1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2016,2017 IBM Corporation.
4 */
5
6 #define pr_fmt(fmt) "xive: " fmt
7
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34
35 #include "xive-internal.h"
36
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
42 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...) do { } while(0)
45 #endif
46
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
69
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET (-1)
75
76 /*
77 * Read the next entry in a queue, return its content if it's valid
78 * or 0 if there is no new entry.
79 *
80 * The queue pointer is moved forward unless "just_peek" is set
81 */
xive_read_eq(struct xive_q * q,bool just_peek)82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
83 {
84 u32 cur;
85
86 if (!q->qpage)
87 return 0;
88 cur = be32_to_cpup(q->qpage + q->idx);
89
90 /* Check valid bit (31) vs current toggle polarity */
91 if ((cur >> 31) == q->toggle)
92 return 0;
93
94 /* If consuming from the queue ... */
95 if (!just_peek) {
96 /* Next entry */
97 q->idx = (q->idx + 1) & q->msk;
98
99 /* Wrap around: flip valid toggle */
100 if (q->idx == 0)
101 q->toggle ^= 1;
102 }
103 /* Mask out the valid bit (31) */
104 return cur & 0x7fffffff;
105 }
106
107 /*
108 * Scans all the queue that may have interrupts in them
109 * (based on "pending_prio") in priority order until an
110 * interrupt is found or all the queues are empty.
111 *
112 * Then updates the CPPR (Current Processor Priority
113 * Register) based on the most favored interrupt found
114 * (0xff if none) and return what was found (0 if none).
115 *
116 * If just_peek is set, return the most favored pending
117 * interrupt if any but don't update the queue pointers.
118 *
119 * Note: This function can operate generically on any number
120 * of queues (up to 8). The current implementation of the XIVE
121 * driver only uses a single queue however.
122 *
123 * Note2: This will also "flush" "the pending_count" of a queue
124 * into the "count" when that queue is observed to be empty.
125 * This is used to keep track of the amount of interrupts
126 * targetting a queue. When an interrupt is moved away from
127 * a queue, we only decrement that queue count once the queue
128 * has been observed empty to avoid races.
129 */
xive_scan_interrupts(struct xive_cpu * xc,bool just_peek)130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
131 {
132 u32 irq = 0;
133 u8 prio = 0;
134
135 /* Find highest pending priority */
136 while (xc->pending_prio != 0) {
137 struct xive_q *q;
138
139 prio = ffs(xc->pending_prio) - 1;
140 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
141
142 /* Try to fetch */
143 irq = xive_read_eq(&xc->queue[prio], just_peek);
144
145 /* Found something ? That's it */
146 if (irq) {
147 if (just_peek || irq_to_desc(irq))
148 break;
149 /*
150 * We should never get here; if we do then we must
151 * have failed to synchronize the interrupt properly
152 * when shutting it down.
153 */
154 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 irq);
156 WARN_ON(1);
157 continue;
158 }
159
160 /* Clear pending bits */
161 xc->pending_prio &= ~(1 << prio);
162
163 /*
164 * Check if the queue count needs adjusting due to
165 * interrupts being moved away. See description of
166 * xive_dec_target_count()
167 */
168 q = &xc->queue[prio];
169 if (atomic_read(&q->pending_count)) {
170 int p = atomic_xchg(&q->pending_count, 0);
171 if (p) {
172 WARN_ON(p > atomic_read(&q->count));
173 atomic_sub(p, &q->count);
174 }
175 }
176 }
177
178 /* If nothing was found, set CPPR to 0xff */
179 if (irq == 0)
180 prio = 0xff;
181
182 /* Update HW CPPR to match if necessary */
183 if (prio != xc->cppr) {
184 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 xc->cppr = prio;
186 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
187 }
188
189 return irq;
190 }
191
192 /*
193 * This is used to perform the magic loads from an ESB
194 * described in xive-regs.h
195 */
xive_esb_read(struct xive_irq_data * xd,u32 offset)196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
197 {
198 u64 val;
199
200 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 offset |= XIVE_ESB_LD_ST_MO;
202
203 /* Handle HW errata */
204 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
205 offset |= offset << 4;
206
207 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
208 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
209 else
210 val = in_be64(xd->eoi_mmio + offset);
211
212 return (u8)val;
213 }
214
xive_esb_write(struct xive_irq_data * xd,u32 offset,u64 data)215 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
216 {
217 /* Handle HW errata */
218 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
219 offset |= offset << 4;
220
221 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
222 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
223 else
224 out_be64(xd->eoi_mmio + offset, data);
225 }
226
227 #ifdef CONFIG_XMON
xive_dump_eq(const char * name,struct xive_q * q)228 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
229 {
230 u32 i0, i1, idx;
231
232 if (!q->qpage)
233 return;
234 idx = q->idx;
235 i0 = be32_to_cpup(q->qpage + idx);
236 idx = (idx + 1) & q->msk;
237 i1 = be32_to_cpup(q->qpage + idx);
238 xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
239 q->idx, q->toggle, i0, i1);
240 }
241
xmon_xive_do_dump(int cpu)242 notrace void xmon_xive_do_dump(int cpu)
243 {
244 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
245
246 xmon_printf("CPU %d:", cpu);
247 if (xc) {
248 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
249
250 #ifdef CONFIG_SMP
251 {
252 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
253
254 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
255 val & XIVE_ESB_VAL_P ? 'P' : '-',
256 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
257 }
258 #endif
259 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
260 }
261 xmon_printf("\n");
262 }
263
xive_get_irq_data(u32 hw_irq)264 static struct irq_data *xive_get_irq_data(u32 hw_irq)
265 {
266 unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
267
268 return irq ? irq_get_irq_data(irq) : NULL;
269 }
270
xmon_xive_get_irq_config(u32 hw_irq,struct irq_data * d)271 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
272 {
273 int rc;
274 u32 target;
275 u8 prio;
276 u32 lirq;
277
278 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
279 if (rc) {
280 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
281 return rc;
282 }
283
284 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
285 hw_irq, target, prio, lirq);
286
287 if (!d)
288 d = xive_get_irq_data(hw_irq);
289
290 if (d) {
291 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
292 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
293
294 xmon_printf("flags=%c%c%c PQ=%c%c",
295 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
296 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
297 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
298 val & XIVE_ESB_VAL_P ? 'P' : '-',
299 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
300 }
301
302 xmon_printf("\n");
303 return 0;
304 }
305
306 #endif /* CONFIG_XMON */
307
xive_get_irq(void)308 static unsigned int xive_get_irq(void)
309 {
310 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
311 u32 irq;
312
313 /*
314 * This can be called either as a result of a HW interrupt or
315 * as a "replay" because EOI decided there was still something
316 * in one of the queues.
