1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39
40 void
xfs_uuid_table_free(void)41 xfs_uuid_table_free(void)
42 {
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48 }
49
50 /*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)55 xfs_uuid_mount(
56 struct xfs_mount *mp)
57 {
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = krealloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 GFP_KERNEL | __GFP_NOFAIL);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97 }
98
99 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)100 xfs_uuid_unmount(
101 struct xfs_mount *mp)
102 {
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120 }
121
122
123 STATIC void
__xfs_free_perag(struct rcu_head * head)124 __xfs_free_perag(
125 struct rcu_head *head)
126 {
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131 }
132
133 /*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136 STATIC void
xfs_free_perag(xfs_mount_t * mp)137 xfs_free_perag(
138 xfs_mount_t *mp)
139 {
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 call_rcu(&pag->rcu_head, __xfs_free_perag);
152 }
153 }
154
155 /*
156 * Check size of device based on the (data/realtime) block count.
157 * Note: this check is used by the growfs code as well as mount.
158 */
159 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)160 xfs_sb_validate_fsb_count(
161 xfs_sb_t *sbp,
162 uint64_t nblocks)
163 {
164 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
165 ASSERT(sbp->sb_blocklog >= BBSHIFT);
166
167 /* Limited by ULONG_MAX of page cache index */
168 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
169 return -EFBIG;
170 return 0;
171 }
172
173 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)174 xfs_initialize_perag(
175 xfs_mount_t *mp,
176 xfs_agnumber_t agcount,
177 xfs_agnumber_t *maxagi)
178 {
179 xfs_agnumber_t index;
180 xfs_agnumber_t first_initialised = NULLAGNUMBER;
181 xfs_perag_t *pag;
182 int error = -ENOMEM;
183
184 /*
185 * Walk the current per-ag tree so we don't try to initialise AGs
186 * that already exist (growfs case). Allocate and insert all the
187 * AGs we don't find ready for initialisation.
188 */
189 for (index = 0; index < agcount; index++) {
190 pag = xfs_perag_get(mp, index);
191 if (pag) {
192 xfs_perag_put(pag);
193 continue;
194 }
195
196 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
197 if (!pag) {
198 error = -ENOMEM;
199 goto out_unwind_new_pags;
200 }
201 pag->pag_agno = index;
202 pag->pag_mount = mp;
203 spin_lock_init(&pag->pag_ici_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205
206 error = xfs_buf_hash_init(pag);
207 if (error)
208 goto out_free_pag;
209 init_waitqueue_head(&pag->pagb_wait);
210 spin_lock_init(&pag->pagb_lock);
211 pag->pagb_count = 0;
212 pag->pagb_tree = RB_ROOT;
213
214 error = radix_tree_preload(GFP_NOFS);
215 if (error)
216 goto out_hash_destroy;
217
218 spin_lock(&mp->m_perag_lock);
219 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
220 WARN_ON_ONCE(1);
221 spin_unlock(&mp->m_perag_lock);
222 radix_tree_preload_end();
223 error = -EEXIST;
224 goto out_hash_destroy;
225 }
226 spin_unlock(&mp->m_perag_lock);
227 radix_tree_preload_end();
228 /* first new pag is fully initialized */
229 if (first_initialised == NULLAGNUMBER)
230 first_initialised = index;
231 error = xfs_iunlink_init(pag);
232 if (error)
233 goto out_hash_destroy;
234 spin_lock_init(&pag->pag_state_lock);
235 }
236
237 index = xfs_set_inode_alloc(mp, agcount);
238
239 if (maxagi)
240 *maxagi = index;
241
242 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
243 return 0;
244
245 out_hash_destroy:
246 xfs_buf_hash_destroy(pag);
247 out_free_pag:
248 kmem_free(pag);
249 out_unwind_new_pags:
250 /* unwind any prior newly initialized pags */
251 for (index = first_initialised; index < agcount; index++) {
252 pag = radix_tree_delete(&mp->m_perag_tree, index);
253 if (!pag)
254 break;
255 xfs_buf_hash_destroy(pag);
256 xfs_iunlink_destroy(pag);
257 kmem_free(pag);
258 }
259 return error;
260 }
261
262 /*
263 * xfs_readsb
264 *
265 * Does the initial read of the superblock.
266 */
267 int
xfs_readsb(struct xfs_mount * mp,int flags)268 xfs_readsb(
269 struct xfs_mount *mp,
270 int flags)
271 {
272 unsigned int sector_size;
273 struct xfs_buf *bp;
274 struct xfs_sb *sbp = &mp->m_sb;
275 int error;
276 int loud = !(flags & XFS_MFSI_QUIET);
277 const struct xfs_buf_ops *buf_ops;
278
279 ASSERT(mp->m_sb_bp == NULL);
280 ASSERT(mp->m_ddev_targp != NULL);
281
282 /*
283 * For the initial read, we must guess at the sector
284 * size based on the block device. It's enough to
285 * get the sb_sectsize out of the superblock and
286 * then reread with the proper length.
