1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 {}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 enable_unrestricted_guest, bool, S_IRUGO);
93
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105
106 /*
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
110 */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
151
152 /*
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
155 */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 MSR_IA32_SPEC_CTRL,
158 MSR_IA32_PRED_CMD,
159 MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 MSR_FS_BASE,
162 MSR_GS_BASE,
163 MSR_KERNEL_GS_BASE,
164 #endif
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
168 MSR_CORE_C1_RES,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
184 */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 struct page *page;
235 unsigned int i;
236
237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 return 0;
240 }
241
242 if (!enable_ept) {
243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 return 0;
245 }
246
247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 u64 msr;
249
250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 return 0;
254 }
255 }
256
257 /* If set to auto use the default l1tf mitigation method */
258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 switch (l1tf_mitigation) {
260 case L1TF_MITIGATION_OFF:
261 l1tf = VMENTER_L1D_FLUSH_NEVER;
262 break;
263 case L1TF_MITIGATION_FLUSH_NOWARN:
264 case L1TF_MITIGATION_FLUSH:
265 case L1TF_MITIGATION_FLUSH_NOSMT:
266 l1tf = VMENTER_L1D_FLUSH_COND;
267 break;
268 case L1TF_MITIGATION_FULL:
269 case L1TF_MITIGATION_FULL_FORCE:
270 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 break;
272 }
273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 }
276
277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 /*
280 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 * lifetime and so should not be charged to a memcg.
282 */
283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 if (!page)
285 return -ENOMEM;
286 vmx_l1d_flush_pages = page_address(page);
287
288 /*
289 * Initialize each page with a different pattern in
290 * order to protect against KSM in the nested
291 * virtualization case.
292 */
293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 PAGE_SIZE);
296 }
297 }
298
299 l1tf_vmx_mitigation = l1tf;
300
301 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 static_branch_enable(&vmx_l1d_should_flush);
303 else
304 static_branch_disable(&vmx_l1d_should_flush);
305
306 if (l1tf == VMENTER_L1D_FLUSH_COND)
307 static_branch_enable(&vmx_l1d_flush_cond);
308 else
309 static_branch_disable(&vmx_l1d_flush_cond);
310 return 0;
311 }
312
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 unsigned int i;
316
317 if (s) {
318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 if (vmentry_l1d_param[i].for_parse &&
320 sysfs_streq(s, vmentry_l1d_param[i].option))
321 return i;
322 }
323 }
324 return -EINVAL;
325 }
326
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 int l1tf, ret;
330
331 l1tf = vmentry_l1d_flush_parse(s);
332 if (l1tf < 0)
333 return l1tf;
334
335 if (!boot_cpu_has(X86_BUG_L1TF))
336 return 0;
337
338 /*
339 * Has vmx_init() run already? If not then this is the pre init
340 * parameter parsing. In that case just store the value and let
341 * vmx_init() do the proper setup after enable_ept has been
342 * established.
343 */
344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 vmentry_l1d_flush_param = l1tf;
346 return 0;
347 }
348
349 mutex_lock(&vmx_l1d_flush_mutex);
350 ret = vmx_setup_l1d_flush(l1tf);
351 mutex_unlock(&vmx_l1d_flush_mutex);
352 return ret;
353 }
354
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 return sprintf(s, "???\n");
359
360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 u64 msr;
366
367 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 !boot_cpu_has_bug(X86_BUG_MDS) &&
369 !boot_cpu_has_bug(X86_BUG_TAA)) {
370 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 vmx_fb_clear_ctrl_available = true;
373 }
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402
403 /*
404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 * execute VERW.
407 */
408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 vmx->disable_fb_clear = false;
415 }
416
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 .set = vmentry_l1d_flush_set,
419 .get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 u32 msr, int type);
426
427 void vmx_vmexit(void);
428
429 #define vmx_insn_failed(fmt...) \
430 do { \
431 WARN_ONCE(1, fmt); \
432 pr_warn_ratelimited(fmt); \
433 } while (0)
434
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 if (fault)
438 kvm_spurious_fault();
439 else
440 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 ext, vpid, gva);
463 }
464
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 ext, eptp, gpa);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 vmx->segment_cache.bitmask = 0;
512 }
513
514 static unsigned long host_idt_base;
515
516 /*
517 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518 * will emulate SYSCALL in legacy mode if the vendor string in guest
519 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520 * support this emulation, IA32_STAR must always be included in
521 * vmx_uret_msrs_list[], even in i386 builds.
522 */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 MSR_IA32_TSX_CTRL,
529 };
530
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 struct kvm_vcpu *vcpu;
539 u64 tmp_eptp = INVALID_PAGE;
540 int i;
541
542 kvm_for_each_vcpu(i, vcpu, kvm) {
543 if (!VALID_PAGE(tmp_eptp)) {
544 tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 to_kvm_vmx(kvm)->ept_pointers_match
547 = EPT_POINTERS_MISMATCH;
548 return;
549 }
550 }
551
552 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 void *data)
557 {
558 struct kvm_tlb_range *range = data;
559
560 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 range->pages);
562 }
563
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568
569 /*
570 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 * of the base of EPT PML4 table, strip off EPT configuration
572 * information.
573 */
574 if (range)
575 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 kvm_fill_hv_flush_list_func, (void *)range);
577 else
578 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 struct kvm_tlb_range *range)
583 {
584 struct kvm_vcpu *vcpu;
585 int ret = 0, i;
586
587 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588
589 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 check_ept_pointer_match(kvm);
591
592 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 kvm_for_each_vcpu(i, vcpu, kvm) {
594 /* If ept_pointer is invalid pointer, bypass flush request. */
595 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 ret |= __hv_remote_flush_tlb_with_range(
597 kvm, vcpu, range);
598 }
599 } else {
600 ret = __hv_remote_flush_tlb_with_range(kvm,
601 kvm_get_vcpu(kvm, 0), range);
602 }
603
604 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 struct hv_enlightened_vmcs *evmcs;
615 struct hv_partition_assist_pg **p_hv_pa_pg =
616 &vcpu->kvm->arch.hyperv.hv_pa_pg;
617 /*
618 * Synthetic VM-Exit is not enabled in current code and so All
619 * evmcs in singe VM shares same assist page.
620 */
621 if (!*p_hv_pa_pg)
622 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
623
624 if (!*p_hv_pa_pg)
625 return -ENOMEM;
626
627 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628
629 evmcs->partition_assist_page =
630 __pa(*p_hv_pa_pg);
631 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633
634 return 0;
635 }
636
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638
639 /*
640 * Comment's format: document - errata name - stepping - processor name.
641 * Refer from
642 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643 */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
655 /*
656 * 320767.pdf - AAP86 - B1 -
657 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658 */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670 /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 u32 eax = cpuid_eax(0x00000001), i;
677
678 /* Clear the reserved bits */
679 eax &= ~(0x3U << 14 | 0xfU << 28);
680 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 if (eax == vmx_preemption_cpu_tfms[i])
682 return true;
683
684 return false;
685 }
686
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 return flexpriority_enabled;
695 }
696
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 u32 i;
700
701 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 if (vmx_possible_passthrough_msrs[i] == msr)
703 return i;
704
705 return -ENOENT;
706 }
707
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 bool r;
711
712 switch (msr) {
713 case 0x800 ... 0x8ff:
714 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 return true;
716 case MSR_IA32_RTIT_STATUS:
717 case MSR_IA32_RTIT_OUTPUT_BASE:
718 case MSR_IA32_RTIT_OUTPUT_MASK:
719 case MSR_IA32_RTIT_CR3_MATCH:
720 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 return true;
723 }
724
725 r = possible_passthrough_msr_slot(msr) != -ENOENT;
726
727 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728
729 return r;
730 }
731
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 int i;
735
736 for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 return i;
739 return -1;
740 }
741
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 int i;
745
746 i = __vmx_find_uret_msr(vmx, msr);
747 if (i >= 0)
748 return &vmx->guest_uret_msrs[i];
749 return NULL;
750 }
751
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 struct vmx_uret_msr *msr, u64 data)
754 {
755 int ret = 0;
756
757 u64 old_msr_data = msr->data;
758 msr->data = data;
759 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 preempt_disable();
761 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 preempt_enable();
763 if (ret)
764 msr->data = old_msr_data;
765 }
766 return ret;
767 }
768
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 int cpu = raw_smp_processor_id();
773 struct loaded_vmcs *v;
774
775 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 loaded_vmcss_on_cpu_link)
777 vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 struct loaded_vmcs *loaded_vmcs = arg;
784 int cpu = raw_smp_processor_id();
785
786 if (loaded_vmcs->cpu != cpu)
787 return; /* vcpu migration can race with cpu offline */
788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 per_cpu(current_vmcs, cpu) = NULL;
790
791 vmcs_clear(loaded_vmcs->vmcs);
792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 vmcs_clear(loaded_vmcs->shadow_vmcs);
794
795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796
797 /*
798 * Ensure all writes to loaded_vmcs, including deleting it from its
799 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 */
804 smp_wmb();
805
806 loaded_vmcs->cpu = -1;
807 loaded_vmcs->launched = 0;
808 }
809
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 int cpu = loaded_vmcs->cpu;
813
814 if (cpu != -1)
815 smp_call_function_single(cpu,
816 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 unsigned field)
821 {
822 bool ret;
823 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824
825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 vmx->segment_cache.bitmask = 0;
828 }
829 ret = vmx->segment_cache.bitmask & mask;
830 vmx->segment_cache.bitmask |= mask;
831 return ret;
832 }
833
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 u16 *p = &vmx->segment_cache.seg[seg].selector;
837
838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 return *p;
841 }
842
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 ulong *p = &vmx->segment_cache.seg[seg].base;
846
847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 return *p;
850 }
851
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 u32 *p = &vmx->segment_cache.seg[seg].limit;
855
856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 return *p;
859 }
860
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 u32 *p = &vmx->segment_cache.seg[seg].ar;
864
865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 return *p;
868 }
869
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 u32 eb;
873
874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 /*
877 * Guest access to VMware backdoor ports could legitimately
878 * trigger #GP because of TSS I/O permission bitmap.
879 * We intercept those #GP and allow access to them anyway
880 * as VMware does.
881 */
882 if (enable_vmware_backdoor)
883 eb |= (1u << GP_VECTOR);
884 if ((vcpu->guest_debug &
885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 eb |= 1u << BP_VECTOR;
888 if (to_vmx(vcpu)->rmode.vm86_active)
889 eb = ~0;
890 if (!vmx_need_pf_intercept(vcpu))
891 eb &= ~(1u << PF_VECTOR);
892
893 /* When we are running a nested L2 guest and L1 specified for it a
894 * certain exception bitmap, we must trap the same exceptions and pass
895 * them to L1. When running L2, we will only handle the exceptions
896 * specified above if L1 did not want them.
897 */
898 if (is_guest_mode(vcpu))
899 eb |= get_vmcs12(vcpu)->exception_bitmap;
900 else {
901 /*
902 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 * between guest and host. In that case we only care about present
904 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 * prepare_vmcs02_rare.
906 */
907 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 }
912
913 vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915
916 /*
917 * Check if MSR is intercepted for currently loaded MSR bitmap.
918 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)919 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
920 {
921 unsigned long *msr_bitmap;
922 int f = sizeof(unsigned long);
923
924 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
925 return true;
926
927 msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
928
929 if (msr <= 0x1fff) {
930 return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 msr &= 0x1fff;
933 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 }
935
936 return true;
937 }
938
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 unsigned int flags = 0;
942
943 if (vmx->loaded_vmcs->launched)
944 flags |= VMX_RUN_VMRESUME;
945
946 /*
947 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 * to change it directly without causing a vmexit. In that case read
949 * it after vmexit and store it in vmx->spec_ctrl.
950 */
951 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 flags |= VMX_RUN_SAVE_SPEC_CTRL;
953
954 return flags;
955 }
956
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 unsigned long entry, unsigned long exit)
959 {
960 vm_entry_controls_clearbit(vmx, entry);
961 vm_exit_controls_clearbit(vmx, exit);
962 }
963
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 unsigned int i;
967
968 for (i = 0; i < m->nr; ++i) {
969 if (m->val[i].index == msr)
970 return i;
971 }
972 return -ENOENT;
973 }
974
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 int i;
978 struct msr_autoload *m = &vmx->msr_autoload;
979
980 switch (msr) {
981 case MSR_EFER:
982 if (cpu_has_load_ia32_efer()) {
983 clear_atomic_switch_msr_special(vmx,
984 VM_ENTRY_LOAD_IA32_EFER,
985 VM_EXIT_LOAD_IA32_EFER);
986 return;
987 }
988 break;
989 case MSR_CORE_PERF_GLOBAL_CTRL:
990 if (cpu_has_load_perf_global_ctrl()) {
991 clear_atomic_switch_msr_special(vmx,
992 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 return;
995 }
996 break;
997 }
998 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 if (i < 0)
1000 goto skip_guest;
1001 --m->guest.nr;
1002 m->guest.val[i] = m->guest.val[m->guest.nr];
1003 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004
1005 skip_guest:
1006 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 if (i < 0)
1008 return;
1009
1010 --m->host.nr;
1011 m->host.val[i] = m->host.val[m->host.nr];
1012 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 unsigned long entry, unsigned long exit,
1017 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 u64 guest_val, u64 host_val)
1019 {
1020 vmcs_write64(guest_val_vmcs, guest_val);
1021 if (host_val_vmcs != HOST_IA32_EFER)
1022 vmcs_write64(host_val_vmcs, host_val);
1023 vm_entry_controls_setbit(vmx, entry);
1024 vm_exit_controls_setbit(vmx, exit);
1025 }
1026
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 int i, j = 0;
1031 struct msr_autoload *m = &vmx->msr_autoload;
1032
1033 switch (msr) {
1034 case MSR_EFER:
1035 if (cpu_has_load_ia32_efer()) {
1036 add_atomic_switch_msr_special(vmx,
1037 VM_ENTRY_LOAD_IA32_EFER,
1038 VM_EXIT_LOAD_IA32_EFER,
1039 GUEST_IA32_EFER,
1040 HOST_IA32_EFER,
1041 guest_val, host_val);
1042 return;
1043 }
1044 break;
1045 case MSR_CORE_PERF_GLOBAL_CTRL:
1046 if (cpu_has_load_perf_global_ctrl()) {
1047 add_atomic_switch_msr_special(vmx,
1048 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 GUEST_IA32_PERF_GLOBAL_CTRL,
1051 HOST_IA32_PERF_GLOBAL_CTRL,
1052 guest_val, host_val);
1053 return;
1054 }
1055 break;
1056 case MSR_IA32_PEBS_ENABLE:
1057 /* PEBS needs a quiescent period after being disabled (to write
1058 * a record). Disabling PEBS through VMX MSR swapping doesn't
1059 * provide that period, so a CPU could write host's record into
1060 * guest's memory.
1061 */
1062 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 }
1064
1065 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 if (!entry_only)
1067 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068
1069 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 "Can't add msr %x\n", msr);
1073 return;
1074 }
1075 if (i < 0) {
1076 i = m->guest.nr++;
1077 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 }
1079 m->guest.val[i].index = msr;
1080 m->guest.val[i].value = guest_val;
1081
1082 if (entry_only)
1083 return;
1084
1085 if (j < 0) {
1086 j = m->host.nr++;
1087 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 }
1089 m->host.val[j].index = msr;
1090 m->host.val[j].value = host_val;
1091 }
1092
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 u64 guest_efer = vmx->vcpu.arch.efer;
1096 u64 ignore_bits = 0;
1097 int i;
1098
1099 /* Shadow paging assumes NX to be available. */
1100 if (!enable_ept)
1101 guest_efer |= EFER_NX;
1102
1103 /*
1104 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 */
1106 ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 ignore_bits |= EFER_LMA | EFER_LME;
1109 /* SCE is meaningful only in long mode on Intel */
1110 if (guest_efer & EFER_LMA)
1111 ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113
1114 /*
1115 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 * On CPUs that support "load IA32_EFER", always switch EFER
1117 * atomically, since it's faster than switching it manually.
1118 */
1119 if (cpu_has_load_ia32_efer() ||
1120 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 if (!(guest_efer & EFER_LMA))
1122 guest_efer &= ~EFER_LME;
1123 if (guest_efer != host_efer)
1124 add_atomic_switch_msr(vmx, MSR_EFER,
1125 guest_efer, host_efer, false);
1126 else
1127 clear_atomic_switch_msr(vmx, MSR_EFER);
1128 return false;
1129 }
1130
1131 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 if (i < 0)
1133 return false;
1134
1135 clear_atomic_switch_msr(vmx, MSR_EFER);
1136
1137 guest_efer &= ~ignore_bits;
1138 guest_efer |= host_efer & ignore_bits;
1139
1140 vmx->guest_uret_msrs[i].data = guest_efer;
1141 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142
1143 return true;
1144 }
1145
1146 #ifdef CONFIG_X86_32
1147 /*
1148 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149 * VMCS rather than the segment table. KVM uses this helper to figure
1150 * out the current bases to poke them into the VMCS before entry.
1151 */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 struct desc_struct *table;
1155 unsigned long v;
1156
1157 if (!(selector & ~SEGMENT_RPL_MASK))
1158 return 0;
1159
1160 table = get_current_gdt_ro();
1161
1162 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 u16 ldt_selector = kvm_read_ldt();
1164
1165 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 return 0;
1167
1168 table = (struct desc_struct *)segment_base(ldt_selector);
1169 }
1170 v = get_desc_base(&table[selector >> 3]);
1171 return v;
1172 }
1173 #endif
1174
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 return vmx_pt_mode_is_host_guest() &&
1178 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 /* The base must be 128-byte aligned and a legal physical address. */
1184 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 u32 i;
1190
1191 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 for (i = 0; i < addr_range; i++) {
1196 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 }
1199 }
1200
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 u32 i;
1204
1205 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 for (i = 0; i < addr_range; i++) {
1210 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 }
1213 }
1214
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 if (vmx_pt_mode_is_system())
1218 return;
1219
1220 /*
1221 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 * Save host state before VM entry.
1223 */
1224 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 }
1230 }
1231
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 if (vmx_pt_mode_is_system())
1235 return;
1236
1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 }
1241
1242 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 unsigned long fs_base, unsigned long gs_base)
1248 {
1249 if (unlikely(fs_sel != host->fs_sel)) {
1250 if (!(fs_sel & 7))
1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 else
1253 vmcs_write16(HOST_FS_SELECTOR, 0);
1254 host->fs_sel = fs_sel;
1255 }
1256 if (unlikely(gs_sel != host->gs_sel)) {
1257 if (!(gs_sel & 7))
1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 else
1260 vmcs_write16(HOST_GS_SELECTOR, 0);
1261 host->gs_sel = gs_sel;
1262 }
1263 if (unlikely(fs_base != host->fs_base)) {
1264 vmcs_writel(HOST_FS_BASE, fs_base);
1265 host->fs_base = fs_base;
1266 }
1267 if (unlikely(gs_base != host->gs_base)) {
1268 vmcs_writel(HOST_GS_BASE, gs_base);
1269 host->gs_base = gs_base;
1270 }
1271 }
1272
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 int cpu = raw_smp_processor_id();
1279 #endif
1280 unsigned long fs_base, gs_base;
1281 u16 fs_sel, gs_sel;
1282 int i;
1283
1284 vmx->req_immediate_exit = false;
1285
1286 /*
1287 * Note that guest MSRs to be saved/restored can also be changed
1288 * when guest state is loaded. This happens when guest transitions
1289 * to/from long-mode by setting MSR_EFER.LMA.
1290 */
1291 if (!vmx->guest_uret_msrs_loaded) {
1292 vmx->guest_uret_msrs_loaded = true;
1293 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 vmx->guest_uret_msrs[i].data,
1296 vmx->guest_uret_msrs[i].mask);
1297
1298 }
1299
1300 if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 nested_sync_vmcs12_to_shadow(vcpu);
1302
1303 if (vmx->guest_state_loaded)
1304 return;
1305
1306 host_state = &vmx->loaded_vmcs->host_state;
1307
1308 /*
1309 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1310 * allow segment selectors with cpl > 0 or ti == 1.
1311 */
1312 host_state->ldt_sel = kvm_read_ldt();
1313
1314 #ifdef CONFIG_X86_64
1315 savesegment(ds, host_state->ds_sel);
1316 savesegment(es, host_state->es_sel);
1317
1318 gs_base = cpu_kernelmode_gs_base(cpu);
1319 if (likely(is_64bit_mm(current->mm))) {
1320 current_save_fsgs();
1321 fs_sel = current->thread.fsindex;
1322 gs_sel = current->thread.gsindex;
1323 fs_base = current->thread.fsbase;
1324 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 } else {
1326 savesegment(fs, fs_sel);
1327 savesegment(gs, gs_sel);
1328 fs_base = read_msr(MSR_FS_BASE);
1329 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 }
1331
1332 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 savesegment(fs, fs_sel);
1335 savesegment(gs, gs_sel);
1336 fs_base = segment_base(fs_sel);
1337 gs_base = segment_base(gs_sel);
1338 #endif
1339
1340 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 vmx->guest_state_loaded = true;
1342 }
1343
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 struct vmcs_host_state *host_state;
1347
1348 if (!vmx->guest_state_loaded)
1349 return;
1350
1351 host_state = &vmx->loaded_vmcs->host_state;
1352
1353 ++vmx->vcpu.stat.host_state_reload;
1354
1355 #ifdef CONFIG_X86_64
1356 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 load_gs_index(host_state->gs_sel);
1362 #else
1363 loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 }
1366 if (host_state->fs_sel & 7)
1367 loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 loadsegment(ds, host_state->ds_sel);
1371 loadsegment(es, host_state->es_sel);
1372 }
1373 #endif
1374 invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 load_fixmap_gdt(raw_smp_processor_id());
1379 vmx->guest_state_loaded = false;
1380 vmx->guest_uret_msrs_loaded = false;
1381 }
1382
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 preempt_disable();
1387 if (vmx->guest_state_loaded)
1388 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 preempt_enable();
1390 return vmx->msr_guest_kernel_gs_base;
1391 }
1392
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 preempt_disable();
1396 if (vmx->guest_state_loaded)
1397 wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 preempt_enable();
1399 vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 struct loaded_vmcs *buddy)
1405 {
1406 struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 struct vmcs *prev;
1409
1410 if (!already_loaded) {
1411 loaded_vmcs_clear(vmx->loaded_vmcs);
1412 local_irq_disable();
1413
1414 /*
1415 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 * this cpu's percpu list, otherwise it may not yet be deleted
1417 * from its previous cpu's percpu list. Pairs with the
1418 * smb_wmb() in __loaded_vmcs_clear().
1419 */
1420 smp_rmb();
1421
1422 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 local_irq_enable();
1425 }
1426
1427 prev = per_cpu(current_vmcs, cpu);
1428 if (prev != vmx->loaded_vmcs->vmcs) {
1429 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 vmcs_load(vmx->loaded_vmcs->vmcs);
1431
1432 /*
1433 * No indirect branch prediction barrier needed when switching
1434 * the active VMCS within a vCPU, unless IBRS is advertised to
1435 * the vCPU. To minimize the number of IBPBs executed, KVM
1436 * performs IBPB on nested VM-Exit (a single nested transition
1437 * may switch the active VMCS multiple times).
1438 */
1439 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1440 indirect_branch_prediction_barrier();
1441 }
1442
1443 if (!already_loaded) {
1444 void *gdt = get_current_gdt_ro();
1445 unsigned long sysenter_esp;
1446
1447 /*
1448 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1449 * TLB entries from its previous association with the vCPU.
1450 */
1451 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1452
1453 /*
1454 * Linux uses per-cpu TSS and GDT, so set these when switching
1455 * processors. See 22.2.4.
1456 */
1457 vmcs_writel(HOST_TR_BASE,
1458 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1459 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1460
1461 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1462 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1463
1464 vmx->loaded_vmcs->cpu = cpu;
1465 }
1466
1467 /* Setup TSC multiplier */
1468 if (kvm_has_tsc_control &&
1469 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1470 decache_tsc_multiplier(vmx);
1471 }
1472
1473 /*
1474 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475 * vcpu mutex is already taken.
1476 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 struct vcpu_vmx *vmx = to_vmx(vcpu);
1480
1481 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482
1483 vmx_vcpu_pi_load(vcpu, cpu);
1484
1485 vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487
vmx_vcpu_put(struct kvm_vcpu * vcpu)1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 vmx_vcpu_pi_put(vcpu);
1491
1492 vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494
emulation_required(struct kvm_vcpu * vcpu)1495 static bool emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499
vmx_get_rflags(struct kvm_vcpu * vcpu)1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 unsigned long rflags, save_rflags;
1504
1505 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 rflags = vmcs_readl(GUEST_RFLAGS);
1508 if (vmx->rmode.vm86_active) {
1509 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 save_rflags = vmx->rmode.save_rflags;
1511 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 }
1513 vmx->rflags = rflags;
1514 }
1515 return vmx->rflags;
1516 }
1517
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 unsigned long old_rflags;
1522
1523 if (is_unrestricted_guest(vcpu)) {
1524 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 vmx->rflags = rflags;
1526 vmcs_writel(GUEST_RFLAGS, rflags);
1527 return;
1528 }
1529
1530 old_rflags = vmx_get_rflags(vcpu);
1531 vmx->rflags = rflags;
1532 if (vmx->rmode.vm86_active) {
1533 vmx->rmode.save_rflags = rflags;
1534 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1535 }
1536 vmcs_writel(GUEST_RFLAGS, rflags);
1537
1538 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1539 vmx->emulation_required = emulation_required(vcpu);
1540 }
1541
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1542 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1543 {
1544 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 int ret = 0;
1546
1547 if (interruptibility & GUEST_INTR_STATE_STI)
1548 ret |= KVM_X86_SHADOW_INT_STI;
1549 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1550 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1551
1552 return ret;
1553 }
1554
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1555 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1556 {
1557 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 u32 interruptibility = interruptibility_old;
1559
1560 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1561
1562 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1563 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1564 else if (mask & KVM_X86_SHADOW_INT_STI)
1565 interruptibility |= GUEST_INTR_STATE_STI;
1566
1567 if ((interruptibility != interruptibility_old))
1568 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1569 }
1570
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1571 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1572 {
1573 struct vcpu_vmx *vmx = to_vmx(vcpu);
1574 unsigned long value;
1575
1576 /*
1577 * Any MSR write that attempts to change bits marked reserved will
1578 * case a #GP fault.
1579 */
1580 if (data & vmx->pt_desc.ctl_bitmask)
1581 return 1;
1582
1583 /*
1584 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1585 * result in a #GP unless the same write also clears TraceEn.
