• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
69 
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72 
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET	(-1)
75 
76 /*
77  * Read the next entry in a queue, return its content if it's valid
78  * or 0 if there is no new entry.
79  *
80  * The queue pointer is moved forward unless "just_peek" is set
81  */
xive_read_eq(struct xive_q * q,bool just_peek)82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
83 {
84 	u32 cur;
85 
86 	if (!q->qpage)
87 		return 0;
88 	cur = be32_to_cpup(q->qpage + q->idx);
89 
90 	/* Check valid bit (31) vs current toggle polarity */
91 	if ((cur >> 31) == q->toggle)
92 		return 0;
93 
94 	/* If consuming from the queue ... */
95 	if (!just_peek) {
96 		/* Next entry */
97 		q->idx = (q->idx + 1) & q->msk;
98 
99 		/* Wrap around: flip valid toggle */
100 		if (q->idx == 0)
101 			q->toggle ^= 1;
102 	}
103 	/* Mask out the valid bit (31) */
104 	return cur & 0x7fffffff;
105 }
106 
107 /*
108  * Scans all the queue that may have interrupts in them
109  * (based on "pending_prio") in priority order until an
110  * interrupt is found or all the queues are empty.
111  *
112  * Then updates the CPPR (Current Processor Priority
113  * Register) based on the most favored interrupt found
114  * (0xff if none) and return what was found (0 if none).
115  *
116  * If just_peek is set, return the most favored pending
117  * interrupt if any but don't update the queue pointers.
118  *
119  * Note: This function can operate generically on any number
120  * of queues (up to 8). The current implementation of the XIVE
121  * driver only uses a single queue however.
122  *
123  * Note2: This will also "flush" "the pending_count" of a queue
124  * into the "count" when that queue is observed to be empty.
125  * This is used to keep track of the amount of interrupts
126  * targetting a queue. When an interrupt is moved away from
127  * a queue, we only decrement that queue count once the queue
128  * has been observed empty to avoid races.
129  */
xive_scan_interrupts(struct xive_cpu * xc,bool just_peek)130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
131 {
132 	u32 irq = 0;
133 	u8 prio = 0;
134 
135 	/* Find highest pending priority */
136 	while (xc->pending_prio != 0) {
137 		struct xive_q *q;
138 
139 		prio = ffs(xc->pending_prio) - 1;
140 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
141 
142 		/* Try to fetch */
143 		irq = xive_read_eq(&xc->queue[prio], just_peek);
144 
145 		/* Found something ? That's it */
146 		if (irq) {
147 			if (just_peek || irq_to_desc(irq))
148 				break;
149 			/*
150 			 * We should never get here; if we do then we must
151 			 * have failed to synchronize the interrupt properly
152 			 * when shutting it down.
153 			 */
154 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 				irq);
156 			WARN_ON(1);
157 			continue;
158 		}
159 
160 		/* Clear pending bits */
161 		xc->pending_prio &= ~(1 << prio);
162 
163 		/*
164 		 * Check if the queue count needs adjusting due to
165 		 * interrupts being moved away. See description of
166 		 * xive_dec_target_count()
167 		 */
168 		q = &xc->queue[prio];
169 		if (atomic_read(&q->pending_count)) {
170 			int p = atomic_xchg(&q->pending_count, 0);
171 			if (p) {
172 				WARN_ON(p > atomic_read(&q->count));
173 				atomic_sub(p, &q->count);
174 			}
175 		}
176 	}
177 
178 	/* If nothing was found, set CPPR to 0xff */
179 	if (irq == 0)
180 		prio = 0xff;
181 
182 	/* Update HW CPPR to match if necessary */
183 	if (prio != xc->cppr) {
184 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 		xc->cppr = prio;
186 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
187 	}
188 
189 	return irq;
190 }
191 
192 /*
193  * This is used to perform the magic loads from an ESB
194  * described in xive-regs.h
195  */
xive_esb_read(struct xive_irq_data * xd,u32 offset)196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
197 {
198 	u64 val;
199 
200 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 		offset |= XIVE_ESB_LD_ST_MO;
202 
203 	/* Handle HW errata */
204 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
205 		offset |= offset << 4;
206 
207 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
208 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
209 	else
210 		val = in_be64(xd->eoi_mmio + offset);
211 
212 	return (u8)val;
213 }
214 
xive_esb_write(struct xive_irq_data * xd,u32 offset,u64 data)215 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
216 {
217 	/* Handle HW errata */
218 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
219 		offset |= offset << 4;
220 
221 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
222 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
223 	else
224 		out_be64(xd->eoi_mmio + offset, data);
225 }
226 
227 #ifdef CONFIG_XMON
xive_dump_eq(const char * name,struct xive_q * q)228 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
229 {
230 	u32 i0, i1, idx;
231 
232 	if (!q->qpage)
233 		return;
234 	idx = q->idx;
235 	i0 = be32_to_cpup(q->qpage + idx);
236 	idx = (idx + 1) & q->msk;
237 	i1 = be32_to_cpup(q->qpage + idx);
238 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
239 		     q->idx, q->toggle, i0, i1);
240 }
241 
xmon_xive_do_dump(int cpu)242 notrace void xmon_xive_do_dump(int cpu)
243 {
244 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
245 
246 	xmon_printf("CPU %d:", cpu);
247 	if (xc) {
248 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
249 
250 #ifdef CONFIG_SMP
251 		{
252 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
253 
254 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
255 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
256 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
257 		}
258 #endif
259 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
260 	}
261 	xmon_printf("\n");
262 }
263 
xive_get_irq_data(u32 hw_irq)264 static struct irq_data *xive_get_irq_data(u32 hw_irq)
265 {
266 	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
267 
268 	return irq ? irq_get_irq_data(irq) : NULL;
269 }
270 
xmon_xive_get_irq_config(u32 hw_irq,struct irq_data * d)271 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
272 {
273 	int rc;
274 	u32 target;
275 	u8 prio;
276 	u32 lirq;
277 
278 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
279 	if (rc) {
280 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
281 		return rc;
282 	}
283 
284 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
285 		    hw_irq, target, prio, lirq);
286 
287 	if (!d)
288 		d = xive_get_irq_data(hw_irq);
289 
290 	if (d) {
291 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
292 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
293 
294 		xmon_printf("flags=%c%c%c PQ=%c%c",
295 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
296 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
297 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
298 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
299 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
300 	}
301 
302 	xmon_printf("\n");
303 	return 0;
304 }
305 
306 #endif /* CONFIG_XMON */
307 
xive_get_irq(void)308 static unsigned int xive_get_irq(void)
309 {
310 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
311 	u32 irq;
312 
313 	/*
314 	 * This can be called either as a result of a HW interrupt or
315 	 * as a "replay" because EOI decided there was still something
316 	 * in one of the queues.
