599
5600 union mc_target {
5601 struct page *page;
5602 swp_entry_t ent;
5603 };
5604
5605 enum mc_target_type {
5606 MC_TARGET_NONE = 0,
5607 MC_TARGET_PAGE,
5608 MC_TARGET_SWAP,
5609 MC_TARGET_DEVICE,
5610 };
5611
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5612 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5613 unsigned long addr, pte_t ptent)
5614 {
5615 struct page *page = vm_normal_page(vma, addr, ptent);
5616
5617 if (!page || !page_mapped(page))
5618 return NULL;
5619 if (PageAnon(page)) {
5620 if (!(mc.flags & MOVE_ANON))
5621 return NULL;
5622 } else {
5623 if (!(mc.flags & MOVE_FILE))
5624 return NULL;
5625 }
5626 if (!get_page_unless_zero(page))
5627 return NULL;
5628
5629 return page;
5630 }
5631
5632 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5633 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5634 pte_t ptent, swp_entry_t *entry)
5635 {
5636 struct page *page = NULL;
5637 swp_entry_t ent = pte_to_swp_entry(ptent);
5638
5639 if (!(mc.flags & MOVE_ANON))
5640 return NULL;
5641
5642 /*
5643 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5644 * a device and because they are not accessible by CPU they are store
5645 * as special swap entry in the CPU page table.
5646 */
5647 if (is_device_private_entry(ent)) {
5648 page = device_private_entry_to_page(ent);
5649 /*
5650 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5651 * a refcount of 1 when free (unlike normal page)
5652 */
5653 if (!page_ref_add_unless(page, 1, 1))
5654 return NULL;
5655 return page;
5656 }
5657
5658 if (non_swap_entry(ent))
5659 return NULL;
5660
5661 /*
5662 * Because lookup_swap_cache() updates some statistics counter,
5663 * we call find_get_page() with swapper_space directly.
5664 */
5665 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5666 entry->val = ent.val;
5667
5668 return page;
5669 }
5670 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5671 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5672 pte_t ptent, swp_entry_t *entry)
5673 {
5674 return NULL;
5675 }
5676 #endif
5677
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5678 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5679 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5680 {
5681 if (!vma->vm_file) /* anonymous vma */
5682 return NULL;
5683 if (!(mc.flags & MOVE_FILE))
5684 return NULL;
5685
5686 /* page is moved even if it's not RSS of this task(page-faulted). */
5687 /* shmem/tmpfs may report page out on swap: account for that too. */
5688 return find_get_incore_page(vma->vm_file->f_mapping,
5689 linear_page_index(vma, addr));
5690 }
5691
5692 /**
5693 * mem_cgroup_move_account - move account of the page
5694 * @page: the page
5695 * @compound: charge the page as compound or small page
5696 * @from: mem_cgroup which the page is moved from.
5697 * @to: mem_cgroup which the page is moved to. @from != @to.
5698 *
5699 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5700 *
5701 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5702 * from old cgroup.
5703 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5704 static int mem_cgroup_move_account(struct page *page,
5705 bool compound,
5706 struct mem_cgroup *from,
5707 struct mem_cgroup *to)
5708 {
5709 struct lruvec *from_vec, *to_vec;
5710 struct pglist_data *pgdat;
5711 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5712 int ret;
5713
5714 VM_BUG_ON(from == to);
5715 VM_BUG_ON_PAGE(PageLRU(page), page);
5716 VM_BUG_ON(compound && !PageTransHuge(page));
5717
5718 /*
5719 * Prevent mem_cgroup_migrate() from looking at
5720 * page->mem_cgroup of its source page while we change it.
5721 */
5722 ret = -EBUSY;
5723 if (!trylock_page(page))
5724 goto out;
5725
5726 ret = -EINVAL;
5727 if (page->mem_cgroup != from)
5728 goto out_unlock;
5729
5730 pgdat = page_pgdat(page);
5731 from_vec = mem_cgroup_lruvec(from, pgdat);
5732 to_vec = mem_cgroup_lruvec(to, pgdat);
5733
5734 lock_page_memcg(page);
5735
5736 if (PageAnon(page)) {
5737 if (page_mapped(page)) {
5738 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5739 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5740 if (PageTransHuge(page)) {
5741 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5742 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5743 }
5744
5745 }
5746 } else {
5747 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5748 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5749
5750 if (PageSwapBacked(page)) {
5751 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5752 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5753 }
5754
5755 if (page_mapped(page)) {
5756 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5757 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5758 }
5759
5760 if (PageDirty(page)) {
5761 struct address_space *mapping = page_mapping(page);
5762
5763 if (mapping_can_writeback(mapping)) {
5764 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5765 -nr_pages);
5766 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5767 nr_pages);
5768 }
5769 }
5770 }
5771
5772 if (PageWriteback(page)) {
5773 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5774 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5775 }
5776
5777 /*
5778 * All state has been migrated, let's switch to the new memcg.
5779 *
5780 * It is safe to change page->mem_cgroup here because the page
5781 * is referenced, charged, isolated, and locked: we can't race
5782 * with (un)charging, migration, LRU putback, or anything else
5783 * that would rely on a stable page->mem_cgroup.
5784 *
5785 * Note that lock_page_memcg is a memcg lock, not a page lock,
5786 * to save space. As soon as we switch page->mem_cgroup to a
5787 * new memcg that isn't locked, the above state can change
5788 * concurrently again. Make sure we're truly done with it.
5789 */
5790 smp_mb();
5791
5792 css_get(&to->css);
5793 css_put(&from->css);
5794
5795 page->mem_cgroup = to;
5796
5797 __unlock_page_memcg(from);
5798
5799 ret = 0;
5800
5801 local_irq_disable();
5802 mem_cgroup_charge_statistics(to, page, nr_pages);
5803 memcg_check_events(to, page);
5804 mem_cgroup_charge_statistics(from, page, -nr_pages);
5805 memcg_check_events(from, page);
5806 local_irq_enable();
5807 out_unlock:
5808 unlock_page(page);
5809 out:
5810 return ret;
5811 }
5812
5813 /**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 * move charge. if @target is not NULL, the page is stored in target->page
5824 * with extra refcnt got(Callers should handle it).
5825 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 * target for charge migration. if @target is not NULL, the entry is stored
5827 * in target->ent.
5828 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5829 * (so ZONE_DEVICE page and thus not on the lru).
5830 * For now we such page is charge like a regular page would be as for all
5831 * intent and purposes it is just special memory taking the place of a
5832 * regular page.
5833 *
5834 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5835 *
5836 * Called with pte lock held.
5837 */
5838
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5839 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840 unsigned long addr, pte_t ptent, union mc_target *target)
5841 {
5842 struct page *page = NULL;
5843 enum mc_target_type ret = MC_TARGET_NONE;
5844 swp_entry_t ent = { .val = 0 };
5845
5846 if (pte_present(ptent))
5847 page = mc_handle_present_pte(vma, addr, ptent);
5848 else if (is_swap_pte(ptent))
5849 page = mc_handle_swap_pte(vma, ptent, &ent);
5850 else if (pte_none(ptent))
5851 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5852
5853 if (!page && !ent.val)
5854 return ret;
5855 if (page) {
5856 /*
5857 * Do only loose check w/o serialization.
5858 * mem_cgroup_move_account() checks the page is valid or
5859 * not under LRU exclusion.