287 * We don't verify it yet, because it may not be complete.
288 */
289 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
290 buf_ops = NULL;
291
292 /*
293 * Allocate a (locked) buffer to hold the superblock. This will be kept
294 * around at all times to optimize access to the superblock. Therefore,
295 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
296 * elevated.
297 */
298 reread:
299 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
300 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
301 buf_ops);
302 if (error) {
303 if (loud)
304 xfs_warn(mp, "SB validate failed with error %d.", error);
305 /* bad CRC means corrupted metadata */
306 if (error == -EFSBADCRC)
307 error = -EFSCORRUPTED;
308 return error;
309 }
310
311 /*
312 * Initialize the mount structure from the superblock.
313 */
314 xfs_sb_from_disk(sbp, bp->b_addr);
315
316 /*
317 * If we haven't validated the superblock, do so now before we try
318 * to check the sector size and reread the superblock appropriately.
319 */
320 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
321 if (loud)
322 xfs_warn(mp, "Invalid superblock magic number");
323 error = -EINVAL;
324 goto release_buf;
325 }
326
327 /*
328 * We must be able to do sector-sized and sector-aligned IO.
329 */
330 if (sector_size > sbp->sb_sectsize) {
331 if (loud)
332 xfs_warn(mp, "device supports %u byte sectors (not %u)",
333 sector_size, sbp->sb_sectsize);
334 error = -ENOSYS;
335 goto release_buf;
336 }
337
338 if (buf_ops == NULL) {
339 /*
340 * Re-read the superblock so the buffer is correctly sized,
341 * and properly verified.
342 */
343 xfs_buf_relse(bp);
344 sector_size = sbp->sb_sectsize;
345 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
346 goto reread;
347 }
348
349 xfs_reinit_percpu_counters(mp);
350
351 /* no need to be quiet anymore, so reset the buf ops */
352 bp->b_ops = &xfs_sb_buf_ops;
353
354 mp->m_sb_bp = bp;
355 xfs_buf_unlock(bp);
356 return 0;
357
358 release_buf:
359 xfs_buf_relse(bp);
360 return error;
361 }
362
363 /*
364 * If the sunit/swidth change would move the precomputed root inode value, we
365 * must reject the ondisk change because repair will stumble over that.
366 * However, we allow the mount to proceed because we never rejected this
367 * combination before. Returns true to update the sb, false otherwise.
368 */
369 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)370 xfs_check_new_dalign(
371 struct xfs_mount *mp,
372 int new_dalign,
373 bool *update_sb)
374 {
375 struct xfs_sb *sbp = &mp->m_sb;
376 xfs_ino_t calc_ino;
377
378 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
379 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
380
381 if (sbp->sb_rootino == calc_ino) {
382 *update_sb = true;
383 return 0;
384 }
385
386 xfs_warn(mp,
387 "Cannot change stripe alignment; would require moving root inode.");
388
389 /*
390 * XXX: Next time we add a new incompat feature, this should start
391 * returning -EINVAL to fail the mount. Until then, spit out a warning
392 * that we're ignoring the administrator's instructions.
393 */
394 xfs_warn(mp, "Skipping superblock stripe alignment update.");
395 *update_sb = false;
396 return 0;
397 }
398
399 /*
400 * If we were provided with new sunit/swidth values as mount options, make sure
401 * that they pass basic alignment and superblock feature checks, and convert
402 * them into the same units (FSB) that everything else expects. This step
403 * /must/ be done before computing the inode geometry.
404 */
405 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)406 xfs_validate_new_dalign(
407 struct xfs_mount *mp)
408 {
409 if (mp->m_dalign == 0)
410 return 0;
411
412 /*
413 * If stripe unit and stripe width are not multiples
414 * of the fs blocksize turn off alignment.
415 */
416 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
417 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
418 xfs_warn(mp,
419 "alignment check failed: sunit/swidth vs. blocksize(%d)",
420 mp->m_sb.sb_blocksize);
421 return -EINVAL;
422 } else {
423 /*
424 * Convert the stripe unit and width to FSBs.