1586 */
1587 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1588 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1589 return 1;
1590
1591 /*
1592 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1593 * and FabricEn would cause #GP, if
1594 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1595 */
1596 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1597 !(data & RTIT_CTL_FABRIC_EN) &&
1598 !intel_pt_validate_cap(vmx->pt_desc.caps,
1599 PT_CAP_single_range_output))
1600 return 1;
1601
1602 /*
1603 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1604 * utilize encodings marked reserved will casue a #GP fault.
1605 */
1606 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1607 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1608 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1609 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1610 return 1;
1611 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1612 PT_CAP_cycle_thresholds);
1613 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1614 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1615 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1616 return 1;
1617 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1618 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1619 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1620 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1621 return 1;
1622
1623 /*
1624 * If ADDRx_CFG is reserved or the encodings is >2 will
1625 * cause a #GP fault.
1626 */
1627 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1628 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1629 return 1;
1630 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1631 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1632 return 1;
1633 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1634 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1635 return 1;
1636 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1637 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1638 return 1;
1639
1640 return 0;
1641 }
1642
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1643 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1644 {
1645 return true;
1646 }
1647
skip_emulated_instruction(struct kvm_vcpu * vcpu)1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 unsigned long rip, orig_rip;
1651
1652 /*
1653 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1654 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1655 * set when EPT misconfig occurs. In practice, real hardware updates
1656 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1657 * (namely Hyper-V) don't set it due to it being undefined behavior,
1658 * i.e. we end up advancing IP with some random value.
1659 */
1660 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1661 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1662 orig_rip = kvm_rip_read(vcpu);
1663 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 #ifdef CONFIG_X86_64
1665 /*
1666 * We need to mask out the high 32 bits of RIP if not in 64-bit
1667 * mode, but just finding out that we are in 64-bit mode is
1668 * quite expensive. Only do it if there was a carry.
1669 */
1670 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1671 rip = (u32)rip;
1672 #endif
1673 kvm_rip_write(vcpu, rip);
1674 } else {
1675 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1676 return 0;
1677 }
1678
1679 /* skipping an emulated instruction also counts */
1680 vmx_set_interrupt_shadow(vcpu, 0);
1681
1682 return 1;
1683 }
1684
1685 /*
1686 * Recognizes a pending MTF VM-exit and records the nested state for later
1687 * delivery.
1688 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1689 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
1693
1694 if (!is_guest_mode(vcpu))
1695 return;
1696
1697 /*
1698 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1699 * T-bit traps. As instruction emulation is completed (i.e. at the
1700 * instruction boundary), any #DB exception pending delivery must be a
1701 * debug-trap. Record the pending MTF state to be delivered in
1702 * vmx_check_nested_events().
1703 */
1704 if (nested_cpu_has_mtf(vmcs12) &&
1705 (!vcpu->arch.exception.pending ||
1706 vcpu->arch.exception.nr == DB_VECTOR))
1707 vmx->nested.mtf_pending = true;
1708 else
1709 vmx->nested.mtf_pending = false;
1710 }
1711
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 vmx_update_emulated_instruction(vcpu);
1715 return skip_emulated_instruction(vcpu);
1716 }
1717
vmx_clear_hlt(struct kvm_vcpu * vcpu)1718 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1719 {
1720 /*
1721 * Ensure that we clear the HLT state in the VMCS. We don't need to
1722 * explicitly skip the instruction because if the HLT state is set,
1723 * then the instruction is already executing and RIP has already been
1724 * advanced.
1725 */
1726 if (kvm_hlt_in_guest(vcpu->kvm) &&
1727 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1728 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1729 }
1730
vmx_queue_exception(struct kvm_vcpu * vcpu)1731 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1732 {
1733 struct vcpu_vmx *vmx = to_vmx(vcpu);
1734 unsigned nr = vcpu->arch.exception.nr;
1735 bool has_error_code = vcpu->arch.exception.has_error_code;
1736 u32 error_code = vcpu->arch.exception.error_code;
1737 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1738
1739 kvm_deliver_exception_payload(vcpu);
1740
1741 if (has_error_code) {
1742 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1743 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1744 }
1745
1746 if (vmx->rmode.vm86_active) {
1747 int inc_eip = 0;
1748 if (kvm_exception_is_soft(nr))
1749 inc_eip = vcpu->arch.event_exit_inst_len;
1750 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1751 return;
1752 }
1753
1754 WARN_ON_ONCE(vmx->emulation_required);
1755
1756 if (kvm_exception_is_soft(nr)) {
1757 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1758 vmx->vcpu.arch.event_exit_inst_len);
1759 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1760 } else
1761 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1762
1763 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1764
1765 vmx_clear_hlt(vcpu);
1766 }
1767
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1768 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1769 {
1770 struct vmx_uret_msr tmp;
1771 int from, to;
1772
1773 from = __vmx_find_uret_msr(vmx, msr);
1774 if (from < 0)
1775 return;
1776 to = vmx->nr_active_uret_msrs++;
1777
1778 tmp = vmx->guest_uret_msrs[to];
1779 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1780 vmx->guest_uret_msrs[from] = tmp;
1781 }
1782
1783 /*
1784 * Set up the vmcs to automatically save and restore system
1785 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1786 * mode, as fiddling with msrs is very expensive.
1787 */
setup_msrs(struct vcpu_vmx * vmx)1788 static void setup_msrs(struct vcpu_vmx *vmx)
1789 {
1790 vmx->guest_uret_msrs_loaded = false;
1791 vmx->nr_active_uret_msrs = 0;
1792 #ifdef CONFIG_X86_64
1793 /*
1794 * The SYSCALL MSRs are only needed on long mode guests, and only
1795 * when EFER.SCE is set.
1796 */
1797 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1798 vmx_setup_uret_msr(vmx, MSR_STAR);
1799 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1800 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1801 }
1802 #endif
1803 if (update_transition_efer(vmx))
1804 vmx_setup_uret_msr(vmx, MSR_EFER);
1805
1806 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1807 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1808
1809 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1810
1811 if (cpu_has_vmx_msr_bitmap())
1812 vmx_update_msr_bitmap(&vmx->vcpu);
1813 }
1814
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1815 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1816 {
1817 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1818 u64 g_tsc_offset = 0;
1819
1820 /*
1821 * We're here if L1 chose not to trap WRMSR to TSC. According
1822 * to the spec, this should set L1's TSC; The offset that L1
1823 * set for L2 remains unchanged, and still needs to be added
1824 * to the newly set TSC to get L2's TSC.
1825 */
1826 if (is_guest_mode(vcpu) &&
1827 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1828 g_tsc_offset = vmcs12->tsc_offset;
1829
1830 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1831 vcpu->arch.tsc_offset - g_tsc_offset,
1832 offset);
1833 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1834 return offset + g_tsc_offset;
1835 }
1836
1837 /*
1838 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1839 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1840 * all guests if the "nested" module option is off, and can also be disabled
1841 * for a single guest by disabling its VMX cpuid bit.
1842 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1843 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1844 {
1845 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1846 }
1847
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1848 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1849 uint64_t val)
1850 {
1851 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1852
1853 return !(val & ~valid_bits);
1854 }
1855
vmx_get_msr_feature(struct kvm_msr_entry * msr)1856 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1857 {
1858 switch (msr->index) {
1859 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1860 if (!nested)
1861 return 1;
1862 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1863 case MSR_IA32_PERF_CAPABILITIES:
1864 msr->data = vmx_get_perf_capabilities();
1865 return 0;
1866 default:
1867 return KVM_MSR_RET_INVALID;
1868 }
1869 }
1870
1871 /*
1872 * Reads an msr value (of 'msr_index') into 'pdata'.
1873 * Returns 0 on success, non-0 otherwise.
1874 * Assumes vcpu_load() was already called.
1875 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1876 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1877 {
1878 struct vcpu_vmx *vmx = to_vmx(vcpu);
1879 struct vmx_uret_msr *msr;
1880 u32 index;
1881
1882 switch (msr_info->index) {
1883 #ifdef CONFIG_X86_64
1884 case MSR_FS_BASE:
1885 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1886 break;
1887 case MSR_GS_BASE:
1888 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1889 break;
1890 case MSR_KERNEL_GS_BASE:
1891 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1892 break;
1893 #endif
1894 case MSR_EFER:
1895 return kvm_get_msr_common(vcpu, msr_info);
1896 case MSR_IA32_TSX_CTRL:
1897 if (!msr_info->host_initiated &&
1898 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1899 return 1;
1900 goto find_uret_msr;
1901 case MSR_IA32_UMWAIT_CONTROL:
1902 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1903 return 1;
1904
1905 msr_info->data = vmx->msr_ia32_umwait_control;
1906 break;
1907 case MSR_IA32_SPEC_CTRL:
1908 if (!msr_info->host_initiated &&
1909 !guest_has_spec_ctrl_msr(vcpu))
1910 return 1;
1911
1912 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1913 break;
1914 case MSR_IA32_SYSENTER_CS:
1915 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1916 break;
1917 case MSR_IA32_SYSENTER_EIP:
1918 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1919 break;
1920 case MSR_IA32_SYSENTER_ESP:
1921 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1922 break;
1923 case MSR_IA32_BNDCFGS:
1924 if (!kvm_mpx_supported() ||
1925 (!msr_info->host_initiated &&
1926 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1927 return 1;
1928 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1929 break;
1930 case MSR_IA32_MCG_EXT_CTL:
1931 if (!msr_info->host_initiated &&
1932 !(vmx->msr_ia32_feature_control &
1933 FEAT_CTL_LMCE_ENABLED))
1934 return 1;
1935 msr_info->data = vcpu->arch.mcg_ext_ctl;
1936 break;
1937 case MSR_IA32_FEAT_CTL:
1938 msr_info->data = vmx->msr_ia32_feature_control;
1939 break;
1940 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1941 if (!nested_vmx_allowed(vcpu))
1942 return 1;
1943 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1944 &msr_info->data))
1945 return 1;
1946 /*
1947 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1948 * instead of just ignoring the features, different Hyper-V
1949 * versions are either trying to use them and fail or do some
1950 * sanity checking and refuse to boot. Filter all unsupported
1951 * features out.
1952 */
1953 if (!msr_info->host_initiated &&
1954 vmx->nested.enlightened_vmcs_enabled)
1955 nested_evmcs_filter_control_msr(msr_info->index,
1956 &msr_info->data);
1957 break;
1958 case MSR_IA32_RTIT_CTL:
1959 if (!vmx_pt_mode_is_host_guest())
1960 return 1;
1961 msr_info->data = vmx->pt_desc.guest.ctl;
1962 break;
1963 case MSR_IA32_RTIT_STATUS:
1964 if (!vmx_pt_mode_is_host_guest())
1965 return 1;
1966 msr_info->data = vmx->pt_desc.guest.status;
1967 break;
1968 case MSR_IA32_RTIT_CR3_MATCH:
1969 if (!vmx_pt_mode_is_host_guest() ||
1970 !intel_pt_validate_cap(vmx->pt_desc.caps,
1971 PT_CAP_cr3_filtering))
1972 return 1;
1973 msr_info->data = vmx->pt_desc.guest.cr3_match;
1974 break;
1975 case MSR_IA32_RTIT_OUTPUT_BASE:
1976 if (!vmx_pt_mode_is_host_guest() ||
1977 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1978 PT_CAP_topa_output) &&
1979 !intel_pt_validate_cap(vmx->pt_desc.caps,
1980 PT_CAP_single_range_output)))
1981 return 1;
1982 msr_info->data = vmx->pt_desc.guest.output_base;
1983 break;
1984 case MSR_IA32_RTIT_OUTPUT_MASK:
1985 if (!vmx_pt_mode_is_host_guest() ||
1986 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1987 PT_CAP_topa_output) &&
1988 !intel_pt_validate_cap(vmx->pt_desc.caps,
1989 PT_CAP_single_range_output)))
1990 return 1;
1991 msr_info->data = vmx->pt_desc.guest.output_mask;
1992 break;
1993 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1994 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1995 if (!vmx_pt_mode_is_host_guest() ||
1996 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1997 PT_CAP_num_address_ranges)))
1998 return 1;
1999 if (index % 2)
2000 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2001 else
2002 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2003 break;
2004 case MSR_TSC_AUX:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2007 return 1;
2008 goto find_uret_msr;
2009 default:
2010 find_uret_msr:
2011 msr = vmx_find_uret_msr(vmx, msr_info->index);
2012 if (msr) {
2013 msr_info->data = msr->data;
2014 break;
2015 }
2016 return kvm_get_msr_common(vcpu, msr_info);
2017 }
2018
2019 return 0;
2020 }
2021
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2022 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2023 u64 data)
2024 {
2025 #ifdef CONFIG_X86_64
2026 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2027 return (u32)data;
2028 #endif
2029 return (unsigned long)data;
2030 }
2031
2032 /*
2033 * Writes msr value into the appropriate "register".
2034 * Returns 0 on success, non-0 otherwise.
2035 * Assumes vcpu_load() was already called.
2036 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2037 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2038 {
2039 struct vcpu_vmx *vmx = to_vmx(vcpu);
2040 struct vmx_uret_msr *msr;
2041 int ret = 0;
2042 u32 msr_index = msr_info->index;
2043 u64 data = msr_info->data;
2044 u32 index;
2045
2046 switch (msr_index) {
2047 case MSR_EFER:
2048 ret = kvm_set_msr_common(vcpu, msr_info);
2049 break;
2050 #ifdef CONFIG_X86_64
2051 case MSR_FS_BASE:
2052 vmx_segment_cache_clear(vmx);
2053 vmcs_writel(GUEST_FS_BASE, data);
2054 break;
2055 case MSR_GS_BASE:
2056 vmx_segment_cache_clear(vmx);
2057 vmcs_writel(GUEST_GS_BASE, data);
2058 break;
2059 case MSR_KERNEL_GS_BASE:
2060 vmx_write_guest_kernel_gs_base(vmx, data);
2061 break;
2062 #endif
2063 case MSR_IA32_SYSENTER_CS:
2064 if (is_guest_mode(vcpu))
2065 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2066 vmcs_write32(GUEST_SYSENTER_CS, data);
2067 break;
2068 case MSR_IA32_SYSENTER_EIP:
2069 if (is_guest_mode(vcpu)) {
2070 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2071 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2072 }
2073 vmcs_writel(GUEST_SYSENTER_EIP, data);
2074 break;
2075 case MSR_IA32_SYSENTER_ESP:
2076 if (is_guest_mode(vcpu)) {
2077 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2078 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2079 }
2080 vmcs_writel(GUEST_SYSENTER_ESP, data);
2081 break;
2082 case MSR_IA32_DEBUGCTLMSR:
2083 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2084 VM_EXIT_SAVE_DEBUG_CONTROLS)
2085 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2086
2087 ret = kvm_set_msr_common(vcpu, msr_info);
2088 break;
2089
2090 case MSR_IA32_BNDCFGS:
2091 if (!kvm_mpx_supported() ||
2092 (!msr_info->host_initiated &&
2093 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2094 return 1;
2095 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2096 (data & MSR_IA32_BNDCFGS_RSVD))
2097 return 1;
2098 vmcs_write64(GUEST_BNDCFGS, data);
2099 break;
2100 case MSR_IA32_UMWAIT_CONTROL:
2101 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2102 return 1;
2103
2104 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2105 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2106 return 1;
2107
2108 vmx->msr_ia32_umwait_control = data;
2109 break;
2110 case MSR_IA32_SPEC_CTRL:
2111 if (!msr_info->host_initiated &&
2112 !guest_has_spec_ctrl_msr(vcpu))
2113 return 1;
2114
2115 if (kvm_spec_ctrl_test_value(data))
2116 return 1;
2117
2118 vmx->spec_ctrl = data;
2119 if (!data)
2120 break;
2121
2122 /*
2123 * For non-nested:
2124 * When it's written (to non-zero) for the first time, pass
2125 * it through.
2126 *
2127 * For nested:
2128 * The handling of the MSR bitmap for L2 guests is done in
2129 * nested_vmx_prepare_msr_bitmap. We should not touch the
2130 * vmcs02.msr_bitmap here since it gets completely overwritten
2131 * in the merging. We update the vmcs01 here for L1 as well
2132 * since it will end up touching the MSR anyway now.
2133 */
2134 vmx_disable_intercept_for_msr(vcpu,
2135 MSR_IA32_SPEC_CTRL,
2136 MSR_TYPE_RW);
2137 break;
2138 case MSR_IA32_TSX_CTRL:
2139 if (!msr_info->host_initiated &&
2140 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2141 return 1;
2142 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2143 return 1;
2144 goto find_uret_msr;
2145 case MSR_IA32_PRED_CMD:
2146 if (!msr_info->host_initiated &&
2147 !guest_has_pred_cmd_msr(vcpu))
2148 return 1;
2149
2150 if (data & ~PRED_CMD_IBPB)
2151 return 1;
2152 if (!boot_cpu_has(X86_FEATURE_IBPB))
2153 return 1;
2154 if (!data)
2155 break;
2156
2157 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2158
2159 /*
2160 * For non-nested:
2161 * When it's written (to non-zero) for the first time, pass
2162 * it through.
2163 *
2164 * For nested:
2165 * The handling of the MSR bitmap for L2 guests is done in
2166 * nested_vmx_prepare_msr_bitmap. We should not touch the
2167 * vmcs02.msr_bitmap here since it gets completely overwritten
2168 * in the merging.
2169 */
2170 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2171 break;
2172 case MSR_IA32_CR_PAT:
2173 if (!kvm_pat_valid(data))
2174 return 1;
2175
2176 if (is_guest_mode(vcpu) &&
2177 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2178 get_vmcs12(vcpu)->guest_ia32_pat = data;
2179
2180 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2181 vmcs_write64(GUEST_IA32_PAT, data);
2182 vcpu->arch.pat = data;
2183 break;
2184 }
2185 ret = kvm_set_msr_common(vcpu, msr_info);
2186 break;
2187 case MSR_IA32_TSC_ADJUST:
2188 ret = kvm_set_msr_common(vcpu, msr_info);
2189 break;
2190 case MSR_IA32_MCG_EXT_CTL:
2191 if ((!msr_info->host_initiated &&
2192 !(to_vmx(vcpu)->msr_ia32_feature_control &
2193 FEAT_CTL_LMCE_ENABLED)) ||
2194 (data & ~MCG_EXT_CTL_LMCE_EN))
2195 return 1;
2196 vcpu->arch.mcg_ext_ctl = data;
2197 break;
2198 case MSR_IA32_FEAT_CTL:
2199 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2200 (to_vmx(vcpu)->msr_ia32_feature_control &
2201 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2202 return 1;
2203 vmx->msr_ia32_feature_control = data;
2204 if (msr_info->host_initiated && data == 0)
2205 vmx_leave_nested(vcpu);
2206 break;
2207 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2208 if (!msr_info->host_initiated)
2209 return 1; /* they are read-only */
2210 if (!nested_vmx_allowed(vcpu))
2211 return 1;
2212 return vmx_set_vmx_msr(vcpu, msr_index, data);
2213 case MSR_IA32_RTIT_CTL:
2214 if (!vmx_pt_mode_is_host_guest() ||
2215 vmx_rtit_ctl_check(vcpu, data) ||
2216 vmx->nested.vmxon)
2217 return 1;
2218 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2219 vmx->pt_desc.guest.ctl = data;
2220 pt_update_intercept_for_msr(vcpu);
2221 break;
2222 case MSR_IA32_RTIT_STATUS:
2223 if (!pt_can_write_msr(vmx))
2224 return 1;
2225 if (data & MSR_IA32_RTIT_STATUS_MASK)
2226 return 1;
2227 vmx->pt_desc.guest.status = data;
2228 break;
2229 case MSR_IA32_RTIT_CR3_MATCH:
2230 if (!pt_can_write_msr(vmx))
2231 return 1;
2232 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2233 PT_CAP_cr3_filtering))
2234 return 1;
2235 vmx->pt_desc.guest.cr3_match = data;
2236 break;
2237 case MSR_IA32_RTIT_OUTPUT_BASE:
2238 if (!pt_can_write_msr(vmx))
2239 return 1;
2240 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2241 PT_CAP_topa_output) &&
2242 !intel_pt_validate_cap(vmx->pt_desc.caps,
2243 PT_CAP_single_range_output))
2244 return 1;
2245 if (!pt_output_base_valid(vcpu, data))
2246 return 1;
2247 vmx->pt_desc.guest.output_base = data;
2248 break;
2249 case MSR_IA32_RTIT_OUTPUT_MASK:
2250 if (!pt_can_write_msr(vmx))
2251 return 1;
2252 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2253 PT_CAP_topa_output) &&
2254 !intel_pt_validate_cap(vmx->pt_desc.caps,
2255 PT_CAP_single_range_output))
2256 return 1;
2257 vmx->pt_desc.guest.output_mask = data;
2258 break;
2259 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2260 if (!pt_can_write_msr(vmx))
2261 return 1;
2262 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2263 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2264 PT_CAP_num_address_ranges))
2265 return 1;
2266 if (is_noncanonical_address(data, vcpu))
2267 return 1;
2268 if (index % 2)
2269 vmx->pt_desc.guest.addr_b[index / 2] = data;
2270 else
2271 vmx->pt_desc.guest.addr_a[index / 2] = data;
2272 break;
2273 case MSR_TSC_AUX:
2274 if (!msr_info->host_initiated &&
2275 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2276 return 1;
2277 /* Check reserved bit, higher 32 bits should be zero */
2278 if ((data >> 32) != 0)
2279 return 1;
2280 goto find_uret_msr;
2281
2282 default:
2283 find_uret_msr:
2284 msr = vmx_find_uret_msr(vmx, msr_index);
2285 if (msr)
2286 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2287 else
2288 ret = kvm_set_msr_common(vcpu, msr_info);
2289 }
2290
2291 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2292 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2293 vmx_update_fb_clear_dis(vcpu, vmx);
2294
2295 return ret;
2296 }
2297
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2298 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2299 {
2300 unsigned long guest_owned_bits;
2301
2302 kvm_register_mark_available(vcpu, reg);
2303
2304 switch (reg) {
2305 case VCPU_REGS_RSP:
2306 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2307 break;
2308 case VCPU_REGS_RIP:
2309 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2310 break;
2311 case VCPU_EXREG_PDPTR:
2312 if (enable_ept)
2313 ept_save_pdptrs(vcpu);
2314 break;
2315 case VCPU_EXREG_CR0:
2316 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2317
2318 vcpu->arch.cr0 &= ~guest_owned_bits;
2319 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2320 break;
2321 case VCPU_EXREG_CR3:
2322 if (is_unrestricted_guest(vcpu) ||
2323 (enable_ept && is_paging(vcpu)))
2324 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2325 break;
2326 case VCPU_EXREG_CR4:
2327 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2328
2329 vcpu->arch.cr4 &= ~guest_owned_bits;
2330 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2331 break;
2332 default:
2333 WARN_ON_ONCE(1);
2334 break;
2335 }
2336 }
2337
cpu_has_kvm_support(void)2338 static __init int cpu_has_kvm_support(void)
2339 {
2340 return cpu_has_vmx();
2341 }
2342
vmx_disabled_by_bios(void)2343 static __init int vmx_disabled_by_bios(void)
2344 {
2345 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2346 !boot_cpu_has(X86_FEATURE_VMX);
2347 }
2348
kvm_cpu_vmxon(u64 vmxon_pointer)2349 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2350 {
2351 u64 msr;
2352
2353 cr4_set_bits(X86_CR4_VMXE);
2354 intel_pt_handle_vmx(1);
2355
2356 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2357 _ASM_EXTABLE(1b, %l[fault])
2358 : : [vmxon_pointer] "m"(vmxon_pointer)
2359 : : fault);
2360 return 0;
2361
2362 fault:
2363 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2364 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2365 intel_pt_handle_vmx(0);
2366 cr4_clear_bits(X86_CR4_VMXE);
2367
2368 return -EFAULT;
2369 }
2370
hardware_enable(void)2371 static int hardware_enable(void)
2372 {
2373 int cpu = raw_smp_processor_id();
2374 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2375 int r;
2376
2377 if (cr4_read_shadow() & X86_CR4_VMXE)
2378 return -EBUSY;
2379
2380 /*
2381 * This can happen if we hot-added a CPU but failed to allocate
2382 * VP assist page for it.
2383 */
2384 if (static_branch_unlikely(&enable_evmcs) &&
2385 !hv_get_vp_assist_page(cpu))
2386 return -EFAULT;
2387
2388 r = kvm_cpu_vmxon(phys_addr);
2389 if (r)
2390 return r;
2391
2392 if (enable_ept)
2393 ept_sync_global();
2394
2395 return 0;
2396 }
2397
vmclear_local_loaded_vmcss(void)2398 static void vmclear_local_loaded_vmcss(void)
2399 {
2400 int cpu = raw_smp_processor_id();
2401 struct loaded_vmcs *v, *n;
2402
2403 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2404 loaded_vmcss_on_cpu_link)
2405 __loaded_vmcs_clear(v);
2406 }
2407
2408
2409 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2410 * tricks.
2411 */
kvm_cpu_vmxoff(void)2412 static void kvm_cpu_vmxoff(void)
2413 {
2414 asm volatile (__ex("vmxoff"));
2415
2416 intel_pt_handle_vmx(0);
2417 cr4_clear_bits(X86_CR4_VMXE);
2418 }
2419
hardware_disable(void)2420 static void hardware_disable(void)
2421 {
2422 vmclear_local_loaded_vmcss();
2423 kvm_cpu_vmxoff();
2424 }
2425
2426 /*
2427 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2428 * directly instead of going through cpu_has(), to ensure KVM is trapping
2429 * ENCLS whenever it's supported in hardware. It does not matter whether
2430 * the host OS supports or has enabled SGX.