317 	 *
318 	 * First we perform an ACK cycle in order to update our mask
319 	 * of pending priorities. This will also have the effect of
320 	 * updating the CPPR to the most favored pending interrupts.
321 	 *
322 	 * In the future, if we have a way to differentiate a first
323 	 * entry (on HW interrupt) from a replay triggered by EOI,
324 	 * we could skip this on replays unless we soft-mask tells us
325 	 * that a new HW interrupt occurred.
326 	 */
327 	xive_ops->update_pending(xc);
328 
329 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
330 
331 	/* Scan our queue(s) for interrupts */
332 	irq = xive_scan_interrupts(xc, false);
333 
334 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
335 	    irq, xc->pending_prio);
336 
337 	/* Return pending interrupt if any */
338 	if (irq == XIVE_BAD_IRQ)
339 		return 0;
340 	return irq;
341 }
342 
343 /*
344  * After EOI'ing an interrupt, we need to re-check the queue
345  * to see if another interrupt is pending since multiple
346  * interrupts can coalesce into a single notification to the
347  * CPU.
348  *
349  * If we find that there is indeed more in there, we call
350  * force_external_irq_replay() to make Linux synthetize an
351  * external interrupt on the next call to local_irq_restore().
352  */
xive_do_queue_eoi(struct xive_cpu * xc)353 static void xive_do_queue_eoi(struct xive_cpu *xc)
354 {
355 	if (xive_scan_interrupts(xc, true) != 0) {
356 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
357 		force_external_irq_replay();
358 	}
359 }
360 
361 /*
362  * EOI an interrupt at the source. There are several methods
363  * to do this depending on the HW version and source type
364  */
xive_do_source_eoi(u32 hw_irq,struct xive_irq_data * xd)365 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
366 {
367 	xd->stale_p = false;
368 	/* If the XIVE supports the new "store EOI facility, use it */
369 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
370 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
371 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
372 		/*
373 		 * The FW told us to call it. This happens for some
374 		 * interrupt sources that need additional HW whacking
375 		 * beyond the ESB manipulation. For example LPC interrupts
376 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
377 		 * itself. The Firmware will take care of it.
378 		 */
379 		if (WARN_ON_ONCE(!xive_ops->eoi))
380 			return;
381 		xive_ops->eoi(hw_irq);
382 	} else {
383 		u8 eoi_val;
384 
385 		/*
386 		 * Otherwise for EOI, we use the special MMIO that does
387 		 * a clear of both P and Q and returns the old Q,
388 		 * except for LSIs where we use the "EOI cycle" special
389 		 * load.
390 		 *
391 		 * This allows us to then do a re-trigger if Q was set
392 		 * rather than synthesizing an interrupt in software
393 		 *
394 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
395 		 * as they are automatically re-triggred in HW when still
396 		 * pending.
397 		 */
398 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
399 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
400 		else {
401 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
402 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
403 
404 			/* Re-trigger if needed */
405 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
406 				out_be64(xd->trig_mmio, 0);
407 		}
408 	}
409 }
410 
411 /* irq_chip eoi callback, called with irq descriptor lock held */
xive_irq_eoi(struct irq_data * d)412 static void xive_irq_eoi(struct irq_data *d)
413 {
414 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
415 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
416 
417 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
418 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
419 
420 	/*
421 	 * EOI the source if it hasn't been disabled and hasn't
422 	 * been passed-through to a KVM guest
423 	 */
424 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
425 	    !(xd->flags & XIVE_IRQ_NO_EOI))
426 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
427 	else
428 		xd->stale_p = true;
429 
430 	/*
431 	 * Clear saved_p to indicate that it's no longer occupying
432 	 * a queue slot on the target queue
433 	 */
434 	xd->saved_p = false;
435 
436 	/* Check for more work in the queue */
437 	xive_do_queue_eoi(xc);
438 }
439 
440 /*
441  * Helper used to mask and unmask an interrupt source. This
442  * is only called for normal interrupts that do not require
443  * masking/unmasking via firmware.
444  */
xive_do_source_set_mask(struct xive_irq_data * xd,bool mask)445 static void xive_do_source_set_mask(struct xive_irq_data *xd,
446 				    bool mask)
447 {
448 	u64 val;
449 
450 	/*
451 	 * If the interrupt had P set, it may be in a queue.
452 	 *
453 	 * We need to make sure we don't re-enable it until it
454 	 * has been fetched from that queue and EOId. We keep
455 	 * a copy of that P state and use it to restore the
456 	 * ESB accordingly on unmask.
457 	 */
458 	if (mask) {
459 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
460 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
461 			xd->saved_p = true;
462 		xd->stale_p = false;
463 	} else if (xd->saved_p) {
464 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
465 		xd->saved_p = false;
466 	} else {
467 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
468 		xd->stale_p = false;
469 	}
470 }
471 
472 /*
473  * Try to chose "cpu" as a new interrupt target. Increments
474  * the queue accounting for that target if it's not already
475  * full.
476  */
xive_try_pick_target(int cpu)477 static bool xive_try_pick_target(int cpu)
478 {
479 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
480 	struct xive_q *q = &xc->queue[xive_irq_priority];
481 	int max;
482 
483 	/*
484 	 * Calculate max number of interrupts in that queue.
485 	 *
486 	 * We leave a gap of 1 just in case...
487 	 */
488 	max = (q->msk + 1) - 1;
489 	return !!atomic_add_unless(&q->count, 1, max);
490 }
491 
492 /*
493  * Un-account an interrupt for a target CPU. We don't directly
494  * decrement q->count since the interrupt might still be present
495  * in the queue.
496  *
497  * Instead increment a separate counter "pending_count" which
498  * will be substracted from "count" later when that CPU observes
499  * the queue to be empty.