317 *
318 * First we perform an ACK cycle in order to update our mask
319 * of pending priorities. This will also have the effect of
320 * updating the CPPR to the most favored pending interrupts.
321 *
322 * In the future, if we have a way to differentiate a first
323 * entry (on HW interrupt) from a replay triggered by EOI,
324 * we could skip this on replays unless we soft-mask tells us
325 * that a new HW interrupt occurred.
326 */
327 xive_ops->update_pending(xc);
328
329 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
330
331 /* Scan our queue(s) for interrupts */
332 irq = xive_scan_interrupts(xc, false);
333
334 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
335 irq, xc->pending_prio);
336
337 /* Return pending interrupt if any */
338 if (irq == XIVE_BAD_IRQ)
339 return 0;
340 return irq;
341 }
342
343 /*
344 * After EOI'ing an interrupt, we need to re-check the queue
345 * to see if another interrupt is pending since multiple
346 * interrupts can coalesce into a single notification to the
347 * CPU.
348 *
349 * If we find that there is indeed more in there, we call
350 * force_external_irq_replay() to make Linux synthetize an
351 * external interrupt on the next call to local_irq_restore().
352 */
xive_do_queue_eoi(struct xive_cpu * xc)353 static void xive_do_queue_eoi(struct xive_cpu *xc)
354 {
355 if (xive_scan_interrupts(xc, true) != 0) {
356 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
357 force_external_irq_replay();
358 }
359 }
360
361 /*
362 * EOI an interrupt at the source. There are several methods
363 * to do this depending on the HW version and source type
364 */
xive_do_source_eoi(u32 hw_irq,struct xive_irq_data * xd)365 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
366 {
367 xd->stale_p = false;
368 /* If the XIVE supports the new "store EOI facility, use it */
369 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
370 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
371 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
372 /*
373 * The FW told us to call it. This happens for some
374 * interrupt sources that need additional HW whacking
375 * beyond the ESB manipulation. For example LPC interrupts
376 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
377 * itself. The Firmware will take care of it.
378 */
379 if (WARN_ON_ONCE(!xive_ops->eoi))
380 return;
381 xive_ops->eoi(hw_irq);
382 } else {
383 u8 eoi_val;
384
385 /*
386 * Otherwise for EOI, we use the special MMIO that does
387 * a clear of both P and Q and returns the old Q,
388 * except for LSIs where we use the "EOI cycle" special
389 * load.
390 *
391 * This allows us to then do a re-trigger if Q was set
392 * rather than synthesizing an interrupt in software
393 *
394 * For LSIs the HW EOI cycle is used rather than PQ bits,
395 * as they are automatically re-triggred in HW when still
396 * pending.
397 */
398 if (xd->flags & XIVE_IRQ_FLAG_LSI)
399 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
400 else {
401 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
402 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
403
404 /* Re-trigger if needed */
405 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
406 out_be64(xd->trig_mmio, 0);
407 }
408 }
409 }
410
411 /* irq_chip eoi callback, called with irq descriptor lock held */
xive_irq_eoi(struct irq_data * d)412 static void xive_irq_eoi(struct irq_data *d)
413 {
414 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
415 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
416
417 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
418 d->irq, irqd_to_hwirq(d), xc->pending_prio);
419
420 /*
421 * EOI the source if it hasn't been disabled and hasn't
422 * been passed-through to a KVM guest
423 */
424 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
425 !(xd->flags & XIVE_IRQ_NO_EOI))
426 xive_do_source_eoi(irqd_to_hwirq(d), xd);
427 else
428 xd->stale_p = true;
429
430 /*
431 * Clear saved_p to indicate that it's no longer occupying
432 * a queue slot on the target queue
433 */
434 xd->saved_p = false;
435
436 /* Check for more work in the queue */
437 xive_do_queue_eoi(xc);
438 }
439
440 /*
441 * Helper used to mask and unmask an interrupt source. This
442 * is only called for normal interrupts that do not require
443 * masking/unmasking via firmware.
444 */
xive_do_source_set_mask(struct xive_irq_data * xd,bool mask)445 static void xive_do_source_set_mask(struct xive_irq_data *xd,
446 bool mask)
447 {
448 u64 val;
449
450 /*
451 * If the interrupt had P set, it may be in a queue.
452 *
453 * We need to make sure we don't re-enable it until it
454 * has been fetched from that queue and EOId. We keep
455 * a copy of that P state and use it to restore the
456 * ESB accordingly on unmask.
457 */
458 if (mask) {
459 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
460 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
461 xd->saved_p = true;
462 xd->stale_p = false;
463 } else if (xd->saved_p) {
464 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
465 xd->saved_p = false;
466 } else {
467 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
468 xd->stale_p = false;
469 }
470 }
471
472 /*
473 * Try to chose "cpu" as a new interrupt target. Increments
474 * the queue accounting for that target if it's not already
475 * full.
476 */
xive_try_pick_target(int cpu)477 static bool xive_try_pick_target(int cpu)
478 {
479 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
480 struct xive_q *q = &xc->queue[xive_irq_priority];
481 int max;
482
483 /*
484 * Calculate max number of interrupts in that queue.
485 *
486 * We leave a gap of 1 just in case...
487 */
488 max = (q->msk + 1) - 1;
489 return !!atomic_add_unless(&q->count, 1, max);
490 }
491
492 /*
493 * Un-account an interrupt for a target CPU. We don't directly
494 * decrement q->count since the interrupt might still be present
495 * in the queue.