5860 */
5861 if (page->mem_cgroup == mc.from) {
5862 ret = MC_TARGET_PAGE;
5863 if (is_device_private_page(page))
5864 ret = MC_TARGET_DEVICE;
5865 if (target)
5866 target->page = page;
5867 }
5868 if (!ret || !target)
5869 put_page(page);
5870 }
5871 /*
5872 * There is a swap entry and a page doesn't exist or isn't charged.
5873 * But we cannot move a tail-page in a THP.
5874 */
5875 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5876 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5877 ret = MC_TARGET_SWAP;
5878 if (target)
5879 target->ent = ent;
5880 }
5881 return ret;
5882 }
5883
5884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5885 /*
5886 * We don't consider PMD mapped swapping or file mapped pages because THP does
5887 * not support them for now.
5888 * Caller should make sure that pmd_trans_huge(pmd) is true.
5889 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5890 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5891 unsigned long addr, pmd_t pmd, union mc_target *target)
5892 {
5893 struct page *page = NULL;
5894 enum mc_target_type ret = MC_TARGET_NONE;
5895
5896 if (unlikely(is_swap_pmd(pmd))) {
5897 VM_BUG_ON(thp_migration_supported() &&
5898 !is_pmd_migration_entry(pmd));
5899 return ret;
5900 }
5901 page = pmd_page(pmd);
5902 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5903 if (!(mc.flags & MOVE_ANON))
5904 return ret;
5905 if (page->mem_cgroup == mc.from) {
5906 ret = MC_TARGET_PAGE;
5907 if (target) {
5908 get_page(page);
5909 target->page = page;
5910 }
5911 }
5912 return ret;
5913 }
5914 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5915 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5916 unsigned long addr, pmd_t pmd, union mc_target *target)
5917 {
5918 return MC_TARGET_NONE;
5919 }
5920 #endif
5921
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5922 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5923 unsigned long addr, unsigned long end,
5924 struct mm_walk *walk)
5925 {
5926 struct vm_area_struct *vma = walk->vma;
5927 pte_t *pte;
5928 spinlock_t *ptl;
5929
5930 ptl = pmd_trans_huge_lock(pmd, vma);
5931 if (ptl) {
5932 /*
5933 * Note their can not be MC_TARGET_DEVICE for now as we do not
5934 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5935 * this might change.
5936 */
5937 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5938 mc.precharge += HPAGE_PMD_NR;
5939 spin_unlock(ptl);
5940 return 0;
5941 }
5942
5943 if (pmd_trans_unstable(pmd))
5944 return 0;
5945 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5946 for (; addr != end; pte++, addr += PAGE_SIZE)
5947 if (get_mctgt_type(vma, addr, *pte, NULL))
5948 mc.precharge++; /* increment precharge temporarily */
5949 pte_unmap_unlock(pte - 1, ptl);
5950 cond_resched();
5951
5952 return 0;
5953 }
5954
5955 static const struct mm_walk_ops precharge_walk_ops = {
5956 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5957 };
5958
mem_cgroup_count_precharge(struct mm_struct * mm)5959 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5960 {
5961 unsigned long precharge;
5962
5963 mmap_read_lock(mm);
5964 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5965 mmap_read_unlock(mm);
5966
5967 precharge = mc.precharge;
5968 mc.precharge = 0;
5969
5970 return precharge;
5971 }
5972
mem_cgroup_precharge_mc(struct mm_struct * mm)5973 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5974 {
5975 unsigned long precharge = mem_cgroup_count_precharge(mm);
5976
5977 VM_BUG_ON(mc.moving_task);
5978 mc.moving_task = current;
5979 return mem_cgroup_do_precharge(precharge);
5980 }
5981
5982 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5983 static void __mem_cgroup_clear_mc(void)
5984 {
5985 struct mem_cgroup *from = mc.from;
5986 struct mem_cgroup *to = mc.to;
5987
5988 /* we must uncharge all the leftover precharges from mc.to */
5989 if (mc.precharge) {
5990 cancel_charge(mc.to, mc.precharge);
5991 mc.precharge = 0;
5992 }
5993 /*
5994 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5995 * we must uncharge here.
5996 */
5997 if (mc.moved_charge) {
5998 cancel_charge(mc.from, mc.moved_charge);
5999 mc.moved_charge = 0;
6000 }
6001 /* we must fixup refcnts and charges */
6002 if (mc.moved_swap) {
6003 /* uncharge swap account from the old cgroup */
6004 if (!mem_cgroup_is_root(mc.from))
6005 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6006
6007 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6008
6009 /*
6010 * we charged both to->memory and to->memsw, so we
6011 * should uncharge to->memory.
6012 */
6013 if (!mem_cgroup_is_root(mc.to))
6014 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6015
6016 mc.moved_swap = 0;
6017 }
6018 memcg_oom_recover(from);
6019 memcg_oom_recover(to);
6020 wake_up_all(&mc.waitq);
6021 }
6022
mem_cgroup_clear_mc(void)6023 static void mem_cgroup_clear_mc(void)
6024 {
6025 struct mm_struct *mm = mc.mm;
6026
6027 /*
6028 * we must clear moving_task before waking up waiters at the end of
6029 * task migration.
6030 */
6031 mc.moving_task = NULL;
6032 __mem_cgroup_clear_mc();
6033 spin_lock(&mc.lock);
6034 mc.from = NULL;
6035 mc.to = NULL;
6036 mc.mm = NULL;
6037 spin_unlock(&mc.lock);
6038
6039 mmput(mm);
6040 }
6041
mem_cgroup_can_attach(struct cgroup_taskset * tset)6042 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6043 {
6044 struct cgroup_subsys_state *css;
6045 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6046 struct mem_cgroup *from;
6047 struct task_struct *leader, *p;
6048 struct mm_struct *mm;
6049 unsigned long move_flags;
6050 int ret = 0;
6051
6052 /* charge immigration isn't supported on the default hierarchy */
6053 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6054 return 0;
6055
6056 /*
6057 * Multi-process migrations only happen on the default hierarchy
6058 * where charge immigration is not used. Perform charge
6059 * immigration if @tset contains a leader and whine if there are
6060 * multiple.
6061 */
6062 p = NULL;
6063 cgroup_taskset_for_each_leader(leader, css, tset) {
6064 WARN_ON_ONCE(p);
6065 p = leader;
6066 memcg = mem_cgroup_from_css(css);
6067 }
6068 if (!p)
6069 return 0;
6070
6071 /*
6072 * We are now commited to this value whatever it is. Changes in this
6073 * tunable will only affect upcoming migrations, not the current one.
6074 * So we need to save it, and keep it going.