425 */
426 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
427 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
428 xfs_warn(mp,
429 "alignment check failed: sunit/swidth vs. agsize(%d)",
430 mp->m_sb.sb_agblocks);
431 return -EINVAL;
432 } else if (mp->m_dalign) {
433 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
434 } else {
435 xfs_warn(mp,
436 "alignment check failed: sunit(%d) less than bsize(%d)",
437 mp->m_dalign, mp->m_sb.sb_blocksize);
438 return -EINVAL;
439 }
440 }
441
442 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
443 xfs_warn(mp,
444 "cannot change alignment: superblock does not support data alignment");
445 return -EINVAL;
446 }
447
448 return 0;
449 }
450
451 /* Update alignment values based on mount options and sb values. */
452 STATIC int
xfs_update_alignment(struct xfs_mount * mp)453 xfs_update_alignment(
454 struct xfs_mount *mp)
455 {
456 struct xfs_sb *sbp = &mp->m_sb;
457
458 if (mp->m_dalign) {
459 bool update_sb;
460 int error;
461
462 if (sbp->sb_unit == mp->m_dalign &&
463 sbp->sb_width == mp->m_swidth)
464 return 0;
465
466 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
467 if (error || !update_sb)
468 return error;
469
470 sbp->sb_unit = mp->m_dalign;
471 sbp->sb_width = mp->m_swidth;
472 mp->m_update_sb = true;
473 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
474 xfs_sb_version_hasdalign(&mp->m_sb)) {
475 mp->m_dalign = sbp->sb_unit;
476 mp->m_swidth = sbp->sb_width;
477 }
478
479 return 0;
480 }
481
482 /*
483 * precalculate the low space thresholds for dynamic speculative preallocation.
484 */
485 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)486 xfs_set_low_space_thresholds(
487 struct xfs_mount *mp)
488 {
489 int i;
490
491 for (i = 0; i < XFS_LOWSP_MAX; i++) {
492 uint64_t space = mp->m_sb.sb_dblocks;
493
494 do_div(space, 100);
495 mp->m_low_space[i] = space * (i + 1);
496 }
497 }
498
499 /*
500 * Check that the data (and log if separate) is an ok size.
501 */
502 STATIC int
xfs_check_sizes(struct xfs_mount * mp)503 xfs_check_sizes(
504 struct xfs_mount *mp)
505 {
506 struct xfs_buf *bp;
507 xfs_daddr_t d;
508 int error;
509
510 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
511 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
512 xfs_warn(mp, "filesystem size mismatch detected");
513 return -EFBIG;
514 }
515 error = xfs_buf_read_uncached(mp->m_ddev_targp,
516 d - XFS_FSS_TO_BB(mp, 1),
517 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
518 if (error) {
519 xfs_warn(mp, "last sector read failed");
520 return error;
521 }
522 xfs_buf_relse(bp);
523
524 if (mp->m_logdev_targp == mp->m_ddev_targp)
525 return 0;
526
527 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
528 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
529 xfs_warn(mp, "log size mismatch detected");
530 return -EFBIG;
531 }
532 error = xfs_buf_read_uncached(mp->m_logdev_targp,
533 d - XFS_FSB_TO_BB(mp, 1),
534 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
535 if (error) {
536 xfs_warn(mp, "log device read failed");
537 return error;
538 }
539 xfs_buf_relse(bp);
540 return 0;
541 }
542
543 /*
544 * Clear the quotaflags in memory and in the superblock.
545 */
546 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)547 xfs_mount_reset_sbqflags(
548 struct xfs_mount *mp)
549 {
550 mp->m_qflags = 0;
551
552 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
553 if (mp->m_sb.sb_qflags == 0)
554 return 0;
555 spin_lock(&mp->m_sb_lock);
556 mp->m_sb.sb_qflags = 0;
557 spin_unlock(&mp->m_sb_lock);
558
559 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
560 return 0;
561
562 return xfs_sync_sb(mp, false);
563 }
564
565 uint64_t
xfs_default_resblks(xfs_mount_t * mp)566 xfs_default_resblks(xfs_mount_t *mp)
567 {
568 uint64_t resblks;
569
570 /*
571 * We default to 5% or 8192 fsbs of space reserved, whichever is
572 * smaller. This is intended to cover concurrent allocation
573 * transactions when we initially hit enospc. These each require a 4
574 * block reservation. Hence by default we cover roughly 2000 concurrent
575 * allocation reservations.
576 */
577 resblks = mp->m_sb.sb_dblocks;
578 do_div(resblks, 20);
579 resblks = min_t(uint64_t, resblks, 8192);
580 return resblks;
581 }
582
583 /* Ensure the summary counts are correct. */
584 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)585 xfs_check_summary_counts(
586 struct xfs_mount *mp)
587 {
588 /*
589 * The AG0 superblock verifier rejects in-progress filesystems,
590 * so we should never see the flag set this far into mounting.
591 */
592 if (mp->m_sb.sb_inprogress) {
593 xfs_err(mp, "sb_inprogress set after log recovery??");
594 WARN_ON(1);
595 return -EFSCORRUPTED;
596 }
597
598 /*
599 * Now the log is mounted, we know if it was an unclean shutdown or
600 * not. If it was, with the first phase of recovery has completed, we
601 * have consistent AG blocks on disk. We have not recovered EFIs yet,
602 * but they are recovered transactionally in the second recovery phase
603 * later.