500  */
xive_dec_target_count(int cpu)501 static void xive_dec_target_count(int cpu)
502 {
503 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
504 	struct xive_q *q = &xc->queue[xive_irq_priority];
505 
506 	if (WARN_ON(cpu < 0 || !xc)) {
507 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
508 		return;
509 	}
510 
511 	/*
512 	 * We increment the "pending count" which will be used
513 	 * to decrement the target queue count whenever it's next
514 	 * processed and found empty. This ensure that we don't
515 	 * decrement while we still have the interrupt there
516 	 * occupying a slot.
517 	 */
518 	atomic_inc(&q->pending_count);
519 }
520 
521 /* Find a tentative CPU target in a CPU mask */
xive_find_target_in_mask(const struct cpumask * mask,unsigned int fuzz)522 static int xive_find_target_in_mask(const struct cpumask *mask,
523 				    unsigned int fuzz)
524 {
525 	int cpu, first, num, i;
526 
527 	/* Pick up a starting point CPU in the mask based on  fuzz */
528 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
529 	first = fuzz % num;
530 
531 	/* Locate it */
532 	cpu = cpumask_first(mask);
533 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
534 		cpu = cpumask_next(cpu, mask);
535 
536 	/* Sanity check */
537 	if (WARN_ON(cpu >= nr_cpu_ids))
538 		cpu = cpumask_first(cpu_online_mask);
539 
540 	/* Remember first one to handle wrap-around */
541 	first = cpu;
542 
543 	/*
544 	 * Now go through the entire mask until we find a valid
545 	 * target.
546 	 */
547 	do {
548 		/*
549 		 * We re-check online as the fallback case passes us
550 		 * an untested affinity mask
551 		 */
552 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
553 			return cpu;
554 		cpu = cpumask_next(cpu, mask);
555 		/* Wrap around */
556 		if (cpu >= nr_cpu_ids)
557 			cpu = cpumask_first(mask);
558 	} while (cpu != first);
559 
560 	return -1;
561 }
562 
563 /*
564  * Pick a target CPU for an interrupt. This is done at
565  * startup or if the affinity is changed in a way that
566  * invalidates the current target.
567  */
xive_pick_irq_target(struct irq_data * d,const struct cpumask * affinity)568 static int xive_pick_irq_target(struct irq_data *d,
569 				const struct cpumask *affinity)
570 {
571 	static unsigned int fuzz;
572 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
573 	cpumask_var_t mask;
574 	int cpu = -1;
575 
576 	/*
577 	 * If we have chip IDs, first we try to build a mask of
578 	 * CPUs matching the CPU and find a target in there
579 	 */
580 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
581 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
582 		/* Build a mask of matching chip IDs */
583 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
584 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
585 			if (xc->chip_id == xd->src_chip)
586 				cpumask_set_cpu(cpu, mask);
587 		}
588 		/* Try to find a target */
589 		if (cpumask_empty(mask))
590 			cpu = -1;
591 		else
592 			cpu = xive_find_target_in_mask(mask, fuzz++);
593 		free_cpumask_var(mask);
594 		if (cpu >= 0)
595 			return cpu;
596 		fuzz--;
597 	}
598 
599 	/* No chip IDs, fallback to using the affinity mask */
600 	return xive_find_target_in_mask(affinity, fuzz++);
601 }
602 
xive_irq_startup(struct irq_data * d)603 static unsigned int xive_irq_startup(struct irq_data *d)
604 {
605 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
606 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
607 	int target, rc;
608 
609 	xd->saved_p = false;
610 	xd->stale_p = false;
611 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
612 		 d->irq, hw_irq, d);
613 
614 #ifdef CONFIG_PCI_MSI
615 	/*
616 	 * The generic MSI code returns with the interrupt disabled on the
617 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
618 	 * at that level, so we do it here by hand.
619 	 */
620 	if (irq_data_get_msi_desc(d))
621 		pci_msi_unmask_irq(d);
622 #endif
623 
624 	/* Pick a target */
625 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
626 	if (target == XIVE_INVALID_TARGET) {
627 		/* Try again breaking affinity */
628 		target = xive_pick_irq_target(d, cpu_online_mask);
629 		if (target == XIVE_INVALID_TARGET)
630 			return -ENXIO;
631 		pr_warn("irq %d started with broken affinity\n", d->irq);
632 	}
633 
634 	/* Sanity check */
635 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
636 		    target >= nr_cpu_ids))
637 		target = smp_processor_id();
638 
639 	xd->target = target;
640 
641 	/*
642 	 * Configure the logical number to be the Linux IRQ number
643 	 * and set the target queue
644 	 */
645 	rc = xive_ops->configure_irq(hw_irq,
646 				     get_hard_smp_processor_id(target),
647 				     xive_irq_priority, d->irq);
648 	if (rc)
649 		return rc;
650 
651 	/* Unmask the ESB */
652 	xive_do_source_set_mask(xd, false);
653 
654 	return 0;
655 }
656 
657 /* called with irq descriptor lock held */
xive_irq_shutdown(struct irq_data * d)658 static void xive_irq_shutdown(struct irq_data *d)
659 {
660 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
661 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
662 
663 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
664 		 d->irq, hw_irq, d);
665 
666 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
667 		return;
668 
669 	/* Mask the interrupt at the source */
670 	xive_do_source_set_mask(xd, true);
671 
672 	/*
673 	 * Mask the interrupt in HW in the IVT/EAS and set the number
674 	 * to be the "bad" IRQ number
675 	 */
676 	xive_ops->configure_irq(hw_irq,
677 				get_hard_smp_processor_id(xd->target),
678 				0xff, XIVE_BAD_IRQ);
679 
680 	xive_dec_target_count(xd->target);
681 	xd->target = XIVE_INVALID_TARGET;
682 }
683 
xive_irq_unmask(struct irq_data * d)684 static void xive_irq_unmask(struct irq_data *d)
685 {
686 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
687 
688 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
689 
690 	/*
691 	 * This is a workaround for PCI LSI problems on P9, for
692 	 * these, we call FW to set the mask. The problems might
693 	 * be fixed by P9 DD2.0, if that is the case, firmware
694 	 * will no longer set that flag.