6075 */
6076 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6077 if (!move_flags)
6078 return 0;
6079
6080 from = mem_cgroup_from_task(p);
6081
6082 VM_BUG_ON(from == memcg);
6083
6084 mm = get_task_mm(p);
6085 if (!mm)
6086 return 0;
6087 /* We move charges only when we move a owner of the mm */
6088 if (mm->owner == p) {
6089 VM_BUG_ON(mc.from);
6090 VM_BUG_ON(mc.to);
6091 VM_BUG_ON(mc.precharge);
6092 VM_BUG_ON(mc.moved_charge);
6093 VM_BUG_ON(mc.moved_swap);
6094
6095 spin_lock(&mc.lock);
6096 mc.mm = mm;
6097 mc.from = from;
6098 mc.to = memcg;
6099 mc.flags = move_flags;
6100 spin_unlock(&mc.lock);
6101 /* We set mc.moving_task later */
6102
6103 ret = mem_cgroup_precharge_mc(mm);
6104 if (ret)
6105 mem_cgroup_clear_mc();
6106 } else {
6107 mmput(mm);
6108 }
6109 return ret;
6110 }
6111
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6112 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6113 {
6114 if (mc.to)
6115 mem_cgroup_clear_mc();
6116 }
6117
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6118 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6119 unsigned long addr, unsigned long end,
6120 struct mm_walk *walk)
6121 {
6122 int ret = 0;
6123 struct vm_area_struct *vma = walk->vma;
6124 pte_t *pte;
6125 spinlock_t *ptl;
6126 enum mc_target_type target_type;
6127 union mc_target target;
6128 struct page *page;
6129
6130 ptl = pmd_trans_huge_lock(pmd, vma);
6131 if (ptl) {
6132 if (mc.precharge < HPAGE_PMD_NR) {
6133 spin_unlock(ptl);
6134 return 0;
6135 }
6136 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6137 if (target_type == MC_TARGET_PAGE) {
6138 page = target.page;
6139 if (!isolate_lru_page(page)) {
6140 if (!mem_cgroup_move_account(page, true,
6141 mc.from, mc.to)) {
6142 mc.precharge -= HPAGE_PMD_NR;
6143 mc.moved_charge += HPAGE_PMD_NR;
6144 }
6145 putback_lru_page(page);
6146 }
6147 put_page(page);
6148 } else if (target_type == MC_TARGET_DEVICE) {
6149 page = target.page;
6150 if (!mem_cgroup_move_account(page, true,
6151 mc.from, mc.to)) {
6152 mc.precharge -= HPAGE_PMD_NR;
6153 mc.moved_charge += HPAGE_PMD_NR;
6154 }
6155 put_page(page);
6156 }
6157 spin_unlock(ptl);
6158 return 0;
6159 }
6160
6161 if (pmd_trans_unstable(pmd))
6162 return 0;
6163 retry:
6164 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6165 for (; addr != end; addr += PAGE_SIZE) {
6166 pte_t ptent = *(pte++);
6167 bool device = false;
6168 swp_entry_t ent;
6169
6170 if (!mc.precharge)
6171 break;
6172
6173 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6174 case MC_TARGET_DEVICE:
6175 device = true;
6176 fallthrough;
6177 case MC_TARGET_PAGE:
6178 page = target.page;
6179 /*
6180 * We can have a part of the split pmd here. Moving it
6181 * can be done but it would be too convoluted so simply
6182 * ignore such a partial THP and keep it in original
6183 * memcg. There should be somebody mapping the head.
6184 */
6185 if (PageTransCompound(page))
6186 goto put;
6187 if (!device && isolate_lru_page(page))
6188 goto put;
6189 if (!mem_cgroup_move_account(page, false,
6190 mc.from, mc.to)) {
6191 mc.precharge--;
6192 /* we uncharge from mc.from later. */
6193 mc.moved_charge++;
6194 }
6195 if (!device)
6196 putback_lru_page(page);
6197 put: /* get_mctgt_type() gets the page */
6198 put_page(page);
6199 break;
6200 case MC_TARGET_SWAP:
6201 ent = target.ent;
6202 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6203 mc.precharge--;
6204 mem_cgroup_id_get_many(mc.to, 1);
6205 /* we fixup other refcnts and charges later. */
6206 mc.moved_swap++;
6207 }
6208 break;
6209 default:
6210 break;
6211 }
6212 }
6213 pte_unmap_unlock(pte - 1, ptl);
6214 cond_resched();
6215
6216 if (addr != end) {
6217 /*
6218 * We have consumed all precharges we got in can_attach().
6219 * We try charge one by one, but don't do any additional
6220 * charges to mc.to if we have failed in charge once in attach()
6221 * phase.
6222 */
6223 ret = mem_cgroup_do_precharge(1);
6224 if (!ret)
6225 goto retry;
6226 }
6227
6228 return ret;
6229 }
6230
6231 static const struct mm_walk_ops charge_walk_ops = {
6232 .pmd_entry = mem_cgroup_move_charge_pte_range,
6233 };
6234
mem_cgroup_move_charge(void)6235 static void mem_cgroup_move_charge(void)
6236 {
6237 lru_add_drain_all();
6238 /*
6239 * Signal lock_page_memcg() to take the memcg's move_lock
6240 * while we're moving its pages to another memcg. Then wait
6241 * for already started RCU-only updates to finish.
6242 */
6243 atomic_inc(&mc.from->moving_account);
6244 synchronize_rcu();
6245 retry:
6246 if (unlikely(!mmap_read_trylock(mc.mm))) {
6247 /*
6248 * Someone who are holding the mmap_lock might be waiting in
6249 * waitq. So we cancel all extra charges, wake up all waiters,
6250 * and retry. Because we cancel precharges, we might not be able
6251 * to move enough charges, but moving charge is a best-effort
6252 * feature anyway, so it wouldn't be a big problem.
6253 */
6254 __mem_cgroup_clear_mc();
6255 cond_resched();
6256 goto retry;
6257 }
6258 /*
6259 * When we have consumed all precharges and failed in doing
6260 * additional charge, the page walk just aborts.
6261 */
6262 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6263 NULL);
6264
6265 mmap_read_unlock(mc.mm);
6266 atomic_dec(&mc.from->moving_account);
6267 }
6268
mem_cgroup_move_task(void)6269 static void mem_cgroup_move_task(void)
6270 {
6271 if (mc.to) {
6272 mem_cgroup_move_charge();
6273 mem_cgroup_clear_mc();
6274 }
6275 }
6276 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6277 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6278 {
6279 return 0;
6280 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6281 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6282 {
6283 }
mem_cgroup_move_task(void)6284 static void mem_cgroup_move_task(void)
6285 {
6286 }
6287 #endif
6288
6289 /*
6290 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6291 * to verify whether we're attached to the default hierarchy on each mount
6292 * attempt.
6293 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6294 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6295 {
6296 /*
6297 * use_hierarchy is forced on the default hierarchy. cgroup core
6298 * guarantees that @root doesn't have any children, so turning it
6299 * on for the root memcg is enough.