604 *
605 * If the log was clean when we mounted, we can check the summary
606 * counters. If any of them are obviously incorrect, we can recompute
607 * them from the AGF headers in the next step.
608 */
609 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
610 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
611 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
612 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
613 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
614
615 /*
616 * We can safely re-initialise incore superblock counters from the
617 * per-ag data. These may not be correct if the filesystem was not
618 * cleanly unmounted, so we waited for recovery to finish before doing
619 * this.
620 *
621 * If the filesystem was cleanly unmounted or the previous check did
622 * not flag anything weird, then we can trust the values in the
623 * superblock to be correct and we don't need to do anything here.
624 * Otherwise, recalculate the summary counters.
625 */
626 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
627 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
628 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
629 return 0;
630
631 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
632 }
633
634 /*
635 * This function does the following on an initial mount of a file system:
636 * - reads the superblock from disk and init the mount struct
637 * - if we're a 32-bit kernel, do a size check on the superblock
638 * so we don't mount terabyte filesystems
639 * - init mount struct realtime fields
640 * - allocate inode hash table for fs
641 * - init directory manager
642 * - perform recovery and init the log manager
643 */
644 int
xfs_mountfs(struct xfs_mount * mp)645 xfs_mountfs(
646 struct xfs_mount *mp)
647 {
648 struct xfs_sb *sbp = &(mp->m_sb);
649 struct xfs_inode *rip;
650 struct xfs_ino_geometry *igeo = M_IGEO(mp);
651 uint64_t resblks;
652 uint quotamount = 0;
653 uint quotaflags = 0;
654 int error = 0;
655
656 xfs_sb_mount_common(mp, sbp);
657
658 /*
659 * Check for a mismatched features2 values. Older kernels read & wrote
660 * into the wrong sb offset for sb_features2 on some platforms due to
661 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662 * which made older superblock reading/writing routines swap it as a
663 * 64-bit value.
664 *
665 * For backwards compatibility, we make both slots equal.
666 *
667 * If we detect a mismatched field, we OR the set bits into the existing
668 * features2 field in case it has already been modified; we don't want
669 * to lose any features. We then update the bad location with the ORed
670 * value so that older kernels will see any features2 flags. The
671 * superblock writeback code ensures the new sb_features2 is copied to
672 * sb_bad_features2 before it is logged or written to disk.
673 */
674 if (xfs_sb_has_mismatched_features2(sbp)) {
675 xfs_warn(mp, "correcting sb_features alignment problem");
676 sbp->sb_features2 |= sbp->sb_bad_features2;
677 mp->m_update_sb = true;
678
679 /*
680 * Re-check for ATTR2 in case it was found in bad_features2
681 * slot.
682 */
683 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
684 !(mp->m_flags & XFS_MOUNT_NOATTR2))
685 mp->m_flags |= XFS_MOUNT_ATTR2;
686 }
687
688 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
689 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
690 xfs_sb_version_removeattr2(&mp->m_sb);
691 mp->m_update_sb = true;
692
693 /* update sb_versionnum for the clearing of the morebits */
694 if (!sbp->sb_features2)
695 mp->m_update_sb = true;
696 }
697
698 /* always use v2 inodes by default now */
699 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
700 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
701 mp->m_update_sb = true;
702 }
703
704 /*
705 * If we were given new sunit/swidth options, do some basic validation
706 * checks and convert the incore dalign and swidth values to the
707 * same units (FSB) that everything else uses. This /must/ happen
708 * before computing the inode geometry.
709 */
710 error = xfs_validate_new_dalign(mp);
711 if (error)
712 goto out;
713
714 xfs_alloc_compute_maxlevels(mp);
715 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
716 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
717 xfs_ialloc_setup_geometry(mp);
718 xfs_rmapbt_compute_maxlevels(mp);
719 xfs_refcountbt_compute_maxlevels(mp);
720
721 /*
722 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
723 * is NOT aligned turn off m_dalign since allocator alignment is within
724 * an ag, therefore ag has to be aligned at stripe boundary. Note that
725 * we must compute the free space and rmap btree geometry before doing
726 * this.
727 */
728 error = xfs_update_alignment(mp);
729 if (error)
730 goto out;
731
732 /* enable fail_at_unmount as default */
733 mp->m_fail_unmount = true;
734
735 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
736 NULL, mp->m_super->s_id);
737 if (error)
738 goto out;
739
740 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
741 &mp->m_kobj, "stats");
742 if (error)
743 goto out_remove_sysfs;
744
745 error = xfs_error_sysfs_init(mp);
746 if (error)
747 goto out_del_stats;
748
749 error = xfs_errortag_init(mp);
750 if (error)
751 goto out_remove_error_sysfs;
752
753 error = xfs_uuid_mount(mp);
754 if (error)
755 goto out_remove_errortag;
756
757 /*
758 * Update the preferred write size based on the information from the
759 * on-disk superblock.