2431 */
cpu_has_sgx(void)2432 static bool cpu_has_sgx(void)
2433 {
2434 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2435 }
2436
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2437 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2438 u32 msr, u32 *result)
2439 {
2440 u32 vmx_msr_low, vmx_msr_high;
2441 u32 ctl = ctl_min | ctl_opt;
2442
2443 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2444
2445 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2446 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2447
2448 /* Ensure minimum (required) set of control bits are supported. */
2449 if (ctl_min & ~ctl)
2450 return -EIO;
2451
2452 *result = ctl;
2453 return 0;
2454 }
2455
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2456 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2457 struct vmx_capability *vmx_cap)
2458 {
2459 u32 vmx_msr_low, vmx_msr_high;
2460 u32 min, opt, min2, opt2;
2461 u32 _pin_based_exec_control = 0;
2462 u32 _cpu_based_exec_control = 0;
2463 u32 _cpu_based_2nd_exec_control = 0;
2464 u32 _vmexit_control = 0;
2465 u32 _vmentry_control = 0;
2466
2467 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2468 min = CPU_BASED_HLT_EXITING |
2469 #ifdef CONFIG_X86_64
2470 CPU_BASED_CR8_LOAD_EXITING |
2471 CPU_BASED_CR8_STORE_EXITING |
2472 #endif
2473 CPU_BASED_CR3_LOAD_EXITING |
2474 CPU_BASED_CR3_STORE_EXITING |
2475 CPU_BASED_UNCOND_IO_EXITING |
2476 CPU_BASED_MOV_DR_EXITING |
2477 CPU_BASED_USE_TSC_OFFSETTING |
2478 CPU_BASED_MWAIT_EXITING |
2479 CPU_BASED_MONITOR_EXITING |
2480 CPU_BASED_INVLPG_EXITING |
2481 CPU_BASED_RDPMC_EXITING;
2482
2483 opt = CPU_BASED_TPR_SHADOW |
2484 CPU_BASED_USE_MSR_BITMAPS |
2485 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2486 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2487 &_cpu_based_exec_control) < 0)
2488 return -EIO;
2489 #ifdef CONFIG_X86_64
2490 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2491 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2492 ~CPU_BASED_CR8_STORE_EXITING;
2493 #endif
2494 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2495 min2 = 0;
2496 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2497 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2498 SECONDARY_EXEC_WBINVD_EXITING |
2499 SECONDARY_EXEC_ENABLE_VPID |
2500 SECONDARY_EXEC_ENABLE_EPT |
2501 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2502 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2503 SECONDARY_EXEC_DESC |
2504 SECONDARY_EXEC_ENABLE_RDTSCP |
2505 SECONDARY_EXEC_ENABLE_INVPCID |
2506 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2507 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2508 SECONDARY_EXEC_SHADOW_VMCS |
2509 SECONDARY_EXEC_XSAVES |
2510 SECONDARY_EXEC_RDSEED_EXITING |
2511 SECONDARY_EXEC_RDRAND_EXITING |
2512 SECONDARY_EXEC_ENABLE_PML |
2513 SECONDARY_EXEC_TSC_SCALING |
2514 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2515 SECONDARY_EXEC_PT_USE_GPA |
2516 SECONDARY_EXEC_PT_CONCEAL_VMX |
2517 SECONDARY_EXEC_ENABLE_VMFUNC;
2518 if (cpu_has_sgx())
2519 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2520 if (adjust_vmx_controls(min2, opt2,
2521 MSR_IA32_VMX_PROCBASED_CTLS2,
2522 &_cpu_based_2nd_exec_control) < 0)
2523 return -EIO;
2524 }
2525 #ifndef CONFIG_X86_64
2526 if (!(_cpu_based_2nd_exec_control &
2527 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2528 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2529 #endif
2530
2531 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2532 _cpu_based_2nd_exec_control &= ~(
2533 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2534 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2535 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2536
2537 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2538 &vmx_cap->ept, &vmx_cap->vpid);
2539
2540 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2541 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2542 enabled */
2543 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2544 CPU_BASED_CR3_STORE_EXITING |
2545 CPU_BASED_INVLPG_EXITING);
2546 } else if (vmx_cap->ept) {
2547 vmx_cap->ept = 0;
2548 pr_warn_once("EPT CAP should not exist if not support "
2549 "1-setting enable EPT VM-execution control\n");
2550 }
2551 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2552 vmx_cap->vpid) {
2553 vmx_cap->vpid = 0;
2554 pr_warn_once("VPID CAP should not exist if not support "
2555 "1-setting enable VPID VM-execution control\n");
2556 }
2557
2558 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2559 #ifdef CONFIG_X86_64
2560 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2561 #endif
2562 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2563 VM_EXIT_LOAD_IA32_PAT |
2564 VM_EXIT_LOAD_IA32_EFER |
2565 VM_EXIT_CLEAR_BNDCFGS |
2566 VM_EXIT_PT_CONCEAL_PIP |
2567 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2568 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2569 &_vmexit_control) < 0)
2570 return -EIO;
2571
2572 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2573 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2574 PIN_BASED_VMX_PREEMPTION_TIMER;
2575 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2576 &_pin_based_exec_control) < 0)
2577 return -EIO;
2578
2579 if (cpu_has_broken_vmx_preemption_timer())
2580 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2581 if (!(_cpu_based_2nd_exec_control &
2582 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2583 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2584
2585 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2586 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2587 VM_ENTRY_LOAD_IA32_PAT |
2588 VM_ENTRY_LOAD_IA32_EFER |
2589 VM_ENTRY_LOAD_BNDCFGS |
2590 VM_ENTRY_PT_CONCEAL_PIP |
2591 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2592 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2593 &_vmentry_control) < 0)
2594 return -EIO;
2595
2596 /*
2597 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2598 * can't be used due to an errata where VM Exit may incorrectly clear
2599 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2600 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2601 */
2602 if (boot_cpu_data.x86 == 0x6) {
2603 switch (boot_cpu_data.x86_model) {
2604 case 26: /* AAK155 */
2605 case 30: /* AAP115 */
2606 case 37: /* AAT100 */
2607 case 44: /* BC86,AAY89,BD102 */
2608 case 46: /* BA97 */
2609 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2610 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2611 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2612 "does not work properly. Using workaround\n");
2613 break;
2614 default:
2615 break;
2616 }
2617 }
2618
2619
2620 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2621
2622 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2623 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2624 return -EIO;
2625
2626 #ifdef CONFIG_X86_64
2627 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2628 if (vmx_msr_high & (1u<<16))
2629 return -EIO;
2630 #endif
2631
2632 /* Require Write-Back (WB) memory type for VMCS accesses. */
2633 if (((vmx_msr_high >> 18) & 15) != 6)
2634 return -EIO;
2635
2636 vmcs_conf->size = vmx_msr_high & 0x1fff;
2637 vmcs_conf->order = get_order(vmcs_conf->size);
2638 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2639
2640 vmcs_conf->revision_id = vmx_msr_low;
2641
2642 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2643 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2644 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2645 vmcs_conf->vmexit_ctrl = _vmexit_control;
2646 vmcs_conf->vmentry_ctrl = _vmentry_control;
2647
2648 #if IS_ENABLED(CONFIG_HYPERV)
2649 if (enlightened_vmcs)
2650 evmcs_sanitize_exec_ctrls(vmcs_conf);
2651 #endif
2652
2653 return 0;
2654 }
2655
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2656 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2657 {
2658 int node = cpu_to_node(cpu);
2659 struct page *pages;
2660 struct vmcs *vmcs;
2661
2662 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2663 if (!pages)
2664 return NULL;
2665 vmcs = page_address(pages);
2666 memset(vmcs, 0, vmcs_config.size);
2667
2668 /* KVM supports Enlightened VMCS v1 only */
2669 if (static_branch_unlikely(&enable_evmcs))
2670 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2671 else
2672 vmcs->hdr.revision_id = vmcs_config.revision_id;
2673
2674 if (shadow)
2675 vmcs->hdr.shadow_vmcs = 1;
2676 return vmcs;
2677 }
2678
free_vmcs(struct vmcs * vmcs)2679 void free_vmcs(struct vmcs *vmcs)
2680 {
2681 free_pages((unsigned long)vmcs, vmcs_config.order);
2682 }
2683
2684 /*
2685 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2686 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2687 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2688 {
2689 if (!loaded_vmcs->vmcs)
2690 return;
2691 loaded_vmcs_clear(loaded_vmcs);
2692 free_vmcs(loaded_vmcs->vmcs);
2693 loaded_vmcs->vmcs = NULL;
2694 if (loaded_vmcs->msr_bitmap)
2695 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2696 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2697 }
2698
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2699 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2700 {
2701 loaded_vmcs->vmcs = alloc_vmcs(false);
2702 if (!loaded_vmcs->vmcs)
2703 return -ENOMEM;
2704
2705 vmcs_clear(loaded_vmcs->vmcs);
2706
2707 loaded_vmcs->shadow_vmcs = NULL;
2708 loaded_vmcs->hv_timer_soft_disabled = false;
2709 loaded_vmcs->cpu = -1;
2710 loaded_vmcs->launched = 0;
2711
2712 if (cpu_has_vmx_msr_bitmap()) {
2713 loaded_vmcs->msr_bitmap = (unsigned long *)
2714 __get_free_page(GFP_KERNEL_ACCOUNT);
2715 if (!loaded_vmcs->msr_bitmap)
2716 goto out_vmcs;
2717 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2718
2719 if (IS_ENABLED(CONFIG_HYPERV) &&
2720 static_branch_unlikely(&enable_evmcs) &&
2721 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2722 struct hv_enlightened_vmcs *evmcs =
2723 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2724
2725 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2726 }
2727 }
2728
2729 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2730 memset(&loaded_vmcs->controls_shadow, 0,
2731 sizeof(struct vmcs_controls_shadow));
2732
2733 return 0;
2734
2735 out_vmcs:
2736 free_loaded_vmcs(loaded_vmcs);
2737 return -ENOMEM;
2738 }
2739
free_kvm_area(void)2740 static void free_kvm_area(void)
2741 {
2742 int cpu;
2743
2744 for_each_possible_cpu(cpu) {
2745 free_vmcs(per_cpu(vmxarea, cpu));
2746 per_cpu(vmxarea, cpu) = NULL;
2747 }
2748 }
2749
alloc_kvm_area(void)2750 static __init int alloc_kvm_area(void)
2751 {
2752 int cpu;
2753
2754 for_each_possible_cpu(cpu) {
2755 struct vmcs *vmcs;
2756
2757 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2758 if (!vmcs) {
2759 free_kvm_area();
2760 return -ENOMEM;
2761 }
2762
2763 /*
2764 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2765 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2766 * revision_id reported by MSR_IA32_VMX_BASIC.
2767 *
2768 * However, even though not explicitly documented by
2769 * TLFS, VMXArea passed as VMXON argument should
2770 * still be marked with revision_id reported by
2771 * physical CPU.
2772 */
2773 if (static_branch_unlikely(&enable_evmcs))
2774 vmcs->hdr.revision_id = vmcs_config.revision_id;
2775
2776 per_cpu(vmxarea, cpu) = vmcs;
2777 }
2778 return 0;
2779 }
2780
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2781 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2782 struct kvm_segment *save)
2783 {
2784 if (!emulate_invalid_guest_state) {
2785 /*
2786 * CS and SS RPL should be equal during guest entry according
2787 * to VMX spec, but in reality it is not always so. Since vcpu
2788 * is in the middle of the transition from real mode to
2789 * protected mode it is safe to assume that RPL 0 is a good
2790 * default value.
2791 */
2792 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2793 save->selector &= ~SEGMENT_RPL_MASK;
2794 save->dpl = save->selector & SEGMENT_RPL_MASK;
2795 save->s = 1;
2796 }
2797 vmx_set_segment(vcpu, save, seg);
2798 }
2799
enter_pmode(struct kvm_vcpu * vcpu)2800 static void enter_pmode(struct kvm_vcpu *vcpu)
2801 {
2802 unsigned long flags;
2803 struct vcpu_vmx *vmx = to_vmx(vcpu);
2804
2805 /*
2806 * Update real mode segment cache. It may be not up-to-date if sement
2807 * register was written while vcpu was in a guest mode.
2808 */
2809 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2810 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2811 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2812 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2813 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2814 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2815
2816 vmx->rmode.vm86_active = 0;
2817
2818 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2819
2820 flags = vmcs_readl(GUEST_RFLAGS);
2821 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2822 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2823 vmcs_writel(GUEST_RFLAGS, flags);
2824
2825 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2826 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2827
2828 update_exception_bitmap(vcpu);
2829
2830 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2831 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2832 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2833 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2834 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2835 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2836 }
2837
fix_rmode_seg(int seg,struct kvm_segment * save)2838 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2839 {
2840 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2841 struct kvm_segment var = *save;
2842
2843 var.dpl = 0x3;
2844 if (seg == VCPU_SREG_CS)
2845 var.type = 0x3;
2846
2847 if (!emulate_invalid_guest_state) {
2848 var.selector = var.base >> 4;
2849 var.base = var.base & 0xffff0;
2850 var.limit = 0xffff;
2851 var.g = 0;
2852 var.db = 0;
2853 var.present = 1;
2854 var.s = 1;
2855 var.l = 0;
2856 var.unusable = 0;
2857 var.type = 0x3;
2858 var.avl = 0;
2859 if (save->base & 0xf)
2860 printk_once(KERN_WARNING "kvm: segment base is not "
2861 "paragraph aligned when entering "
2862 "protected mode (seg=%d)", seg);
2863 }
2864
2865 vmcs_write16(sf->selector, var.selector);
2866 vmcs_writel(sf->base, var.base);
2867 vmcs_write32(sf->limit, var.limit);
2868 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2869 }
2870
enter_rmode(struct kvm_vcpu * vcpu)2871 static void enter_rmode(struct kvm_vcpu *vcpu)
2872 {
2873 unsigned long flags;
2874 struct vcpu_vmx *vmx = to_vmx(vcpu);
2875 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2876
2877 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2878 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2879 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2880 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2881 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2882 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2883 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2884
2885 vmx->rmode.vm86_active = 1;
2886
2887 /*
2888 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2889 * vcpu. Warn the user that an update is overdue.
2890 */
2891 if (!kvm_vmx->tss_addr)
2892 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2893 "called before entering vcpu\n");
2894
2895 vmx_segment_cache_clear(vmx);
2896
2897 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2898 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2899 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2900
2901 flags = vmcs_readl(GUEST_RFLAGS);
2902 vmx->rmode.save_rflags = flags;
2903
2904 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2905
2906 vmcs_writel(GUEST_RFLAGS, flags);
2907 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2908 update_exception_bitmap(vcpu);
2909
2910 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2911 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2912 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2913 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2914 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2915 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2916
2917 kvm_mmu_reset_context(vcpu);
2918 }
2919
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2920 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2921 {
2922 struct vcpu_vmx *vmx = to_vmx(vcpu);
2923 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2924
2925 /* Nothing to do if hardware doesn't support EFER. */
2926 if (!msr)
2927 return 0;
2928
2929 vcpu->arch.efer = efer;
2930 if (efer & EFER_LMA) {
2931 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2932 msr->data = efer;
2933 } else {
2934 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2935
2936 msr->data = efer & ~EFER_LME;
2937 }
2938 setup_msrs(vmx);
2939 return 0;
2940 }
2941
2942 #ifdef CONFIG_X86_64
2943
enter_lmode(struct kvm_vcpu * vcpu)2944 static void enter_lmode(struct kvm_vcpu *vcpu)
2945 {
2946 u32 guest_tr_ar;
2947
2948 vmx_segment_cache_clear(to_vmx(vcpu));
2949
2950 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2951 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2952 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2953 __func__);
2954 vmcs_write32(GUEST_TR_AR_BYTES,
2955 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2956 | VMX_AR_TYPE_BUSY_64_TSS);
2957 }
2958 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2959 }
2960
exit_lmode(struct kvm_vcpu * vcpu)2961 static void exit_lmode(struct kvm_vcpu *vcpu)
2962 {
2963 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2964 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2965 }
2966
2967 #endif
2968
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2969 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2970 {
2971 struct vcpu_vmx *vmx = to_vmx(vcpu);
2972
2973 /*
2974 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2975 * the CPU is not required to invalidate guest-physical mappings on
2976 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2977 * associated with the root EPT structure and not any particular VPID
2978 * (INVVPID also isn't required to invalidate guest-physical mappings).
2979 */
2980 if (enable_ept) {
2981 ept_sync_global();
2982 } else if (enable_vpid) {
2983 if (cpu_has_vmx_invvpid_global()) {
2984 vpid_sync_vcpu_global();
2985 } else {
2986 vpid_sync_vcpu_single(vmx->vpid);
2987 vpid_sync_vcpu_single(vmx->nested.vpid02);
2988 }
2989 }
2990 }
2991
vmx_get_current_vpid(struct kvm_vcpu * vcpu)2992 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2993 {
2994 if (is_guest_mode(vcpu))
2995 return nested_get_vpid02(vcpu);
2996 return to_vmx(vcpu)->vpid;
2997 }
2998
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)2999 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3000 {
3001 struct kvm_mmu *mmu = vcpu->arch.mmu;
3002 u64 root_hpa = mmu->root_hpa;
3003
3004 /* No flush required if the current context is invalid. */
3005 if (!VALID_PAGE(root_hpa))
3006 return;
3007
3008 if (enable_ept)
3009 ept_sync_context(construct_eptp(vcpu, root_hpa,
3010 mmu->shadow_root_level));
3011 else
3012 vpid_sync_context(vmx_get_current_vpid(vcpu));
3013 }
3014
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3015 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3016 {
3017 /*
3018 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3019 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3020 */
3021 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3022 }
3023
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3024 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3025 {
3026 /*
3027 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3028 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3029 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3030 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3031 * i.e. no explicit INVVPID is necessary.
3032 */
3033 vpid_sync_context(vmx_get_current_vpid(vcpu));
3034 }
3035
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3036 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3037 {
3038 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3039
3040 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3041 return;
3042
3043 if (is_pae_paging(vcpu)) {
3044 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3045 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3046 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3047 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3048 }
3049 }
3050
ept_save_pdptrs(struct kvm_vcpu * vcpu)3051 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3052 {
3053 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3054
3055 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3056 return;
3057
3058 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3059 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3060 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3061 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3062
3063 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3064 }
3065
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3066 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3067 unsigned long cr0,
3068 struct kvm_vcpu *vcpu)
3069 {
3070 struct vcpu_vmx *vmx = to_vmx(vcpu);
3071
3072 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3073 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3074 if (!(cr0 & X86_CR0_PG)) {
3075 /* From paging/starting to nonpaging */
3076 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3077 CPU_BASED_CR3_STORE_EXITING);
3078 vcpu->arch.cr0 = cr0;
3079 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3080 } else if (!is_paging(vcpu)) {
3081 /* From nonpaging to paging */
3082 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3083 CPU_BASED_CR3_STORE_EXITING);
3084 vcpu->arch.cr0 = cr0;
3085 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3086 }
3087
3088 if (!(cr0 & X86_CR0_WP))
3089 *hw_cr0 &= ~X86_CR0_WP;
3090 }
3091
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3092 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3093 {
3094 struct vcpu_vmx *vmx = to_vmx(vcpu);
3095 unsigned long hw_cr0;
3096
3097 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3098 if (is_unrestricted_guest(vcpu))
3099 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3100 else {
3101 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3102
3103 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3104 enter_pmode(vcpu);
3105
3106 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3107 enter_rmode(vcpu);
3108 }
3109
3110 #ifdef CONFIG_X86_64
3111 if (vcpu->arch.efer & EFER_LME) {
3112 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3113 enter_lmode(vcpu);
3114 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3115 exit_lmode(vcpu);
3116 }
3117 #endif
3118
3119 if (enable_ept && !is_unrestricted_guest(vcpu))
3120 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3121
3122 vmcs_writel(CR0_READ_SHADOW, cr0);
3123 vmcs_writel(GUEST_CR0, hw_cr0);
3124 vcpu->arch.cr0 = cr0;
3125 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3126
3127 /* depends on vcpu->arch.cr0 to be set to a new value */
3128 vmx->emulation_required = emulation_required(vcpu);
3129 }
3130
vmx_get_max_tdp_level(void)3131 static int vmx_get_max_tdp_level(void)
3132 {
3133 if (cpu_has_vmx_ept_5levels())
3134 return 5;
3135 return 4;
3136 }
3137
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3138 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3139 int root_level)
3140 {
3141 u64 eptp = VMX_EPTP_MT_WB;
3142
3143 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3144
3145 if (enable_ept_ad_bits &&
3146 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3147 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3148 eptp |= (root_hpa & PAGE_MASK);
3149
3150 return eptp;
3151 }
3152
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3153 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3154 int pgd_level)
3155 {
3156 struct kvm *kvm = vcpu->kvm;
3157 bool update_guest_cr3 = true;
3158 unsigned long guest_cr3;
3159 u64 eptp;
3160
3161 if (enable_ept) {
3162 eptp = construct_eptp(vcpu, pgd, pgd_level);
3163 vmcs_write64(EPT_POINTER, eptp);
3164
3165 if (kvm_x86_ops.tlb_remote_flush) {
3166 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3167 to_vmx(vcpu)->ept_pointer = eptp;
3168 to_kvm_vmx(kvm)->ept_pointers_match
3169 = EPT_POINTERS_CHECK;
3170 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3171 }
3172
3173 if (!enable_unrestricted_guest && !is_paging(vcpu))
3174 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3175 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3176 guest_cr3 = vcpu->arch.cr3;
3177 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3178 update_guest_cr3 = false;
3179 vmx_ept_load_pdptrs(vcpu);
3180 } else {
3181 guest_cr3 = pgd;
3182 }
3183
3184 if (update_guest_cr3)
3185 vmcs_writel(GUEST_CR3, guest_cr3);
3186 }
3187
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3188 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3189 {
3190 struct vcpu_vmx *vmx = to_vmx(vcpu);
3191 /*
3192 * Pass through host's Machine Check Enable value to hw_cr4, which
3193 * is in force while we are in guest mode. Do not let guests control
3194 * this bit, even if host CR4.MCE == 0.
3195 */
3196 unsigned long hw_cr4;
3197
3198 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3199 if (is_unrestricted_guest(vcpu))
3200 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3201 else if (vmx->rmode.vm86_active)
3202 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3203 else
3204 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3205
3206 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3207 if (cr4 & X86_CR4_UMIP) {
3208 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3209 hw_cr4 &= ~X86_CR4_UMIP;
3210 } else if (!is_guest_mode(vcpu) ||
3211 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3212 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3213 }
3214 }
3215
3216 if (cr4 & X86_CR4_VMXE) {
3217 /*
3218 * To use VMXON (and later other VMX instructions), a guest
3219 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3220 * So basically the check on whether to allow nested VMX
3221 * is here. We operate under the default treatment of SMM,
3222 * so VMX cannot be enabled under SMM.
3223 */
3224 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3225 return 1;
3226 }
3227
3228 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3229 return 1;
3230
3231 vcpu->arch.cr4 = cr4;
3232 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3233
3234 if (!is_unrestricted_guest(vcpu)) {
3235 if (enable_ept) {
3236 if (!is_paging(vcpu)) {
3237 hw_cr4 &= ~X86_CR4_PAE;
3238 hw_cr4 |= X86_CR4_PSE;
3239 } else if (!(cr4 & X86_CR4_PAE)) {
3240 hw_cr4 &= ~X86_CR4_PAE;
3241 }
3242 }
3243
3244 /*
3245 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3246 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3247 * to be manually disabled when guest switches to non-paging
3248 * mode.
3249 *
3250 * If !enable_unrestricted_guest, the CPU is always running
3251 * with CR0.PG=1 and CR4 needs to be modified.
3252 * If enable_unrestricted_guest, the CPU automatically
3253 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3254 */
3255 if (!is_paging(vcpu))
3256 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3257 }
3258
3259 vmcs_writel(CR4_READ_SHADOW, cr4);
3260 vmcs_writel(GUEST_CR4, hw_cr4);
3261 return 0;
3262 }
3263
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3264 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3265 {
3266 struct vcpu_vmx *vmx = to_vmx(vcpu);
3267 u32 ar;
3268
3269 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3270 *var = vmx->rmode.segs[seg];
3271 if (seg == VCPU_SREG_TR
3272 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3273 return;
3274 var->base = vmx_read_guest_seg_base(vmx, seg);
3275 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3276 return;
3277 }
3278 var->base = vmx_read_guest_seg_base(vmx, seg);
3279 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3280 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3281 ar = vmx_read_guest_seg_ar(vmx, seg);
3282 var->unusable = (ar >> 16) & 1;
3283 var->type = ar & 15;
3284 var->s = (ar >> 4) & 1;
3285 var->dpl = (ar >> 5) & 3;
3286 /*
3287 * Some userspaces do not preserve unusable property. Since usable
3288 * segment has to be present according to VMX spec we can use present
3289 * property to amend userspace bug by making unusable segment always
3290 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3291 * segment as unusable.
3292 */
3293 var->present = !var->unusable;
3294 var->avl = (ar >> 12) & 1;
3295 var->l = (ar >> 13) & 1;
3296 var->db = (ar >> 14) & 1;
3297 var->g = (ar >> 15) & 1;
3298 }
3299
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3300 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3301 {
3302 struct kvm_segment s;
3303
3304 if (to_vmx(vcpu)->rmode.vm86_active) {
3305 vmx_get_segment(vcpu, &s, seg);
3306 return s.base;
3307 }
3308 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3309 }
3310
vmx_get_cpl(struct kvm_vcpu * vcpu)3311 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3312 {
3313 struct vcpu_vmx *vmx = to_vmx(vcpu);
3314
3315 if (unlikely(vmx->rmode.vm86_active))
3316 return 0;
3317 else {
3318 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3319 return VMX_AR_DPL(ar);
3320 }
3321 }
3322
vmx_segment_access_rights(struct kvm_segment * var)3323 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3324 {
3325 u32 ar;
3326
3327 if (var->unusable || !var->present)
3328 ar = 1 << 16;
3329 else {
3330 ar = var->type & 15;
3331 ar |= (var->s & 1) << 4;
3332 ar |= (var->dpl & 3) << 5;
3333 ar |= (var->present & 1) << 7;
3334 ar |= (var->avl & 1) << 12;
3335 ar |= (var->l & 1) << 13;
3336 ar |= (var->db & 1) << 14;
3337 ar |= (var->g & 1) << 15;
3338 }
3339
3340 return ar;
3341 }
3342
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3343 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3344 {
3345 struct vcpu_vmx *vmx = to_vmx(vcpu);
3346 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3347
3348 vmx_segment_cache_clear(vmx);
3349
3350 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3351 vmx->rmode.segs[seg] = *var;
3352 if (seg == VCPU_SREG_TR)
3353 vmcs_write16(sf->selector, var->selector);
3354 else if (var->s)
3355 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3356 goto out;
3357 }
3358
3359 vmcs_writel(sf->base, var->base);
3360 vmcs_write32(sf->limit, var->limit);
3361 vmcs_write16(sf->selector, var->selector);
3362
3363 /*
3364 * Fix the "Accessed" bit in AR field of segment registers for older
3365 * qemu binaries.
3366 * IA32 arch specifies that at the time of processor reset the
3367 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3368 * is setting it to 0 in the userland code. This causes invalid guest
3369 * state vmexit when "unrestricted guest" mode is turned on.