6300 */
6301 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6302 root_mem_cgroup->use_hierarchy = true;
6303 else
6304 root_mem_cgroup->use_hierarchy = false;
6305 }
6306
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6307 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6308 {
6309 if (value == PAGE_COUNTER_MAX)
6310 seq_puts(m, "max\n");
6311 else
6312 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6313
6314 return 0;
6315 }
6316
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6317 static u64 memory_current_read(struct cgroup_subsys_state *css,
6318 struct cftype *cft)
6319 {
6320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6321
6322 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6323 }
6324
memory_min_show(struct seq_file * m,void * v)6325 static int memory_min_show(struct seq_file *m, void *v)
6326 {
6327 return seq_puts_memcg_tunable(m,
6328 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6329 }
6330
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6331 static ssize_t memory_min_write(struct kernfs_open_file *of,
6332 char *buf, size_t nbytes, loff_t off)
6333 {
6334 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6335 unsigned long min;
6336 int err;
6337
6338 buf = strstrip(buf);
6339 err = page_counter_memparse(buf, "max", &min);
6340 if (err)
6341 return err;
6342
6343 page_counter_set_min(&memcg->memory, min);
6344
6345 return nbytes;
6346 }
6347
memory_low_show(struct seq_file * m,void * v)6348 static int memory_low_show(struct seq_file *m, void *v)
6349 {
6350 return seq_puts_memcg_tunable(m,
6351 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6352 }
6353
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6354 static ssize_t memory_low_write(struct kernfs_open_file *of,
6355 char *buf, size_t nbytes, loff_t off)
6356 {
6357 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6358 unsigned long low;
6359 int err;
6360
6361 buf = strstrip(buf);
6362 err = page_counter_memparse(buf, "max", &low);
6363 if (err)
6364 return err;
6365
6366 page_counter_set_low(&memcg->memory, low);
6367
6368 return nbytes;
6369 }
6370
memory_high_show(struct seq_file * m,void * v)6371 static int memory_high_show(struct seq_file *m, void *v)
6372 {
6373 return seq_puts_memcg_tunable(m,
6374 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6375 }
6376
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6377 static ssize_t memory_high_write(struct kernfs_open_file *of,
6378 char *buf, size_t nbytes, loff_t off)
6379 {
6380 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6381 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6382 bool drained = false;
6383 unsigned long high;
6384 int err;
6385
6386 buf = strstrip(buf);
6387 err = page_counter_memparse(buf, "max", &high);
6388 if (err)
6389 return err;
6390
6391 page_counter_set_high(&memcg->memory, high);
6392
6393 for (;;) {
6394 unsigned long nr_pages = page_counter_read(&memcg->memory);
6395 unsigned long reclaimed;
6396
6397 if (nr_pages <= high)
6398 break;
6399
6400 if (signal_pending(current))
6401 break;
6402
6403 if (!drained) {
6404 drain_all_stock(memcg);
6405 drained = true;
6406 continue;
6407 }
6408
6409 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6410 GFP_KERNEL, true);
6411
6412 if (!reclaimed && !nr_retries--)
6413 break;
6414 }
6415
6416 memcg_wb_domain_size_changed(memcg);
6417 return nbytes;
6418 }
6419
memory_max_show(struct seq_file * m,void * v)6420 static int memory_max_show(struct seq_file *m, void *v)
6421 {
6422 return seq_puts_memcg_tunable(m,
6423 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6424 }
6425
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6426 static ssize_t memory_max_write(struct kernfs_open_file *of,
6427 char *buf, size_t nbytes, loff_t off)
6428 {
6429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6430 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6431 bool drained = false;
6432 unsigned long max;
6433 int err;
6434
6435 buf = strstrip(buf);
6436 err = page_counter_memparse(buf, "max", &max);
6437 if (err)
6438 return err;
6439
6440 xchg(&memcg->memory.max, max);
6441
6442 for (;;) {
6443 unsigned long nr_pages = page_counter_read(&memcg->memory);
6444
6445 if (nr_pages <= max)
6446 break;
6447
6448 if (signal_pending(current))
6449 break;
6450
6451 if (!drained) {
6452 drain_all_stock(memcg);
6453 drained = true;
6454 continue;
6455 }
6456
6457 if (nr_reclaims) {
6458 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6459 GFP_KERNEL, true))
6460 nr_reclaims--;
6461 continue;
6462 }
6463
6464 memcg_memory_event(memcg, MEMCG_OOM);
6465 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6466 break;
6467 }
6468
6469 memcg_wb_domain_size_changed(memcg);
6470 return nbytes;
6471 }
6472
__memory_events_show(struct seq_file * m,atomic_long_t * events)6473 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6474 {
6475 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6476 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6477 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6478 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6479 seq_printf(m, "oom_kill %lu\n",
6480 atomic_long_read(&events[MEMCG_OOM_KILL]));
6481 }
6482
memory_events_show(struct seq_file * m,void * v)6483 static int memory_events_show(struct seq_file *m, void *v)
6484 {
6485 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6486
6487 __memory_events_show(m, memcg->memory_events);
6488 return 0;
6489 }
6490
memory_events_local_show(struct seq_file * m,void * v)6491 static int memory_events_local_show(struct seq_file *m, void *v)
6492 {
6493 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6494
6495 __memory_events_show(m, memcg->memory_events_local);
6496 return 0;
6497 }
6498
memory_stat_show(struct seq_file * m,void * v)6499 static int memory_stat_show(struct seq_file *m, void *v)
6500 {
6501 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6502 char *buf;
6503
6504 buf = memory_stat_format(memcg);
6505 if (!buf)
6506 return -ENOMEM;
6507 seq_puts(m, buf);
6508 kfree(buf);
6509 return 0;
6510 }
6511
6512 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6513 static int memory_numa_stat_show(struct seq_file *m, void *v)
6514 {
6515 int i;
6516 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6517
6518 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6519 int nid;
6520
6521 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6522 continue;
6523
6524 seq_printf(m, "%s", memory_stats[i].name);
6525 for_each_node_state(nid, N_MEMORY) {
6526 u64 size;
6527 struct lruvec *lruvec;
6528
6529 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6530 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6531 size *= memory_stats[i].ratio;
6532 seq_printf(m, " N%d=%llu", nid, size);
6533 }
6534 seq_putc(m, '\n');
6535 }
6536
6537 return 0;
6538 }
6539 #endif
6540
memory_oom_group_show(struct seq_file * m,void * v)6541 static int memory_oom_group_show(struct seq_file *m, void *v)
6542 {
6543 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6544
6545 seq_printf(m, "%d\n", memcg->oom_group);
6546
6547 return 0;
6548 }
6549
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6550 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6551 char *buf, size_t nbytes, loff_t off)
6552 {
6553 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6554 int ret, oom_group;
6555
6556 buf = strstrip(buf);
6557 if (!buf)
6558 return -EINVAL;
6559
6560 ret = kstrtoint(buf, 0, &oom_group);
6561 if (ret)
6562 return ret;
6563
6564 if (oom_group != 0 && oom_group != 1)
6565 return -EINVAL;
6566
6567 memcg->oom_group = oom_group;
6568
6569 return nbytes;
6570 }
6571
6572 static struct cftype memory_files[] = {
6573 {
6574 .name = "current",
6575 .flags = CFTYPE_NOT_ON_ROOT,
6576 .read_u64 = memory_current_read,
6577 },
6578 {
6579 .name = "min",
6580 .flags = CFTYPE_NOT_ON_ROOT,
6581 .seq_show = memory_min_show,
6582 .write = memory_min_write,
6583 },
6584 {
6585 .name = "low",
6586 .flags = CFTYPE_NOT_ON_ROOT,
6587 .seq_show = memory_low_show,
6588 .write = memory_low_write,
6589 },
6590 {
6591 .name = "high",
6592 .flags = CFTYPE_NOT_ON_ROOT,
6593 .seq_show = memory_high_show,
6594 .write = memory_high_write,
6595 },
6596 {
6597 .name = "max",
6598 .flags = CFTYPE_NOT_ON_ROOT,
6599 .seq_show = memory_max_show,
6600 .write = memory_max_write,
6601 },
6602 {
6603 .name = "events",
6604 .flags = CFTYPE_NOT_ON_ROOT,
6605 .file_offset = offsetof(struct mem_cgroup, events_file),
6606 .seq_show = memory_events_show,
6607 },
6608 {
6609 .name = "events.local",
6610 .flags = CFTYPE_NOT_ON_ROOT,
6611 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6612 .seq_show = memory_events_local_show,
6613 },
6614 {
6615 .name = "stat",
6616 .seq_show = memory_stat_show,
6617 },
6618 #ifdef CONFIG_NUMA
6619 {
6620 .name = "numa_stat",
6621 .seq_show = memory_numa_stat_show,
6622 },
6623 #endif
6624 {
6625 .name = "oom.group",
6626 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6627 .seq_show = memory_oom_group_show,
6628 .write = memory_oom_group_write,
6629 },
6630 { } /* terminate */
6631 };
6632
6633 struct cgroup_subsys memory_cgrp_subsys = {
6634 .css_alloc = mem_cgroup_css_alloc,
6635 .css_online = mem_cgroup_css_online,
6636 .css_offline = mem_cgroup_css_offline,
6637 .css_released = mem_cgroup_css_released,
6638 .css_free = mem_cgroup_css_free,
6639 .css_reset = mem_cgroup_css_reset,
6640 .can_attach = mem_cgroup_can_attach,
6641 .cancel_attach = mem_cgroup_cancel_attach,
6642 .post_attach = mem_cgroup_move_task,
6643 .bind = mem_cgroup_bind,
6644 .dfl_cftypes = memory_files,
6645 .legacy_cftypes = mem_cgroup_legacy_files,
6646 .early_init = 0,
6647 };
6648
6649 /*
6650 * This function calculates an individual cgroup's effective
6651 * protection which is derived from its own memory.min/low, its
6652 * parent's and siblings' settings, as well as the actual memory
6653 * distribution in the tree.