496 *
497 * Instead increment a separate counter "pending_count" which
498 * will be substracted from "count" later when that CPU observes
499 * the queue to be empty.
500 */
xive_dec_target_count(int cpu)501 static void xive_dec_target_count(int cpu)
502 {
503 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
504 struct xive_q *q = &xc->queue[xive_irq_priority];
505
506 if (WARN_ON(cpu < 0 || !xc)) {
507 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
508 return;
509 }
510
511 /*
512 * We increment the "pending count" which will be used
513 * to decrement the target queue count whenever it's next
514 * processed and found empty. This ensure that we don't
515 * decrement while we still have the interrupt there
516 * occupying a slot.
517 */
518 atomic_inc(&q->pending_count);
519 }
520
521 /* Find a tentative CPU target in a CPU mask */
xive_find_target_in_mask(const struct cpumask * mask,unsigned int fuzz)522 static int xive_find_target_in_mask(const struct cpumask *mask,
523 unsigned int fuzz)
524 {
525 int cpu, first, num, i;
526
527 /* Pick up a starting point CPU in the mask based on fuzz */
528 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
529 first = fuzz % num;
530
531 /* Locate it */
532 cpu = cpumask_first(mask);
533 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
534 cpu = cpumask_next(cpu, mask);
535
536 /* Sanity check */
537 if (WARN_ON(cpu >= nr_cpu_ids))
538 cpu = cpumask_first(cpu_online_mask);
539
540 /* Remember first one to handle wrap-around */
541 first = cpu;
542
543 /*
544 * Now go through the entire mask until we find a valid
545 * target.
546 */
547 do {
548 /*
549 * We re-check online as the fallback case passes us
550 * an untested affinity mask
551 */
552 if (cpu_online(cpu) && xive_try_pick_target(cpu))
553 return cpu;
554 cpu = cpumask_next(cpu, mask);
555 /* Wrap around */
556 if (cpu >= nr_cpu_ids)
557 cpu = cpumask_first(mask);
558 } while (cpu != first);
559
560 return -1;
561 }
562
563 /*
564 * Pick a target CPU for an interrupt. This is done at
565 * startup or if the affinity is changed in a way that
566 * invalidates the current target.
567 */
xive_pick_irq_target(struct irq_data * d,const struct cpumask * affinity)568 static int xive_pick_irq_target(struct irq_data *d,
569 const struct cpumask *affinity)
570 {
571 static unsigned int fuzz;
572 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
573 cpumask_var_t mask;
574 int cpu = -1;
575
576 /*
577 * If we have chip IDs, first we try to build a mask of
578 * CPUs matching the CPU and find a target in there
579 */
580 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
581 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
582 /* Build a mask of matching chip IDs */
583 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
584 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
585 if (xc->chip_id == xd->src_chip)
586 cpumask_set_cpu(cpu, mask);
587 }
588 /* Try to find a target */
589 if (cpumask_empty(mask))
590 cpu = -1;
591 else
592 cpu = xive_find_target_in_mask(mask, fuzz++);
593 free_cpumask_var(mask);
594 if (cpu >= 0)
595 return cpu;
596 fuzz--;
597 }
598
599 /* No chip IDs, fallback to using the affinity mask */
600 return xive_find_target_in_mask(affinity, fuzz++);
601 }
602
xive_irq_startup(struct irq_data * d)603 static unsigned int xive_irq_startup(struct irq_data *d)
604 {
605 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
606 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
607 int target, rc;
608
609 xd->saved_p = false;
610 xd->stale_p = false;
611 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
612 d->irq, hw_irq, d);
613
614 #ifdef CONFIG_PCI_MSI
615 /*
616 * The generic MSI code returns with the interrupt disabled on the
617 * card, using the MSI mask bits. Firmware doesn't appear to unmask
618 * at that level, so we do it here by hand.
619 */
620 if (irq_data_get_msi_desc(d))
621 pci_msi_unmask_irq(d);
622 #endif
623
624 /* Pick a target */
625 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
626 if (target == XIVE_INVALID_TARGET) {
627 /* Try again breaking affinity */
628 target = xive_pick_irq_target(d, cpu_online_mask);
629 if (target == XIVE_INVALID_TARGET)
630 return -ENXIO;
631 pr_warn("irq %d started with broken affinity\n", d->irq);
632 }
633
634 /* Sanity check */
635 if (WARN_ON(target == XIVE_INVALID_TARGET ||
636 target >= nr_cpu_ids))
637 target = smp_processor_id();
638
639 xd->target = target;
640
641 /*
642 * Configure the logical number to be the Linux IRQ number
643 * and set the target queue
644 */
645 rc = xive_ops->configure_irq(hw_irq,
646 get_hard_smp_processor_id(target),
647 xive_irq_priority, d->irq);
648 if (rc)
649 return rc;
650
651 /* Unmask the ESB */
652 xive_do_source_set_mask(xd, false);
653
654 return 0;
655 }
656
657 /* called with irq descriptor lock held */
xive_irq_shutdown(struct irq_data * d)658 static void xive_irq_shutdown(struct irq_data *d)
659 {
660 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
661 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
662
663 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
664 d->irq, hw_irq, d);
665
666 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
667 return;
668
669 /* Mask the interrupt at the source */
670 xive_do_source_set_mask(xd, true);
671
672 /*
673 * Mask the interrupt in HW in the IVT/EAS and set the number
674 * to be the "bad" IRQ number
675 */
676 xive_ops->configure_irq(hw_irq,
677 get_hard_smp_processor_id(xd->target),
678 0xff, XIVE_BAD_IRQ);
679
680 xive_dec_target_count(xd->target);
681 xd->target = XIVE_INVALID_TARGET;
682 }
683
xive_irq_unmask(struct irq_data * d)684 static void xive_irq_unmask(struct irq_data *d)
685 {
686 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
687
688 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
689
690 /*
691 * This is a workaround for PCI LSI problems on P9, for
692 * these, we call FW to set the mask. The problems might
693 * be fixed by P9 DD2.0, if that is the case, firmware
694 * will no longer set that flag.