760 */
761 mp->m_allocsize_log =
762 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
763 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
764
765 /* set the low space thresholds for dynamic preallocation */
766 xfs_set_low_space_thresholds(mp);
767
768 /*
769 * If enabled, sparse inode chunk alignment is expected to match the
770 * cluster size. Full inode chunk alignment must match the chunk size,
771 * but that is checked on sb read verification...
772 */
773 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
774 mp->m_sb.sb_spino_align !=
775 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
776 xfs_warn(mp,
777 "Sparse inode block alignment (%u) must match cluster size (%llu).",
778 mp->m_sb.sb_spino_align,
779 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
780 error = -EINVAL;
781 goto out_remove_uuid;
782 }
783
784 /*
785 * Check that the data (and log if separate) is an ok size.
786 */
787 error = xfs_check_sizes(mp);
788 if (error)
789 goto out_remove_uuid;
790
791 /*
792 * Initialize realtime fields in the mount structure
793 */
794 error = xfs_rtmount_init(mp);
795 if (error) {
796 xfs_warn(mp, "RT mount failed");
797 goto out_remove_uuid;
798 }
799
800 /*
801 * Copies the low order bits of the timestamp and the randomly
802 * set "sequence" number out of a UUID.
803 */
804 mp->m_fixedfsid[0] =
805 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
806 get_unaligned_be16(&sbp->sb_uuid.b[4]);
807 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
808
809 error = xfs_da_mount(mp);
810 if (error) {
811 xfs_warn(mp, "Failed dir/attr init: %d", error);
812 goto out_remove_uuid;
813 }
814
815 /*
816 * Initialize the precomputed transaction reservations values.
817 */
818 xfs_trans_init(mp);
819
820 /*
821 * Allocate and initialize the per-ag data.
822 */
823 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
824 if (error) {
825 xfs_warn(mp, "Failed per-ag init: %d", error);
826 goto out_free_dir;
827 }
828
829 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
830 xfs_warn(mp, "no log defined");
831 error = -EFSCORRUPTED;
832 goto out_free_perag;
833 }
834
835 /*
836 * Log's mount-time initialization. The first part of recovery can place
837 * some items on the AIL, to be handled when recovery is finished or
838 * cancelled.
839 */
840 error = xfs_log_mount(mp, mp->m_logdev_targp,
841 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
842 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
843 if (error) {
844 xfs_warn(mp, "log mount failed");
845 goto out_fail_wait;
846 }
847
848 /* Make sure the summary counts are ok. */
849 error = xfs_check_summary_counts(mp);
850 if (error)
851 goto out_log_dealloc;
852
853 /*
854 * Get and sanity-check the root inode.
855 * Save the pointer to it in the mount structure.
856 */
857 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
858 XFS_ILOCK_EXCL, &rip);
859 if (error) {
860 xfs_warn(mp,
861 "Failed to read root inode 0x%llx, error %d",
862 sbp->sb_rootino, -error);
863 goto out_log_dealloc;
864 }
865
866 ASSERT(rip != NULL);
867
868 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
869 xfs_warn(mp, "corrupted root inode %llu: not a directory",
870 (unsigned long long)rip->i_ino);
871 xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 error = -EFSCORRUPTED;
873 goto out_rele_rip;
874 }
875 mp->m_rootip = rip; /* save it */
876
877 xfs_iunlock(rip, XFS_ILOCK_EXCL);
878
879 /*
880 * Initialize realtime inode pointers in the mount structure
881 */
882 error = xfs_rtmount_inodes(mp);
883 if (error) {
884 /*
885 * Free up the root inode.
886 */
887 xfs_warn(mp, "failed to read RT inodes");
888 goto out_rele_rip;
889 }
890
891 /*
892 * If this is a read-only mount defer the superblock updates until
893 * the next remount into writeable mode. Otherwise we would never
894 * perform the update e.g. for the root filesystem.
895 */
896 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
897 error = xfs_sync_sb(mp, false);
898 if (error) {
899 xfs_warn(mp, "failed to write sb changes");
900 goto out_rtunmount;
901 }
902 }
903
904 /*
905 * Initialise the XFS quota management subsystem for this mount
906 */
907 if (XFS_IS_QUOTA_RUNNING(mp)) {
908 error = xfs_qm_newmount(mp, "amount, "aflags);
909 if (error)
910 goto out_rtunmount;
911 } else {
912 ASSERT(!XFS_IS_QUOTA_ON(mp));
913
914 /*
915 * If a file system had quotas running earlier, but decided to
916 * mount without -o uquota/pquota/gquota options, revoke the
917 * quotachecked license.