6654 *
6655 * The following rules apply to the effective protection values:
6656 *
6657 * 1. At the first level of reclaim, effective protection is equal to
6658 * the declared protection in memory.min and memory.low.
6659 *
6660 * 2. To enable safe delegation of the protection configuration, at
6661 * subsequent levels the effective protection is capped to the
6662 * parent's effective protection.
6663 *
6664 * 3. To make complex and dynamic subtrees easier to configure, the
6665 * user is allowed to overcommit the declared protection at a given
6666 * level. If that is the case, the parent's effective protection is
6667 * distributed to the children in proportion to how much protection
6668 * they have declared and how much of it they are utilizing.
6669 *
6670 * This makes distribution proportional, but also work-conserving:
6671 * if one cgroup claims much more protection than it uses memory,
6672 * the unused remainder is available to its siblings.
6673 *
6674 * 4. Conversely, when the declared protection is undercommitted at a
6675 * given level, the distribution of the larger parental protection
6676 * budget is NOT proportional. A cgroup's protection from a sibling
6677 * is capped to its own memory.min/low setting.
6678 *
6679 * 5. However, to allow protecting recursive subtrees from each other
6680 * without having to declare each individual cgroup's fixed share
6681 * of the ancestor's claim to protection, any unutilized -
6682 * "floating" - protection from up the tree is distributed in
6683 * proportion to each cgroup's *usage*. This makes the protection
6684 * neutral wrt sibling cgroups and lets them compete freely over
6685 * the shared parental protection budget, but it protects the
6686 * subtree as a whole from neighboring subtrees.
6687 *
6688 * Note that 4. and 5. are not in conflict: 4. is about protecting
6689 * against immediate siblings whereas 5. is about protecting against
6690 * neighboring subtrees.
6691 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6692 static unsigned long effective_protection(unsigned long usage,
6693 unsigned long parent_usage,
6694 unsigned long setting,
6695 unsigned long parent_effective,
6696 unsigned long siblings_protected)
6697 {
6698 unsigned long protected;
6699 unsigned long ep;
6700
6701 protected = min(usage, setting);
6702 /*
6703 * If all cgroups at this level combined claim and use more
6704 * protection then what the parent affords them, distribute
6705 * shares in proportion to utilization.
6706 *
6707 * We are using actual utilization rather than the statically
6708 * claimed protection in order to be work-conserving: claimed
6709 * but unused protection is available to siblings that would
6710 * otherwise get a smaller chunk than what they claimed.
6711 */
6712 if (siblings_protected > parent_effective)
6713 return protected * parent_effective / siblings_protected;
6714
6715 /*
6716 * Ok, utilized protection of all children is within what the
6717 * parent affords them, so we know whatever this child claims
6718 * and utilizes is effectively protected.
6719 *
6720 * If there is unprotected usage beyond this value, reclaim
6721 * will apply pressure in proportion to that amount.
6722 *
6723 * If there is unutilized protection, the cgroup will be fully
6724 * shielded from reclaim, but we do return a smaller value for
6725 * protection than what the group could enjoy in theory. This
6726 * is okay. With the overcommit distribution above, effective
6727 * protection is always dependent on how memory is actually
6728 * consumed among the siblings anyway.
6729 */
6730 ep = protected;
6731
6732 /*
6733 * If the children aren't claiming (all of) the protection
6734 * afforded to them by the parent, distribute the remainder in
6735 * proportion to the (unprotected) memory of each cgroup. That
6736 * way, cgroups that aren't explicitly prioritized wrt each
6737 * other compete freely over the allowance, but they are
6738 * collectively protected from neighboring trees.
6739 *
6740 * We're using unprotected memory for the weight so that if
6741 * some cgroups DO claim explicit protection, we don't protect
6742 * the same bytes twice.
6743 *
6744 * Check both usage and parent_usage against the respective
6745 * protected values. One should imply the other, but they
6746 * aren't read atomically - make sure the division is sane.
6747 */
6748 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6749 return ep;
6750 if (parent_effective > siblings_protected &&
6751 parent_usage > siblings_protected &&
6752 usage > protected) {
6753 unsigned long unclaimed;
6754
6755 unclaimed = parent_effective - siblings_protected;
6756 unclaimed *= usage - protected;
6757 unclaimed /= parent_usage - siblings_protected;
6758
6759 ep += unclaimed;
6760 }
6761
6762 return ep;
6763 }
6764
6765 /**
6766 * mem_cgroup_protected - check if memory consumption is in the normal range
6767 * @root: the top ancestor of the sub-tree being checked
6768 * @memcg: the memory cgroup to check
6769 *
6770 * WARNING: This function is not stateless! It can only be used as part
6771 * of a top-down tree iteration, not for isolated queries.
6772 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6773 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6774 struct mem_cgroup *memcg)
6775 {
6776 unsigned long usage, parent_usage;
6777 struct mem_cgroup *parent;
6778
6779 if (mem_cgroup_disabled())
6780 return;
6781
6782 if (!root)
6783 root = root_mem_cgroup;
6784
6785 /*
6786 * Effective values of the reclaim targets are ignored so they
6787 * can be stale. Have a look at mem_cgroup_protection for more
6788 * details.
6789 * TODO: calculation should be more robust so that we do not need
6790 * that special casing.
6791 */
6792 if (memcg == root)
6793 return;
6794
6795 usage = page_counter_read(&memcg->memory);
6796 if (!usage)
6797 return;
6798
6799 parent = parent_mem_cgroup(memcg);
6800 /* No parent means a non-hierarchical mode on v1 memcg */
6801 if (!parent)
6802 return;
6803
6804 if (parent == root) {
6805 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6806 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6807 return;
6808 }
6809
6810 parent_usage = page_counter_read(&parent->memory);
6811
6812 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6813 READ_ONCE(memcg->memory.min),
6814 READ_ONCE(parent->memory.emin),
6815 atomic_long_read(&parent->memory.children_min_usage)));
6816
6817 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6818 READ_ONCE(memcg->memory.low),
6819 READ_ONCE(parent->memory.elow),
6820 atomic_long_read(&parent->memory.children_low_usage)));
6821 }
6822
6823 /**
6824 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6825 * @page: page to charge
6826 * @mm: mm context of the victim
6827 * @gfp_mask: reclaim mode
6828 *
6829 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6830 * pages according to @gfp_mask if necessary.
6831 *
6832 * Returns 0 on success. Otherwise, an error code is returned.