695 	 */
696 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
697 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
698 		xive_ops->configure_irq(hw_irq,
699 					get_hard_smp_processor_id(xd->target),
700 					xive_irq_priority, d->irq);
701 		return;
702 	}
703 
704 	xive_do_source_set_mask(xd, false);
705 }
706 
xive_irq_mask(struct irq_data * d)707 static void xive_irq_mask(struct irq_data *d)
708 {
709 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
710 
711 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
712 
713 	/*
714 	 * This is a workaround for PCI LSI problems on P9, for
715 	 * these, we call OPAL to set the mask. The problems might
716 	 * be fixed by P9 DD2.0, if that is the case, firmware
717 	 * will no longer set that flag.
718 	 */
719 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
720 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
721 		xive_ops->configure_irq(hw_irq,
722 					get_hard_smp_processor_id(xd->target),
723 					0xff, d->irq);
724 		return;
725 	}
726 
727 	xive_do_source_set_mask(xd, true);
728 }
729 
xive_irq_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)730 static int xive_irq_set_affinity(struct irq_data *d,
731 				 const struct cpumask *cpumask,
732 				 bool force)
733 {
734 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
735 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
736 	u32 target, old_target;
737 	int rc = 0;
738 
739 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
740 
741 	/* Is this valid ? */
742 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
743 		return -EINVAL;
744 
745 	/* Don't do anything if the interrupt isn't started */
746 	if (!irqd_is_started(d))
747 		return IRQ_SET_MASK_OK;
748 
749 	/*
750 	 * If existing target is already in the new mask, and is
751 	 * online then do nothing.
752 	 */
753 	if (xd->target != XIVE_INVALID_TARGET &&
754 	    cpu_online(xd->target) &&
755 	    cpumask_test_cpu(xd->target, cpumask))
756 		return IRQ_SET_MASK_OK;
757 
758 	/* Pick a new target */
759 	target = xive_pick_irq_target(d, cpumask);
760 
761 	/* No target found */
762 	if (target == XIVE_INVALID_TARGET)
763 		return -ENXIO;
764 
765 	/* Sanity check */
766 	if (WARN_ON(target >= nr_cpu_ids))
767 		target = smp_processor_id();
768 
769 	old_target = xd->target;
770 
771 	/*
772 	 * Only configure the irq if it's not currently passed-through to
773 	 * a KVM guest
774 	 */
775 	if (!irqd_is_forwarded_to_vcpu(d))
776 		rc = xive_ops->configure_irq(hw_irq,
777 					     get_hard_smp_processor_id(target),
778 					     xive_irq_priority, d->irq);
779 	if (rc < 0) {
780 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
781 		return rc;
782 	}
783 
784 	pr_devel("  target: 0x%x\n", target);
785 	xd->target = target;
786 
787 	/* Give up previous target */
788 	if (old_target != XIVE_INVALID_TARGET)
789 	    xive_dec_target_count(old_target);
790 
791 	return IRQ_SET_MASK_OK;
792 }
793 
xive_irq_set_type(struct irq_data * d,unsigned int flow_type)794 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
795 {
796 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
797 
798 	/*
799 	 * We only support these. This has really no effect other than setting
800 	 * the corresponding descriptor bits mind you but those will in turn
801 	 * affect the resend function when re-enabling an edge interrupt.
802 	 *
803 	 * Set set the default to edge as explained in map().
804 	 */
805 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
806 		flow_type = IRQ_TYPE_EDGE_RISING;
807 
808 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
809 	    flow_type != IRQ_TYPE_LEVEL_LOW)
810 		return -EINVAL;
811 
812 	irqd_set_trigger_type(d, flow_type);
813 
814 	/*
815 	 * Double check it matches what the FW thinks
816 	 *
817 	 * NOTE: We don't know yet if the PAPR interface will provide
818 	 * the LSI vs MSI information apart from the device-tree so
819 	 * this check might have to move into an optional backend call
820 	 * that is specific to the native backend
821 	 */
822 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
823 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
824 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
825 			d->irq, (u32)irqd_to_hwirq(d),
826 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
827 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
828 	}
829 
830 	return IRQ_SET_MASK_OK_NOCOPY;
831 }
832 
xive_irq_retrigger(struct irq_data * d)833 static int xive_irq_retrigger(struct irq_data *d)
834 {
835 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
836 
837 	/* This should be only for MSIs */
838 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
839 		return 0;
840 
841 	/*
842 	 * To perform a retrigger, we first set the PQ bits to
843 	 * 11, then perform an EOI.
844 	 */
845 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
846 
847 	/*
848 	 * Note: We pass "0" to the hw_irq argument in order to
849 	 * avoid calling into the backend EOI code which we don't
850 	 * want to do in the case of a re-trigger. Backends typically
851 	 * only do EOI for LSIs anyway.
852 	 */
853 	xive_do_source_eoi(0, xd);
854 
855 	return 1;
856 }
857 
858 /*
859  * Caller holds the irq descriptor lock, so this won't be called
860  * concurrently with xive_get_irqchip_state on the same interrupt.
861  */
xive_irq_set_vcpu_affinity(struct irq_data * d,void * state)862 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
863 {
864 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
865 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
866 	int rc;
867 	u8 pq;
868 
869 	/*
870 	 * We only support this on interrupts that do not require
871 	 * firmware calls for masking and unmasking
872 	 */
873 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
874 		return -EIO;
875 
876 	/*
877 	 * This is called by KVM with state non-NULL for enabling
878 	 * pass-through or NULL for disabling it
879 	 */
880 	if (state) {
881 		irqd_set_forwarded_to_vcpu(d);
882 
883 		/* Set it to PQ=10 state to prevent further sends */
884 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
885 		if (!xd->stale_p) {
886 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
887 			xd->stale_p = !xd->saved_p;
888 		}
889 
890 		/* No target ? nothing to do */
891 		if (xd->target == XIVE_INVALID_TARGET) {
892 			/*
893 			 * An untargetted interrupt should have been
894 			 * also masked at the source
895 			 */
896 			WARN_ON(xd->saved_p);
897 
898 			return 0;
899 		}
900 
901 		/*
902 		 * If P was set, adjust state to PQ=11 to indicate
903 		 * that a resend is needed for the interrupt to reach
904 		 * the guest. Also remember the value of P.
905 		 *
906 		 * This also tells us that it's in flight to a host queue
907 		 * or has already been fetched but hasn't been EOIed yet
908 		 * by the host. This it's potentially using up a host
909 		 * queue slot. This is important to know because as long
910 		 * as this is the case, we must not hard-unmask it when
911 		 * "returning" that interrupt to the host.
912 		 *
913 		 * This saved_p is cleared by the host EOI, when we know
914 		 * for sure the queue slot is no longer in use.