695 */
696 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
697 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
698 xive_ops->configure_irq(hw_irq,
699 get_hard_smp_processor_id(xd->target),
700 xive_irq_priority, d->irq);
701 return;
702 }
703
704 xive_do_source_set_mask(xd, false);
705 }
706
xive_irq_mask(struct irq_data * d)707 static void xive_irq_mask(struct irq_data *d)
708 {
709 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
710
711 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
712
713 /*
714 * This is a workaround for PCI LSI problems on P9, for
715 * these, we call OPAL to set the mask. The problems might
716 * be fixed by P9 DD2.0, if that is the case, firmware
717 * will no longer set that flag.
718 */
719 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
720 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
721 xive_ops->configure_irq(hw_irq,
722 get_hard_smp_processor_id(xd->target),
723 0xff, d->irq);
724 return;
725 }
726
727 xive_do_source_set_mask(xd, true);
728 }
729
xive_irq_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)730 static int xive_irq_set_affinity(struct irq_data *d,
731 const struct cpumask *cpumask,
732 bool force)
733 {
734 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
735 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
736 u32 target, old_target;
737 int rc = 0;
738
739 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
740
741 /* Is this valid ? */
742 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
743 return -EINVAL;
744
745 /* Don't do anything if the interrupt isn't started */
746 if (!irqd_is_started(d))
747 return IRQ_SET_MASK_OK;
748
749 /*
750 * If existing target is already in the new mask, and is
751 * online then do nothing.
752 */
753 if (xd->target != XIVE_INVALID_TARGET &&
754 cpu_online(xd->target) &&
755 cpumask_test_cpu(xd->target, cpumask))
756 return IRQ_SET_MASK_OK;
757
758 /* Pick a new target */
759 target = xive_pick_irq_target(d, cpumask);
760
761 /* No target found */
762 if (target == XIVE_INVALID_TARGET)
763 return -ENXIO;
764
765 /* Sanity check */
766 if (WARN_ON(target >= nr_cpu_ids))
767 target = smp_processor_id();
768
769 old_target = xd->target;
770
771 /*
772 * Only configure the irq if it's not currently passed-through to
773 * a KVM guest
774 */
775 if (!irqd_is_forwarded_to_vcpu(d))
776 rc = xive_ops->configure_irq(hw_irq,
777 get_hard_smp_processor_id(target),
778 xive_irq_priority, d->irq);
779 if (rc < 0) {
780 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
781 return rc;
782 }
783
784 pr_devel(" target: 0x%x\n", target);
785 xd->target = target;
786
787 /* Give up previous target */
788 if (old_target != XIVE_INVALID_TARGET)
789 xive_dec_target_count(old_target);
790
791 return IRQ_SET_MASK_OK;
792 }
793
xive_irq_set_type(struct irq_data * d,unsigned int flow_type)794 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
795 {
796 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
797
798 /*
799 * We only support these. This has really no effect other than setting
800 * the corresponding descriptor bits mind you but those will in turn
801 * affect the resend function when re-enabling an edge interrupt.
802 *
803 * Set set the default to edge as explained in map().
804 */
805 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
806 flow_type = IRQ_TYPE_EDGE_RISING;
807
808 if (flow_type != IRQ_TYPE_EDGE_RISING &&
809 flow_type != IRQ_TYPE_LEVEL_LOW)
810 return -EINVAL;
811
812 irqd_set_trigger_type(d, flow_type);
813
814 /*
815 * Double check it matches what the FW thinks
816 *
817 * NOTE: We don't know yet if the PAPR interface will provide
818 * the LSI vs MSI information apart from the device-tree so
819 * this check might have to move into an optional backend call
820 * that is specific to the native backend
821 */
822 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
823 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
824 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
825 d->irq, (u32)irqd_to_hwirq(d),
826 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
827 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
828 }
829
830 return IRQ_SET_MASK_OK_NOCOPY;
831 }
832
xive_irq_retrigger(struct irq_data * d)833 static int xive_irq_retrigger(struct irq_data *d)
834 {
835 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
836
837 /* This should be only for MSIs */
838 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
839 return 0;
840
841 /*
842 * To perform a retrigger, we first set the PQ bits to
843 * 11, then perform an EOI.
844 */
845 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
846
847 /*
848 * Note: We pass "0" to the hw_irq argument in order to
849 * avoid calling into the backend EOI code which we don't
850 * want to do in the case of a re-trigger. Backends typically
851 * only do EOI for LSIs anyway.
852 */
853 xive_do_source_eoi(0, xd);
854
855 return 1;
856 }
857
858 /*
859 * Caller holds the irq descriptor lock, so this won't be called
860 * concurrently with xive_get_irqchip_state on the same interrupt.
861 */
xive_irq_set_vcpu_affinity(struct irq_data * d,void * state)862 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
863 {
864 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
865 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
866 int rc;
867 u8 pq;
868
869 /*
870 * We only support this on interrupts that do not require
871 * firmware calls for masking and unmasking
872 */
873 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
874 return -EIO;
875
876 /*
877 * This is called by KVM with state non-NULL for enabling
878 * pass-through or NULL for disabling it
879 */
880 if (state) {
881 irqd_set_forwarded_to_vcpu(d);
882
883 /* Set it to PQ=10 state to prevent further sends */
884 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
885 if (!xd->stale_p) {
886 xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
887 xd->stale_p = !xd->saved_p;
888 }
889
890 /* No target ? nothing to do */
891 if (xd->target == XIVE_INVALID_TARGET) {
892 /*
893 * An untargetted interrupt should have been
894 * also masked at the source
895 */
896 WARN_ON(xd->saved_p);
897
898 return 0;
899 }
900
901 /*
902 * If P was set, adjust state to PQ=11 to indicate
903 * that a resend is needed for the interrupt to reach
904 * the guest. Also remember the value of P.
905 *
906 * This also tells us that it's in flight to a host queue
907 * or has already been fetched but hasn't been EOIed yet
908 * by the host. This it's potentially using up a host
909 * queue slot. This is important to know because as long
910 * as this is the case, we must not hard-unmask it when
911 * "returning" that interrupt to the host.
912 *
913 * This saved_p is cleared by the host EOI, when we know
914 * for sure the queue slot is no longer in use.