6833 */
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6834 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6835 {
6836 unsigned int nr_pages = thp_nr_pages(page);
6837 struct mem_cgroup *memcg = NULL;
6838 int ret = 0;
6839
6840 if (mem_cgroup_disabled())
6841 goto out;
6842
6843 if (PageSwapCache(page)) {
6844 swp_entry_t ent = { .val = page_private(page), };
6845 unsigned short id;
6846
6847 /*
6848 * Every swap fault against a single page tries to charge the
6849 * page, bail as early as possible. shmem_unuse() encounters
6850 * already charged pages, too. page->mem_cgroup is protected
6851 * by the page lock, which serializes swap cache removal, which
6852 * in turn serializes uncharging.
6853 */
6854 VM_BUG_ON_PAGE(!PageLocked(page), page);
6855 if (compound_head(page)->mem_cgroup)
6856 goto out;
6857
6858 id = lookup_swap_cgroup_id(ent);
6859 rcu_read_lock();
6860 memcg = mem_cgroup_from_id(id);
6861 if (memcg && !css_tryget_online(&memcg->css))
6862 memcg = NULL;
6863 rcu_read_unlock();
6864 }
6865
6866 if (!memcg)
6867 memcg = get_mem_cgroup_from_mm(mm);
6868
6869 ret = try_charge(memcg, gfp_mask, nr_pages);
6870 if (ret)
6871 goto out_put;
6872
6873 css_get(&memcg->css);
6874 commit_charge(page, memcg);
6875
6876 local_irq_disable();
6877 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6878 memcg_check_events(memcg, page);
6879 local_irq_enable();
6880
6881 /*
6882 * Cgroup1's unified memory+swap counter has been charged with the
6883 * new swapcache page, finish the transfer by uncharging the swap
6884 * slot. The swap slot would also get uncharged when it dies, but
6885 * it can stick around indefinitely and we'd count the page twice
6886 * the entire time.
6887 *
6888 * Cgroup2 has separate resource counters for memory and swap,
6889 * so this is a non-issue here. Memory and swap charge lifetimes
6890 * correspond 1:1 to page and swap slot lifetimes: we charge the
6891 * page to memory here, and uncharge swap when the slot is freed.
6892 */
6893 if (do_memsw_account() && PageSwapCache(page)) {
6894 swp_entry_t entry = { .val = page_private(page) };
6895 /*
6896 * The swap entry might not get freed for a long time,
6897 * let's not wait for it. The page already received a
6898 * memory+swap charge, drop the swap entry duplicate.
6899 */
6900 mem_cgroup_uncharge_swap(entry, nr_pages);
6901 }
6902
6903 out_put:
6904 css_put(&memcg->css);
6905 out:
6906 return ret;
6907 }
6908
6909 struct uncharge_gather {
6910 struct mem_cgroup *memcg;
6911 unsigned long nr_pages;
6912 unsigned long pgpgout;
6913 unsigned long nr_kmem;
6914 struct page *dummy_page;
6915 };
6916
uncharge_gather_clear(struct uncharge_gather * ug)6917 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6918 {
6919 memset(ug, 0, sizeof(*ug));
6920 }
6921
uncharge_batch(const struct uncharge_gather * ug)6922 static void uncharge_batch(const struct uncharge_gather *ug)
6923 {
6924 unsigned long flags;
6925
6926 if (!mem_cgroup_is_root(ug->memcg)) {
6927 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6928 if (do_memsw_account())
6929 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6930 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6931 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6932 memcg_oom_recover(ug->memcg);
6933 }
6934
6935 local_irq_save(flags);
6936 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6937 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6938 memcg_check_events(ug->memcg, ug->dummy_page);
6939 local_irq_restore(flags);
6940
6941 /* drop reference from uncharge_page */
6942 css_put(&ug->memcg->css);
6943 }
6944
uncharge_page(struct page * page,struct uncharge_gather * ug)6945 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6946 {
6947 unsigned long nr_pages;
6948
6949 VM_BUG_ON_PAGE(PageLRU(page), page);
6950
6951 if (!page->mem_cgroup)
6952 return;
6953
6954 /*
6955 * Nobody should be changing or seriously looking at
6956 * page->mem_cgroup at this point, we have fully
6957 * exclusive access to the page.
6958 */
6959
6960 if (ug->memcg != page->mem_cgroup) {
6961 if (ug->memcg) {
6962 uncharge_batch(ug);
6963 uncharge_gather_clear(ug);
6964 }
6965 ug->memcg = page->mem_cgroup;
6966
6967 /* pairs with css_put in uncharge_batch */
6968 css_get(&ug->memcg->css);
6969 }
6970
6971 nr_pages = compound_nr(page);
6972 ug->nr_pages += nr_pages;
6973
6974 if (!PageKmemcg(page)) {
6975 ug->pgpgout++;
6976 } else {
6977 ug->nr_kmem += nr_pages;
6978 __ClearPageKmemcg(page);
6979 }
6980
6981 ug->dummy_page = page;
6982 page->mem_cgroup = NULL;
6983 css_put(&ug->memcg->css);
6984 }
6985
uncharge_list(struct list_head * page_list)6986 static void uncharge_list(struct list_head *page_list)
6987 {
6988 struct uncharge_gather ug;
6989 struct list_head *next;
6990
6991 uncharge_gather_clear(&ug);
6992
6993 /*
6994 * Note that the list can be a single page->lru; hence the
6995 * do-while loop instead of a simple list_for_each_entry().
6996 */
6997 next = page_list->next;
6998 do {
6999 struct page *page;
7000
7001 page = list_entry(next, struct page, lru);
7002 next = page->lru.next;
7003
7004 uncharge_page(page, &ug);
7005 } while (next != page_list);
7006
7007 if (ug.memcg)
7008 uncharge_batch(&ug);
7009 }
7010
7011 /**
7012 * mem_cgroup_uncharge - uncharge a page
7013 * @page: page to uncharge
7014 *
7015 * Uncharge a page previously charged with mem_cgroup_charge().
7016 */
mem_cgroup_uncharge(struct page * page)7017 void mem_cgroup_uncharge(struct page *page)
7018 {
7019 struct uncharge_gather ug;
7020
7021 if (mem_cgroup_disabled())
7022 return;
7023
7024 /* Don't touch page->lru of any random page, pre-check: */
7025 if (!page->mem_cgroup)
7026 return;
7027
7028 uncharge_gather_clear(&ug);
7029 uncharge_page(page, &ug);
7030 uncharge_batch(&ug);
7031 }
7032
7033 /**
7034 * mem_cgroup_uncharge_list - uncharge a list of page
7035 * @page_list: list of pages to uncharge
7036 *
7037 * Uncharge a list of pages previously charged with
7038 * mem_cgroup_charge().
7039 */
mem_cgroup_uncharge_list(struct list_head * page_list)7040 void mem_cgroup_uncharge_list(struct list_head *page_list)
7041 {
7042 if (mem_cgroup_disabled())
7043 return;
7044
7045 if (!list_empty(page_list))
7046 uncharge_list(page_list);
7047 }
7048
7049 /**
7050 * mem_cgroup_migrate - charge a page's replacement
7051 * @oldpage: currently circulating page
7052 * @newpage: replacement page
7053 *
7054 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7055 * be uncharged upon free.
7056 *
7057 * Both pages must be locked, @newpage->mapping must be set up.