915 		 */
916 		if (xd->saved_p) {
917 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
918 
919 			/*
920 			 * Sync the XIVE source HW to ensure the interrupt
921 			 * has gone through the EAS before we change its
922 			 * target to the guest. That should guarantee us
923 			 * that we *will* eventually get an EOI for it on
924 			 * the host. Otherwise there would be a small window
925 			 * for P to be seen here but the interrupt going
926 			 * to the guest queue.
927 			 */
928 			if (xive_ops->sync_source)
929 				xive_ops->sync_source(hw_irq);
930 		}
931 	} else {
932 		irqd_clr_forwarded_to_vcpu(d);
933 
934 		/* No host target ? hard mask and return */
935 		if (xd->target == XIVE_INVALID_TARGET) {
936 			xive_do_source_set_mask(xd, true);
937 			return 0;
938 		}
939 
940 		/*
941 		 * Sync the XIVE source HW to ensure the interrupt
942 		 * has gone through the EAS before we change its
943 		 * target to the host.
944 		 */
945 		if (xive_ops->sync_source)
946 			xive_ops->sync_source(hw_irq);
947 
948 		/*
949 		 * By convention we are called with the interrupt in
950 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
951 		 * have latched in Q whether there's a pending HW
952 		 * interrupt or not.
953 		 *
954 		 * First reconfigure the target.
955 		 */
956 		rc = xive_ops->configure_irq(hw_irq,
957 					     get_hard_smp_processor_id(xd->target),
958 					     xive_irq_priority, d->irq);
959 		if (rc)
960 			return rc;
961 
962 		/*
963 		 * Then if saved_p is not set, effectively re-enable the
964 		 * interrupt with an EOI. If it is set, we know there is
965 		 * still a message in a host queue somewhere that will be
966 		 * EOId eventually.
967 		 *
968 		 * Note: We don't check irqd_irq_disabled(). Effectively,
969 		 * we *will* let the irq get through even if masked if the
970 		 * HW is still firing it in order to deal with the whole
971 		 * saved_p business properly. If the interrupt triggers
972 		 * while masked, the generic code will re-mask it anyway.
973 		 */
974 		if (!xd->saved_p)
975 			xive_do_source_eoi(hw_irq, xd);
976 
977 	}
978 	return 0;
979 }
980 
981 /* Called with irq descriptor lock held. */
xive_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)982 static int xive_get_irqchip_state(struct irq_data *data,
983 				  enum irqchip_irq_state which, bool *state)
984 {
985 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
986 	u8 pq;
987 
988 	switch (which) {
989 	case IRQCHIP_STATE_ACTIVE:
990 		pq = xive_esb_read(xd, XIVE_ESB_GET);
991 
992 		/*
993 		 * The esb value being all 1's means we couldn't get
994 		 * the PQ state of the interrupt through mmio. It may
995 		 * happen, for example when querying a PHB interrupt
996 		 * while the PHB is in an error state. We consider the
997 		 * interrupt to be inactive in that case.
998 		 */
999 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
1000 			(xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
1001 			 !irqd_irq_disabled(data)));
1002 		return 0;
1003 	default:
1004 		return -EINVAL;
1005 	}
1006 }
1007 
1008 static struct irq_chip xive_irq_chip = {
1009 	.name = "XIVE-IRQ",
1010 	.irq_startup = xive_irq_startup,
1011 	.irq_shutdown = xive_irq_shutdown,
1012 	.irq_eoi = xive_irq_eoi,
1013 	.irq_mask = xive_irq_mask,
1014 	.irq_unmask = xive_irq_unmask,
1015 	.irq_set_affinity = xive_irq_set_affinity,
1016 	.irq_set_type = xive_irq_set_type,
1017 	.irq_retrigger = xive_irq_retrigger,
1018 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1019 	.irq_get_irqchip_state = xive_get_irqchip_state,
1020 };
1021 
is_xive_irq(struct irq_chip * chip)1022 bool is_xive_irq(struct irq_chip *chip)
1023 {
1024 	return chip == &xive_irq_chip;
1025 }
1026 EXPORT_SYMBOL_GPL(is_xive_irq);
1027 
xive_cleanup_irq_data(struct xive_irq_data * xd)1028 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1029 {
1030 	if (xd->eoi_mmio) {
1031 		unmap_kernel_range((unsigned long)xd->eoi_mmio,
1032 				   1u << xd->esb_shift);
1033 		iounmap(xd->eoi_mmio);
1034 		if (xd->eoi_mmio == xd->trig_mmio)
1035 			xd->trig_mmio = NULL;
1036 		xd->eoi_mmio = NULL;
1037 	}
1038 	if (xd->trig_mmio) {
1039 		unmap_kernel_range((unsigned long)xd->trig_mmio,
1040 				   1u << xd->esb_shift);
1041 		iounmap(xd->trig_mmio);
1042 		xd->trig_mmio = NULL;
1043 	}
1044 }
1045 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1046 
xive_irq_alloc_data(unsigned int virq,irq_hw_number_t hw)1047 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1048 {
1049 	struct xive_irq_data *xd;
1050 	int rc;
1051 
1052 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1053 	if (!xd)
1054 		return -ENOMEM;
1055 	rc = xive_ops->populate_irq_data(hw, xd);
1056 	if (rc) {
1057 		kfree(xd);
1058 		return rc;
1059 	}
1060 	xd->target = XIVE_INVALID_TARGET;
1061 	irq_set_handler_data(virq, xd);
1062 
1063 	/*
1064 	 * Turn OFF by default the interrupt being mapped. A side
1065 	 * effect of this check is the mapping the ESB page of the
1066 	 * interrupt in the Linux address space. This prevents page
1067 	 * fault issues in the crash handler which masks all
1068 	 * interrupts.