3370 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3371 * tree. Newer qemu binaries with that qemu fix would not need this
3372 * kvm hack.
3373 */
3374 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3375 var->type |= 0x1; /* Accessed */
3376
3377 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3378
3379 out:
3380 vmx->emulation_required = emulation_required(vcpu);
3381 }
3382
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3383 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3384 {
3385 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3386
3387 *db = (ar >> 14) & 1;
3388 *l = (ar >> 13) & 1;
3389 }
3390
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3391 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3392 {
3393 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3394 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3395 }
3396
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3397 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3398 {
3399 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3400 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3401 }
3402
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3403 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3404 {
3405 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3406 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3407 }
3408
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3409 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3410 {
3411 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3412 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3413 }
3414
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3415 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3416 {
3417 struct kvm_segment var;
3418 u32 ar;
3419
3420 vmx_get_segment(vcpu, &var, seg);
3421 var.dpl = 0x3;
3422 if (seg == VCPU_SREG_CS)
3423 var.type = 0x3;
3424 ar = vmx_segment_access_rights(&var);
3425
3426 if (var.base != (var.selector << 4))
3427 return false;
3428 if (var.limit != 0xffff)
3429 return false;
3430 if (ar != 0xf3)
3431 return false;
3432
3433 return true;
3434 }
3435
code_segment_valid(struct kvm_vcpu * vcpu)3436 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3437 {
3438 struct kvm_segment cs;
3439 unsigned int cs_rpl;
3440
3441 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3442 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3443
3444 if (cs.unusable)
3445 return false;
3446 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3447 return false;
3448 if (!cs.s)
3449 return false;
3450 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3451 if (cs.dpl > cs_rpl)
3452 return false;
3453 } else {
3454 if (cs.dpl != cs_rpl)
3455 return false;
3456 }
3457 if (!cs.present)
3458 return false;
3459
3460 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3461 return true;
3462 }
3463
stack_segment_valid(struct kvm_vcpu * vcpu)3464 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3465 {
3466 struct kvm_segment ss;
3467 unsigned int ss_rpl;
3468
3469 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3470 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3471
3472 if (ss.unusable)
3473 return true;
3474 if (ss.type != 3 && ss.type != 7)
3475 return false;
3476 if (!ss.s)
3477 return false;
3478 if (ss.dpl != ss_rpl) /* DPL != RPL */
3479 return false;
3480 if (!ss.present)
3481 return false;
3482
3483 return true;
3484 }
3485
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3486 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3487 {
3488 struct kvm_segment var;
3489 unsigned int rpl;
3490
3491 vmx_get_segment(vcpu, &var, seg);
3492 rpl = var.selector & SEGMENT_RPL_MASK;
3493
3494 if (var.unusable)
3495 return true;
3496 if (!var.s)
3497 return false;
3498 if (!var.present)
3499 return false;
3500 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3501 if (var.dpl < rpl) /* DPL < RPL */
3502 return false;
3503 }
3504
3505 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3506 * rights flags
3507 */
3508 return true;
3509 }
3510
tr_valid(struct kvm_vcpu * vcpu)3511 static bool tr_valid(struct kvm_vcpu *vcpu)
3512 {
3513 struct kvm_segment tr;
3514
3515 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3516
3517 if (tr.unusable)
3518 return false;
3519 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3520 return false;
3521 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3522 return false;
3523 if (!tr.present)
3524 return false;
3525
3526 return true;
3527 }
3528
ldtr_valid(struct kvm_vcpu * vcpu)3529 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3530 {
3531 struct kvm_segment ldtr;
3532
3533 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3534
3535 if (ldtr.unusable)
3536 return true;
3537 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3538 return false;
3539 if (ldtr.type != 2)
3540 return false;
3541 if (!ldtr.present)
3542 return false;
3543
3544 return true;
3545 }
3546
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3547 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3548 {
3549 struct kvm_segment cs, ss;
3550
3551 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3552 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3553
3554 return ((cs.selector & SEGMENT_RPL_MASK) ==
3555 (ss.selector & SEGMENT_RPL_MASK));
3556 }
3557
3558 /*
3559 * Check if guest state is valid. Returns true if valid, false if
3560 * not.
3561 * We assume that registers are always usable
3562 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3563 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3564 {
3565 /* real mode guest state checks */
3566 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3567 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3568 return false;
3569 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3570 return false;
3571 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3572 return false;
3573 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3574 return false;
3575 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3576 return false;
3577 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3578 return false;
3579 } else {
3580 /* protected mode guest state checks */
3581 if (!cs_ss_rpl_check(vcpu))
3582 return false;
3583 if (!code_segment_valid(vcpu))
3584 return false;
3585 if (!stack_segment_valid(vcpu))
3586 return false;
3587 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3588 return false;
3589 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3590 return false;
3591 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3592 return false;
3593 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3594 return false;
3595 if (!tr_valid(vcpu))
3596 return false;
3597 if (!ldtr_valid(vcpu))
3598 return false;
3599 }
3600 /* TODO:
3601 * - Add checks on RIP
3602 * - Add checks on RFLAGS
3603 */
3604
3605 return true;
3606 }
3607
init_rmode_tss(struct kvm * kvm)3608 static int init_rmode_tss(struct kvm *kvm)
3609 {
3610 gfn_t fn;
3611 u16 data = 0;
3612 int idx, r;
3613
3614 idx = srcu_read_lock(&kvm->srcu);
3615 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3616 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3617 if (r < 0)
3618 goto out;
3619 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3620 r = kvm_write_guest_page(kvm, fn++, &data,
3621 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3622 if (r < 0)
3623 goto out;
3624 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3625 if (r < 0)
3626 goto out;
3627 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3628 if (r < 0)
3629 goto out;
3630 data = ~0;
3631 r = kvm_write_guest_page(kvm, fn, &data,
3632 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3633 sizeof(u8));
3634 out:
3635 srcu_read_unlock(&kvm->srcu, idx);
3636 return r;
3637 }
3638
init_rmode_identity_map(struct kvm * kvm)3639 static int init_rmode_identity_map(struct kvm *kvm)
3640 {
3641 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3642 int i, r = 0;
3643 kvm_pfn_t identity_map_pfn;
3644 u32 tmp;
3645
3646 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3647 mutex_lock(&kvm->slots_lock);
3648
3649 if (likely(kvm_vmx->ept_identity_pagetable_done))
3650 goto out;
3651
3652 if (!kvm_vmx->ept_identity_map_addr)
3653 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3654 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3655
3656 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3657 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3658 if (r < 0)
3659 goto out;
3660
3661 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3662 if (r < 0)
3663 goto out;
3664 /* Set up identity-mapping pagetable for EPT in real mode */
3665 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3666 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3667 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3668 r = kvm_write_guest_page(kvm, identity_map_pfn,
3669 &tmp, i * sizeof(tmp), sizeof(tmp));
3670 if (r < 0)
3671 goto out;
3672 }
3673 kvm_vmx->ept_identity_pagetable_done = true;
3674
3675 out:
3676 mutex_unlock(&kvm->slots_lock);
3677 return r;
3678 }
3679
seg_setup(int seg)3680 static void seg_setup(int seg)
3681 {
3682 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3683 unsigned int ar;
3684
3685 vmcs_write16(sf->selector, 0);
3686 vmcs_writel(sf->base, 0);
3687 vmcs_write32(sf->limit, 0xffff);
3688 ar = 0x93;
3689 if (seg == VCPU_SREG_CS)
3690 ar |= 0x08; /* code segment */
3691
3692 vmcs_write32(sf->ar_bytes, ar);
3693 }
3694
alloc_apic_access_page(struct kvm * kvm)3695 static int alloc_apic_access_page(struct kvm *kvm)
3696 {
3697 struct page *page;
3698 int r = 0;
3699
3700 mutex_lock(&kvm->slots_lock);
3701 if (kvm->arch.apic_access_page_done)
3702 goto out;
3703 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3704 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3705 if (r)
3706 goto out;
3707
3708 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3709 if (is_error_page(page)) {
3710 r = -EFAULT;
3711 goto out;
3712 }
3713
3714 /*
3715 * Do not pin the page in memory, so that memory hot-unplug
3716 * is able to migrate it.
3717 */
3718 put_page(page);
3719 kvm->arch.apic_access_page_done = true;
3720 out:
3721 mutex_unlock(&kvm->slots_lock);
3722 return r;
3723 }
3724
allocate_vpid(void)3725 int allocate_vpid(void)
3726 {
3727 int vpid;
3728
3729 if (!enable_vpid)
3730 return 0;
3731 spin_lock(&vmx_vpid_lock);
3732 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3733 if (vpid < VMX_NR_VPIDS)
3734 __set_bit(vpid, vmx_vpid_bitmap);
3735 else
3736 vpid = 0;
3737 spin_unlock(&vmx_vpid_lock);
3738 return vpid;
3739 }
3740
free_vpid(int vpid)3741 void free_vpid(int vpid)
3742 {
3743 if (!enable_vpid || vpid == 0)
3744 return;
3745 spin_lock(&vmx_vpid_lock);
3746 __clear_bit(vpid, vmx_vpid_bitmap);
3747 spin_unlock(&vmx_vpid_lock);
3748 }
3749
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3750 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3751 {
3752 int f = sizeof(unsigned long);
3753
3754 if (msr <= 0x1fff)
3755 __clear_bit(msr, msr_bitmap + 0x000 / f);
3756 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3757 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3758 }
3759
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3760 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3761 {
3762 int f = sizeof(unsigned long);
3763
3764 if (msr <= 0x1fff)
3765 __clear_bit(msr, msr_bitmap + 0x800 / f);
3766 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3767 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3768 }
3769
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3770 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3771 {
3772 int f = sizeof(unsigned long);
3773
3774 if (msr <= 0x1fff)
3775 __set_bit(msr, msr_bitmap + 0x000 / f);
3776 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3777 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3778 }
3779
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3780 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3781 {
3782 int f = sizeof(unsigned long);
3783
3784 if (msr <= 0x1fff)
3785 __set_bit(msr, msr_bitmap + 0x800 / f);
3786 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3787 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3788 }
3789
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3790 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3791 u32 msr, int type)
3792 {
3793 struct vcpu_vmx *vmx = to_vmx(vcpu);
3794 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3795
3796 if (!cpu_has_vmx_msr_bitmap())
3797 return;
3798
3799 if (static_branch_unlikely(&enable_evmcs))
3800 evmcs_touch_msr_bitmap();
3801
3802 /*
3803 * Mark the desired intercept state in shadow bitmap, this is needed
3804 * for resync when the MSR filters change.
3805 */
3806 if (is_valid_passthrough_msr(msr)) {
3807 int idx = possible_passthrough_msr_slot(msr);
3808
3809 if (idx != -ENOENT) {
3810 if (type & MSR_TYPE_R)
3811 clear_bit(idx, vmx->shadow_msr_intercept.read);
3812 if (type & MSR_TYPE_W)
3813 clear_bit(idx, vmx->shadow_msr_intercept.write);
3814 }
3815 }
3816
3817 if ((type & MSR_TYPE_R) &&
3818 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3819 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3820 type &= ~MSR_TYPE_R;
3821 }
3822
3823 if ((type & MSR_TYPE_W) &&
3824 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3825 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3826 type &= ~MSR_TYPE_W;
3827 }
3828
3829 if (type & MSR_TYPE_R)
3830 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3831
3832 if (type & MSR_TYPE_W)
3833 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3834 }
3835
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3836 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3837 u32 msr, int type)
3838 {
3839 struct vcpu_vmx *vmx = to_vmx(vcpu);
3840 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3841
3842 if (!cpu_has_vmx_msr_bitmap())
3843 return;
3844
3845 if (static_branch_unlikely(&enable_evmcs))
3846 evmcs_touch_msr_bitmap();
3847
3848 /*
3849 * Mark the desired intercept state in shadow bitmap, this is needed
3850 * for resync when the MSR filter changes.
3851 */
3852 if (is_valid_passthrough_msr(msr)) {
3853 int idx = possible_passthrough_msr_slot(msr);
3854
3855 if (idx != -ENOENT) {
3856 if (type & MSR_TYPE_R)
3857 set_bit(idx, vmx->shadow_msr_intercept.read);
3858 if (type & MSR_TYPE_W)
3859 set_bit(idx, vmx->shadow_msr_intercept.write);
3860 }
3861 }
3862
3863 if (type & MSR_TYPE_R)
3864 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3865
3866 if (type & MSR_TYPE_W)
3867 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3868 }
3869
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3870 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3871 u32 msr, int type, bool value)
3872 {
3873 if (value)
3874 vmx_enable_intercept_for_msr(vcpu, msr, type);
3875 else
3876 vmx_disable_intercept_for_msr(vcpu, msr, type);
3877 }
3878
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3879 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3880 {
3881 u8 mode = 0;
3882
3883 if (cpu_has_secondary_exec_ctrls() &&
3884 (secondary_exec_controls_get(to_vmx(vcpu)) &
3885 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3886 mode |= MSR_BITMAP_MODE_X2APIC;
3887 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3888 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3889 }
3890
3891 return mode;
3892 }
3893
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3894 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3895 {
3896 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3897 unsigned long read_intercept;
3898 int msr;
3899
3900 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3901
3902 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3903 unsigned int read_idx = msr / BITS_PER_LONG;
3904 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3905
3906 msr_bitmap[read_idx] = read_intercept;
3907 msr_bitmap[write_idx] = ~0ul;
3908 }
3909 }
3910
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3911 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3912 {
3913 if (!cpu_has_vmx_msr_bitmap())
3914 return;
3915
3916 vmx_reset_x2apic_msrs(vcpu, mode);
3917
3918 /*
3919 * TPR reads and writes can be virtualized even if virtual interrupt
3920 * delivery is not in use.
3921 */
3922 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3923 !(mode & MSR_BITMAP_MODE_X2APIC));
3924
3925 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3926 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3927 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3928 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3929 }
3930 }
3931
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3932 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3933 {
3934 struct vcpu_vmx *vmx = to_vmx(vcpu);
3935 u8 mode = vmx_msr_bitmap_mode(vcpu);
3936 u8 changed = mode ^ vmx->msr_bitmap_mode;
3937
3938 if (!changed)
3939 return;
3940
3941 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3942 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3943
3944 vmx->msr_bitmap_mode = mode;
3945 }
3946
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3947 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3948 {
3949 struct vcpu_vmx *vmx = to_vmx(vcpu);
3950 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3951 u32 i;
3952
3953 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3954 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3955 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3956 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3957 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3958 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3959 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3960 }
3961 }
3962
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3963 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3964 {
3965 struct vcpu_vmx *vmx = to_vmx(vcpu);
3966 void *vapic_page;
3967 u32 vppr;
3968 int rvi;
3969
3970 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3971 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3972 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3973 return false;
3974
3975 rvi = vmx_get_rvi();
3976
3977 vapic_page = vmx->nested.virtual_apic_map.hva;
3978 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3979
3980 return ((rvi & 0xf0) > (vppr & 0xf0));
3981 }
3982
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3983 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3984 {
3985 struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 u32 i;
3987
3988 /*
3989 * Set intercept permissions for all potentially passed through MSRs
3990 * again. They will automatically get filtered through the MSR filter,
3991 * so we are back in sync after this.
3992 */
3993 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3994 u32 msr = vmx_possible_passthrough_msrs[i];
3995 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3996 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3997
3998 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3999 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4000 }
4001
4002 pt_update_intercept_for_msr(vcpu);
4003 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4004 }
4005
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4006 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4007 bool nested)
4008 {
4009 #ifdef CONFIG_SMP
4010 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4011
4012 if (vcpu->mode == IN_GUEST_MODE) {
4013 /*
4014 * The vector of interrupt to be delivered to vcpu had
4015 * been set in PIR before this function.
4016 *
4017 * Following cases will be reached in this block, and
4018 * we always send a notification event in all cases as
4019 * explained below.
4020 *
4021 * Case 1: vcpu keeps in non-root mode. Sending a
4022 * notification event posts the interrupt to vcpu.
4023 *
4024 * Case 2: vcpu exits to root mode and is still
4025 * runnable. PIR will be synced to vIRR before the
4026 * next vcpu entry. Sending a notification event in
4027 * this case has no effect, as vcpu is not in root
4028 * mode.
4029 *
4030 * Case 3: vcpu exits to root mode and is blocked.
4031 * vcpu_block() has already synced PIR to vIRR and
4032 * never blocks vcpu if vIRR is not cleared. Therefore,
4033 * a blocked vcpu here does not wait for any requested
4034 * interrupts in PIR, and sending a notification event
4035 * which has no effect is safe here.
4036 */
4037
4038 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4039 return true;
4040 }
4041 #endif
4042 return false;
4043 }
4044
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4045 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4046 int vector)
4047 {
4048 struct vcpu_vmx *vmx = to_vmx(vcpu);
4049
4050 if (is_guest_mode(vcpu) &&
4051 vector == vmx->nested.posted_intr_nv) {
4052 /*
4053 * If a posted intr is not recognized by hardware,
4054 * we will accomplish it in the next vmentry.
4055 */
4056 vmx->nested.pi_pending = true;
4057 kvm_make_request(KVM_REQ_EVENT, vcpu);
4058 /* the PIR and ON have been set by L1. */
4059 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4060 kvm_vcpu_kick(vcpu);
4061 return 0;
4062 }
4063 return -1;
4064 }
4065 /*
4066 * Send interrupt to vcpu via posted interrupt way.
4067 * 1. If target vcpu is running(non-root mode), send posted interrupt
4068 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4069 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4070 * interrupt from PIR in next vmentry.
4071 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4072 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4073 {
4074 struct vcpu_vmx *vmx = to_vmx(vcpu);
4075 int r;
4076
4077 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4078 if (!r)
4079 return 0;
4080
4081 if (!vcpu->arch.apicv_active)
4082 return -1;
4083
4084 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4085 return 0;
4086
4087 /* If a previous notification has sent the IPI, nothing to do. */
4088 if (pi_test_and_set_on(&vmx->pi_desc))
4089 return 0;
4090
4091 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4092 kvm_vcpu_kick(vcpu);
4093
4094 return 0;
4095 }
4096
4097 /*
4098 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4099 * will not change in the lifetime of the guest.
4100 * Note that host-state that does change is set elsewhere. E.g., host-state
4101 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4102 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4103 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4104 {
4105 u32 low32, high32;
4106 unsigned long tmpl;
4107 unsigned long cr0, cr3, cr4;
4108
4109 cr0 = read_cr0();
4110 WARN_ON(cr0 & X86_CR0_TS);
4111 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4112
4113 /*
4114 * Save the most likely value for this task's CR3 in the VMCS.
4115 * We can't use __get_current_cr3_fast() because we're not atomic.
4116 */
4117 cr3 = __read_cr3();
4118 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4119 vmx->loaded_vmcs->host_state.cr3 = cr3;
4120
4121 /* Save the most likely value for this task's CR4 in the VMCS. */
4122 cr4 = cr4_read_shadow();
4123 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4124 vmx->loaded_vmcs->host_state.cr4 = cr4;
4125
4126 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4127 #ifdef CONFIG_X86_64
4128 /*
4129 * Load null selectors, so we can avoid reloading them in
4130 * vmx_prepare_switch_to_host(), in case userspace uses
4131 * the null selectors too (the expected case).
4132 */
4133 vmcs_write16(HOST_DS_SELECTOR, 0);
4134 vmcs_write16(HOST_ES_SELECTOR, 0);
4135 #else
4136 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4137 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4138 #endif
4139 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4140 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4141
4142 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4143
4144 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4145
4146 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4147 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4148 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4149 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4150
4151 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4152 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4153 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4154 }
4155
4156 if (cpu_has_load_ia32_efer())
4157 vmcs_write64(HOST_IA32_EFER, host_efer);
4158 }
4159
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4160 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4161 {
4162 struct kvm_vcpu *vcpu = &vmx->vcpu;
4163
4164 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4165 ~vcpu->arch.cr4_guest_rsvd_bits;
4166 if (!enable_ept)
4167 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4168 if (is_guest_mode(&vmx->vcpu))
4169 vcpu->arch.cr4_guest_owned_bits &=
4170 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4171 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4172 }
4173
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4174 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4175 {
4176 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4177
4178 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4179 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4180
4181 if (!enable_vnmi)
4182 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4183
4184 if (!enable_preemption_timer)
4185 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4186
4187 return pin_based_exec_ctrl;
4188 }
4189
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4190 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4191 {
4192 struct vcpu_vmx *vmx = to_vmx(vcpu);
4193
4194 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4195 if (cpu_has_secondary_exec_ctrls()) {
4196 if (kvm_vcpu_apicv_active(vcpu))
4197 secondary_exec_controls_setbit(vmx,
4198 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4199 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4200 else
4201 secondary_exec_controls_clearbit(vmx,
4202 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4203 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4204 }
4205
4206 if (cpu_has_vmx_msr_bitmap())
4207 vmx_update_msr_bitmap(vcpu);
4208 }
4209
vmx_exec_control(struct vcpu_vmx * vmx)4210 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4211 {
4212 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4213
4214 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4215 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4216
4217 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4218 exec_control &= ~CPU_BASED_TPR_SHADOW;
4219 #ifdef CONFIG_X86_64
4220 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4221 CPU_BASED_CR8_LOAD_EXITING;
4222 #endif
4223 }
4224 if (!enable_ept)
4225 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4226 CPU_BASED_CR3_LOAD_EXITING |
4227 CPU_BASED_INVLPG_EXITING;
4228 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4229 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4230 CPU_BASED_MONITOR_EXITING);
4231 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4232 exec_control &= ~CPU_BASED_HLT_EXITING;
4233 return exec_control;
4234 }
4235
4236 /*
4237 * Adjust a single secondary execution control bit to intercept/allow an
4238 * instruction in the guest. This is usually done based on whether or not a
4239 * feature has been exposed to the guest in order to correctly emulate faults.
4240 */
4241 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4242 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4243 u32 control, bool enabled, bool exiting)
4244 {
4245 /*
4246 * If the control is for an opt-in feature, clear the control if the
4247 * feature is not exposed to the guest, i.e. not enabled. If the
4248 * control is opt-out, i.e. an exiting control, clear the control if
4249 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4250 * disabled for the associated instruction. Note, the caller is
4251 * responsible presetting exec_control to set all supported bits.
4252 */
4253 if (enabled == exiting)
4254 *exec_control &= ~control;
4255
4256 /*
4257 * Update the nested MSR settings so that a nested VMM can/can't set
4258 * controls for features that are/aren't exposed to the guest.
4259 */
4260 if (nested) {
4261 if (enabled)
4262 vmx->nested.msrs.secondary_ctls_high |= control;
4263 else
4264 vmx->nested.msrs.secondary_ctls_high &= ~control;
4265 }
4266 }
4267
4268 /*
4269 * Wrapper macro for the common case of adjusting a secondary execution control
4270 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4271 * verifies that the control is actually supported by KVM and hardware.
4272 */
4273 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4274 ({ \
4275 bool __enabled; \
4276 \
4277 if (cpu_has_vmx_##name()) { \
4278 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4279 X86_FEATURE_##feat_name); \
4280 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4281 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4282 } \
4283 })
4284
4285 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4286 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4287 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4288
4289 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4290 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4291
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4292 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4293 {
4294 struct kvm_vcpu *vcpu = &vmx->vcpu;
4295
4296 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4297
4298 if (vmx_pt_mode_is_system())
4299 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4300 if (!cpu_need_virtualize_apic_accesses(vcpu))
4301 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4302 if (vmx->vpid == 0)
4303 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4304 if (!enable_ept) {
4305 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4306 enable_unrestricted_guest = 0;
4307 }
4308 if (!enable_unrestricted_guest)
4309 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4310 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4311 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4312 if (!kvm_vcpu_apicv_active(vcpu))
4313 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4314 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4315 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4316
4317 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4318 * in vmx_set_cr4. */
4319 exec_control &= ~SECONDARY_EXEC_DESC;
4320
4321 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4322 (handle_vmptrld).
4323 We can NOT enable shadow_vmcs here because we don't have yet
4324 a current VMCS12
4325 */
4326 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4327
4328 if (!enable_pml)
4329 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4330
4331 if (cpu_has_vmx_xsaves()) {
4332 /* Exposing XSAVES only when XSAVE is exposed */
4333 bool xsaves_enabled =
4334 boot_cpu_has(X86_FEATURE_XSAVE) &&
4335 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4336 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4337
4338 vcpu->arch.xsaves_enabled = xsaves_enabled;
4339
4340 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4341 SECONDARY_EXEC_XSAVES,
4342 xsaves_enabled, false);
4343 }
4344
4345 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4346
4347 /*
4348 * Expose INVPCID if and only if PCID is also exposed to the guest.
4349 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4350 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4351 * behavior from the guest perspective (it would expect #GP or #PF).
4352 */
4353 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4354 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4355 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4356
4357
4358 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4359 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4360
4361 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4362 ENABLE_USR_WAIT_PAUSE, false);
4363
4364 vmx->secondary_exec_control = exec_control;
4365 }
4366
ept_set_mmio_spte_mask(void)4367 static void ept_set_mmio_spte_mask(void)
4368 {
4369 /*
4370 * EPT Misconfigurations can be generated if the value of bits 2:0
4371 * of an EPT paging-structure entry is 110b (write/execute).
4372 */
4373 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4374 }
4375
4376 #define VMX_XSS_EXIT_BITMAP 0
4377
4378 /*
4379 * Noting that the initialization of Guest-state Area of VMCS is in
4380 * vmx_vcpu_reset().