915 */
916 if (xd->saved_p) {
917 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
918
919 /*
920 * Sync the XIVE source HW to ensure the interrupt
921 * has gone through the EAS before we change its
922 * target to the guest. That should guarantee us
923 * that we *will* eventually get an EOI for it on
924 * the host. Otherwise there would be a small window
925 * for P to be seen here but the interrupt going
926 * to the guest queue.
927 */
928 if (xive_ops->sync_source)
929 xive_ops->sync_source(hw_irq);
930 }
931 } else {
932 irqd_clr_forwarded_to_vcpu(d);
933
934 /* No host target ? hard mask and return */
935 if (xd->target == XIVE_INVALID_TARGET) {
936 xive_do_source_set_mask(xd, true);
937 return 0;
938 }
939
940 /*
941 * Sync the XIVE source HW to ensure the interrupt
942 * has gone through the EAS before we change its
943 * target to the host.
944 */
945 if (xive_ops->sync_source)
946 xive_ops->sync_source(hw_irq);
947
948 /*
949 * By convention we are called with the interrupt in
950 * a PQ=10 or PQ=11 state, ie, it won't fire and will
951 * have latched in Q whether there's a pending HW
952 * interrupt or not.
953 *
954 * First reconfigure the target.
955 */
956 rc = xive_ops->configure_irq(hw_irq,
957 get_hard_smp_processor_id(xd->target),
958 xive_irq_priority, d->irq);
959 if (rc)
960 return rc;
961
962 /*
963 * Then if saved_p is not set, effectively re-enable the
964 * interrupt with an EOI. If it is set, we know there is
965 * still a message in a host queue somewhere that will be
966 * EOId eventually.
967 *
968 * Note: We don't check irqd_irq_disabled(). Effectively,
969 * we *will* let the irq get through even if masked if the
970 * HW is still firing it in order to deal with the whole
971 * saved_p business properly. If the interrupt triggers
972 * while masked, the generic code will re-mask it anyway.
973 */
974 if (!xd->saved_p)
975 xive_do_source_eoi(hw_irq, xd);
976
977 }
978 return 0;
979 }
980
981 /* Called with irq descriptor lock held. */
xive_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)982 static int xive_get_irqchip_state(struct irq_data *data,
983 enum irqchip_irq_state which, bool *state)
984 {
985 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
986 u8 pq;
987
988 switch (which) {
989 case IRQCHIP_STATE_ACTIVE:
990 pq = xive_esb_read(xd, XIVE_ESB_GET);
991
992 /*
993 * The esb value being all 1's means we couldn't get
994 * the PQ state of the interrupt through mmio. It may
995 * happen, for example when querying a PHB interrupt
996 * while the PHB is in an error state. We consider the
997 * interrupt to be inactive in that case.
998 */
999 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
1000 (xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
1001 !irqd_irq_disabled(data)));
1002 return 0;
1003 default:
1004 return -EINVAL;
1005 }
1006 }
1007
1008 static struct irq_chip xive_irq_chip = {
1009 .name = "XIVE-IRQ",
1010 .irq_startup = xive_irq_startup,
1011 .irq_shutdown = xive_irq_shutdown,
1012 .irq_eoi = xive_irq_eoi,
1013 .irq_mask = xive_irq_mask,
1014 .irq_unmask = xive_irq_unmask,
1015 .irq_set_affinity = xive_irq_set_affinity,
1016 .irq_set_type = xive_irq_set_type,
1017 .irq_retrigger = xive_irq_retrigger,
1018 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1019 .irq_get_irqchip_state = xive_get_irqchip_state,
1020 };
1021
is_xive_irq(struct irq_chip * chip)1022 bool is_xive_irq(struct irq_chip *chip)
1023 {
1024 return chip == &xive_irq_chip;
1025 }
1026 EXPORT_SYMBOL_GPL(is_xive_irq);
1027
xive_cleanup_irq_data(struct xive_irq_data * xd)1028 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1029 {
1030 if (xd->eoi_mmio) {
1031 unmap_kernel_range((unsigned long)xd->eoi_mmio,
1032 1u << xd->esb_shift);
1033 iounmap(xd->eoi_mmio);
1034 if (xd->eoi_mmio == xd->trig_mmio)
1035 xd->trig_mmio = NULL;
1036 xd->eoi_mmio = NULL;
1037 }
1038 if (xd->trig_mmio) {
1039 unmap_kernel_range((unsigned long)xd->trig_mmio,
1040 1u << xd->esb_shift);
1041 iounmap(xd->trig_mmio);
1042 xd->trig_mmio = NULL;
1043 }
1044 }
1045 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1046
xive_irq_alloc_data(unsigned int virq,irq_hw_number_t hw)1047 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1048 {
1049 struct xive_irq_data *xd;
1050 int rc;
1051
1052 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1053 if (!xd)
1054 return -ENOMEM;
1055 rc = xive_ops->populate_irq_data(hw, xd);
1056 if (rc) {
1057 kfree(xd);
1058 return rc;
1059 }
1060 xd->target = XIVE_INVALID_TARGET;
1061 irq_set_handler_data(virq, xd);
1062
1063 /*
1064 * Turn OFF by default the interrupt being mapped. A side
1065 * effect of this check is the mapping the ESB page of the
1066 * interrupt in the Linux address space. This prevents page
1067 * fault issues in the crash handler which masks all
1068 * interrupts.