7058 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7059 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7060 {
7061 struct mem_cgroup *memcg;
7062 unsigned int nr_pages;
7063 unsigned long flags;
7064
7065 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7066 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7067 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7068 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7069 newpage);
7070
7071 if (mem_cgroup_disabled())
7072 return;
7073
7074 /* Page cache replacement: new page already charged? */
7075 if (newpage->mem_cgroup)
7076 return;
7077
7078 /* Swapcache readahead pages can get replaced before being charged */
7079 memcg = oldpage->mem_cgroup;
7080 if (!memcg)
7081 return;
7082
7083 /* Force-charge the new page. The old one will be freed soon */
7084 nr_pages = thp_nr_pages(newpage);
7085
7086 page_counter_charge(&memcg->memory, nr_pages);
7087 if (do_memsw_account())
7088 page_counter_charge(&memcg->memsw, nr_pages);
7089
7090 css_get(&memcg->css);
7091 commit_charge(newpage, memcg);
7092
7093 local_irq_save(flags);
7094 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7095 memcg_check_events(memcg, newpage);
7096 local_irq_restore(flags);
7097 }
7098
7099 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7100 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7101
mem_cgroup_sk_alloc(struct sock * sk)7102 void mem_cgroup_sk_alloc(struct sock *sk)
7103 {
7104 struct mem_cgroup *memcg;
7105
7106 if (!mem_cgroup_sockets_enabled)
7107 return;
7108
7109 /* Do not associate the sock with unrelated interrupted task's memcg. */
7110 if (in_interrupt())
7111 return;
7112
7113 rcu_read_lock();
7114 memcg = mem_cgroup_from_task(current);
7115 if (memcg == root_mem_cgroup)
7116 goto out;
7117 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7118 goto out;
7119 if (css_tryget(&memcg->css))
7120 sk->sk_memcg = memcg;
7121 out:
7122 rcu_read_unlock();
7123 }
7124
mem_cgroup_sk_free(struct sock * sk)7125 void mem_cgroup_sk_free(struct sock *sk)
7126 {
7127 if (sk->sk_memcg)
7128 css_put(&sk->sk_memcg->css);
7129 }
7130
7131 /**
7132 * mem_cgroup_charge_skmem - charge socket memory
7133 * @memcg: memcg to charge
7134 * @nr_pages: number of pages to charge
7135 *
7136 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7137 * @memcg's configured limit, %false if the charge had to be forced.
7138 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7139 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7140 {
7141 gfp_t gfp_mask = GFP_KERNEL;
7142
7143 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7144 struct page_counter *fail;
7145
7146 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7147 memcg->tcpmem_pressure = 0;
7148 return true;
7149 }
7150 page_counter_charge(&memcg->tcpmem, nr_pages);
7151 memcg->tcpmem_pressure = 1;
7152 return false;
7153 }
7154
7155 /* Don't block in the packet receive path */
7156 if (in_softirq())
7157 gfp_mask = GFP_NOWAIT;
7158
7159 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7160
7161 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7162 return true;
7163
7164 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7165 return false;
7166 }
7167
7168 /**
7169 * mem_cgroup_uncharge_skmem - uncharge socket memory
7170 * @memcg: memcg to uncharge
7171 * @nr_pages: number of pages to uncharge
7172 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7173 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7174 {
7175 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7176 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7177 return;
7178 }
7179
7180 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7181
7182 refill_stock(memcg, nr_pages);
7183 }
7184
cgroup_memory(char * s)7185 static int __init cgroup_memory(char *s)
7186 {
7187 char *token;
7188
7189 while ((token = strsep(&s, ",")) != NULL) {
7190 if (!*token)
7191 continue;
7192 if (!strcmp(token, "nosocket"))
7193 cgroup_memory_nosocket = true;
7194 if (!strcmp(token, "nokmem"))
7195 cgroup_memory_nokmem = true;
7196 else if (!strcmp(token, "kmem"))
7197 cgroup_memory_nokmem = false;
7198 }
7199 return 0;
7200 }
7201 __setup("cgroup.memory=", cgroup_memory);
7202
7203 /*
7204 * subsys_initcall() for memory controller.
7205 *
7206 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7207 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7208 * basically everything that doesn't depend on a specific mem_cgroup structure
7209 * should be initialized from here.
7210 */
mem_cgroup_init(void)7211 static int __init mem_cgroup_init(void)
7212 {
7213 int cpu, node;
7214
7215 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7216 memcg_hotplug_cpu_dead);
7217
7218 for_each_possible_cpu(cpu)
7219 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7220 drain_local_stock);
7221
7222 for_each_node(node) {
7223 struct mem_cgroup_tree_per_node *rtpn;
7224
7225 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7226 node_online(node) ? node : NUMA_NO_NODE);
7227
7228 rtpn->rb_root = RB_ROOT;
7229 rtpn->rb_rightmost = NULL;
7230 spin_lock_init(&rtpn->lock);
7231 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7232 }
7233
7234 return 0;
7235 }
7236 subsys_initcall(mem_cgroup_init);
7237
7238 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7239 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7240 {
7241 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7242 /*
7243 * The root cgroup cannot be destroyed, so it's refcount must
7244 * always be >= 1.
7245 */
7246 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7247 VM_BUG_ON(1);
7248 break;
7249 }
7250 memcg = parent_mem_cgroup(memcg);
7251 if (!memcg)
7252 memcg = root_mem_cgroup;
7253 }
7254 return memcg;
7255 }
7256
7257 /**
7258 * mem_cgroup_swapout - transfer a memsw charge to swap
7259 * @page: page whose memsw charge to transfer
7260 * @entry: swap entry to move the charge to
7261 *
7262 * Transfer the memsw charge of @page to @entry.
7263 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7264 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7265 {
7266 struct mem_cgroup *memcg, *swap_memcg;
7267 unsigned int nr_entries;
7268 unsigned short oldid;
7269
7270 VM_BUG_ON_PAGE(PageLRU(page), page);
7271 VM_BUG_ON_PAGE(page_count(page), page);
7272
7273 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7274 return;
7275
7276 memcg = page->mem_cgroup;
7277
7278 /* Readahead page, never charged */
7279 if (!memcg)
7280 return;
7281
7282 /*
7283 * In case the memcg owning these pages has been offlined and doesn't
7284 * have an ID allocated to it anymore, charge the closest online
7285 * ancestor for the swap instead and transfer the memory+swap charge.
7286 */
7287 swap_memcg = mem_cgroup_id_get_online(memcg);
7288 nr_entries = thp_nr_pages(page);
7289 /* Get references for the tail pages, too */
7290 if (nr_entries > 1)
7291 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7292 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7293 nr_entries);
7294 VM_BUG_ON_PAGE(oldid, page);
7295 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7296
7297 page->mem_cgroup = NULL;
7298
7299 if (!mem_cgroup_is_root(memcg))
7300 page_counter_uncharge(&memcg->memory, nr_entries);
7301
7302 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7303 if (!mem_cgroup_is_root(swap_memcg))
7304 page_counter_charge(&swap_memcg->memsw, nr_entries);
7305 page_counter_uncharge(&memcg->memsw, nr_entries);
7306 }
7307
7308 /*
7309 * Interrupts should be disabled here because the caller holds the
7310 * i_pages lock which is taken with interrupts-off. It is
7311 * important here to have the interrupts disabled because it is the
7312 * only synchronisation we have for updating the per-CPU variables.
7313 */
7314 VM_BUG_ON(!irqs_disabled());
7315 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7316 memcg_check_events(memcg, page);
7317
7318 css_put(&memcg->css);
7319 }
7320
7321 /**
7322 * mem_cgroup_try_charge_swap - try charging swap space for a page
7323 * @page: page being added to swap
7324 * @entry: swap entry to charge
7325 *
7326 * Try to charge @page's memcg for the swap space at @entry.