4381 */
init_vmcs(struct vcpu_vmx * vmx)4382 static void init_vmcs(struct vcpu_vmx *vmx)
4383 {
4384 if (nested)
4385 nested_vmx_set_vmcs_shadowing_bitmap();
4386
4387 if (cpu_has_vmx_msr_bitmap())
4388 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4389
4390 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4391
4392 /* Control */
4393 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4394
4395 exec_controls_set(vmx, vmx_exec_control(vmx));
4396
4397 if (cpu_has_secondary_exec_ctrls()) {
4398 vmx_compute_secondary_exec_control(vmx);
4399 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4400 }
4401
4402 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4403 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4404 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4405 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4406 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4407
4408 vmcs_write16(GUEST_INTR_STATUS, 0);
4409
4410 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4411 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4412 }
4413
4414 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4415 vmcs_write32(PLE_GAP, ple_gap);
4416 vmx->ple_window = ple_window;
4417 vmx->ple_window_dirty = true;
4418 }
4419
4420 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4421 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4422 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4423
4424 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4425 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4426 vmx_set_constant_host_state(vmx);
4427 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4428 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4429
4430 if (cpu_has_vmx_vmfunc())
4431 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4432
4433 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4434 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4435 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4436 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4437 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4438
4439 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4440 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4441
4442 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4443
4444 /* 22.2.1, 20.8.1 */
4445 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4446
4447 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4448 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4449
4450 set_cr4_guest_host_mask(vmx);
4451
4452 if (vmx->vpid != 0)
4453 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4454
4455 if (cpu_has_vmx_xsaves())
4456 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4457
4458 if (enable_pml) {
4459 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4460 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4461 }
4462
4463 if (cpu_has_vmx_encls_vmexit())
4464 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4465
4466 if (vmx_pt_mode_is_host_guest()) {
4467 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4468 /* Bit[6~0] are forced to 1, writes are ignored. */
4469 vmx->pt_desc.guest.output_mask = 0x7F;
4470 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4471 }
4472 }
4473
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4474 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4475 {
4476 struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 struct msr_data apic_base_msr;
4478 u64 cr0;
4479
4480 vmx->rmode.vm86_active = 0;
4481 vmx->spec_ctrl = 0;
4482
4483 vmx->msr_ia32_umwait_control = 0;
4484
4485 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4486 vmx->hv_deadline_tsc = -1;
4487 kvm_set_cr8(vcpu, 0);
4488
4489 if (!init_event) {
4490 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4491 MSR_IA32_APICBASE_ENABLE;
4492 if (kvm_vcpu_is_reset_bsp(vcpu))
4493 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4494 apic_base_msr.host_initiated = true;
4495 kvm_set_apic_base(vcpu, &apic_base_msr);
4496 }
4497
4498 vmx_segment_cache_clear(vmx);
4499
4500 seg_setup(VCPU_SREG_CS);
4501 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4502 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4503
4504 seg_setup(VCPU_SREG_DS);
4505 seg_setup(VCPU_SREG_ES);
4506 seg_setup(VCPU_SREG_FS);
4507 seg_setup(VCPU_SREG_GS);
4508 seg_setup(VCPU_SREG_SS);
4509
4510 vmcs_write16(GUEST_TR_SELECTOR, 0);
4511 vmcs_writel(GUEST_TR_BASE, 0);
4512 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4513 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4514
4515 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4516 vmcs_writel(GUEST_LDTR_BASE, 0);
4517 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4518 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4519
4520 if (!init_event) {
4521 vmcs_write32(GUEST_SYSENTER_CS, 0);
4522 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4523 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4524 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4525 }
4526
4527 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4528 kvm_rip_write(vcpu, 0xfff0);
4529
4530 vmcs_writel(GUEST_GDTR_BASE, 0);
4531 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4532
4533 vmcs_writel(GUEST_IDTR_BASE, 0);
4534 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4535
4536 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4537 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4538 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4539 if (kvm_mpx_supported())
4540 vmcs_write64(GUEST_BNDCFGS, 0);
4541
4542 setup_msrs(vmx);
4543
4544 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4545
4546 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4547 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4548 if (cpu_need_tpr_shadow(vcpu))
4549 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4550 __pa(vcpu->arch.apic->regs));
4551 vmcs_write32(TPR_THRESHOLD, 0);
4552 }
4553
4554 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4555
4556 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4557 vmx->vcpu.arch.cr0 = cr0;
4558 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4559 vmx_set_cr4(vcpu, 0);
4560 vmx_set_efer(vcpu, 0);
4561
4562 update_exception_bitmap(vcpu);
4563
4564 vpid_sync_context(vmx->vpid);
4565 if (init_event)
4566 vmx_clear_hlt(vcpu);
4567
4568 vmx_update_fb_clear_dis(vcpu, vmx);
4569 }
4570
enable_irq_window(struct kvm_vcpu * vcpu)4571 static void enable_irq_window(struct kvm_vcpu *vcpu)
4572 {
4573 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4574 }
4575
enable_nmi_window(struct kvm_vcpu * vcpu)4576 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4577 {
4578 if (!enable_vnmi ||
4579 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4580 enable_irq_window(vcpu);
4581 return;
4582 }
4583
4584 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4585 }
4586
vmx_inject_irq(struct kvm_vcpu * vcpu)4587 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4588 {
4589 struct vcpu_vmx *vmx = to_vmx(vcpu);
4590 uint32_t intr;
4591 int irq = vcpu->arch.interrupt.nr;
4592
4593 trace_kvm_inj_virq(irq);
4594
4595 ++vcpu->stat.irq_injections;
4596 if (vmx->rmode.vm86_active) {
4597 int inc_eip = 0;
4598 if (vcpu->arch.interrupt.soft)
4599 inc_eip = vcpu->arch.event_exit_inst_len;
4600 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4601 return;
4602 }
4603 intr = irq | INTR_INFO_VALID_MASK;
4604 if (vcpu->arch.interrupt.soft) {
4605 intr |= INTR_TYPE_SOFT_INTR;
4606 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4607 vmx->vcpu.arch.event_exit_inst_len);
4608 } else
4609 intr |= INTR_TYPE_EXT_INTR;
4610 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4611
4612 vmx_clear_hlt(vcpu);
4613 }
4614
vmx_inject_nmi(struct kvm_vcpu * vcpu)4615 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4616 {
4617 struct vcpu_vmx *vmx = to_vmx(vcpu);
4618
4619 if (!enable_vnmi) {
4620 /*
4621 * Tracking the NMI-blocked state in software is built upon
4622 * finding the next open IRQ window. This, in turn, depends on
4623 * well-behaving guests: They have to keep IRQs disabled at
4624 * least as long as the NMI handler runs. Otherwise we may
4625 * cause NMI nesting, maybe breaking the guest. But as this is
4626 * highly unlikely, we can live with the residual risk.
4627 */
4628 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4629 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4630 }
4631
4632 ++vcpu->stat.nmi_injections;
4633 vmx->loaded_vmcs->nmi_known_unmasked = false;
4634
4635 if (vmx->rmode.vm86_active) {
4636 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4637 return;
4638 }
4639
4640 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4641 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4642
4643 vmx_clear_hlt(vcpu);
4644 }
4645
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4646 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4647 {
4648 struct vcpu_vmx *vmx = to_vmx(vcpu);
4649 bool masked;
4650
4651 if (!enable_vnmi)
4652 return vmx->loaded_vmcs->soft_vnmi_blocked;
4653 if (vmx->loaded_vmcs->nmi_known_unmasked)
4654 return false;
4655 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4656 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4657 return masked;
4658 }
4659
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4660 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4661 {
4662 struct vcpu_vmx *vmx = to_vmx(vcpu);
4663
4664 if (!enable_vnmi) {
4665 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4666 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4667 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4668 }
4669 } else {
4670 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4671 if (masked)
4672 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4673 GUEST_INTR_STATE_NMI);
4674 else
4675 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4676 GUEST_INTR_STATE_NMI);
4677 }
4678 }
4679
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4680 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4681 {
4682 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4683 return false;
4684
4685 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4686 return true;
4687
4688 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4689 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4690 GUEST_INTR_STATE_NMI));
4691 }
4692
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4693 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4694 {
4695 if (to_vmx(vcpu)->nested.nested_run_pending)
4696 return -EBUSY;
4697
4698 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4699 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4700 return -EBUSY;
4701
4702 return !vmx_nmi_blocked(vcpu);
4703 }
4704
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4705 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4706 {
4707 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4708 return false;
4709
4710 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4711 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4712 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4713 }
4714
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4715 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4716 {
4717 if (to_vmx(vcpu)->nested.nested_run_pending)
4718 return -EBUSY;
4719
4720 /*
4721 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4722 * e.g. if the IRQ arrived asynchronously after checking nested events.
4723 */
4724 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4725 return -EBUSY;
4726
4727 return !vmx_interrupt_blocked(vcpu);
4728 }
4729
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4730 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4731 {
4732 int ret;
4733
4734 if (enable_unrestricted_guest)
4735 return 0;
4736
4737 mutex_lock(&kvm->slots_lock);
4738 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4739 PAGE_SIZE * 3);
4740 mutex_unlock(&kvm->slots_lock);
4741
4742 if (ret)
4743 return ret;
4744 to_kvm_vmx(kvm)->tss_addr = addr;
4745 return init_rmode_tss(kvm);
4746 }
4747
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4748 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4749 {
4750 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4751 return 0;
4752 }
4753
rmode_exception(struct kvm_vcpu * vcpu,int vec)4754 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4755 {
4756 switch (vec) {
4757 case BP_VECTOR:
4758 /*
4759 * Update instruction length as we may reinject the exception
4760 * from user space while in guest debugging mode.
4761 */
4762 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4763 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4764 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4765 return false;
4766 fallthrough;
4767 case DB_VECTOR:
4768 return !(vcpu->guest_debug &
4769 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4770 case DE_VECTOR:
4771 case OF_VECTOR:
4772 case BR_VECTOR:
4773 case UD_VECTOR:
4774 case DF_VECTOR:
4775 case SS_VECTOR:
4776 case GP_VECTOR:
4777 case MF_VECTOR:
4778 return true;
4779 }
4780 return false;
4781 }
4782
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4783 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4784 int vec, u32 err_code)
4785 {
4786 /*
4787 * Instruction with address size override prefix opcode 0x67
4788 * Cause the #SS fault with 0 error code in VM86 mode.
4789 */
4790 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4791 if (kvm_emulate_instruction(vcpu, 0)) {
4792 if (vcpu->arch.halt_request) {
4793 vcpu->arch.halt_request = 0;
4794 return kvm_vcpu_halt(vcpu);
4795 }
4796 return 1;
4797 }
4798 return 0;
4799 }
4800
4801 /*
4802 * Forward all other exceptions that are valid in real mode.
4803 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4804 * the required debugging infrastructure rework.
4805 */
4806 kvm_queue_exception(vcpu, vec);
4807 return 1;
4808 }
4809
4810 /*
4811 * Trigger machine check on the host. We assume all the MSRs are already set up
4812 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4813 * We pass a fake environment to the machine check handler because we want
4814 * the guest to be always treated like user space, no matter what context
4815 * it used internally.
4816 */
kvm_machine_check(void)4817 static void kvm_machine_check(void)
4818 {
4819 #if defined(CONFIG_X86_MCE)
4820 struct pt_regs regs = {
4821 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4822 .flags = X86_EFLAGS_IF,
4823 };
4824
4825 do_machine_check(®s);
4826 #endif
4827 }
4828
handle_machine_check(struct kvm_vcpu * vcpu)4829 static int handle_machine_check(struct kvm_vcpu *vcpu)
4830 {
4831 /* handled by vmx_vcpu_run() */
4832 return 1;
4833 }
4834
4835 /*
4836 * If the host has split lock detection disabled, then #AC is
4837 * unconditionally injected into the guest, which is the pre split lock
4838 * detection behaviour.
4839 *
4840 * If the host has split lock detection enabled then #AC is
4841 * only injected into the guest when:
4842 * - Guest CPL == 3 (user mode)
4843 * - Guest has #AC detection enabled in CR0
4844 * - Guest EFLAGS has AC bit set
4845 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4846 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4847 {
4848 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4849 return true;
4850
4851 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4852 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4853 }
4854
handle_exception_nmi(struct kvm_vcpu * vcpu)4855 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4856 {
4857 struct vcpu_vmx *vmx = to_vmx(vcpu);
4858 struct kvm_run *kvm_run = vcpu->run;
4859 u32 intr_info, ex_no, error_code;
4860 unsigned long cr2, rip, dr6;
4861 u32 vect_info;
4862
4863 vect_info = vmx->idt_vectoring_info;
4864 intr_info = vmx_get_intr_info(vcpu);
4865
4866 if (is_machine_check(intr_info) || is_nmi(intr_info))
4867 return 1; /* handled by handle_exception_nmi_irqoff() */
4868
4869 if (is_invalid_opcode(intr_info))
4870 return handle_ud(vcpu);
4871
4872 error_code = 0;
4873 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4874 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4875
4876 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4877 WARN_ON_ONCE(!enable_vmware_backdoor);
4878
4879 /*
4880 * VMware backdoor emulation on #GP interception only handles
4881 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4882 * error code on #GP.
4883 */
4884 if (error_code) {
4885 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4886 return 1;
4887 }
4888 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4889 }
4890
4891 /*
4892 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4893 * MMIO, it is better to report an internal error.
4894 * See the comments in vmx_handle_exit.
4895 */
4896 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4897 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4898 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4899 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4900 vcpu->run->internal.ndata = 4;
4901 vcpu->run->internal.data[0] = vect_info;
4902 vcpu->run->internal.data[1] = intr_info;
4903 vcpu->run->internal.data[2] = error_code;
4904 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4905 return 0;
4906 }
4907
4908 if (is_page_fault(intr_info)) {
4909 cr2 = vmx_get_exit_qual(vcpu);
4910 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4911 /*
4912 * EPT will cause page fault only if we need to
4913 * detect illegal GPAs.
4914 */
4915 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4916 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4917 return 1;
4918 } else
4919 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4920 }
4921
4922 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4923
4924 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4925 return handle_rmode_exception(vcpu, ex_no, error_code);
4926
4927 switch (ex_no) {
4928 case DB_VECTOR:
4929 dr6 = vmx_get_exit_qual(vcpu);
4930 if (!(vcpu->guest_debug &
4931 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4932 if (is_icebp(intr_info))
4933 WARN_ON(!skip_emulated_instruction(vcpu));
4934
4935 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4936 return 1;
4937 }
4938 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4939 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4940 fallthrough;
4941 case BP_VECTOR:
4942 /*
4943 * Update instruction length as we may reinject #BP from
4944 * user space while in guest debugging mode. Reading it for
4945 * #DB as well causes no harm, it is not used in that case.
4946 */
4947 vmx->vcpu.arch.event_exit_inst_len =
4948 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4949 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4950 rip = kvm_rip_read(vcpu);
4951 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4952 kvm_run->debug.arch.exception = ex_no;
4953 break;
4954 case AC_VECTOR:
4955 if (vmx_guest_inject_ac(vcpu)) {
4956 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4957 return 1;
4958 }
4959
4960 /*
4961 * Handle split lock. Depending on detection mode this will
4962 * either warn and disable split lock detection for this
4963 * task or force SIGBUS on it.
4964 */
4965 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4966 return 1;
4967 fallthrough;
4968 default:
4969 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4970 kvm_run->ex.exception = ex_no;
4971 kvm_run->ex.error_code = error_code;
4972 break;
4973 }
4974 return 0;
4975 }
4976
handle_external_interrupt(struct kvm_vcpu * vcpu)4977 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4978 {
4979 ++vcpu->stat.irq_exits;
4980 return 1;
4981 }
4982
handle_triple_fault(struct kvm_vcpu * vcpu)4983 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4984 {
4985 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4986 vcpu->mmio_needed = 0;
4987 return 0;
4988 }
4989
handle_io(struct kvm_vcpu * vcpu)4990 static int handle_io(struct kvm_vcpu *vcpu)
4991 {
4992 unsigned long exit_qualification;
4993 int size, in, string;
4994 unsigned port;
4995
4996 exit_qualification = vmx_get_exit_qual(vcpu);
4997 string = (exit_qualification & 16) != 0;
4998
4999 ++vcpu->stat.io_exits;
5000
5001 if (string)
5002 return kvm_emulate_instruction(vcpu, 0);
5003
5004 port = exit_qualification >> 16;
5005 size = (exit_qualification & 7) + 1;
5006 in = (exit_qualification & 8) != 0;
5007
5008 return kvm_fast_pio(vcpu, size, port, in);
5009 }
5010
5011 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5012 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5013 {
5014 /*
5015 * Patch in the VMCALL instruction:
5016 */
5017 hypercall[0] = 0x0f;
5018 hypercall[1] = 0x01;
5019 hypercall[2] = 0xc1;
5020 }
5021
5022 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5023 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5024 {
5025 if (is_guest_mode(vcpu)) {
5026 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5027 unsigned long orig_val = val;
5028
5029 /*
5030 * We get here when L2 changed cr0 in a way that did not change
5031 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5032 * but did change L0 shadowed bits. So we first calculate the
5033 * effective cr0 value that L1 would like to write into the
5034 * hardware. It consists of the L2-owned bits from the new
5035 * value combined with the L1-owned bits from L1's guest_cr0.
5036 */
5037 val = (val & ~vmcs12->cr0_guest_host_mask) |
5038 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5039
5040 if (!nested_guest_cr0_valid(vcpu, val))
5041 return 1;
5042
5043 if (kvm_set_cr0(vcpu, val))
5044 return 1;
5045 vmcs_writel(CR0_READ_SHADOW, orig_val);
5046 return 0;
5047 } else {
5048 if (to_vmx(vcpu)->nested.vmxon &&
5049 !nested_host_cr0_valid(vcpu, val))
5050 return 1;
5051
5052 return kvm_set_cr0(vcpu, val);
5053 }
5054 }
5055
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5056 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5057 {
5058 if (is_guest_mode(vcpu)) {
5059 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5060 unsigned long orig_val = val;
5061
5062 /* analogously to handle_set_cr0 */
5063 val = (val & ~vmcs12->cr4_guest_host_mask) |
5064 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5065 if (kvm_set_cr4(vcpu, val))
5066 return 1;
5067 vmcs_writel(CR4_READ_SHADOW, orig_val);
5068 return 0;
5069 } else
5070 return kvm_set_cr4(vcpu, val);
5071 }
5072
handle_desc(struct kvm_vcpu * vcpu)5073 static int handle_desc(struct kvm_vcpu *vcpu)
5074 {
5075 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5076 return kvm_emulate_instruction(vcpu, 0);
5077 }
5078
handle_cr(struct kvm_vcpu * vcpu)5079 static int handle_cr(struct kvm_vcpu *vcpu)
5080 {
5081 unsigned long exit_qualification, val;
5082 int cr;
5083 int reg;
5084 int err;
5085 int ret;
5086
5087 exit_qualification = vmx_get_exit_qual(vcpu);
5088 cr = exit_qualification & 15;
5089 reg = (exit_qualification >> 8) & 15;
5090 switch ((exit_qualification >> 4) & 3) {
5091 case 0: /* mov to cr */
5092 val = kvm_register_readl(vcpu, reg);
5093 trace_kvm_cr_write(cr, val);
5094 switch (cr) {
5095 case 0:
5096 err = handle_set_cr0(vcpu, val);
5097 return kvm_complete_insn_gp(vcpu, err);
5098 case 3:
5099 WARN_ON_ONCE(enable_unrestricted_guest);
5100 err = kvm_set_cr3(vcpu, val);
5101 return kvm_complete_insn_gp(vcpu, err);
5102 case 4:
5103 err = handle_set_cr4(vcpu, val);
5104 return kvm_complete_insn_gp(vcpu, err);
5105 case 8: {
5106 u8 cr8_prev = kvm_get_cr8(vcpu);
5107 u8 cr8 = (u8)val;
5108 err = kvm_set_cr8(vcpu, cr8);
5109 ret = kvm_complete_insn_gp(vcpu, err);
5110 if (lapic_in_kernel(vcpu))
5111 return ret;
5112 if (cr8_prev <= cr8)
5113 return ret;
5114 /*
5115 * TODO: we might be squashing a
5116 * KVM_GUESTDBG_SINGLESTEP-triggered
5117 * KVM_EXIT_DEBUG here.
5118 */
5119 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5120 return 0;
5121 }
5122 }
5123 break;
5124 case 2: /* clts */
5125 WARN_ONCE(1, "Guest should always own CR0.TS");
5126 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5127 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5128 return kvm_skip_emulated_instruction(vcpu);
5129 case 1: /*mov from cr*/
5130 switch (cr) {
5131 case 3:
5132 WARN_ON_ONCE(enable_unrestricted_guest);
5133 val = kvm_read_cr3(vcpu);
5134 kvm_register_write(vcpu, reg, val);
5135 trace_kvm_cr_read(cr, val);
5136 return kvm_skip_emulated_instruction(vcpu);
5137 case 8:
5138 val = kvm_get_cr8(vcpu);
5139 kvm_register_write(vcpu, reg, val);
5140 trace_kvm_cr_read(cr, val);
5141 return kvm_skip_emulated_instruction(vcpu);
5142 }
5143 break;
5144 case 3: /* lmsw */
5145 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5146 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5147 kvm_lmsw(vcpu, val);
5148
5149 return kvm_skip_emulated_instruction(vcpu);
5150 default:
5151 break;
5152 }
5153 vcpu->run->exit_reason = 0;
5154 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5155 (int)(exit_qualification >> 4) & 3, cr);
5156 return 0;
5157 }
5158
handle_dr(struct kvm_vcpu * vcpu)5159 static int handle_dr(struct kvm_vcpu *vcpu)
5160 {
5161 unsigned long exit_qualification;
5162 int dr, dr7, reg;
5163
5164 exit_qualification = vmx_get_exit_qual(vcpu);
5165 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5166
5167 /* First, if DR does not exist, trigger UD */
5168 if (!kvm_require_dr(vcpu, dr))
5169 return 1;
5170
5171 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5172 if (!kvm_require_cpl(vcpu, 0))
5173 return 1;
5174 dr7 = vmcs_readl(GUEST_DR7);
5175 if (dr7 & DR7_GD) {
5176 /*
5177 * As the vm-exit takes precedence over the debug trap, we
5178 * need to emulate the latter, either for the host or the
5179 * guest debugging itself.
5180 */
5181 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5182 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5183 vcpu->run->debug.arch.dr7 = dr7;
5184 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5185 vcpu->run->debug.arch.exception = DB_VECTOR;
5186 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5187 return 0;
5188 } else {
5189 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5190 return 1;
5191 }
5192 }
5193
5194 if (vcpu->guest_debug == 0) {
5195 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5196
5197 /*
5198 * No more DR vmexits; force a reload of the debug registers
5199 * and reenter on this instruction. The next vmexit will
5200 * retrieve the full state of the debug registers.
5201 */
5202 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5203 return 1;
5204 }
5205
5206 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5207 if (exit_qualification & TYPE_MOV_FROM_DR) {
5208 unsigned long val;
5209
5210 if (kvm_get_dr(vcpu, dr, &val))
5211 return 1;
5212 kvm_register_write(vcpu, reg, val);
5213 } else
5214 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5215 return 1;
5216
5217 return kvm_skip_emulated_instruction(vcpu);
5218 }
5219
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5220 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5221 {
5222 get_debugreg(vcpu->arch.db[0], 0);
5223 get_debugreg(vcpu->arch.db[1], 1);
5224 get_debugreg(vcpu->arch.db[2], 2);
5225 get_debugreg(vcpu->arch.db[3], 3);
5226 get_debugreg(vcpu->arch.dr6, 6);
5227 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5228
5229 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5230 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5231 }
5232
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5233 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5234 {
5235 vmcs_writel(GUEST_DR7, val);
5236 }
5237
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5238 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5239 {
5240 kvm_apic_update_ppr(vcpu);
5241 return 1;
5242 }
5243
handle_interrupt_window(struct kvm_vcpu * vcpu)5244 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5245 {
5246 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5247
5248 kvm_make_request(KVM_REQ_EVENT, vcpu);
5249
5250 ++vcpu->stat.irq_window_exits;
5251 return 1;
5252 }
5253
handle_vmcall(struct kvm_vcpu * vcpu)5254 static int handle_vmcall(struct kvm_vcpu *vcpu)
5255 {
5256 return kvm_emulate_hypercall(vcpu);
5257 }
5258
handle_invd(struct kvm_vcpu * vcpu)5259 static int handle_invd(struct kvm_vcpu *vcpu)
5260 {
5261 /* Treat an INVD instruction as a NOP and just skip it. */
5262 return kvm_skip_emulated_instruction(vcpu);
5263 }
5264
handle_invlpg(struct kvm_vcpu * vcpu)5265 static int handle_invlpg(struct kvm_vcpu *vcpu)
5266 {
5267 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5268
5269 kvm_mmu_invlpg(vcpu, exit_qualification);
5270 return kvm_skip_emulated_instruction(vcpu);
5271 }
5272
handle_rdpmc(struct kvm_vcpu * vcpu)5273 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5274 {
5275 int err;
5276
5277 err = kvm_rdpmc(vcpu);
5278 return kvm_complete_insn_gp(vcpu, err);
5279 }
5280
handle_wbinvd(struct kvm_vcpu * vcpu)5281 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5282 {
5283 return kvm_emulate_wbinvd(vcpu);
5284 }
5285
handle_xsetbv(struct kvm_vcpu * vcpu)5286 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5287 {
5288 u64 new_bv = kvm_read_edx_eax(vcpu);
5289 u32 index = kvm_rcx_read(vcpu);
5290
5291 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5292 return kvm_skip_emulated_instruction(vcpu);
5293 return 1;
5294 }
5295
handle_apic_access(struct kvm_vcpu * vcpu)5296 static int handle_apic_access(struct kvm_vcpu *vcpu)
5297 {
5298 if (likely(fasteoi)) {
5299 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5300 int access_type, offset;
5301
5302 access_type = exit_qualification & APIC_ACCESS_TYPE;
5303 offset = exit_qualification & APIC_ACCESS_OFFSET;
5304 /*
5305 * Sane guest uses MOV to write EOI, with written value
5306 * not cared. So make a short-circuit here by avoiding
5307 * heavy instruction emulation.
5308 */
5309 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5310 (offset == APIC_EOI)) {
5311 kvm_lapic_set_eoi(vcpu);
5312 return kvm_skip_emulated_instruction(vcpu);
5313 }
5314 }
5315 return kvm_emulate_instruction(vcpu, 0);
5316 }
5317
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5318 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5319 {
5320 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5321 int vector = exit_qualification & 0xff;
5322
5323 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5324 kvm_apic_set_eoi_accelerated(vcpu, vector);
5325 return 1;
5326 }
5327
handle_apic_write(struct kvm_vcpu * vcpu)5328 static int handle_apic_write(struct kvm_vcpu *vcpu)
5329 {
5330 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5331 u32 offset = exit_qualification & 0xfff;
5332
5333 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5334 kvm_apic_write_nodecode(vcpu, offset);
5335 return 1;
5336 }
5337
handle_task_switch(struct kvm_vcpu * vcpu)5338 static int handle_task_switch(struct kvm_vcpu *vcpu)
5339 {
5340 struct vcpu_vmx *vmx = to_vmx(vcpu);
5341 unsigned long exit_qualification;
5342 bool has_error_code = false;
5343 u32 error_code = 0;
5344 u16 tss_selector;
5345 int reason, type, idt_v, idt_index;
5346
5347 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5348 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5349 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5350
5351 exit_qualification = vmx_get_exit_qual(vcpu);
5352
5353 reason = (u32)exit_qualification >> 30;
5354 if (reason == TASK_SWITCH_GATE && idt_v) {
5355 switch (type) {
5356 case INTR_TYPE_NMI_INTR:
5357 vcpu->arch.nmi_injected = false;
5358 vmx_set_nmi_mask(vcpu, true);
5359 break;
5360 case INTR_TYPE_EXT_INTR:
5361 case INTR_TYPE_SOFT_INTR:
5362 kvm_clear_interrupt_queue(vcpu);
5363 break;
5364 case INTR_TYPE_HARD_EXCEPTION:
5365 if (vmx->idt_vectoring_info &
5366 VECTORING_INFO_DELIVER_CODE_MASK) {
5367 has_error_code = true;
5368 error_code =
5369 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5370 }
5371 fallthrough;
5372 case INTR_TYPE_SOFT_EXCEPTION:
5373 kvm_clear_exception_queue(vcpu);
5374 break;
5375 default:
5376 break;
5377 }
5378 }
5379 tss_selector = exit_qualification;
5380
5381 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5382 type != INTR_TYPE_EXT_INTR &&
5383 type != INTR_TYPE_NMI_INTR))
5384 WARN_ON(!skip_emulated_instruction(vcpu));
5385
5386 /*
5387 * TODO: What about debug traps on tss switch?