1069 */
1070 xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1071
1072 return 0;
1073 }
1074
xive_irq_free_data(unsigned int virq)1075 static void xive_irq_free_data(unsigned int virq)
1076 {
1077 struct xive_irq_data *xd = irq_get_handler_data(virq);
1078
1079 if (!xd)
1080 return;
1081 irq_set_handler_data(virq, NULL);
1082 xive_cleanup_irq_data(xd);
1083 kfree(xd);
1084 }
1085
1086 #ifdef CONFIG_SMP
1087
xive_cause_ipi(int cpu)1088 static void xive_cause_ipi(int cpu)
1089 {
1090 struct xive_cpu *xc;
1091 struct xive_irq_data *xd;
1092
1093 xc = per_cpu(xive_cpu, cpu);
1094
1095 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1096 smp_processor_id(), cpu, xc->hw_ipi);
1097
1098 xd = &xc->ipi_data;
1099 if (WARN_ON(!xd->trig_mmio))
1100 return;
1101 out_be64(xd->trig_mmio, 0);
1102 }
1103
xive_muxed_ipi_action(int irq,void * dev_id)1104 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1105 {
1106 return smp_ipi_demux();
1107 }
1108
xive_ipi_eoi(struct irq_data * d)1109 static void xive_ipi_eoi(struct irq_data *d)
1110 {
1111 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1112
1113 /* Handle possible race with unplug and drop stale IPIs */
1114 if (!xc)
1115 return;
1116
1117 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1118 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1119
1120 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1121 xive_do_queue_eoi(xc);
1122 }
1123
xive_ipi_do_nothing(struct irq_data * d)1124 static void xive_ipi_do_nothing(struct irq_data *d)
1125 {
1126 /*
1127 * Nothing to do, we never mask/unmask IPIs, but the callback
1128 * has to exist for the struct irq_chip.
1129 */
1130 }
1131
1132 static struct irq_chip xive_ipi_chip = {
1133 .name = "XIVE-IPI",
1134 .irq_eoi = xive_ipi_eoi,
1135 .irq_mask = xive_ipi_do_nothing,
1136 .irq_unmask = xive_ipi_do_nothing,
1137 };
1138
xive_request_ipi(void)1139 static void __init xive_request_ipi(void)
1140 {
1141 unsigned int virq;
1142
1143 /*
1144 * Initialization failed, move on, we might manage to
1145 * reach the point where we display our errors before
1146 * the system falls appart
1147 */
1148 if (!xive_irq_domain)
1149 return;
1150
1151 /* Initialize it */
1152 virq = irq_create_mapping(xive_irq_domain, 0);
1153 xive_ipi_irq = virq;
1154
1155 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1156 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1157 }
1158
xive_setup_cpu_ipi(unsigned int cpu)1159 static int xive_setup_cpu_ipi(unsigned int cpu)
1160 {
1161 struct xive_cpu *xc;
1162 int rc;
1163
1164 pr_debug("Setting up IPI for CPU %d\n", cpu);
1165
1166 xc = per_cpu(xive_cpu, cpu);
1167
1168 /* Check if we are already setup */
1169 if (xc->hw_ipi != XIVE_BAD_IRQ)
1170 return 0;
1171
1172 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1173 if (xive_ops->get_ipi(cpu, xc))
1174 return -EIO;
1175
1176 /*
1177 * Populate the IRQ data in the xive_cpu structure and
1178 * configure the HW / enable the IPIs.
1179 */
1180 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1181 if (rc) {
1182 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1183 return -EIO;
1184 }
1185 rc = xive_ops->configure_irq(xc->hw_ipi,
1186 get_hard_smp_processor_id(cpu),
1187 xive_irq_priority, xive_ipi_irq);
1188 if (rc) {
1189 pr_err("Failed to map IPI CPU %d\n", cpu);
1190 return -EIO;
1191 }
1192 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1193 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1194
1195 /* Unmask it */
1196 xive_do_source_set_mask(&xc->ipi_data, false);
1197
1198 return 0;
1199 }
1200
xive_cleanup_cpu_ipi(unsigned int cpu,struct xive_cpu * xc)1201 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1202 {
1203 /* Disable the IPI and free the IRQ data */
1204
1205 /* Already cleaned up ? */
1206 if (xc->hw_ipi == XIVE_BAD_IRQ)
1207 return;
1208
1209 /* Mask the IPI */
1210 xive_do_source_set_mask(&xc->ipi_data, true);
1211
1212 /*
1213 * Note: We don't call xive_cleanup_irq_data() to free
1214 * the mappings as this is called from an IPI on kexec
1215 * which is not a safe environment to call iounmap()
1216 */
1217
1218 /* Deconfigure/mask in the backend */
1219 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1220 0xff, xive_ipi_irq);
1221
1222 /* Free the IPIs in the backend */
1223 xive_ops->put_ipi(cpu, xc);
1224 }
1225
xive_smp_probe(void)1226 void __init xive_smp_probe(void)
1227 {
1228 smp_ops->cause_ipi = xive_cause_ipi;
1229
1230 /* Register the IPI */
1231 xive_request_ipi();
1232
1233 /* Allocate and setup IPI for the boot CPU */
1234 xive_setup_cpu_ipi(smp_processor_id());
1235 }
1236
1237 #endif /* CONFIG_SMP */
1238
xive_irq_domain_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1239 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1240 irq_hw_number_t hw)
1241 {
1242 int rc;
1243
1244 /*
1245 * Mark interrupts as edge sensitive by default so that resend
1246 * actually works. Will fix that up below if needed.
1247 */
1248 irq_clear_status_flags(virq, IRQ_LEVEL);
1249
1250 #ifdef CONFIG_SMP
1251 /* IPIs are special and come up with HW number 0 */
1252 if (hw == 0) {
1253 /*
1254 * IPIs are marked per-cpu. We use separate HW interrupts under
1255 * the hood but associated with the same "linux" interrupt
1256 */
1257 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1258 handle_percpu_irq);
1259 return 0;
1260 }
1261 #endif
1262
1263 rc = xive_irq_alloc_data(virq, hw);
1264 if (rc)
1265 return rc;
1266
1267 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1268
1269 return 0;
1270 }
1271
xive_irq_domain_unmap(struct irq_domain * d,unsigned int virq)1272 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1273 {
1274 struct irq_data *data = irq_get_irq_data(virq);
1275 unsigned int hw_irq;
1276
1277 /* XXX Assign BAD number */
1278 if (!data)
1279 return;
1280 hw_irq = (unsigned int)irqd_to_hwirq(data);
1281 if (hw_irq)
1282 xive_irq_free_data(virq);
1283 }
1284
xive_irq_domain_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)1285 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1286 const u32 *intspec, unsigned int intsize,
1287 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1288
1289 {
1290 *out_hwirq = intspec[0];
1291
1292 /*
1293 * If intsize is at least 2, we look for the type in the second cell,
1294 * we assume the LSB indicates a level interrupt.