1069 	 */
1070 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1071 
1072 	return 0;
1073 }
1074 
xive_irq_free_data(unsigned int virq)1075 static void xive_irq_free_data(unsigned int virq)
1076 {
1077 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1078 
1079 	if (!xd)
1080 		return;
1081 	irq_set_handler_data(virq, NULL);
1082 	xive_cleanup_irq_data(xd);
1083 	kfree(xd);
1084 }
1085 
1086 #ifdef CONFIG_SMP
1087 
xive_cause_ipi(int cpu)1088 static void xive_cause_ipi(int cpu)
1089 {
1090 	struct xive_cpu *xc;
1091 	struct xive_irq_data *xd;
1092 
1093 	xc = per_cpu(xive_cpu, cpu);
1094 
1095 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1096 		    smp_processor_id(), cpu, xc->hw_ipi);
1097 
1098 	xd = &xc->ipi_data;
1099 	if (WARN_ON(!xd->trig_mmio))
1100 		return;
1101 	out_be64(xd->trig_mmio, 0);
1102 }
1103 
xive_muxed_ipi_action(int irq,void * dev_id)1104 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1105 {
1106 	return smp_ipi_demux();
1107 }
1108 
xive_ipi_eoi(struct irq_data * d)1109 static void xive_ipi_eoi(struct irq_data *d)
1110 {
1111 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1112 
1113 	/* Handle possible race with unplug and drop stale IPIs */
1114 	if (!xc)
1115 		return;
1116 
1117 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1118 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1119 
1120 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1121 	xive_do_queue_eoi(xc);
1122 }
1123 
xive_ipi_do_nothing(struct irq_data * d)1124 static void xive_ipi_do_nothing(struct irq_data *d)
1125 {
1126 	/*
1127 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1128 	 * has to exist for the struct irq_chip.
1129 	 */
1130 }
1131 
1132 static struct irq_chip xive_ipi_chip = {
1133 	.name = "XIVE-IPI",
1134 	.irq_eoi = xive_ipi_eoi,
1135 	.irq_mask = xive_ipi_do_nothing,
1136 	.irq_unmask = xive_ipi_do_nothing,
1137 };
1138 
xive_request_ipi(void)1139 static void __init xive_request_ipi(void)
1140 {
1141 	unsigned int virq;
1142 
1143 	/*
1144 	 * Initialization failed, move on, we might manage to
1145 	 * reach the point where we display our errors before
1146 	 * the system falls appart
1147 	 */
1148 	if (!xive_irq_domain)
1149 		return;
1150 
1151 	/* Initialize it */
1152 	virq = irq_create_mapping(xive_irq_domain, 0);
1153 	xive_ipi_irq = virq;
1154 
1155 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1156 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1157 }
1158 
xive_setup_cpu_ipi(unsigned int cpu)1159 static int xive_setup_cpu_ipi(unsigned int cpu)
1160 {
1161 	struct xive_cpu *xc;
1162 	int rc;
1163 
1164 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1165 
1166 	xc = per_cpu(xive_cpu, cpu);
1167 
1168 	/* Check if we are already setup */
1169 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1170 		return 0;
1171 
1172 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1173 	if (xive_ops->get_ipi(cpu, xc))
1174 		return -EIO;
1175 
1176 	/*
1177 	 * Populate the IRQ data in the xive_cpu structure and
1178 	 * configure the HW / enable the IPIs.
1179 	 */
1180 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1181 	if (rc) {
1182 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1183 		return -EIO;
1184 	}
1185 	rc = xive_ops->configure_irq(xc->hw_ipi,
1186 				     get_hard_smp_processor_id(cpu),
1187 				     xive_irq_priority, xive_ipi_irq);
1188 	if (rc) {
1189 		pr_err("Failed to map IPI CPU %d\n", cpu);
1190 		return -EIO;
1191 	}
1192 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1193 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1194 
1195 	/* Unmask it */
1196 	xive_do_source_set_mask(&xc->ipi_data, false);
1197 
1198 	return 0;
1199 }
1200 
xive_cleanup_cpu_ipi(unsigned int cpu,struct xive_cpu * xc)1201 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1202 {
1203 	/* Disable the IPI and free the IRQ data */
1204 
1205 	/* Already cleaned up ? */
1206 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1207 		return;
1208 
1209 	/* Mask the IPI */
1210 	xive_do_source_set_mask(&xc->ipi_data, true);
1211 
1212 	/*
1213 	 * Note: We don't call xive_cleanup_irq_data() to free
1214 	 * the mappings as this is called from an IPI on kexec
1215 	 * which is not a safe environment to call iounmap()
1216 	 */
1217 
1218 	/* Deconfigure/mask in the backend */
1219 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1220 				0xff, xive_ipi_irq);
1221 
1222 	/* Free the IPIs in the backend */
1223 	xive_ops->put_ipi(cpu, xc);
1224 }
1225 
xive_smp_probe(void)1226 void __init xive_smp_probe(void)
1227 {
1228 	smp_ops->cause_ipi = xive_cause_ipi;
1229 
1230 	/* Register the IPI */
1231 	xive_request_ipi();
1232 
1233 	/* Allocate and setup IPI for the boot CPU */
1234 	xive_setup_cpu_ipi(smp_processor_id());
1235 }
1236 
1237 #endif /* CONFIG_SMP */
1238 
xive_irq_domain_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1239 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1240 			       irq_hw_number_t hw)
1241 {
1242 	int rc;
1243 
1244 	/*
1245 	 * Mark interrupts as edge sensitive by default so that resend
1246 	 * actually works. Will fix that up below if needed.
1247 	 */
1248 	irq_clear_status_flags(virq, IRQ_LEVEL);
1249 
1250 #ifdef CONFIG_SMP
1251 	/* IPIs are special and come up with HW number 0 */
1252 	if (hw == 0) {
1253 		/*
1254 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1255 		 * the hood but associated with the same "linux" interrupt
1256 		 */
1257 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1258 					 handle_percpu_irq);
1259 		return 0;
1260 	}
1261 #endif
1262 
1263 	rc = xive_irq_alloc_data(virq, hw);
1264 	if (rc)
1265 		return rc;
1266 
1267 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1268 
1269 	return 0;
1270 }
1271 
xive_irq_domain_unmap(struct irq_domain * d,unsigned int virq)1272 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1273 {
1274 	struct irq_data *data = irq_get_irq_data(virq);
1275 	unsigned int hw_irq;
1276 
1277 	/* XXX Assign BAD number */
1278 	if (!data)
1279 		return;
1280 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1281 	if (hw_irq)
1282 		xive_irq_free_data(virq);
1283 }
1284 
xive_irq_domain_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)1285 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1286 				 const u32 *intspec, unsigned int intsize,
1287 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1288 
1289 {
1290 	*out_hwirq = intspec[0];
1291 
1292 	/*
1293 	 * If intsize is at least 2, we look for the type in the second cell,
1294 	 * we assume the LSB indicates a level interrupt.