5388 * Are we supposed to inject them and update dr6?
5389 */
5390 return kvm_task_switch(vcpu, tss_selector,
5391 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5392 reason, has_error_code, error_code);
5393 }
5394
handle_ept_violation(struct kvm_vcpu * vcpu)5395 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5396 {
5397 unsigned long exit_qualification;
5398 gpa_t gpa;
5399 u64 error_code;
5400
5401 exit_qualification = vmx_get_exit_qual(vcpu);
5402
5403 /*
5404 * EPT violation happened while executing iret from NMI,
5405 * "blocked by NMI" bit has to be set before next VM entry.
5406 * There are errata that may cause this bit to not be set:
5407 * AAK134, BY25.
5408 */
5409 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5410 enable_vnmi &&
5411 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5412 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5413
5414 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5415 trace_kvm_page_fault(gpa, exit_qualification);
5416
5417 /* Is it a read fault? */
5418 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5419 ? PFERR_USER_MASK : 0;
5420 /* Is it a write fault? */
5421 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5422 ? PFERR_WRITE_MASK : 0;
5423 /* Is it a fetch fault? */
5424 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5425 ? PFERR_FETCH_MASK : 0;
5426 /* ept page table entry is present? */
5427 error_code |= (exit_qualification &
5428 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5429 EPT_VIOLATION_EXECUTABLE))
5430 ? PFERR_PRESENT_MASK : 0;
5431
5432 error_code |= (exit_qualification & 0x100) != 0 ?
5433 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5434
5435 vcpu->arch.exit_qualification = exit_qualification;
5436
5437 /*
5438 * Check that the GPA doesn't exceed physical memory limits, as that is
5439 * a guest page fault. We have to emulate the instruction here, because
5440 * if the illegal address is that of a paging structure, then
5441 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5442 * would also use advanced VM-exit information for EPT violations to
5443 * reconstruct the page fault error code.
5444 */
5445 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5446 return kvm_emulate_instruction(vcpu, 0);
5447
5448 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5449 }
5450
handle_ept_misconfig(struct kvm_vcpu * vcpu)5451 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5452 {
5453 gpa_t gpa;
5454
5455 /*
5456 * A nested guest cannot optimize MMIO vmexits, because we have an
5457 * nGPA here instead of the required GPA.
5458 */
5459 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5460 if (!is_guest_mode(vcpu) &&
5461 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5462 trace_kvm_fast_mmio(gpa);
5463 return kvm_skip_emulated_instruction(vcpu);
5464 }
5465
5466 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5467 }
5468
handle_nmi_window(struct kvm_vcpu * vcpu)5469 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5470 {
5471 WARN_ON_ONCE(!enable_vnmi);
5472 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5473 ++vcpu->stat.nmi_window_exits;
5474 kvm_make_request(KVM_REQ_EVENT, vcpu);
5475
5476 return 1;
5477 }
5478
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5479 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5480 {
5481 struct vcpu_vmx *vmx = to_vmx(vcpu);
5482 bool intr_window_requested;
5483 unsigned count = 130;
5484
5485 intr_window_requested = exec_controls_get(vmx) &
5486 CPU_BASED_INTR_WINDOW_EXITING;
5487
5488 while (vmx->emulation_required && count-- != 0) {
5489 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5490 return handle_interrupt_window(&vmx->vcpu);
5491
5492 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5493 return 1;
5494
5495 if (!kvm_emulate_instruction(vcpu, 0))
5496 return 0;
5497
5498 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5499 vcpu->arch.exception.pending) {
5500 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5501 vcpu->run->internal.suberror =
5502 KVM_INTERNAL_ERROR_EMULATION;
5503 vcpu->run->internal.ndata = 0;
5504 return 0;
5505 }
5506
5507 if (vcpu->arch.halt_request) {
5508 vcpu->arch.halt_request = 0;
5509 return kvm_vcpu_halt(vcpu);
5510 }
5511
5512 /*
5513 * Note, return 1 and not 0, vcpu_run() will invoke
5514 * xfer_to_guest_mode() which will create a proper return
5515 * code.
5516 */
5517 if (__xfer_to_guest_mode_work_pending())
5518 return 1;
5519 }
5520
5521 return 1;
5522 }
5523
grow_ple_window(struct kvm_vcpu * vcpu)5524 static void grow_ple_window(struct kvm_vcpu *vcpu)
5525 {
5526 struct vcpu_vmx *vmx = to_vmx(vcpu);
5527 unsigned int old = vmx->ple_window;
5528
5529 vmx->ple_window = __grow_ple_window(old, ple_window,
5530 ple_window_grow,
5531 ple_window_max);
5532
5533 if (vmx->ple_window != old) {
5534 vmx->ple_window_dirty = true;
5535 trace_kvm_ple_window_update(vcpu->vcpu_id,
5536 vmx->ple_window, old);
5537 }
5538 }
5539
shrink_ple_window(struct kvm_vcpu * vcpu)5540 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5541 {
5542 struct vcpu_vmx *vmx = to_vmx(vcpu);
5543 unsigned int old = vmx->ple_window;
5544
5545 vmx->ple_window = __shrink_ple_window(old, ple_window,
5546 ple_window_shrink,
5547 ple_window);
5548
5549 if (vmx->ple_window != old) {
5550 vmx->ple_window_dirty = true;
5551 trace_kvm_ple_window_update(vcpu->vcpu_id,
5552 vmx->ple_window, old);
5553 }
5554 }
5555
vmx_enable_tdp(void)5556 static void vmx_enable_tdp(void)
5557 {
5558 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5559 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5560 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5561 0ull, VMX_EPT_EXECUTABLE_MASK,
5562 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5563 VMX_EPT_RWX_MASK, 0ull);
5564
5565 ept_set_mmio_spte_mask();
5566 }
5567
5568 /*
5569 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5570 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5571 */
handle_pause(struct kvm_vcpu * vcpu)5572 static int handle_pause(struct kvm_vcpu *vcpu)
5573 {
5574 if (!kvm_pause_in_guest(vcpu->kvm))
5575 grow_ple_window(vcpu);
5576
5577 /*
5578 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5579 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5580 * never set PAUSE_EXITING and just set PLE if supported,
5581 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5582 */
5583 kvm_vcpu_on_spin(vcpu, true);
5584 return kvm_skip_emulated_instruction(vcpu);
5585 }
5586
handle_nop(struct kvm_vcpu * vcpu)5587 static int handle_nop(struct kvm_vcpu *vcpu)
5588 {
5589 return kvm_skip_emulated_instruction(vcpu);
5590 }
5591
handle_mwait(struct kvm_vcpu * vcpu)5592 static int handle_mwait(struct kvm_vcpu *vcpu)
5593 {
5594 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5595 return handle_nop(vcpu);
5596 }
5597
handle_invalid_op(struct kvm_vcpu * vcpu)5598 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5599 {
5600 kvm_queue_exception(vcpu, UD_VECTOR);
5601 return 1;
5602 }
5603
handle_monitor_trap(struct kvm_vcpu * vcpu)5604 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5605 {
5606 return 1;
5607 }
5608
handle_monitor(struct kvm_vcpu * vcpu)5609 static int handle_monitor(struct kvm_vcpu *vcpu)
5610 {
5611 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5612 return handle_nop(vcpu);
5613 }
5614
handle_invpcid(struct kvm_vcpu * vcpu)5615 static int handle_invpcid(struct kvm_vcpu *vcpu)
5616 {
5617 u32 vmx_instruction_info;
5618 unsigned long type;
5619 gva_t gva;
5620 struct {
5621 u64 pcid;
5622 u64 gla;
5623 } operand;
5624
5625 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5626 kvm_queue_exception(vcpu, UD_VECTOR);
5627 return 1;
5628 }
5629
5630 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5631 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5632
5633 if (type > 3) {
5634 kvm_inject_gp(vcpu, 0);
5635 return 1;
5636 }
5637
5638 /* According to the Intel instruction reference, the memory operand
5639 * is read even if it isn't needed (e.g., for type==all)
5640 */
5641 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5642 vmx_instruction_info, false,
5643 sizeof(operand), &gva))
5644 return 1;
5645
5646 return kvm_handle_invpcid(vcpu, type, gva);
5647 }
5648
handle_pml_full(struct kvm_vcpu * vcpu)5649 static int handle_pml_full(struct kvm_vcpu *vcpu)
5650 {
5651 unsigned long exit_qualification;
5652
5653 trace_kvm_pml_full(vcpu->vcpu_id);
5654
5655 exit_qualification = vmx_get_exit_qual(vcpu);
5656
5657 /*
5658 * PML buffer FULL happened while executing iret from NMI,
5659 * "blocked by NMI" bit has to be set before next VM entry.
5660 */
5661 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5662 enable_vnmi &&
5663 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5664 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5665 GUEST_INTR_STATE_NMI);
5666
5667 /*
5668 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5669 * here.., and there's no userspace involvement needed for PML.
5670 */
5671 return 1;
5672 }
5673
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5674 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5675 {
5676 struct vcpu_vmx *vmx = to_vmx(vcpu);
5677
5678 if (!vmx->req_immediate_exit &&
5679 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5680 kvm_lapic_expired_hv_timer(vcpu);
5681 return EXIT_FASTPATH_REENTER_GUEST;
5682 }
5683
5684 return EXIT_FASTPATH_NONE;
5685 }
5686
handle_preemption_timer(struct kvm_vcpu * vcpu)5687 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5688 {
5689 handle_fastpath_preemption_timer(vcpu);
5690 return 1;
5691 }
5692
5693 /*
5694 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5695 * are overwritten by nested_vmx_setup() when nested=1.
5696 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5697 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5698 {
5699 kvm_queue_exception(vcpu, UD_VECTOR);
5700 return 1;
5701 }
5702
handle_encls(struct kvm_vcpu * vcpu)5703 static int handle_encls(struct kvm_vcpu *vcpu)
5704 {
5705 /*
5706 * SGX virtualization is not yet supported. There is no software
5707 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5708 * to prevent the guest from executing ENCLS.
5709 */
5710 kvm_queue_exception(vcpu, UD_VECTOR);
5711 return 1;
5712 }
5713
5714 /*
5715 * The exit handlers return 1 if the exit was handled fully and guest execution
5716 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5717 * to be done to userspace and return 0.
5718 */
5719 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5720 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5721 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5722 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5723 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5724 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5725 [EXIT_REASON_CR_ACCESS] = handle_cr,
5726 [EXIT_REASON_DR_ACCESS] = handle_dr,
5727 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5728 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5729 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5730 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5731 [EXIT_REASON_HLT] = kvm_emulate_halt,
5732 [EXIT_REASON_INVD] = handle_invd,
5733 [EXIT_REASON_INVLPG] = handle_invlpg,
5734 [EXIT_REASON_RDPMC] = handle_rdpmc,
5735 [EXIT_REASON_VMCALL] = handle_vmcall,
5736 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5737 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5738 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5739 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5740 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5741 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5742 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5743 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5744 [EXIT_REASON_VMON] = handle_vmx_instruction,
5745 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5746 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5747 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5748 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5749 [EXIT_REASON_WBINVD] = handle_wbinvd,
5750 [EXIT_REASON_XSETBV] = handle_xsetbv,
5751 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5752 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5753 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5754 [EXIT_REASON_LDTR_TR] = handle_desc,
5755 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5756 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5757 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5758 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5759 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5760 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5761 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5762 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5763 [EXIT_REASON_RDRAND] = handle_invalid_op,
5764 [EXIT_REASON_RDSEED] = handle_invalid_op,
5765 [EXIT_REASON_PML_FULL] = handle_pml_full,
5766 [EXIT_REASON_INVPCID] = handle_invpcid,
5767 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5768 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5769 [EXIT_REASON_ENCLS] = handle_encls,
5770 };
5771
5772 static const int kvm_vmx_max_exit_handlers =
5773 ARRAY_SIZE(kvm_vmx_exit_handlers);
5774
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5775 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5776 u32 *intr_info, u32 *error_code)
5777 {
5778 struct vcpu_vmx *vmx = to_vmx(vcpu);
5779
5780 *info1 = vmx_get_exit_qual(vcpu);
5781 if (!(vmx->exit_reason.failed_vmentry)) {
5782 *info2 = vmx->idt_vectoring_info;
5783 *intr_info = vmx_get_intr_info(vcpu);
5784 if (is_exception_with_error_code(*intr_info))
5785 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5786 else
5787 *error_code = 0;
5788 } else {
5789 *info2 = 0;
5790 *intr_info = 0;
5791 *error_code = 0;
5792 }
5793 }
5794
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5795 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5796 {
5797 if (vmx->pml_pg) {
5798 __free_page(vmx->pml_pg);
5799 vmx->pml_pg = NULL;
5800 }
5801 }
5802
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5803 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5804 {
5805 struct vcpu_vmx *vmx = to_vmx(vcpu);
5806 u64 *pml_buf;
5807 u16 pml_idx;
5808
5809 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5810
5811 /* Do nothing if PML buffer is empty */
5812 if (pml_idx == (PML_ENTITY_NUM - 1))
5813 return;
5814
5815 /* PML index always points to next available PML buffer entity */
5816 if (pml_idx >= PML_ENTITY_NUM)
5817 pml_idx = 0;
5818 else
5819 pml_idx++;
5820
5821 pml_buf = page_address(vmx->pml_pg);
5822 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5823 u64 gpa;
5824
5825 gpa = pml_buf[pml_idx];
5826 WARN_ON(gpa & (PAGE_SIZE - 1));
5827 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5828 }
5829
5830 /* reset PML index */
5831 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5832 }
5833
5834 /*
5835 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5836 * Called before reporting dirty_bitmap to userspace.
5837 */
kvm_flush_pml_buffers(struct kvm * kvm)5838 static void kvm_flush_pml_buffers(struct kvm *kvm)
5839 {
5840 int i;
5841 struct kvm_vcpu *vcpu;
5842 /*
5843 * We only need to kick vcpu out of guest mode here, as PML buffer
5844 * is flushed at beginning of all VMEXITs, and it's obvious that only
5845 * vcpus running in guest are possible to have unflushed GPAs in PML
5846 * buffer.
5847 */
5848 kvm_for_each_vcpu(i, vcpu, kvm)
5849 kvm_vcpu_kick(vcpu);
5850 }
5851
vmx_dump_sel(char * name,uint32_t sel)5852 static void vmx_dump_sel(char *name, uint32_t sel)
5853 {
5854 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5855 name, vmcs_read16(sel),
5856 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5857 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5858 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5859 }
5860
vmx_dump_dtsel(char * name,uint32_t limit)5861 static void vmx_dump_dtsel(char *name, uint32_t limit)
5862 {
5863 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5864 name, vmcs_read32(limit),
5865 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5866 }
5867
dump_vmcs(void)5868 void dump_vmcs(void)
5869 {
5870 u32 vmentry_ctl, vmexit_ctl;
5871 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5872 unsigned long cr4;
5873
5874 if (!dump_invalid_vmcs) {
5875 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5876 return;
5877 }
5878
5879 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5880 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5881 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5882 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5883 cr4 = vmcs_readl(GUEST_CR4);
5884 secondary_exec_control = 0;
5885 if (cpu_has_secondary_exec_ctrls())
5886 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5887
5888 pr_err("*** Guest State ***\n");
5889 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5890 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5891 vmcs_readl(CR0_GUEST_HOST_MASK));
5892 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5893 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5894 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5895 if (cpu_has_vmx_ept()) {
5896 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5897 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5898 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5899 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5900 }
5901 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5902 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5903 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5904 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5905 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5906 vmcs_readl(GUEST_SYSENTER_ESP),
5907 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5908 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5909 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5910 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5911 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5912 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5913 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5914 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5915 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5916 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5917 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5918 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5919 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5920 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5921 vmcs_read64(GUEST_IA32_EFER),
5922 vmcs_read64(GUEST_IA32_PAT));
5923 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5924 vmcs_read64(GUEST_IA32_DEBUGCTL),
5925 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5926 if (cpu_has_load_perf_global_ctrl() &&
5927 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5928 pr_err("PerfGlobCtl = 0x%016llx\n",
5929 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5930 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5931 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5932 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5933 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5934 vmcs_read32(GUEST_ACTIVITY_STATE));
5935 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5936 pr_err("InterruptStatus = %04x\n",
5937 vmcs_read16(GUEST_INTR_STATUS));
5938
5939 pr_err("*** Host State ***\n");
5940 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5941 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5942 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5943 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5944 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5945 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5946 vmcs_read16(HOST_TR_SELECTOR));
5947 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5948 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5949 vmcs_readl(HOST_TR_BASE));
5950 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5951 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5952 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5953 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5954 vmcs_readl(HOST_CR4));
5955 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5956 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5957 vmcs_read32(HOST_IA32_SYSENTER_CS),
5958 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5959 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5960 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5961 vmcs_read64(HOST_IA32_EFER),
5962 vmcs_read64(HOST_IA32_PAT));
5963 if (cpu_has_load_perf_global_ctrl() &&
5964 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5965 pr_err("PerfGlobCtl = 0x%016llx\n",
5966 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5967
5968 pr_err("*** Control State ***\n");
5969 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5970 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5971 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5972 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5973 vmcs_read32(EXCEPTION_BITMAP),
5974 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5975 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5976 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5977 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5978 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5979 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5980 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5981 vmcs_read32(VM_EXIT_INTR_INFO),
5982 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5983 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5984 pr_err(" reason=%08x qualification=%016lx\n",
5985 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5986 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5987 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5988 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5989 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5990 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5991 pr_err("TSC Multiplier = 0x%016llx\n",
5992 vmcs_read64(TSC_MULTIPLIER));
5993 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5994 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5995 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5996 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5997 }
5998 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5999 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6000 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6001 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6002 }
6003 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6004 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6005 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6006 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6007 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6008 pr_err("PLE Gap=%08x Window=%08x\n",
6009 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6010 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6011 pr_err("Virtual processor ID = 0x%04x\n",
6012 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6013 }
6014
6015 /*
6016 * The guest has exited. See if we can fix it or if we need userspace
6017 * assistance.
6018 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6019 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6020 {
6021 struct vcpu_vmx *vmx = to_vmx(vcpu);
6022 union vmx_exit_reason exit_reason = vmx->exit_reason;
6023 u32 vectoring_info = vmx->idt_vectoring_info;
6024 u16 exit_handler_index;
6025
6026 /*
6027 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6028 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6029 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6030 * mode as if vcpus is in root mode, the PML buffer must has been
6031 * flushed already.
6032 */
6033 if (enable_pml)
6034 vmx_flush_pml_buffer(vcpu);
6035
6036 /*
6037 * We should never reach this point with a pending nested VM-Enter, and
6038 * more specifically emulation of L2 due to invalid guest state (see
6039 * below) should never happen as that means we incorrectly allowed a
6040 * nested VM-Enter with an invalid vmcs12.
6041 */
6042 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6043
6044 /* If guest state is invalid, start emulating */
6045 if (vmx->emulation_required)
6046 return handle_invalid_guest_state(vcpu);
6047
6048 if (is_guest_mode(vcpu)) {
6049 /*
6050 * The host physical addresses of some pages of guest memory
6051 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6052 * Page). The CPU may write to these pages via their host
6053 * physical address while L2 is running, bypassing any
6054 * address-translation-based dirty tracking (e.g. EPT write
6055 * protection).
6056 *
6057 * Mark them dirty on every exit from L2 to prevent them from
6058 * getting out of sync with dirty tracking.
6059 */
6060 nested_mark_vmcs12_pages_dirty(vcpu);
6061
6062 if (nested_vmx_reflect_vmexit(vcpu))
6063 return 1;
6064 }
6065
6066 if (exit_reason.failed_vmentry) {
6067 dump_vmcs();
6068 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6069 vcpu->run->fail_entry.hardware_entry_failure_reason
6070 = exit_reason.full;
6071 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6072 return 0;
6073 }
6074
6075 if (unlikely(vmx->fail)) {
6076 dump_vmcs();
6077 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6078 vcpu->run->fail_entry.hardware_entry_failure_reason
6079 = vmcs_read32(VM_INSTRUCTION_ERROR);
6080 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6081 return 0;
6082 }
6083
6084 /*
6085 * Note:
6086 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6087 * delivery event since it indicates guest is accessing MMIO.
6088 * The vm-exit can be triggered again after return to guest that
6089 * will cause infinite loop.
6090 */
6091 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6092 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6093 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6094 exit_reason.basic != EXIT_REASON_PML_FULL &&
6095 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6096 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6097 int ndata = 3;
6098
6099 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6100 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6101 vcpu->run->internal.data[0] = vectoring_info;
6102 vcpu->run->internal.data[1] = exit_reason.full;
6103 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6104 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6105 vcpu->run->internal.data[ndata++] =
6106 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6107 }
6108 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6109 vcpu->run->internal.ndata = ndata;
6110 return 0;
6111 }
6112
6113 if (unlikely(!enable_vnmi &&
6114 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6115 if (!vmx_interrupt_blocked(vcpu)) {
6116 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6117 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6118 vcpu->arch.nmi_pending) {
6119 /*
6120 * This CPU don't support us in finding the end of an
6121 * NMI-blocked window if the guest runs with IRQs
6122 * disabled. So we pull the trigger after 1 s of
6123 * futile waiting, but inform the user about this.
6124 */
6125 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6126 "state on VCPU %d after 1 s timeout\n",
6127 __func__, vcpu->vcpu_id);
6128 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6129 }
6130 }
6131
6132 if (exit_fastpath != EXIT_FASTPATH_NONE)
6133 return 1;
6134
6135 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6136 goto unexpected_vmexit;
6137 #ifdef CONFIG_RETPOLINE
6138 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6139 return kvm_emulate_wrmsr(vcpu);
6140 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6141 return handle_preemption_timer(vcpu);
6142 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6143 return handle_interrupt_window(vcpu);
6144 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6145 return handle_external_interrupt(vcpu);
6146 else if (exit_reason.basic == EXIT_REASON_HLT)
6147 return kvm_emulate_halt(vcpu);
6148 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6149 return handle_ept_misconfig(vcpu);
6150 #endif
6151
6152 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6153 kvm_vmx_max_exit_handlers);
6154 if (!kvm_vmx_exit_handlers[exit_handler_index])
6155 goto unexpected_vmexit;
6156
6157 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6158
6159 unexpected_vmexit:
6160 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6161 exit_reason.full);
6162 dump_vmcs();
6163 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6164 vcpu->run->internal.suberror =
6165 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6166 vcpu->run->internal.ndata = 2;
6167 vcpu->run->internal.data[0] = exit_reason.full;
6168 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6169 return 0;
6170 }
6171
6172 /*
6173 * Software based L1D cache flush which is used when microcode providing
6174 * the cache control MSR is not loaded.
6175 *
6176 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6177 * flush it is required to read in 64 KiB because the replacement algorithm
6178 * is not exactly LRU. This could be sized at runtime via topology
6179 * information but as all relevant affected CPUs have 32KiB L1D cache size
6180 * there is no point in doing so.
6181 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6182 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6183 {
6184 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6185
6186 /*
6187 * This code is only executed when the the flush mode is 'cond' or
6188 * 'always'
6189 */
6190 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6191 bool flush_l1d;
6192
6193 /*
6194 * Clear the per-vcpu flush bit, it gets set again
6195 * either from vcpu_run() or from one of the unsafe
6196 * VMEXIT handlers.
6197 */
6198 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6199 vcpu->arch.l1tf_flush_l1d = false;
6200
6201 /*
6202 * Clear the per-cpu flush bit, it gets set again from
6203 * the interrupt handlers.
6204 */
6205 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6206 kvm_clear_cpu_l1tf_flush_l1d();
6207
6208 if (!flush_l1d)
6209 return;
6210 }
6211
6212 vcpu->stat.l1d_flush++;
6213
6214 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6215 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6216 return;
6217 }
6218
6219 asm volatile(
6220 /* First ensure the pages are in the TLB */
6221 "xorl %%eax, %%eax\n"
6222 ".Lpopulate_tlb:\n\t"
6223 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6224 "addl $4096, %%eax\n\t"
6225 "cmpl %%eax, %[size]\n\t"
6226 "jne .Lpopulate_tlb\n\t"
6227 "xorl %%eax, %%eax\n\t"
6228 "cpuid\n\t"
6229 /* Now fill the cache */
6230 "xorl %%eax, %%eax\n"
6231 ".Lfill_cache:\n"
6232 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6233 "addl $64, %%eax\n\t"
6234 "cmpl %%eax, %[size]\n\t"
6235 "jne .Lfill_cache\n\t"
6236 "lfence\n"
6237 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6238 [size] "r" (size)
6239 : "eax", "ebx", "ecx", "edx");
6240 }
6241
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6242 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6243 {
6244 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6245 int tpr_threshold;
6246
6247 if (is_guest_mode(vcpu) &&
6248 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6249 return;
6250
6251 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6252 if (is_guest_mode(vcpu))
6253 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6254 else
6255 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6256 }
6257
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6258 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6259 {
6260 struct vcpu_vmx *vmx = to_vmx(vcpu);
6261 u32 sec_exec_control;
6262
6263 if (!lapic_in_kernel(vcpu))
6264 return;
6265
6266 if (!flexpriority_enabled &&
6267 !cpu_has_vmx_virtualize_x2apic_mode())
6268 return;
6269
6270 /* Postpone execution until vmcs01 is the current VMCS. */
6271 if (is_guest_mode(vcpu)) {
6272 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6273 return;
6274 }
6275
6276 sec_exec_control = secondary_exec_controls_get(vmx);
6277 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6278 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6279
6280 switch (kvm_get_apic_mode(vcpu)) {
6281 case LAPIC_MODE_INVALID:
6282 WARN_ONCE(true, "Invalid local APIC state");
6283 case LAPIC_MODE_DISABLED:
6284 break;
6285 case LAPIC_MODE_XAPIC:
6286 if (flexpriority_enabled) {
6287 sec_exec_control |=
6288 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6289 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6290
6291 /*
6292 * Flush the TLB, reloading the APIC access page will
6293 * only do so if its physical address has changed, but
6294 * the guest may have inserted a non-APIC mapping into
6295 * the TLB while the APIC access page was disabled.