7327 *
7328 * Returns 0 on success, -ENOMEM on failure.
7329 */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7330 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7331 {
7332 unsigned int nr_pages = thp_nr_pages(page);
7333 struct page_counter *counter;
7334 struct mem_cgroup *memcg;
7335 unsigned short oldid;
7336
7337 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7338 return 0;
7339
7340 memcg = page->mem_cgroup;
7341
7342 /* Readahead page, never charged */
7343 if (!memcg)
7344 return 0;
7345
7346 if (!entry.val) {
7347 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7348 return 0;
7349 }
7350
7351 memcg = mem_cgroup_id_get_online(memcg);
7352
7353 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7354 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7355 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7356 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7357 mem_cgroup_id_put(memcg);
7358 return -ENOMEM;
7359 }
7360
7361 /* Get references for the tail pages, too */
7362 if (nr_pages > 1)
7363 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7364 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7365 VM_BUG_ON_PAGE(oldid, page);
7366 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7367
7368 return 0;
7369 }
7370
7371 /**
7372 * mem_cgroup_uncharge_swap - uncharge swap space
7373 * @entry: swap entry to uncharge
7374 * @nr_pages: the amount of swap space to uncharge
7375 */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7376 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7377 {
7378 struct mem_cgroup *memcg;
7379 unsigned short id;
7380
7381 id = swap_cgroup_record(entry, 0, nr_pages);
7382 rcu_read_lock();
7383 memcg = mem_cgroup_from_id(id);
7384 if (memcg) {
7385 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7386 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7387 page_counter_uncharge(&memcg->swap, nr_pages);
7388 else
7389 page_counter_uncharge(&memcg->memsw, nr_pages);
7390 }
7391 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7392 mem_cgroup_id_put_many(memcg, nr_pages);
7393 }
7394 rcu_read_unlock();
7395 }
7396
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7397 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7398 {
7399 long nr_swap_pages = get_nr_swap_pages();
7400
7401 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7402 return nr_swap_pages;
7403 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7404 nr_swap_pages = min_t(long, nr_swap_pages,
7405 READ_ONCE(memcg->swap.max) -
7406 page_counter_read(&memcg->swap));
7407 return nr_swap_pages;
7408 }
7409
mem_cgroup_swap_full(struct page * page)7410 bool mem_cgroup_swap_full(struct page *page)
7411 {
7412 struct mem_cgroup *memcg;
7413
7414 VM_BUG_ON_PAGE(!PageLocked(page), page);
7415
7416 if (vm_swap_full())
7417 return true;
7418 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7419 return false;
7420
7421 memcg = page->mem_cgroup;
7422 if (!memcg)
7423 return false;
7424
7425 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7426 unsigned long usage = page_counter_read(&memcg->swap);
7427
7428 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7429 usage * 2 >= READ_ONCE(memcg->swap.max))
7430 return true;
7431 }
7432
7433 return false;
7434 }
7435
setup_swap_account(char * s)7436 static int __init setup_swap_account(char *s)
7437 {
7438 if (!strcmp(s, "1"))
7439 cgroup_memory_noswap = 0;
7440 else if (!strcmp(s, "0"))
7441 cgroup_memory_noswap = 1;
7442 return 1;
7443 }
7444 __setup("swapaccount=", setup_swap_account);
7445
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7446 static u64 swap_current_read(struct cgroup_subsys_state *css,
7447 struct cftype *cft)
7448 {
7449 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7450
7451 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7452 }
7453
swap_high_show(struct seq_file * m,void * v)7454 static int swap_high_show(struct seq_file *m, void *v)
7455 {
7456 return seq_puts_memcg_tunable(m,
7457 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7458 }
7459
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7460 static ssize_t swap_high_write(struct kernfs_open_file *of,
7461 char *buf, size_t nbytes, loff_t off)
7462 {
7463 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7464 unsigned long high;
7465 int err;
7466
7467 buf = strstrip(buf);
7468 err = page_counter_memparse(buf, "max", &high);
7469 if (err)
7470 return err;
7471
7472 page_counter_set_high(&memcg->swap, high);
7473
7474 return nbytes;
7475 }
7476
swap_max_show(struct seq_file * m,void * v)7477 static int swap_max_show(struct seq_file *m, void *v)
7478 {
7479 return seq_puts_memcg_tunable(m,
7480 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7481 }
7482
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7483 static ssize_t swap_max_write(struct kernfs_open_file *of,
7484 char *buf, size_t nbytes, loff_t off)
7485 {
7486 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7487 unsigned long max;
7488 int err;
7489
7490 buf = strstrip(buf);
7491 err = page_counter_memparse(buf, "max", &max);
7492 if (err)
7493 return err;
7494
7495 xchg(&memcg->swap.max, max);
7496
7497 return nbytes;
7498 }
7499
swap_events_show(struct seq_file * m,void * v)7500 static int swap_events_show(struct seq_file *m, void *v)
7501 {
7502 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7503
7504 seq_printf(m, "high %lu\n",
7505 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7506 seq_printf(m, "max %lu\n",
7507 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7508 seq_printf(m, "fail %lu\n",
7509 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7510
7511 return 0;
7512 }
7513
7514 static struct cftype swap_files[] = {
7515 {
7516 .name = "swap.current",
7517 .flags = CFTYPE_NOT_ON_ROOT,
7518 .read_u64 = swap_current_read,
7519 },
7520 {
7521 .name = "swap.high",
7522 .flags = CFTYPE_NOT_ON_ROOT,
7523 .seq_show = swap_high_show,
7524 .write = swap_high_write,
7525 },
7526 {
7527 .name = "swap.max",
7528 .flags = CFTYPE_NOT_ON_ROOT,
7529 .seq_show = swap_max_show,
7530 .write = swap_max_write,
7531 },
7532 {
7533 .name = "swap.events",
7534 .flags = CFTYPE_NOT_ON_ROOT,
7535 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7536 .seq_show = swap_events_show,
7537 },
7538 { } /* terminate */
7539 };
7540
7541 static struct cftype memsw_files[] = {
7542 {
7543 .name = "memsw.usage_in_bytes",
7544 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7545 .read_u64 = mem_cgroup_read_u64,
7546 },
7547 {
7548 .name = "memsw.max_usage_in_bytes",
7549 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7550 .write = mem_cgroup_reset,
7551 .read_u64 = mem_cgroup_read_u64,
7552 },
7553 {
7554 .name = "memsw.limit_in_bytes",
7555 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7556 .write = mem_cgroup_write,
7557 .read_u64 = mem_cgroup_read_u64,
7558 },
7559 {
7560 .name = "memsw.failcnt",
7561 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7562 .write = mem_cgroup_reset,
7563 .read_u64 = mem_cgroup_read_u64,
7564 },
7565 { }, /* terminate */
7566 };
7567
7568 /*
7569 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7570 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7571 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7572 * boot parameter. This may result in premature OOPS inside
7573 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7574 */
mem_cgroup_swap_init(void)7575 static int __init mem_cgroup_swap_init(void)
7576 {
7577 /* No memory control -> no swap control */
7578 if (mem_cgroup_disabled())
7579 cgroup_memory_noswap = true;
7580
7581 if (cgroup_memory_noswap)
7582 return 0;
7583
7584 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7585 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7586
7587 return 0;
7588 }
7589 core_initcall(mem_cgroup_swap_init);
7590
7591 #endif /* CONFIG_MEMCG_SWAP */
7592