1295 */
1296 if (intsize > 1) {
1297 if (intspec[1] & 1)
1298 *out_flags = IRQ_TYPE_LEVEL_LOW;
1299 else
1300 *out_flags = IRQ_TYPE_EDGE_RISING;
1301 } else
1302 *out_flags = IRQ_TYPE_LEVEL_LOW;
1303
1304 return 0;
1305 }
1306
xive_irq_domain_match(struct irq_domain * h,struct device_node * node,enum irq_domain_bus_token bus_token)1307 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1308 enum irq_domain_bus_token bus_token)
1309 {
1310 return xive_ops->match(node);
1311 }
1312
1313 static const struct irq_domain_ops xive_irq_domain_ops = {
1314 .match = xive_irq_domain_match,
1315 .map = xive_irq_domain_map,
1316 .unmap = xive_irq_domain_unmap,
1317 .xlate = xive_irq_domain_xlate,
1318 };
1319
xive_init_host(void)1320 static void __init xive_init_host(void)
1321 {
1322 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1323 &xive_irq_domain_ops, NULL);
1324 if (WARN_ON(xive_irq_domain == NULL))
1325 return;
1326 irq_set_default_host(xive_irq_domain);
1327 }
1328
xive_cleanup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1329 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1330 {
1331 if (xc->queue[xive_irq_priority].qpage)
1332 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1333 }
1334
xive_setup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1335 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1336 {
1337 int rc = 0;
1338
1339 /* We setup 1 queues for now with a 64k page */
1340 if (!xc->queue[xive_irq_priority].qpage)
1341 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1342
1343 return rc;
1344 }
1345
xive_prepare_cpu(unsigned int cpu)1346 static int xive_prepare_cpu(unsigned int cpu)
1347 {
1348 struct xive_cpu *xc;
1349
1350 xc = per_cpu(xive_cpu, cpu);
1351 if (!xc) {
1352 struct device_node *np;
1353
1354 xc = kzalloc_node(sizeof(struct xive_cpu),
1355 GFP_KERNEL, cpu_to_node(cpu));
1356 if (!xc)
1357 return -ENOMEM;
1358 np = of_get_cpu_node(cpu, NULL);
1359 if (np)
1360 xc->chip_id = of_get_ibm_chip_id(np);
1361 of_node_put(np);
1362 xc->hw_ipi = XIVE_BAD_IRQ;
1363
1364 per_cpu(xive_cpu, cpu) = xc;
1365 }
1366
1367 /* Setup EQs if not already */
1368 return xive_setup_cpu_queues(cpu, xc);
1369 }
1370
xive_setup_cpu(void)1371 static void xive_setup_cpu(void)
1372 {
1373 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1374
1375 /* The backend might have additional things to do */
1376 if (xive_ops->setup_cpu)
1377 xive_ops->setup_cpu(smp_processor_id(), xc);
1378
1379 /* Set CPPR to 0xff to enable flow of interrupts */
1380 xc->cppr = 0xff;
1381 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1382 }
1383
1384 #ifdef CONFIG_SMP
xive_smp_setup_cpu(void)1385 void xive_smp_setup_cpu(void)
1386 {
1387 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1388
1389 /* This will have already been done on the boot CPU */
1390 if (smp_processor_id() != boot_cpuid)
1391 xive_setup_cpu();
1392
1393 }
1394
xive_smp_prepare_cpu(unsigned int cpu)1395 int xive_smp_prepare_cpu(unsigned int cpu)
1396 {
1397 int rc;
1398
1399 /* Allocate per-CPU data and queues */
1400 rc = xive_prepare_cpu(cpu);
1401 if (rc)
1402 return rc;
1403
1404 /* Allocate and setup IPI for the new CPU */
1405 return xive_setup_cpu_ipi(cpu);
1406 }
1407
1408 #ifdef CONFIG_HOTPLUG_CPU
xive_flush_cpu_queue(unsigned int cpu,struct xive_cpu * xc)1409 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1410 {
1411 u32 irq;
1412
1413 /* We assume local irqs are disabled */
1414 WARN_ON(!irqs_disabled());
1415
1416 /* Check what's already in the CPU queue */
1417 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1418 /*
1419 * We need to re-route that interrupt to its new destination.
1420 * First get and lock the descriptor
1421 */
1422 struct irq_desc *desc = irq_to_desc(irq);
1423 struct irq_data *d = irq_desc_get_irq_data(desc);
1424 struct xive_irq_data *xd;
1425 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1426
1427 /*
1428 * Ignore anything that isn't a XIVE irq and ignore
1429 * IPIs, so can just be dropped.
1430 */
1431 if (d->domain != xive_irq_domain || hw_irq == 0)
1432 continue;
1433
1434 /*
1435 * The IRQ should have already been re-routed, it's just a
1436 * stale in the old queue, so re-trigger it in order to make
1437 * it reach is new destination.
1438 */
1439 #ifdef DEBUG_FLUSH
1440 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1441 cpu, irq);
1442 #endif
1443 raw_spin_lock(&desc->lock);
1444 xd = irq_desc_get_handler_data(desc);
1445
1446 /*
1447 * Clear saved_p to indicate that it's no longer pending
1448 */
1449 xd->saved_p = false;
1450
1451 /*
1452 * For LSIs, we EOI, this will cause a resend if it's
1453 * still asserted. Otherwise do an MSI retrigger.