6296 */
6297 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6298 }
6299 break;
6300 case LAPIC_MODE_X2APIC:
6301 if (cpu_has_vmx_virtualize_x2apic_mode())
6302 sec_exec_control |=
6303 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6304 break;
6305 }
6306 secondary_exec_controls_set(vmx, sec_exec_control);
6307
6308 vmx_update_msr_bitmap(vcpu);
6309 }
6310
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6311 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6312 {
6313 struct page *page;
6314
6315 /* Defer reload until vmcs01 is the current VMCS. */
6316 if (is_guest_mode(vcpu)) {
6317 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6318 return;
6319 }
6320
6321 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6322 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6323 return;
6324
6325 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6326 if (is_error_page(page))
6327 return;
6328
6329 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6330 vmx_flush_tlb_current(vcpu);
6331
6332 /*
6333 * Do not pin apic access page in memory, the MMU notifier
6334 * will call us again if it is migrated or swapped out.
6335 */
6336 put_page(page);
6337 }
6338
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6339 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6340 {
6341 u16 status;
6342 u8 old;
6343
6344 if (max_isr == -1)
6345 max_isr = 0;
6346
6347 status = vmcs_read16(GUEST_INTR_STATUS);
6348 old = status >> 8;
6349 if (max_isr != old) {
6350 status &= 0xff;
6351 status |= max_isr << 8;
6352 vmcs_write16(GUEST_INTR_STATUS, status);
6353 }
6354 }
6355
vmx_set_rvi(int vector)6356 static void vmx_set_rvi(int vector)
6357 {
6358 u16 status;
6359 u8 old;
6360
6361 if (vector == -1)
6362 vector = 0;
6363
6364 status = vmcs_read16(GUEST_INTR_STATUS);
6365 old = (u8)status & 0xff;
6366 if ((u8)vector != old) {
6367 status &= ~0xff;
6368 status |= (u8)vector;
6369 vmcs_write16(GUEST_INTR_STATUS, status);
6370 }
6371 }
6372
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6373 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6374 {
6375 /*
6376 * When running L2, updating RVI is only relevant when
6377 * vmcs12 virtual-interrupt-delivery enabled.
6378 * However, it can be enabled only when L1 also
6379 * intercepts external-interrupts and in that case
6380 * we should not update vmcs02 RVI but instead intercept
6381 * interrupt. Therefore, do nothing when running L2.
6382 */
6383 if (!is_guest_mode(vcpu))
6384 vmx_set_rvi(max_irr);
6385 }
6386
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6387 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6388 {
6389 struct vcpu_vmx *vmx = to_vmx(vcpu);
6390 int max_irr;
6391 bool max_irr_updated;
6392
6393 WARN_ON(!vcpu->arch.apicv_active);
6394 if (pi_test_on(&vmx->pi_desc)) {
6395 pi_clear_on(&vmx->pi_desc);
6396 /*
6397 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6398 * But on x86 this is just a compiler barrier anyway.
6399 */
6400 smp_mb__after_atomic();
6401 max_irr_updated =
6402 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6403
6404 /*
6405 * If we are running L2 and L1 has a new pending interrupt
6406 * which can be injected, this may cause a vmexit or it may
6407 * be injected into L2. Either way, this interrupt will be
6408 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6409 * virtual interrupt delivery to inject L1 interrupts into L2.
6410 */
6411 if (is_guest_mode(vcpu) && max_irr_updated)
6412 kvm_make_request(KVM_REQ_EVENT, vcpu);
6413 } else {
6414 max_irr = kvm_lapic_find_highest_irr(vcpu);
6415 }
6416 vmx_hwapic_irr_update(vcpu, max_irr);
6417 return max_irr;
6418 }
6419
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6420 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6421 {
6422 if (!kvm_vcpu_apicv_active(vcpu))
6423 return;
6424
6425 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6426 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6427 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6428 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6429 }
6430
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6431 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6432 {
6433 struct vcpu_vmx *vmx = to_vmx(vcpu);
6434
6435 pi_clear_on(&vmx->pi_desc);
6436 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6437 }
6438
6439 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6440
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6441 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6442 unsigned long entry)
6443 {
6444 kvm_before_interrupt(vcpu);
6445 vmx_do_interrupt_nmi_irqoff(entry);
6446 kvm_after_interrupt(vcpu);
6447 }
6448
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6449 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6450 {
6451 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6452 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6453
6454 /* if exit due to PF check for async PF */
6455 if (is_page_fault(intr_info))
6456 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6457 /* Handle machine checks before interrupts are enabled */
6458 else if (is_machine_check(intr_info))
6459 kvm_machine_check();
6460 /* We need to handle NMIs before interrupts are enabled */
6461 else if (is_nmi(intr_info))
6462 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6463 }
6464
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6465 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6466 {
6467 u32 intr_info = vmx_get_intr_info(vcpu);
6468 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6469 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6470
6471 if (WARN_ONCE(!is_external_intr(intr_info),
6472 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6473 return;
6474
6475 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6476 vcpu->arch.at_instruction_boundary = true;
6477 }
6478
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6479 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6480 {
6481 struct vcpu_vmx *vmx = to_vmx(vcpu);
6482
6483 if (vmx->emulation_required)
6484 return;
6485
6486 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6487 handle_external_interrupt_irqoff(vcpu);
6488 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6489 handle_exception_nmi_irqoff(vmx);
6490 }
6491
vmx_has_emulated_msr(u32 index)6492 static bool vmx_has_emulated_msr(u32 index)
6493 {
6494 switch (index) {
6495 case MSR_IA32_SMBASE:
6496 /*
6497 * We cannot do SMM unless we can run the guest in big
6498 * real mode.
6499 */
6500 return enable_unrestricted_guest || emulate_invalid_guest_state;
6501 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6502 return nested;
6503 case MSR_AMD64_VIRT_SPEC_CTRL:
6504 /* This is AMD only. */
6505 return false;
6506 default:
6507 return true;
6508 }
6509 }
6510
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6511 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6512 {
6513 u32 exit_intr_info;
6514 bool unblock_nmi;
6515 u8 vector;
6516 bool idtv_info_valid;
6517
6518 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6519
6520 if (enable_vnmi) {
6521 if (vmx->loaded_vmcs->nmi_known_unmasked)
6522 return;
6523
6524 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6525 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6526 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6527 /*
6528 * SDM 3: 27.7.1.2 (September 2008)
6529 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6530 * a guest IRET fault.
6531 * SDM 3: 23.2.2 (September 2008)
6532 * Bit 12 is undefined in any of the following cases:
6533 * If the VM exit sets the valid bit in the IDT-vectoring
6534 * information field.
6535 * If the VM exit is due to a double fault.
6536 */
6537 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6538 vector != DF_VECTOR && !idtv_info_valid)
6539 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6540 GUEST_INTR_STATE_NMI);
6541 else
6542 vmx->loaded_vmcs->nmi_known_unmasked =
6543 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6544 & GUEST_INTR_STATE_NMI);
6545 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6546 vmx->loaded_vmcs->vnmi_blocked_time +=
6547 ktime_to_ns(ktime_sub(ktime_get(),
6548 vmx->loaded_vmcs->entry_time));
6549 }
6550
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6551 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6552 u32 idt_vectoring_info,
6553 int instr_len_field,
6554 int error_code_field)
6555 {
6556 u8 vector;
6557 int type;
6558 bool idtv_info_valid;
6559
6560 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6561
6562 vcpu->arch.nmi_injected = false;
6563 kvm_clear_exception_queue(vcpu);
6564 kvm_clear_interrupt_queue(vcpu);
6565
6566 if (!idtv_info_valid)
6567 return;
6568
6569 kvm_make_request(KVM_REQ_EVENT, vcpu);
6570
6571 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6572 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6573
6574 switch (type) {
6575 case INTR_TYPE_NMI_INTR:
6576 vcpu->arch.nmi_injected = true;
6577 /*
6578 * SDM 3: 27.7.1.2 (September 2008)
6579 * Clear bit "block by NMI" before VM entry if a NMI
6580 * delivery faulted.
6581 */
6582 vmx_set_nmi_mask(vcpu, false);
6583 break;
6584 case INTR_TYPE_SOFT_EXCEPTION:
6585 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6586 fallthrough;
6587 case INTR_TYPE_HARD_EXCEPTION:
6588 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6589 u32 err = vmcs_read32(error_code_field);
6590 kvm_requeue_exception_e(vcpu, vector, err);
6591 } else
6592 kvm_requeue_exception(vcpu, vector);
6593 break;
6594 case INTR_TYPE_SOFT_INTR:
6595 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6596 fallthrough;
6597 case INTR_TYPE_EXT_INTR:
6598 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6599 break;
6600 default:
6601 break;
6602 }
6603 }
6604
vmx_complete_interrupts(struct vcpu_vmx * vmx)6605 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6606 {
6607 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6608 VM_EXIT_INSTRUCTION_LEN,
6609 IDT_VECTORING_ERROR_CODE);
6610 }
6611
vmx_cancel_injection(struct kvm_vcpu * vcpu)6612 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6613 {
6614 __vmx_complete_interrupts(vcpu,
6615 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6616 VM_ENTRY_INSTRUCTION_LEN,
6617 VM_ENTRY_EXCEPTION_ERROR_CODE);
6618
6619 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6620 }
6621
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6622 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6623 {
6624 int i, nr_msrs;
6625 struct perf_guest_switch_msr *msrs;
6626
6627 msrs = perf_guest_get_msrs(&nr_msrs);
6628
6629 if (!msrs)
6630 return;
6631
6632 for (i = 0; i < nr_msrs; i++)
6633 if (msrs[i].host == msrs[i].guest)
6634 clear_atomic_switch_msr(vmx, msrs[i].msr);
6635 else
6636 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6637 msrs[i].host, false);
6638 }
6639
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6640 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6641 {
6642 struct vcpu_vmx *vmx = to_vmx(vcpu);
6643 u64 tscl;
6644 u32 delta_tsc;
6645
6646 if (vmx->req_immediate_exit) {
6647 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6648 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6649 } else if (vmx->hv_deadline_tsc != -1) {
6650 tscl = rdtsc();
6651 if (vmx->hv_deadline_tsc > tscl)
6652 /* set_hv_timer ensures the delta fits in 32-bits */
6653 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6654 cpu_preemption_timer_multi);
6655 else
6656 delta_tsc = 0;
6657
6658 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6659 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6660 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6661 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6662 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6663 }
6664 }
6665
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6666 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6667 {
6668 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6669 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6670 vmcs_writel(HOST_RSP, host_rsp);
6671 }
6672 }
6673
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6674 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6675 unsigned int flags)
6676 {
6677 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6678
6679 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6680 return;
6681
6682 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6683 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6684
6685 /*
6686 * If the guest/host SPEC_CTRL values differ, restore the host value.
6687 *
6688 * For legacy IBRS, the IBRS bit always needs to be written after
6689 * transitioning from a less privileged predictor mode, regardless of
6690 * whether the guest/host values differ.
6691 */
6692 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6693 vmx->spec_ctrl != hostval)
6694 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6695
6696 barrier_nospec();
6697 }
6698
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6699 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6700 {
6701 switch (to_vmx(vcpu)->exit_reason.basic) {
6702 case EXIT_REASON_MSR_WRITE:
6703 return handle_fastpath_set_msr_irqoff(vcpu);
6704 case EXIT_REASON_PREEMPTION_TIMER:
6705 return handle_fastpath_preemption_timer(vcpu);
6706 default:
6707 return EXIT_FASTPATH_NONE;
6708 }
6709 }
6710
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6711 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6712 struct vcpu_vmx *vmx,
6713 unsigned long flags)
6714 {
6715 /*
6716 * VMENTER enables interrupts (host state), but the kernel state is
6717 * interrupts disabled when this is invoked. Also tell RCU about
6718 * it. This is the same logic as for exit_to_user_mode().
6719 *
6720 * This ensures that e.g. latency analysis on the host observes
6721 * guest mode as interrupt enabled.
6722 *
6723 * guest_enter_irqoff() informs context tracking about the
6724 * transition to guest mode and if enabled adjusts RCU state
6725 * accordingly.
6726 */
6727 instrumentation_begin();
6728 trace_hardirqs_on_prepare();
6729 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6730 instrumentation_end();
6731
6732 guest_enter_irqoff();
6733 lockdep_hardirqs_on(CALLER_ADDR0);
6734
6735 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6736 if (static_branch_unlikely(&vmx_l1d_should_flush))
6737 vmx_l1d_flush(vcpu);
6738 else if (static_branch_unlikely(&mds_user_clear))
6739 mds_clear_cpu_buffers();
6740 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6741 kvm_arch_has_assigned_device(vcpu->kvm))
6742 mds_clear_cpu_buffers();
6743
6744 vmx_disable_fb_clear(vmx);
6745
6746 if (vcpu->arch.cr2 != native_read_cr2())
6747 native_write_cr2(vcpu->arch.cr2);
6748
6749 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6750 flags);
6751
6752 vcpu->arch.cr2 = native_read_cr2();
6753
6754 vmx_enable_fb_clear(vmx);
6755
6756 /*
6757 * VMEXIT disables interrupts (host state), but tracing and lockdep
6758 * have them in state 'on' as recorded before entering guest mode.
6759 * Same as enter_from_user_mode().
6760 *
6761 * context_tracking_guest_exit() restores host context and reinstates
6762 * RCU if enabled and required.
6763 *
6764 * This needs to be done before the below as native_read_msr()
6765 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6766 * into world and some more.
6767 */
6768 lockdep_hardirqs_off(CALLER_ADDR0);
6769 context_tracking_guest_exit();
6770
6771 instrumentation_begin();
6772 trace_hardirqs_off_finish();
6773 instrumentation_end();
6774 }
6775
vmx_vcpu_run(struct kvm_vcpu * vcpu)6776 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6777 {
6778 fastpath_t exit_fastpath;
6779 struct vcpu_vmx *vmx = to_vmx(vcpu);
6780 unsigned long cr3, cr4;
6781
6782 reenter_guest:
6783 /* Record the guest's net vcpu time for enforced NMI injections. */
6784 if (unlikely(!enable_vnmi &&
6785 vmx->loaded_vmcs->soft_vnmi_blocked))
6786 vmx->loaded_vmcs->entry_time = ktime_get();
6787
6788 /* Don't enter VMX if guest state is invalid, let the exit handler
6789 start emulation until we arrive back to a valid state */
6790 if (vmx->emulation_required)
6791 return EXIT_FASTPATH_NONE;
6792
6793 if (vmx->ple_window_dirty) {
6794 vmx->ple_window_dirty = false;
6795 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6796 }
6797
6798 /*
6799 * We did this in prepare_switch_to_guest, because it needs to
6800 * be within srcu_read_lock.
6801 */
6802 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6803
6804 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6805 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6806 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6807 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6808
6809 cr3 = __get_current_cr3_fast();
6810 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6811 vmcs_writel(HOST_CR3, cr3);
6812 vmx->loaded_vmcs->host_state.cr3 = cr3;
6813 }
6814
6815 cr4 = cr4_read_shadow();
6816 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6817 vmcs_writel(HOST_CR4, cr4);
6818 vmx->loaded_vmcs->host_state.cr4 = cr4;
6819 }
6820
6821 /* When single-stepping over STI and MOV SS, we must clear the
6822 * corresponding interruptibility bits in the guest state. Otherwise
6823 * vmentry fails as it then expects bit 14 (BS) in pending debug
6824 * exceptions being set, but that's not correct for the guest debugging
6825 * case. */
6826 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6827 vmx_set_interrupt_shadow(vcpu, 0);
6828
6829 kvm_load_guest_xsave_state(vcpu);
6830
6831 pt_guest_enter(vmx);
6832
6833 atomic_switch_perf_msrs(vmx);
6834
6835 if (enable_preemption_timer)
6836 vmx_update_hv_timer(vcpu);
6837
6838 kvm_wait_lapic_expire(vcpu);
6839
6840 /*
6841 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6842 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6843 * is no need to worry about the conditional branch over the wrmsr
6844 * being speculatively taken.
6845 */
6846 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6847
6848 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6849 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6850
6851 /* All fields are clean at this point */
6852 if (static_branch_unlikely(&enable_evmcs))
6853 current_evmcs->hv_clean_fields |=
6854 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6855
6856 if (static_branch_unlikely(&enable_evmcs))
6857 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6858
6859 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6860 if (vmx->host_debugctlmsr)
6861 update_debugctlmsr(vmx->host_debugctlmsr);
6862
6863 #ifndef CONFIG_X86_64
6864 /*
6865 * The sysexit path does not restore ds/es, so we must set them to
6866 * a reasonable value ourselves.
6867 *
6868 * We can't defer this to vmx_prepare_switch_to_host() since that
6869 * function may be executed in interrupt context, which saves and
6870 * restore segments around it, nullifying its effect.
6871 */
6872 loadsegment(ds, __USER_DS);
6873 loadsegment(es, __USER_DS);
6874 #endif
6875
6876 vmx_register_cache_reset(vcpu);
6877
6878 pt_guest_exit(vmx);
6879
6880 kvm_load_host_xsave_state(vcpu);
6881
6882 vmx->nested.nested_run_pending = 0;
6883 vmx->idt_vectoring_info = 0;
6884
6885 if (unlikely(vmx->fail)) {
6886 vmx->exit_reason.full = 0xdead;
6887 return EXIT_FASTPATH_NONE;
6888 }
6889
6890 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6891 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6892 kvm_machine_check();
6893
6894 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6895
6896 if (unlikely(vmx->exit_reason.failed_vmentry))
6897 return EXIT_FASTPATH_NONE;
6898
6899 vmx->loaded_vmcs->launched = 1;
6900 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6901
6902 vmx_recover_nmi_blocking(vmx);
6903 vmx_complete_interrupts(vmx);
6904
6905 if (is_guest_mode(vcpu))
6906 return EXIT_FASTPATH_NONE;
6907
6908 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6909 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6910 if (!kvm_vcpu_exit_request(vcpu)) {
6911 /*
6912 * FIXME: this goto should be a loop in vcpu_enter_guest,
6913 * but it would incur the cost of a retpoline for now.
6914 * Revisit once static calls are available.
6915 */
6916 if (vcpu->arch.apicv_active)
6917 vmx_sync_pir_to_irr(vcpu);
6918 goto reenter_guest;
6919 }
6920 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6921 }
6922
6923 return exit_fastpath;
6924 }
6925
vmx_free_vcpu(struct kvm_vcpu * vcpu)6926 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6927 {
6928 struct vcpu_vmx *vmx = to_vmx(vcpu);
6929
6930 if (enable_pml)
6931 vmx_destroy_pml_buffer(vmx);
6932 free_vpid(vmx->vpid);
6933 nested_vmx_free_vcpu(vcpu);
6934 free_loaded_vmcs(vmx->loaded_vmcs);
6935 }
6936
vmx_create_vcpu(struct kvm_vcpu * vcpu)6937 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6938 {
6939 struct vcpu_vmx *vmx;
6940 int i, cpu, err;
6941
6942 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6943 vmx = to_vmx(vcpu);
6944
6945 err = -ENOMEM;
6946
6947 vmx->vpid = allocate_vpid();
6948
6949 /*
6950 * If PML is turned on, failure on enabling PML just results in failure
6951 * of creating the vcpu, therefore we can simplify PML logic (by
6952 * avoiding dealing with cases, such as enabling PML partially on vcpus
6953 * for the guest), etc.
6954 */
6955 if (enable_pml) {
6956 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6957 if (!vmx->pml_pg)
6958 goto free_vpid;
6959 }
6960
6961 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6962
6963 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6964 u32 index = vmx_uret_msrs_list[i];
6965 int j = vmx->nr_uret_msrs;
6966
6967 if (kvm_probe_user_return_msr(index))
6968 continue;
6969
6970 vmx->guest_uret_msrs[j].slot = i;
6971 vmx->guest_uret_msrs[j].data = 0;
6972 switch (index) {
6973 case MSR_IA32_TSX_CTRL:
6974 /*
6975 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6976 * interception. Keep the host value unchanged to avoid
6977 * changing CPUID bits under the host kernel's feet.
6978 *
6979 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6980 * combinations of new kernel and old userspace. If
6981 * those guests run on a tsx=off host, do allow guests
6982 * to use TSX_CTRL, but do not change the value on the
6983 * host so that TSX remains always disabled.
6984 */
6985 if (boot_cpu_has(X86_FEATURE_RTM))
6986 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6987 else
6988 vmx->guest_uret_msrs[j].mask = 0;
6989 break;
6990 default:
6991 vmx->guest_uret_msrs[j].mask = -1ull;
6992 break;
6993 }
6994 ++vmx->nr_uret_msrs;
6995 }
6996
6997 err = alloc_loaded_vmcs(&vmx->vmcs01);
6998 if (err < 0)
6999 goto free_pml;
7000
7001 /* The MSR bitmap starts with all ones */
7002 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7003 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7004
7005 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7006 #ifdef CONFIG_X86_64
7007 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7008 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7009 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7010 #endif
7011 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7012 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7013 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7014 if (kvm_cstate_in_guest(vcpu->kvm)) {
7015 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7016 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7017 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7018 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7019 }
7020 vmx->msr_bitmap_mode = 0;
7021
7022 vmx->loaded_vmcs = &vmx->vmcs01;
7023 cpu = get_cpu();
7024 vmx_vcpu_load(vcpu, cpu);
7025 vcpu->cpu = cpu;
7026 init_vmcs(vmx);
7027 vmx_vcpu_put(vcpu);
7028 put_cpu();
7029 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7030 err = alloc_apic_access_page(vcpu->kvm);
7031 if (err)
7032 goto free_vmcs;
7033 }
7034
7035 if (enable_ept && !enable_unrestricted_guest) {
7036 err = init_rmode_identity_map(vcpu->kvm);
7037 if (err)
7038 goto free_vmcs;
7039 }
7040
7041 if (nested)
7042 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7043 else
7044 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7045
7046 vmx->nested.posted_intr_nv = -1;
7047 vmx->nested.current_vmptr = -1ull;
7048
7049 vcpu->arch.microcode_version = 0x100000000ULL;
7050 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7051
7052 /*
7053 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7054 * or POSTED_INTR_WAKEUP_VECTOR.
7055 */
7056 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7057 vmx->pi_desc.sn = 1;
7058
7059 vmx->ept_pointer = INVALID_PAGE;
7060
7061 return 0;
7062
7063 free_vmcs:
7064 free_loaded_vmcs(vmx->loaded_vmcs);
7065 free_pml:
7066 vmx_destroy_pml_buffer(vmx);
7067 free_vpid:
7068 free_vpid(vmx->vpid);
7069 return err;
7070 }
7071
7072 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7073 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7074
vmx_vm_init(struct kvm * kvm)7075 static int vmx_vm_init(struct kvm *kvm)
7076 {
7077 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7078
7079 if (!ple_gap)
7080 kvm->arch.pause_in_guest = true;
7081
7082 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7083 switch (l1tf_mitigation) {
7084 case L1TF_MITIGATION_OFF:
7085 case L1TF_MITIGATION_FLUSH_NOWARN:
7086 /* 'I explicitly don't care' is set */
7087 break;
7088 case L1TF_MITIGATION_FLUSH:
7089 case L1TF_MITIGATION_FLUSH_NOSMT:
7090 case L1TF_MITIGATION_FULL:
7091 /*
7092 * Warn upon starting the first VM in a potentially
7093 * insecure environment.
7094 */
7095 if (sched_smt_active())
7096 pr_warn_once(L1TF_MSG_SMT);
7097 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7098 pr_warn_once(L1TF_MSG_L1D);
7099 break;
7100 case L1TF_MITIGATION_FULL_FORCE:
7101 /* Flush is enforced */
7102 break;
7103 }
7104 }
7105 kvm_apicv_init(kvm, enable_apicv);
7106 return 0;
7107 }
7108
vmx_check_processor_compat(void)7109 static int __init vmx_check_processor_compat(void)
7110 {
7111 struct vmcs_config vmcs_conf;
7112 struct vmx_capability vmx_cap;
7113
7114 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7115 !this_cpu_has(X86_FEATURE_VMX)) {
7116 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7117 return -EIO;
7118 }
7119
7120 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7121 return -EIO;
7122 if (nested)
7123 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7124 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7125 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7126 smp_processor_id());
7127 return -EIO;
7128 }
7129 return 0;
7130 }
7131
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7132 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7133 {
7134 u8 cache;
7135 u64 ipat = 0;
7136
7137 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7138 * memory aliases with conflicting memory types and sometimes MCEs.
7139 * We have to be careful as to what are honored and when.
7140 *
7141 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7142 * UC. The effective memory type is UC or WC depending on guest PAT.
7143 * This was historically the source of MCEs and we want to be
7144 * conservative.
7145 *
7146 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7147 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7148 * EPT memory type is set to WB. The effective memory type is forced
7149 * WB.
7150 *
7151 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7152 * EPT memory type is used to emulate guest CD/MTRR.
7153 */
7154
7155 if (is_mmio) {
7156 cache = MTRR_TYPE_UNCACHABLE;
7157 goto exit;
7158 }
7159
7160 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7161 ipat = VMX_EPT_IPAT_BIT;
7162 cache = MTRR_TYPE_WRBACK;
7163 goto exit;
7164 }
7165
7166 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7167 ipat = VMX_EPT_IPAT_BIT;
7168 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7169 cache = MTRR_TYPE_WRBACK;
7170 else
7171 cache = MTRR_TYPE_UNCACHABLE;
7172 goto exit;
7173 }
7174
7175 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7176
7177 exit:
7178 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7179 }
7180
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7181 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7182 {
7183 /*
7184 * These bits in the secondary execution controls field
7185 * are dynamic, the others are mostly based on the hypervisor
7186 * architecture and the guest's CPUID. Do not touch the
7187 * dynamic bits.