1295 	 */
1296 	if (intsize > 1) {
1297 		if (intspec[1] & 1)
1298 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1299 		else
1300 			*out_flags = IRQ_TYPE_EDGE_RISING;
1301 	} else
1302 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1303 
1304 	return 0;
1305 }
1306 
xive_irq_domain_match(struct irq_domain * h,struct device_node * node,enum irq_domain_bus_token bus_token)1307 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1308 				 enum irq_domain_bus_token bus_token)
1309 {
1310 	return xive_ops->match(node);
1311 }
1312 
1313 static const struct irq_domain_ops xive_irq_domain_ops = {
1314 	.match = xive_irq_domain_match,
1315 	.map = xive_irq_domain_map,
1316 	.unmap = xive_irq_domain_unmap,
1317 	.xlate = xive_irq_domain_xlate,
1318 };
1319 
xive_init_host(void)1320 static void __init xive_init_host(void)
1321 {
1322 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1323 					       &xive_irq_domain_ops, NULL);
1324 	if (WARN_ON(xive_irq_domain == NULL))
1325 		return;
1326 	irq_set_default_host(xive_irq_domain);
1327 }
1328 
xive_cleanup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1329 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1330 {
1331 	if (xc->queue[xive_irq_priority].qpage)
1332 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1333 }
1334 
xive_setup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1335 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1336 {
1337 	int rc = 0;
1338 
1339 	/* We setup 1 queues for now with a 64k page */
1340 	if (!xc->queue[xive_irq_priority].qpage)
1341 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1342 
1343 	return rc;
1344 }
1345 
xive_prepare_cpu(unsigned int cpu)1346 static int xive_prepare_cpu(unsigned int cpu)
1347 {
1348 	struct xive_cpu *xc;
1349 
1350 	xc = per_cpu(xive_cpu, cpu);
1351 	if (!xc) {
1352 		struct device_node *np;
1353 
1354 		xc = kzalloc_node(sizeof(struct xive_cpu),
1355 				  GFP_KERNEL, cpu_to_node(cpu));
1356 		if (!xc)
1357 			return -ENOMEM;
1358 		np = of_get_cpu_node(cpu, NULL);
1359 		if (np)
1360 			xc->chip_id = of_get_ibm_chip_id(np);
1361 		of_node_put(np);
1362 		xc->hw_ipi = XIVE_BAD_IRQ;
1363 
1364 		per_cpu(xive_cpu, cpu) = xc;
1365 	}
1366 
1367 	/* Setup EQs if not already */
1368 	return xive_setup_cpu_queues(cpu, xc);
1369 }
1370 
xive_setup_cpu(void)1371 static void xive_setup_cpu(void)
1372 {
1373 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1374 
1375 	/* The backend might have additional things to do */
1376 	if (xive_ops->setup_cpu)
1377 		xive_ops->setup_cpu(smp_processor_id(), xc);
1378 
1379 	/* Set CPPR to 0xff to enable flow of interrupts */
1380 	xc->cppr = 0xff;
1381 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1382 }
1383 
1384 #ifdef CONFIG_SMP
xive_smp_setup_cpu(void)1385 void xive_smp_setup_cpu(void)
1386 {
1387 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1388 
1389 	/* This will have already been done on the boot CPU */
1390 	if (smp_processor_id() != boot_cpuid)
1391 		xive_setup_cpu();
1392 
1393 }
1394 
xive_smp_prepare_cpu(unsigned int cpu)1395 int xive_smp_prepare_cpu(unsigned int cpu)
1396 {
1397 	int rc;
1398 
1399 	/* Allocate per-CPU data and queues */
1400 	rc = xive_prepare_cpu(cpu);
1401 	if (rc)
1402 		return rc;
1403 
1404 	/* Allocate and setup IPI for the new CPU */
1405 	return xive_setup_cpu_ipi(cpu);
1406 }
1407 
1408 #ifdef CONFIG_HOTPLUG_CPU
xive_flush_cpu_queue(unsigned int cpu,struct xive_cpu * xc)1409 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1410 {
1411 	u32 irq;
1412 
1413 	/* We assume local irqs are disabled */
1414 	WARN_ON(!irqs_disabled());
1415 
1416 	/* Check what's already in the CPU queue */
1417 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1418 		/*
1419 		 * We need to re-route that interrupt to its new destination.
1420 		 * First get and lock the descriptor
1421 		 */
1422 		struct irq_desc *desc = irq_to_desc(irq);
1423 		struct irq_data *d = irq_desc_get_irq_data(desc);
1424 		struct xive_irq_data *xd;
1425 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1426 
1427 		/*
1428 		 * Ignore anything that isn't a XIVE irq and ignore
1429 		 * IPIs, so can just be dropped.
1430 		 */
1431 		if (d->domain != xive_irq_domain || hw_irq == 0)
1432 			continue;
1433 
1434 		/*
1435 		 * The IRQ should have already been re-routed, it's just a
1436 		 * stale in the old queue, so re-trigger it in order to make
1437 		 * it reach is new destination.
1438 		 */
1439 #ifdef DEBUG_FLUSH
1440 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1441 			cpu, irq);
1442 #endif
1443 		raw_spin_lock(&desc->lock);
1444 		xd = irq_desc_get_handler_data(desc);
1445 
1446 		/*
1447 		 * Clear saved_p to indicate that it's no longer pending
1448 		 */
1449 		xd->saved_p = false;
1450 
1451 		/*
1452 		 * For LSIs, we EOI, this will cause a resend if it's
1453 		 * still asserted. Otherwise do an MSI retrigger.