918 */
919 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
920 xfs_notice(mp, "resetting quota flags");
921 error = xfs_mount_reset_sbqflags(mp);
922 if (error)
923 goto out_rtunmount;
924 }
925 }
926
927 /*
928 * Finish recovering the file system. This part needed to be delayed
929 * until after the root and real-time bitmap inodes were consistently
930 * read in.
931 */
932 error = xfs_log_mount_finish(mp);
933 if (error) {
934 xfs_warn(mp, "log mount finish failed");
935 goto out_rtunmount;
936 }
937
938 /*
939 * Now the log is fully replayed, we can transition to full read-only
940 * mode for read-only mounts. This will sync all the metadata and clean
941 * the log so that the recovery we just performed does not have to be
942 * replayed again on the next mount.
943 *
944 * We use the same quiesce mechanism as the rw->ro remount, as they are
945 * semantically identical operations.
946 */
947 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
948 XFS_MOUNT_RDONLY) {
949 xfs_quiesce_attr(mp);
950 }
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979
980 /* Recover any CoW blocks that never got remapped. */
981 error = xfs_reflink_recover_cow(mp);
982 if (error) {
983 xfs_err(mp,
984 "Error %d recovering leftover CoW allocations.", error);
985 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
986 goto out_quota;
987 }
988
989 /* Reserve AG blocks for future btree expansion. */
990 error = xfs_fs_reserve_ag_blocks(mp);
991 if (error && error != -ENOSPC)
992 goto out_agresv;
993 }
994
995 return 0;
996
997 out_agresv:
998 xfs_fs_unreserve_ag_blocks(mp);
999 out_quota:
1000 xfs_qm_unmount_quotas(mp);
1001 out_rtunmount:
1002 xfs_rtunmount_inodes(mp);
1003 out_rele_rip:
1004 xfs_irele(rip);
1005 /* Clean out dquots that might be in memory after quotacheck. */
1006 xfs_qm_unmount(mp);
1007 /*
1008 * Cancel all delayed reclaim work and reclaim the inodes directly.
1009 * We have to do this /after/ rtunmount and qm_unmount because those
1010 * two will have scheduled delayed reclaim for the rt/quota inodes.
1011 *
1012 * This is slightly different from the unmountfs call sequence
1013 * because we could be tearing down a partially set up mount. In
1014 * particular, if log_mount_finish fails we bail out without calling
1015 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1016 * quota inodes.
1017 */
1018 cancel_delayed_work_sync(&mp->m_reclaim_work);
1019 xfs_reclaim_inodes(mp);
1020 xfs_health_unmount(mp);
1021 out_log_dealloc:
1022 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1023 xfs_log_mount_cancel(mp);
1024 out_fail_wait:
1025 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1026 xfs_wait_buftarg(mp->m_logdev_targp);
1027 xfs_wait_buftarg(mp->m_ddev_targp);
1028 out_free_perag:
1029 xfs_free_perag(mp);
1030 out_free_dir:
1031 xfs_da_unmount(mp);
1032 out_remove_uuid:
1033 xfs_uuid_unmount(mp);
1034 out_remove_errortag:
1035 xfs_errortag_del(mp);
1036 out_remove_error_sysfs:
1037 xfs_error_sysfs_del(mp);
1038 out_del_stats:
1039 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1040 out_remove_sysfs:
1041 xfs_sysfs_del(&mp->m_kobj);
1042 out:
1043 return error;
1044 }
1045
1046 /*
1047 * This flushes out the inodes,dquots and the superblock, unmounts the
1048 * log and makes sure that incore structures are freed.
1049 */
1050 void
xfs_unmountfs(struct xfs_mount * mp)1051 xfs_unmountfs(
1052 struct xfs_mount *mp)
1053 {
1054 uint64_t resblks;
1055 int error;
1056
1057 xfs_stop_block_reaping(mp);
1058 xfs_fs_unreserve_ag_blocks(mp);
1059 xfs_qm_unmount_quotas(mp);
1060 xfs_rtunmount_inodes(mp);
1061 xfs_irele(mp->m_rootip);
1062
1063 /*
1064 * We can potentially deadlock here if we have an inode cluster
1065 * that has been freed has its buffer still pinned in memory because
1066 * the transaction is still sitting in a iclog. The stale inodes
1067 * on that buffer will be pinned to the buffer until the
1068 * transaction hits the disk and the callbacks run. Pushing the AIL will
1069 * skip the stale inodes and may never see the pinned buffer, so
1070 * nothing will push out the iclog and unpin the buffer. Hence we
1071 * need to force the log here to ensure all items are flushed into the
1072 * AIL before we go any further.