7188 */
7189 u32 mask =
7190 SECONDARY_EXEC_SHADOW_VMCS |
7191 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7192 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7193 SECONDARY_EXEC_DESC;
7194
7195 u32 new_ctl = vmx->secondary_exec_control;
7196 u32 cur_ctl = secondary_exec_controls_get(vmx);
7197
7198 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7199 }
7200
7201 /*
7202 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7203 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7204 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7205 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7206 {
7207 struct vcpu_vmx *vmx = to_vmx(vcpu);
7208 struct kvm_cpuid_entry2 *entry;
7209
7210 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7211 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7212
7213 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7214 if (entry && (entry->_reg & (_cpuid_mask))) \
7215 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7216 } while (0)
7217
7218 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7219 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7220 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7221 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7222 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7223 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7224 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7225 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7226 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7227 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7228 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7229 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7230 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7231 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7232 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7233
7234 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7235 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7236 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7237 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7238 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7239 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7240 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7241
7242 #undef cr4_fixed1_update
7243 }
7244
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7245 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7246 {
7247 struct vcpu_vmx *vmx = to_vmx(vcpu);
7248
7249 if (kvm_mpx_supported()) {
7250 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7251
7252 if (mpx_enabled) {
7253 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7254 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7255 } else {
7256 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7257 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7258 }
7259 }
7260 }
7261
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7262 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7263 {
7264 struct vcpu_vmx *vmx = to_vmx(vcpu);
7265 struct kvm_cpuid_entry2 *best = NULL;
7266 int i;
7267
7268 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7269 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7270 if (!best)
7271 return;
7272 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7273 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7274 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7275 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7276 }
7277
7278 /* Get the number of configurable Address Ranges for filtering */
7279 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7280 PT_CAP_num_address_ranges);
7281
7282 /* Initialize and clear the no dependency bits */
7283 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7284 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7285
7286 /*
7287 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7288 * will inject an #GP
7289 */
7290 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7291 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7292
7293 /*
7294 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7295 * PSBFreq can be set
7296 */
7297 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7298 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7299 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7300
7301 /*
7302 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7303 * MTCFreq can be set
7304 */
7305 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7306 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7307 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7308
7309 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7310 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7311 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7312 RTIT_CTL_PTW_EN);
7313
7314 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7315 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7316 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7317
7318 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7319 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7320 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7321
7322 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7323 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7324 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7325
7326 /* unmask address range configure area */
7327 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7328 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7329 }
7330
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7331 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7332 {
7333 struct vcpu_vmx *vmx = to_vmx(vcpu);
7334
7335 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7336 vcpu->arch.xsaves_enabled = false;
7337
7338 if (cpu_has_secondary_exec_ctrls()) {
7339 vmx_compute_secondary_exec_control(vmx);
7340 vmcs_set_secondary_exec_control(vmx);
7341 }
7342
7343 if (nested_vmx_allowed(vcpu))
7344 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7345 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7346 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7347 else
7348 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7349 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7350 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7351
7352 if (nested_vmx_allowed(vcpu)) {
7353 nested_vmx_cr_fixed1_bits_update(vcpu);
7354 nested_vmx_entry_exit_ctls_update(vcpu);
7355 }
7356
7357 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7358 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7359 update_intel_pt_cfg(vcpu);
7360
7361 if (boot_cpu_has(X86_FEATURE_RTM)) {
7362 struct vmx_uret_msr *msr;
7363 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7364 if (msr) {
7365 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7366 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7367 }
7368 }
7369
7370 set_cr4_guest_host_mask(vmx);
7371
7372 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7373 update_exception_bitmap(vcpu);
7374 }
7375
vmx_set_cpu_caps(void)7376 static __init void vmx_set_cpu_caps(void)
7377 {
7378 kvm_set_cpu_caps();
7379
7380 /* CPUID 0x1 */
7381 if (nested)
7382 kvm_cpu_cap_set(X86_FEATURE_VMX);
7383
7384 /* CPUID 0x7 */
7385 if (kvm_mpx_supported())
7386 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7387 if (cpu_has_vmx_invpcid())
7388 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7389 if (vmx_pt_mode_is_host_guest())
7390 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7391
7392 if (vmx_umip_emulated())
7393 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7394
7395 /* CPUID 0xD.1 */
7396 supported_xss = 0;
7397 if (!cpu_has_vmx_xsaves())
7398 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7399
7400 /* CPUID 0x80000001 and 0x7 (RDPID) */
7401 if (!cpu_has_vmx_rdtscp()) {
7402 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7403 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7404 }
7405
7406 if (cpu_has_vmx_waitpkg())
7407 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7408 }
7409
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7410 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7411 {
7412 to_vmx(vcpu)->req_immediate_exit = true;
7413 }
7414
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7415 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7416 struct x86_instruction_info *info)
7417 {
7418 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7419 unsigned short port;
7420 bool intercept;
7421 int size;
7422
7423 if (info->intercept == x86_intercept_in ||
7424 info->intercept == x86_intercept_ins) {
7425 port = info->src_val;
7426 size = info->dst_bytes;
7427 } else {
7428 port = info->dst_val;
7429 size = info->src_bytes;
7430 }
7431
7432 /*
7433 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7434 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7435 * control.
7436 *
7437 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7438 */
7439 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7440 intercept = nested_cpu_has(vmcs12,
7441 CPU_BASED_UNCOND_IO_EXITING);
7442 else
7443 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7444
7445 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7446 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7447 }
7448
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7449 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7450 struct x86_instruction_info *info,
7451 enum x86_intercept_stage stage,
7452 struct x86_exception *exception)
7453 {
7454 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7455
7456 switch (info->intercept) {
7457 /*
7458 * RDPID causes #UD if disabled through secondary execution controls.
7459 * Because it is marked as EmulateOnUD, we need to intercept it here.
7460 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7461 */
7462 case x86_intercept_rdpid:
7463 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7464 exception->vector = UD_VECTOR;
7465 exception->error_code_valid = false;
7466 return X86EMUL_PROPAGATE_FAULT;
7467 }
7468 break;
7469
7470 case x86_intercept_in:
7471 case x86_intercept_ins:
7472 case x86_intercept_out:
7473 case x86_intercept_outs:
7474 return vmx_check_intercept_io(vcpu, info);
7475
7476 case x86_intercept_lgdt:
7477 case x86_intercept_lidt:
7478 case x86_intercept_lldt:
7479 case x86_intercept_ltr:
7480 case x86_intercept_sgdt:
7481 case x86_intercept_sidt:
7482 case x86_intercept_sldt:
7483 case x86_intercept_str:
7484 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7485 return X86EMUL_CONTINUE;
7486
7487 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7488 break;
7489
7490 /* TODO: check more intercepts... */
7491 default:
7492 break;
7493 }
7494
7495 return X86EMUL_UNHANDLEABLE;
7496 }
7497
7498 #ifdef CONFIG_X86_64
7499 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7500 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7501 u64 divisor, u64 *result)
7502 {
7503 u64 low = a << shift, high = a >> (64 - shift);
7504
7505 /* To avoid the overflow on divq */
7506 if (high >= divisor)
7507 return 1;
7508
7509 /* Low hold the result, high hold rem which is discarded */
7510 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7511 "rm" (divisor), "0" (low), "1" (high));
7512 *result = low;
7513
7514 return 0;
7515 }
7516
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7517 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7518 bool *expired)
7519 {
7520 struct vcpu_vmx *vmx;
7521 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7522 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7523
7524 vmx = to_vmx(vcpu);
7525 tscl = rdtsc();
7526 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7527 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7528 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7529 ktimer->timer_advance_ns);
7530
7531 if (delta_tsc > lapic_timer_advance_cycles)
7532 delta_tsc -= lapic_timer_advance_cycles;
7533 else
7534 delta_tsc = 0;
7535
7536 /* Convert to host delta tsc if tsc scaling is enabled */
7537 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7538 delta_tsc && u64_shl_div_u64(delta_tsc,
7539 kvm_tsc_scaling_ratio_frac_bits,
7540 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7541 return -ERANGE;
7542
7543 /*
7544 * If the delta tsc can't fit in the 32 bit after the multi shift,
7545 * we can't use the preemption timer.
7546 * It's possible that it fits on later vmentries, but checking
7547 * on every vmentry is costly so we just use an hrtimer.
7548 */
7549 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7550 return -ERANGE;
7551
7552 vmx->hv_deadline_tsc = tscl + delta_tsc;
7553 *expired = !delta_tsc;
7554 return 0;
7555 }
7556
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7557 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7558 {
7559 to_vmx(vcpu)->hv_deadline_tsc = -1;
7560 }
7561 #endif
7562
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7563 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7564 {
7565 if (!kvm_pause_in_guest(vcpu->kvm))
7566 shrink_ple_window(vcpu);
7567 }
7568
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7569 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7570 struct kvm_memory_slot *slot)
7571 {
7572 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7573 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7574 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7575 }
7576
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7577 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7578 struct kvm_memory_slot *slot)
7579 {
7580 kvm_mmu_slot_set_dirty(kvm, slot);
7581 }
7582
vmx_flush_log_dirty(struct kvm * kvm)7583 static void vmx_flush_log_dirty(struct kvm *kvm)
7584 {
7585 kvm_flush_pml_buffers(kvm);
7586 }
7587
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7588 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7589 struct kvm_memory_slot *memslot,
7590 gfn_t offset, unsigned long mask)
7591 {
7592 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7593 }
7594
vmx_pre_block(struct kvm_vcpu * vcpu)7595 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7596 {
7597 if (pi_pre_block(vcpu))
7598 return 1;
7599
7600 if (kvm_lapic_hv_timer_in_use(vcpu))
7601 kvm_lapic_switch_to_sw_timer(vcpu);
7602
7603 return 0;
7604 }
7605
vmx_post_block(struct kvm_vcpu * vcpu)7606 static void vmx_post_block(struct kvm_vcpu *vcpu)
7607 {
7608 if (kvm_x86_ops.set_hv_timer)
7609 kvm_lapic_switch_to_hv_timer(vcpu);
7610
7611 pi_post_block(vcpu);
7612 }
7613
vmx_setup_mce(struct kvm_vcpu * vcpu)7614 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7615 {
7616 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7617 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7618 FEAT_CTL_LMCE_ENABLED;
7619 else
7620 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7621 ~FEAT_CTL_LMCE_ENABLED;
7622 }
7623
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7624 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7625 {
7626 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7627 if (to_vmx(vcpu)->nested.nested_run_pending)
7628 return -EBUSY;
7629 return !is_smm(vcpu);
7630 }
7631
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7632 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7633 {
7634 struct vcpu_vmx *vmx = to_vmx(vcpu);
7635
7636 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7637 if (vmx->nested.smm.guest_mode)
7638 nested_vmx_vmexit(vcpu, -1, 0, 0);
7639
7640 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7641 vmx->nested.vmxon = false;
7642 vmx_clear_hlt(vcpu);
7643 return 0;
7644 }
7645
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7646 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7647 {
7648 struct vcpu_vmx *vmx = to_vmx(vcpu);
7649 int ret;
7650
7651 if (vmx->nested.smm.vmxon) {
7652 vmx->nested.vmxon = true;
7653 vmx->nested.smm.vmxon = false;
7654 }
7655
7656 if (vmx->nested.smm.guest_mode) {
7657 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7658 if (ret)
7659 return ret;
7660
7661 vmx->nested.smm.guest_mode = false;
7662 }
7663 return 0;
7664 }
7665
enable_smi_window(struct kvm_vcpu * vcpu)7666 static void enable_smi_window(struct kvm_vcpu *vcpu)
7667 {
7668 /* RSM will cause a vmexit anyway. */
7669 }
7670
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7671 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7672 {
7673 return to_vmx(vcpu)->nested.vmxon;
7674 }
7675
vmx_migrate_timers(struct kvm_vcpu * vcpu)7676 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7677 {
7678 if (is_guest_mode(vcpu)) {
7679 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7680
7681 if (hrtimer_try_to_cancel(timer) == 1)
7682 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7683 }
7684 }
7685
hardware_unsetup(void)7686 static void hardware_unsetup(void)
7687 {
7688 kvm_set_posted_intr_wakeup_handler(NULL);
7689
7690 if (nested)
7691 nested_vmx_hardware_unsetup();
7692
7693 free_kvm_area();
7694 }
7695
vmx_check_apicv_inhibit_reasons(ulong bit)7696 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7697 {
7698 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7699 BIT(APICV_INHIBIT_REASON_HYPERV);
7700
7701 return supported & BIT(bit);
7702 }
7703
7704 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7705 .hardware_unsetup = hardware_unsetup,
7706
7707 .hardware_enable = hardware_enable,
7708 .hardware_disable = hardware_disable,
7709 .cpu_has_accelerated_tpr = report_flexpriority,
7710 .has_emulated_msr = vmx_has_emulated_msr,
7711
7712 .vm_size = sizeof(struct kvm_vmx),
7713 .vm_init = vmx_vm_init,
7714
7715 .vcpu_create = vmx_create_vcpu,
7716 .vcpu_free = vmx_free_vcpu,
7717 .vcpu_reset = vmx_vcpu_reset,
7718
7719 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7720 .vcpu_load = vmx_vcpu_load,
7721 .vcpu_put = vmx_vcpu_put,
7722
7723 .update_exception_bitmap = update_exception_bitmap,
7724 .get_msr_feature = vmx_get_msr_feature,
7725 .get_msr = vmx_get_msr,
7726 .set_msr = vmx_set_msr,
7727 .get_segment_base = vmx_get_segment_base,
7728 .get_segment = vmx_get_segment,
7729 .set_segment = vmx_set_segment,
7730 .get_cpl = vmx_get_cpl,
7731 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7732 .set_cr0 = vmx_set_cr0,
7733 .set_cr4 = vmx_set_cr4,
7734 .set_efer = vmx_set_efer,
7735 .get_idt = vmx_get_idt,
7736 .set_idt = vmx_set_idt,
7737 .get_gdt = vmx_get_gdt,
7738 .set_gdt = vmx_set_gdt,
7739 .set_dr7 = vmx_set_dr7,
7740 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7741 .cache_reg = vmx_cache_reg,
7742 .get_rflags = vmx_get_rflags,
7743 .set_rflags = vmx_set_rflags,
7744
7745 .tlb_flush_all = vmx_flush_tlb_all,
7746 .tlb_flush_current = vmx_flush_tlb_current,
7747 .tlb_flush_gva = vmx_flush_tlb_gva,
7748 .tlb_flush_guest = vmx_flush_tlb_guest,
7749
7750 .run = vmx_vcpu_run,
7751 .handle_exit = vmx_handle_exit,
7752 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7753 .update_emulated_instruction = vmx_update_emulated_instruction,
7754 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7755 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7756 .patch_hypercall = vmx_patch_hypercall,
7757 .set_irq = vmx_inject_irq,
7758 .set_nmi = vmx_inject_nmi,
7759 .queue_exception = vmx_queue_exception,
7760 .cancel_injection = vmx_cancel_injection,
7761 .interrupt_allowed = vmx_interrupt_allowed,
7762 .nmi_allowed = vmx_nmi_allowed,
7763 .get_nmi_mask = vmx_get_nmi_mask,
7764 .set_nmi_mask = vmx_set_nmi_mask,
7765 .enable_nmi_window = enable_nmi_window,
7766 .enable_irq_window = enable_irq_window,
7767 .update_cr8_intercept = update_cr8_intercept,
7768 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7769 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7770 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7771 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7772 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7773 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7774 .hwapic_irr_update = vmx_hwapic_irr_update,
7775 .hwapic_isr_update = vmx_hwapic_isr_update,
7776 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7777 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7778 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7779 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7780
7781 .set_tss_addr = vmx_set_tss_addr,
7782 .set_identity_map_addr = vmx_set_identity_map_addr,
7783 .get_mt_mask = vmx_get_mt_mask,
7784
7785 .get_exit_info = vmx_get_exit_info,
7786
7787 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7788
7789 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7790
7791 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7792
7793 .load_mmu_pgd = vmx_load_mmu_pgd,
7794
7795 .check_intercept = vmx_check_intercept,
7796 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7797
7798 .request_immediate_exit = vmx_request_immediate_exit,
7799
7800 .sched_in = vmx_sched_in,
7801
7802 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7803 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7804 .flush_log_dirty = vmx_flush_log_dirty,
7805 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7806
7807 .pre_block = vmx_pre_block,
7808 .post_block = vmx_post_block,
7809
7810 .pmu_ops = &intel_pmu_ops,
7811 .nested_ops = &vmx_nested_ops,
7812
7813 .update_pi_irte = pi_update_irte,
7814
7815 #ifdef CONFIG_X86_64
7816 .set_hv_timer = vmx_set_hv_timer,
7817 .cancel_hv_timer = vmx_cancel_hv_timer,
7818 #endif
7819
7820 .setup_mce = vmx_setup_mce,
7821
7822 .smi_allowed = vmx_smi_allowed,
7823 .pre_enter_smm = vmx_pre_enter_smm,
7824 .pre_leave_smm = vmx_pre_leave_smm,
7825 .enable_smi_window = enable_smi_window,
7826
7827 .can_emulate_instruction = vmx_can_emulate_instruction,
7828 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7829 .migrate_timers = vmx_migrate_timers,
7830
7831 .msr_filter_changed = vmx_msr_filter_changed,
7832 };
7833
hardware_setup(void)7834 static __init int hardware_setup(void)
7835 {
7836 unsigned long host_bndcfgs;
7837 struct desc_ptr dt;
7838 int r, i, ept_lpage_level;
7839
7840 store_idt(&dt);
7841 host_idt_base = dt.address;
7842
7843 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7844 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7845
7846 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7847 return -EIO;
7848
7849 if (boot_cpu_has(X86_FEATURE_NX))
7850 kvm_enable_efer_bits(EFER_NX);
7851
7852 if (boot_cpu_has(X86_FEATURE_MPX)) {
7853 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7854 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7855 }
7856
7857 if (!cpu_has_vmx_mpx())
7858 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7859 XFEATURE_MASK_BNDCSR);
7860
7861 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7862 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7863 enable_vpid = 0;
7864
7865 if (!cpu_has_vmx_ept() ||
7866 !cpu_has_vmx_ept_4levels() ||
7867 !cpu_has_vmx_ept_mt_wb() ||
7868 !cpu_has_vmx_invept_global())
7869 enable_ept = 0;
7870
7871 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7872 enable_ept_ad_bits = 0;
7873
7874 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7875 enable_unrestricted_guest = 0;
7876
7877 if (!cpu_has_vmx_flexpriority())
7878 flexpriority_enabled = 0;
7879
7880 if (!cpu_has_virtual_nmis())
7881 enable_vnmi = 0;
7882
7883 /*
7884 * set_apic_access_page_addr() is used to reload apic access
7885 * page upon invalidation. No need to do anything if not
7886 * using the APIC_ACCESS_ADDR VMCS field.
7887 */
7888 if (!flexpriority_enabled)
7889 vmx_x86_ops.set_apic_access_page_addr = NULL;
7890
7891 if (!cpu_has_vmx_tpr_shadow())
7892 vmx_x86_ops.update_cr8_intercept = NULL;
7893
7894 #if IS_ENABLED(CONFIG_HYPERV)
7895 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7896 && enable_ept) {
7897 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7898 vmx_x86_ops.tlb_remote_flush_with_range =
7899 hv_remote_flush_tlb_with_range;
7900 }
7901 #endif
7902
7903 if (!cpu_has_vmx_ple()) {
7904 ple_gap = 0;
7905 ple_window = 0;
7906 ple_window_grow = 0;
7907 ple_window_max = 0;
7908 ple_window_shrink = 0;
7909 }
7910
7911 if (!cpu_has_vmx_apicv()) {
7912 enable_apicv = 0;
7913 vmx_x86_ops.sync_pir_to_irr = NULL;
7914 }
7915
7916 if (cpu_has_vmx_tsc_scaling()) {
7917 kvm_has_tsc_control = true;
7918 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7919 kvm_tsc_scaling_ratio_frac_bits = 48;
7920 }
7921
7922 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7923
7924 if (enable_ept)
7925 vmx_enable_tdp();
7926
7927 if (!enable_ept)
7928 ept_lpage_level = 0;
7929 else if (cpu_has_vmx_ept_1g_page())
7930 ept_lpage_level = PG_LEVEL_1G;
7931 else if (cpu_has_vmx_ept_2m_page())
7932 ept_lpage_level = PG_LEVEL_2M;
7933 else
7934 ept_lpage_level = PG_LEVEL_4K;
7935 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7936
7937 /*
7938 * Only enable PML when hardware supports PML feature, and both EPT
7939 * and EPT A/D bit features are enabled -- PML depends on them to work.
7940 */
7941 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7942 enable_pml = 0;
7943
7944 if (!enable_pml) {
7945 vmx_x86_ops.slot_enable_log_dirty = NULL;
7946 vmx_x86_ops.slot_disable_log_dirty = NULL;
7947 vmx_x86_ops.flush_log_dirty = NULL;
7948 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7949 }
7950
7951 if (!cpu_has_vmx_preemption_timer())
7952 enable_preemption_timer = false;
7953
7954 if (enable_preemption_timer) {
7955 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7956 u64 vmx_msr;
7957
7958 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7959 cpu_preemption_timer_multi =
7960 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7961
7962 if (tsc_khz)
7963 use_timer_freq = (u64)tsc_khz * 1000;
7964 use_timer_freq >>= cpu_preemption_timer_multi;
7965
7966 /*
7967 * KVM "disables" the preemption timer by setting it to its max
7968 * value. Don't use the timer if it might cause spurious exits
7969 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7970 */
7971 if (use_timer_freq > 0xffffffffu / 10)
7972 enable_preemption_timer = false;
7973 }
7974
7975 if (!enable_preemption_timer) {
7976 vmx_x86_ops.set_hv_timer = NULL;
7977 vmx_x86_ops.cancel_hv_timer = NULL;
7978 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7979 }
7980
7981 kvm_mce_cap_supported |= MCG_LMCE_P;
7982
7983 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7984 return -EINVAL;
7985 if (!enable_ept || !cpu_has_vmx_intel_pt())
7986 pt_mode = PT_MODE_SYSTEM;
7987
7988 if (nested) {
7989 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7990 vmx_capability.ept);
7991
7992 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7993 if (r)
7994 return r;
7995 }
7996
7997 vmx_set_cpu_caps();
7998
7999 r = alloc_kvm_area();
8000 if (r)
8001 nested_vmx_hardware_unsetup();
8002
8003 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8004
8005 return r;
8006 }
8007
8008 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8009 .cpu_has_kvm_support = cpu_has_kvm_support,
8010 .disabled_by_bios = vmx_disabled_by_bios,
8011 .check_processor_compatibility = vmx_check_processor_compat,
8012 .hardware_setup = hardware_setup,
8013 .intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8014
8015 .runtime_ops = &vmx_x86_ops,
8016 };
8017
vmx_cleanup_l1d_flush(void)8018 static void vmx_cleanup_l1d_flush(void)
8019 {
8020 if (vmx_l1d_flush_pages) {
8021 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8022 vmx_l1d_flush_pages = NULL;
8023 }
8024 /* Restore state so sysfs ignores VMX */
8025 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8026 }
8027
vmx_exit(void)8028 static void vmx_exit(void)
8029 {
8030 #ifdef CONFIG_KEXEC_CORE
8031 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8032 synchronize_rcu();
8033 #endif
8034
8035 kvm_exit();
8036
8037 #if IS_ENABLED(CONFIG_HYPERV)
8038 if (static_branch_unlikely(&enable_evmcs)) {
8039 int cpu;
8040 struct hv_vp_assist_page *vp_ap;
8041 /*
8042 * Reset everything to support using non-enlightened VMCS
8043 * access later (e.g. when we reload the module with
8044 * enlightened_vmcs=0)
8045 */
8046 for_each_online_cpu(cpu) {
8047 vp_ap = hv_get_vp_assist_page(cpu);
8048
8049 if (!vp_ap)
8050 continue;
8051
8052 vp_ap->nested_control.features.directhypercall = 0;
8053 vp_ap->current_nested_vmcs = 0;
8054 vp_ap->enlighten_vmentry = 0;
8055 }
8056
8057 static_branch_disable(&enable_evmcs);
8058 }
8059 #endif
8060 vmx_cleanup_l1d_flush();
8061 }
8062 module_exit(vmx_exit);
8063
vmx_init(void)8064 static int __init vmx_init(void)
8065 {
8066 int r, cpu;
8067
8068 #if IS_ENABLED(CONFIG_HYPERV)
8069 /*
8070 * Enlightened VMCS usage should be recommended and the host needs
8071 * to support eVMCS v1 or above. We can also disable eVMCS support
8072 * with module parameter.
8073 */
8074 if (enlightened_vmcs &&
8075 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8076 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8077 KVM_EVMCS_VERSION) {
8078 int cpu;
8079
8080 /* Check that we have assist pages on all online CPUs */
8081 for_each_online_cpu(cpu) {
8082 if (!hv_get_vp_assist_page(cpu)) {
8083 enlightened_vmcs = false;
8084 break;
8085 }
8086 }
8087
8088 if (enlightened_vmcs) {
8089 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8090 static_branch_enable(&enable_evmcs);
8091 }
8092
8093 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8094 vmx_x86_ops.enable_direct_tlbflush
8095 = hv_enable_direct_tlbflush;
8096
8097 } else {
8098 enlightened_vmcs = false;
8099 }
8100 #endif
8101
8102 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8103 __alignof__(struct vcpu_vmx), THIS_MODULE);
8104 if (r)
8105 return r;
8106
8107 /*
8108 * Must be called after kvm_init() so enable_ept is properly set
8109 * up. Hand the parameter mitigation value in which was stored in
8110 * the pre module init parser. If no parameter was given, it will
8111 * contain 'auto' which will be turned into the default 'cond'
8112 * mitigation mode.
8113 */
8114 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8115 if (r) {
8116 vmx_exit();
8117 return r;
8118 }
8119
8120 vmx_setup_fb_clear_ctrl();
8121
8122 for_each_possible_cpu(cpu) {
8123 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8124
8125 pi_init_cpu(cpu);
8126 }
8127
8128 #ifdef CONFIG_KEXEC_CORE
8129 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8130 crash_vmclear_local_loaded_vmcss);
8131 #endif
8132 vmx_check_vmcs12_offsets();
8133
8134 /*
8135 * Shadow paging doesn't have a (further) performance penalty
8136 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8137 * by default
8138 */
8139 if (!enable_ept)
8140 allow_smaller_maxphyaddr = true;
8141
8142 return 0;
8143 }
8144 module_init(vmx_init);
8145