1454 */
1455 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1456 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1457 else
1458 xive_irq_retrigger(d);
1459
1460 raw_spin_unlock(&desc->lock);
1461 }
1462 }
1463
xive_smp_disable_cpu(void)1464 void xive_smp_disable_cpu(void)
1465 {
1466 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1467 unsigned int cpu = smp_processor_id();
1468
1469 /* Migrate interrupts away from the CPU */
1470 irq_migrate_all_off_this_cpu();
1471
1472 /* Set CPPR to 0 to disable flow of interrupts */
1473 xc->cppr = 0;
1474 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1475
1476 /* Flush everything still in the queue */
1477 xive_flush_cpu_queue(cpu, xc);
1478
1479 /* Re-enable CPPR */
1480 xc->cppr = 0xff;
1481 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1482 }
1483
xive_flush_interrupt(void)1484 void xive_flush_interrupt(void)
1485 {
1486 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1487 unsigned int cpu = smp_processor_id();
1488
1489 /* Called if an interrupt occurs while the CPU is hot unplugged */
1490 xive_flush_cpu_queue(cpu, xc);
1491 }
1492
1493 #endif /* CONFIG_HOTPLUG_CPU */
1494
1495 #endif /* CONFIG_SMP */
1496
xive_teardown_cpu(void)1497 void xive_teardown_cpu(void)
1498 {
1499 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1500 unsigned int cpu = smp_processor_id();
1501
1502 /* Set CPPR to 0 to disable flow of interrupts */
1503 xc->cppr = 0;
1504 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1505
1506 if (xive_ops->teardown_cpu)
1507 xive_ops->teardown_cpu(cpu, xc);
1508
1509 #ifdef CONFIG_SMP
1510 /* Get rid of IPI */
1511 xive_cleanup_cpu_ipi(cpu, xc);
1512 #endif
1513
1514 /* Disable and free the queues */
1515 xive_cleanup_cpu_queues(cpu, xc);
1516 }
1517
xive_shutdown(void)1518 void xive_shutdown(void)
1519 {
1520 xive_ops->shutdown();
1521 }
1522
xive_core_init(const struct xive_ops * ops,void __iomem * area,u32 offset,u8 max_prio)1523 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1524 u8 max_prio)
1525 {
1526 xive_tima = area;
1527 xive_tima_offset = offset;
1528 xive_ops = ops;
1529 xive_irq_priority = max_prio;
1530
1531 ppc_md.get_irq = xive_get_irq;
1532 __xive_enabled = true;
1533
1534 pr_devel("Initializing host..\n");
1535 xive_init_host();
1536
1537 pr_devel("Initializing boot CPU..\n");
1538
1539 /* Allocate per-CPU data and queues */
1540 xive_prepare_cpu(smp_processor_id());
1541
1542 /* Get ready for interrupts */
1543 xive_setup_cpu();
1544
1545 pr_info("Interrupt handling initialized with %s backend\n",
1546 xive_ops->name);
1547 pr_info("Using priority %d for all interrupts\n", max_prio);
1548
1549 return true;
1550 }
1551
xive_queue_page_alloc(unsigned int cpu,u32 queue_shift)1552 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1553 {
1554 unsigned int alloc_order;
1555 struct page *pages;
1556 __be32 *qpage;
1557
1558 alloc_order = xive_alloc_order(queue_shift);
1559 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1560 if (!pages)
1561 return ERR_PTR(-ENOMEM);
1562 qpage = (__be32 *)page_address(pages);
1563 memset(qpage, 0, 1 << queue_shift);
1564
1565 return qpage;
1566 }
1567
xive_off(char * arg)1568 static int __init xive_off(char *arg)
1569 {
1570 xive_cmdline_disabled = true;
1571 return 0;
1572 }
1573 __setup("xive=off", xive_off);
1574
xive_debug_show_cpu(struct seq_file * m,int cpu)1575 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1576 {
1577 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1578
1579 seq_printf(m, "CPU %d:", cpu);
1580 if (xc) {
1581 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1582
1583 #ifdef CONFIG_SMP
1584 {
1585 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1586
1587 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1588 val & XIVE_ESB_VAL_P ? 'P' : '-',
1589 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1590 }
1591 #endif
1592 {
1593 struct xive_q *q = &xc->queue[xive_irq_priority];
1594 u32 i0, i1, idx;
1595
1596 if (q->qpage) {
1597 idx = q->idx;
1598 i0 = be32_to_cpup(q->qpage + idx);
1599 idx = (idx + 1) & q->msk;
1600 i1 = be32_to_cpup(q->qpage + idx);
1601 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1602 q->idx, q->toggle, i0, i1);
1603 }
1604 }
1605 }
1606 seq_puts(m, "\n");
1607 }
1608
xive_debug_show_irq(struct seq_file * m,u32 hw_irq,struct irq_data * d)1609 static void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1610 {
1611 struct irq_chip *chip = irq_data_get_irq_chip(d);
1612 int rc;
1613 u32 target;
1614 u8 prio;
1615 u32 lirq;
1616 struct xive_irq_data *xd;
1617 u64 val;
1618
1619 if (!is_xive_irq(chip))
1620 return;
1621
1622 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1623 if (rc) {
1624 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1625 return;
1626 }
1627
1628 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1629 hw_irq, target, prio, lirq);
1630
1631 xd = irq_data_get_irq_handler_data(d);
1632 val = xive_esb_read(xd, XIVE_ESB_GET);
1633 seq_printf(m, "flags=%c%c%c PQ=%c%c",
1634 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1635 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1636 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1637 val & XIVE_ESB_VAL_P ? 'P' : '-',
1638 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1639 seq_puts(m, "\n");
1640 }
1641
xive_core_debug_show(struct seq_file * m,void * private)1642 static int xive_core_debug_show(struct seq_file *m, void *private)
1643 {
1644 unsigned int i;
1645 struct irq_desc *desc;
1646 int cpu;
1647
1648 if (xive_ops->debug_show)
1649 xive_ops->debug_show(m, private);
1650
1651 for_each_possible_cpu(cpu)
1652 xive_debug_show_cpu(m, cpu);
1653
1654 for_each_irq_desc(i, desc) {
1655 struct irq_data *d = irq_desc_get_irq_data(desc);
1656 unsigned int hw_irq;
1657
1658 if (!d)
1659 continue;
1660
1661 hw_irq = (unsigned int)irqd_to_hwirq(d);
1662
1663 /* IPIs are special (HW number 0) */
1664 if (hw_irq)
1665 xive_debug_show_irq(m, hw_irq, d);
1666 }
1667 return 0;
1668 }
1669 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1670
xive_core_debug_init(void)1671 int xive_core_debug_init(void)
1672 {
1673 if (xive_enabled())
1674 debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1675 NULL, &xive_core_debug_fops);
1676 return 0;
1677 }
1678