1073 */
1074 xfs_log_force(mp, XFS_LOG_SYNC);
1075
1076 /*
1077 * Wait for all busy extents to be freed, including completion of
1078 * any discard operation.
1079 */
1080 xfs_extent_busy_wait_all(mp);
1081 flush_workqueue(xfs_discard_wq);
1082
1083 /*
1084 * We now need to tell the world we are unmounting. This will allow
1085 * us to detect that the filesystem is going away and we should error
1086 * out anything that we have been retrying in the background. This will
1087 * prevent neverending retries in AIL pushing from hanging the unmount.
1088 */
1089 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1090
1091 /*
1092 * Flush all pending changes from the AIL.
1093 */
1094 xfs_ail_push_all_sync(mp->m_ail);
1095
1096 /*
1097 * Reclaim all inodes. At this point there should be no dirty inodes and
1098 * none should be pinned or locked. Stop background inode reclaim here
1099 * if it is still running.
1100 */
1101 cancel_delayed_work_sync(&mp->m_reclaim_work);
1102 xfs_reclaim_inodes(mp);
1103 xfs_health_unmount(mp);
1104
1105 xfs_qm_unmount(mp);
1106
1107 /*
1108 * Unreserve any blocks we have so that when we unmount we don't account
1109 * the reserved free space as used. This is really only necessary for
1110 * lazy superblock counting because it trusts the incore superblock
1111 * counters to be absolutely correct on clean unmount.
1112 *
1113 * We don't bother correcting this elsewhere for lazy superblock
1114 * counting because on mount of an unclean filesystem we reconstruct the
1115 * correct counter value and this is irrelevant.
1116 *
1117 * For non-lazy counter filesystems, this doesn't matter at all because
1118 * we only every apply deltas to the superblock and hence the incore
1119 * value does not matter....
1120 */
1121 resblks = 0;
1122 error = xfs_reserve_blocks(mp, &resblks, NULL);
1123 if (error)
1124 xfs_warn(mp, "Unable to free reserved block pool. "
1125 "Freespace may not be correct on next mount.");
1126
1127 error = xfs_log_sbcount(mp);
1128 if (error)
1129 xfs_warn(mp, "Unable to update superblock counters. "
1130 "Freespace may not be correct on next mount.");
1131
1132
1133 xfs_log_unmount(mp);
1134 xfs_da_unmount(mp);
1135 xfs_uuid_unmount(mp);
1136
1137 #if defined(DEBUG)
1138 xfs_errortag_clearall(mp);
1139 #endif
1140 xfs_free_perag(mp);
1141
1142 xfs_errortag_del(mp);
1143 xfs_error_sysfs_del(mp);
1144 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1145 xfs_sysfs_del(&mp->m_kobj);
1146 }
1147
1148 /*
1149 * Determine whether modifications can proceed. The caller specifies the minimum
1150 * freeze level for which modifications should not be allowed. This allows
1151 * certain operations to proceed while the freeze sequence is in progress, if
1152 * necessary.
1153 */
1154 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1155 xfs_fs_writable(
1156 struct xfs_mount *mp,
1157 int level)
1158 {
1159 ASSERT(level > SB_UNFROZEN);
1160 if ((mp->m_super->s_writers.frozen >= level) ||
1161 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1162 return false;
1163
1164 return true;
1165 }
1166
1167 /*
1168 * xfs_log_sbcount
1169 *
1170 * Sync the superblock counters to disk.
1171 *
1172 * Note this code can be called during the process of freezing, so we use the
1173 * transaction allocator that does not block when the transaction subsystem is
1174 * in its frozen state.
1175 */
1176 int
xfs_log_sbcount(xfs_mount_t * mp)1177 xfs_log_sbcount(xfs_mount_t *mp)
1178 {
1179 /* allow this to proceed during the freeze sequence... */
1180 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1181 return 0;
1182
1183 /*
1184 * we don't need to do this if we are updating the superblock
1185 * counters on every modification.
1186 */
1187 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1188 return 0;
1189
1190 return xfs_sync_sb(mp, true);
1191 }
1192
1193 /*
1194 * Deltas for the block count can vary from 1 to very large, but lock contention
1195 * only occurs on frequent small block count updates such as in the delayed
1196 * allocation path for buffered writes (page a time updates). Hence we set
1197 * a large batch count (1024) to minimise global counter updates except when
1198 * we get near to ENOSPC and we have to be very accurate with our updates.
1199 */
1200 #define XFS_FDBLOCKS_BATCH 1024
1201 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1202 xfs_mod_fdblocks(
1203 struct xfs_mount *mp,
1204 int64_t delta,
1205 bool rsvd)
1206 {
1207 int64_t lcounter;
1208 long long res_used;
1209 s32 batch;
1210
1211 if (delta > 0) {
1212 /*
1213 * If the reserve pool is depleted, put blocks back into it
1214 * first. Most of the time the pool is full.