1454 		 */
1455 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1456 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1457 		else
1458 			xive_irq_retrigger(d);
1459 
1460 		raw_spin_unlock(&desc->lock);
1461 	}
1462 }
1463 
xive_smp_disable_cpu(void)1464 void xive_smp_disable_cpu(void)
1465 {
1466 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1467 	unsigned int cpu = smp_processor_id();
1468 
1469 	/* Migrate interrupts away from the CPU */
1470 	irq_migrate_all_off_this_cpu();
1471 
1472 	/* Set CPPR to 0 to disable flow of interrupts */
1473 	xc->cppr = 0;
1474 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1475 
1476 	/* Flush everything still in the queue */
1477 	xive_flush_cpu_queue(cpu, xc);
1478 
1479 	/* Re-enable CPPR  */
1480 	xc->cppr = 0xff;
1481 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1482 }
1483 
xive_flush_interrupt(void)1484 void xive_flush_interrupt(void)
1485 {
1486 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1487 	unsigned int cpu = smp_processor_id();
1488 
1489 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1490 	xive_flush_cpu_queue(cpu, xc);
1491 }
1492 
1493 #endif /* CONFIG_HOTPLUG_CPU */
1494 
1495 #endif /* CONFIG_SMP */
1496 
xive_teardown_cpu(void)1497 void xive_teardown_cpu(void)
1498 {
1499 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1500 	unsigned int cpu = smp_processor_id();
1501 
1502 	/* Set CPPR to 0 to disable flow of interrupts */
1503 	xc->cppr = 0;
1504 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1505 
1506 	if (xive_ops->teardown_cpu)
1507 		xive_ops->teardown_cpu(cpu, xc);
1508 
1509 #ifdef CONFIG_SMP
1510 	/* Get rid of IPI */
1511 	xive_cleanup_cpu_ipi(cpu, xc);
1512 #endif
1513 
1514 	/* Disable and free the queues */
1515 	xive_cleanup_cpu_queues(cpu, xc);
1516 }
1517 
xive_shutdown(void)1518 void xive_shutdown(void)
1519 {
1520 	xive_ops->shutdown();
1521 }
1522 
xive_core_init(const struct xive_ops * ops,void __iomem * area,u32 offset,u8 max_prio)1523 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1524 			   u8 max_prio)
1525 {
1526 	xive_tima = area;
1527 	xive_tima_offset = offset;
1528 	xive_ops = ops;
1529 	xive_irq_priority = max_prio;
1530 
1531 	ppc_md.get_irq = xive_get_irq;
1532 	__xive_enabled = true;
1533 
1534 	pr_devel("Initializing host..\n");
1535 	xive_init_host();
1536 
1537 	pr_devel("Initializing boot CPU..\n");
1538 
1539 	/* Allocate per-CPU data and queues */
1540 	xive_prepare_cpu(smp_processor_id());
1541 
1542 	/* Get ready for interrupts */
1543 	xive_setup_cpu();
1544 
1545 	pr_info("Interrupt handling initialized with %s backend\n",
1546 		xive_ops->name);
1547 	pr_info("Using priority %d for all interrupts\n", max_prio);
1548 
1549 	return true;
1550 }
1551 
xive_queue_page_alloc(unsigned int cpu,u32 queue_shift)1552 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1553 {
1554 	unsigned int alloc_order;
1555 	struct page *pages;
1556 	__be32 *qpage;
1557 
1558 	alloc_order = xive_alloc_order(queue_shift);
1559 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1560 	if (!pages)
1561 		return ERR_PTR(-ENOMEM);
1562 	qpage = (__be32 *)page_address(pages);
1563 	memset(qpage, 0, 1 << queue_shift);
1564 
1565 	return qpage;
1566 }
1567 
xive_off(char * arg)1568 static int __init xive_off(char *arg)
1569 {
1570 	xive_cmdline_disabled = true;
1571 	return 0;
1572 }
1573 __setup("xive=off", xive_off);
1574 
xive_debug_show_cpu(struct seq_file * m,int cpu)1575 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1576 {
1577 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1578 
1579 	seq_printf(m, "CPU %d:", cpu);
1580 	if (xc) {
1581 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1582 
1583 #ifdef CONFIG_SMP
1584 		{
1585 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1586 
1587 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1588 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1589 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1590 		}
1591 #endif
1592 		{
1593 			struct xive_q *q = &xc->queue[xive_irq_priority];
1594 			u32 i0, i1, idx;
1595 
1596 			if (q->qpage) {
1597 				idx = q->idx;
1598 				i0 = be32_to_cpup(q->qpage + idx);
1599 				idx = (idx + 1) & q->msk;
1600 				i1 = be32_to_cpup(q->qpage + idx);
1601 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1602 					   q->idx, q->toggle, i0, i1);
1603 			}
1604 		}
1605 	}
1606 	seq_puts(m, "\n");
1607 }
1608 
xive_debug_show_irq(struct seq_file * m,u32 hw_irq,struct irq_data * d)1609 static void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1610 {
1611 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1612 	int rc;
1613 	u32 target;
1614 	u8 prio;
1615 	u32 lirq;
1616 	struct xive_irq_data *xd;
1617 	u64 val;
1618 
1619 	if (!is_xive_irq(chip))
1620 		return;
1621 
1622 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1623 	if (rc) {
1624 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1625 		return;
1626 	}
1627 
1628 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1629 		   hw_irq, target, prio, lirq);
1630 
1631 	xd = irq_data_get_irq_handler_data(d);
1632 	val = xive_esb_read(xd, XIVE_ESB_GET);
1633 	seq_printf(m, "flags=%c%c%c PQ=%c%c",
1634 		   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1635 		   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1636 		   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1637 		   val & XIVE_ESB_VAL_P ? 'P' : '-',
1638 		   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1639 	seq_puts(m, "\n");
1640 }
1641 
xive_core_debug_show(struct seq_file * m,void * private)1642 static int xive_core_debug_show(struct seq_file *m, void *private)
1643 {
1644 	unsigned int i;
1645 	struct irq_desc *desc;
1646 	int cpu;
1647 
1648 	if (xive_ops->debug_show)
1649 		xive_ops->debug_show(m, private);
1650 
1651 	for_each_possible_cpu(cpu)
1652 		xive_debug_show_cpu(m, cpu);
1653 
1654 	for_each_irq_desc(i, desc) {
1655 		struct irq_data *d = irq_desc_get_irq_data(desc);
1656 		unsigned int hw_irq;
1657 
1658 		if (!d)
1659 			continue;
1660 
1661 		hw_irq = (unsigned int)irqd_to_hwirq(d);
1662 
1663 		/* IPIs are special (HW number 0) */
1664 		if (hw_irq)
1665 			xive_debug_show_irq(m, hw_irq, d);
1666 	}
1667 	return 0;
1668 }
1669 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1670 
xive_core_debug_init(void)1671 int xive_core_debug_init(void)
1672 {
1673 	if (xive_enabled())
1674 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1675 				    NULL, &xive_core_debug_fops);
1676 	return 0;
1677 }
1678