1215 */
1216 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1217 percpu_counter_add(&mp->m_fdblocks, delta);
1218 return 0;
1219 }
1220
1221 spin_lock(&mp->m_sb_lock);
1222 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1223
1224 if (res_used > delta) {
1225 mp->m_resblks_avail += delta;
1226 } else {
1227 delta -= res_used;
1228 mp->m_resblks_avail = mp->m_resblks;
1229 percpu_counter_add(&mp->m_fdblocks, delta);
1230 }
1231 spin_unlock(&mp->m_sb_lock);
1232 return 0;
1233 }
1234
1235 /*
1236 * Taking blocks away, need to be more accurate the closer we
1237 * are to zero.
1238 *
1239 * If the counter has a value of less than 2 * max batch size,
1240 * then make everything serialise as we are real close to
1241 * ENOSPC.
1242 */
1243 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1244 XFS_FDBLOCKS_BATCH) < 0)
1245 batch = 1;
1246 else
1247 batch = XFS_FDBLOCKS_BATCH;
1248
1249 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1250 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1251 XFS_FDBLOCKS_BATCH) >= 0) {
1252 /* we had space! */
1253 return 0;
1254 }
1255
1256 /*
1257 * lock up the sb for dipping into reserves before releasing the space
1258 * that took us to ENOSPC.
1259 */
1260 spin_lock(&mp->m_sb_lock);
1261 percpu_counter_add(&mp->m_fdblocks, -delta);
1262 if (!rsvd)
1263 goto fdblocks_enospc;
1264
1265 lcounter = (long long)mp->m_resblks_avail + delta;
1266 if (lcounter >= 0) {
1267 mp->m_resblks_avail = lcounter;
1268 spin_unlock(&mp->m_sb_lock);
1269 return 0;
1270 }
1271 xfs_warn_once(mp,
1272 "Reserve blocks depleted! Consider increasing reserve pool size.");
1273
1274 fdblocks_enospc:
1275 spin_unlock(&mp->m_sb_lock);
1276 return -ENOSPC;
1277 }
1278
1279 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1280 xfs_mod_frextents(
1281 struct xfs_mount *mp,
1282 int64_t delta)
1283 {
1284 int64_t lcounter;
1285 int ret = 0;
1286
1287 spin_lock(&mp->m_sb_lock);
1288 lcounter = mp->m_sb.sb_frextents + delta;
1289 if (lcounter < 0)
1290 ret = -ENOSPC;
1291 else
1292 mp->m_sb.sb_frextents = lcounter;
1293 spin_unlock(&mp->m_sb_lock);
1294 return ret;
1295 }
1296
1297 /*
1298 * Used to free the superblock along various error paths.
1299 */
1300 void
xfs_freesb(struct xfs_mount * mp)1301 xfs_freesb(
1302 struct xfs_mount *mp)
1303 {
1304 struct xfs_buf *bp = mp->m_sb_bp;
1305
1306 xfs_buf_lock(bp);
1307 mp->m_sb_bp = NULL;
1308 xfs_buf_relse(bp);
1309 }
1310
1311 /*
1312 * If the underlying (data/log/rt) device is readonly, there are some
1313 * operations that cannot proceed.
1314 */
1315 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1316 xfs_dev_is_read_only(
1317 struct xfs_mount *mp,
1318 char *message)
1319 {
1320 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1321 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1322 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1323 xfs_notice(mp, "%s required on read-only device.", message);
1324 xfs_notice(mp, "write access unavailable, cannot proceed.");
1325 return -EROFS;
1326 }
1327 return 0;
1328 }
1329
1330 /* Force the summary counters to be recalculated at next mount. */
1331 void
xfs_force_summary_recalc(struct xfs_mount * mp)1332 xfs_force_summary_recalc(
1333 struct xfs_mount *mp)
1334 {
1335 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1336 return;
1337
1338 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1339 }
1340
1341 /*
1342 * Update the in-core delayed block counter.
1343 *
1344 * We prefer to update the counter without having to take a spinlock for every
1345 * counter update (i.e. batching). Each change to delayed allocation
1346 * reservations can change can easily exceed the default percpu counter
1347 * batching, so we use a larger batch factor here.
1348 *
1349 * Note that we don't currently have any callers requiring fast summation
1350 * (e.g. percpu_counter_read) so we can use a big batch value here.
1351 */
1352 #define XFS_DELALLOC_BATCH (4096)
1353 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1354 xfs_mod_delalloc(
1355 struct xfs_mount *mp,
1356 int64_t delta)
1357 {
1358 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1359 XFS_DELALLOC_BATCH);
1360 }
1361