Home
last modified time | relevance | path

Searched +full:- +full:e (Results 1 – 25 of 1368) sorted by relevance

12345678910>>...55

/third_party/ffmpeg/libavcodec/
Devrcdata.h19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
36 * TIA/IS-127 table 8-18
39 {-0.2464E-01,-0.4005E-02,-0.1107E+00 }, { 0.8734E+00, 0.1004E+01, 0.9930E+00 },
40 { 0.4222E+00, 0.3894E+00, 0.5020E+00 }, { 0.1450E+01, 0.1328E+01, 0.1278E+01 },
41 { 0.1957E+00, 0.2169E+00, 0.2735E+00 }, { 0.1142E+01, 0.1240E+01, 0.1157E+01 },
42 { 0.7881E+00, 0.6778E+00, 0.4185E+00 }, { 0.1504E+01, 0.1468E+01, 0.1534E+01 },
43 { 0.3173E+00, 0.2693E+00,-0.9526E-01 }, { 0.1141E+01, 0.1154E+01, 0.1044E+01 },
44 { 0.5147E+00, 0.5784E+00, 0.8802E+00 }, { 0.1502E+01, 0.1407E+01, 0.1409E+01 },
45 { 0.3163E+00, 0.3592E+00, 0.2830E+00 }, { 0.1217E+01, 0.1213E+01, 0.1216E+01 },
46 { 0.1023E+01, 0.1139E+01,-0.9526E-01 }, { 0.1619E+01, 0.1655E+01, 0.1642E+01 },
[all …]
/third_party/mindspore/mindspore/lite/micro/example/mnist_stm32f746/mnist_stm32f746/
Dmnist_input_data.h8 * http://www.apache.org/licenses/LICENSE-2.0
19 -1.5255959e+00, -7.5023180e-01, -6.5398091e-01, -1.6094848e+00,
20 -1.0016718e-01, -6.0918891e-01, -9.7977227e-01, -1.6090963e+00,
21 -7.1214461e-01, 3.0372199e-01, -7.7731431e-01, -2.5145525e-01,
22 -2.2227049e-01, 1.6871134e+00, 2.2842517e-01, 4.6763551e-01,
23 -6.9697243e-01, -1.1607615e+00, 6.9954240e-01, 1.9908163e-01,
24 8.6569238e-01, 2.4440390e-01, -6.6291136e-01, 8.0730826e-01,
25 1.1016806e+00, -1.7593604e-01, -2.2455578e+00, -1.4464580e+00,
26 6.1155282e-02, -6.1774445e-01, -7.9806983e-01, -1.3162321e-01,
27 1.8793458e+00, -7.2131783e-02, 1.5777060e-01, -7.7345490e-01,
[all …]
Dmnist_input.txt1 [-1.5255959e+00, -7.5023180e-01, -6.5398091e-01, -1.6094848e+00,
2 -1.0016718e-01, -6.0918891e-01, -9.7977227e-01, -1.6090963e+00,
3 -7.1214461e-01, 3.0372199e-01, -7.7731431e-01, -2.5145525e-01,
4 -2.2227049e-01, 1.6871134e+00, 2.2842517e-01, 4.6763551e-01,
5 -6.9697243e-01, -1.1607615e+00, 6.9954240e-01, 1.9908163e-01,
6 8.6569238e-01, 2.4440390e-01, -6.6291136e-01, 8.0730826e-01,
7 1.1016806e+00, -1.7593604e-01, -2.2455578e+00, -1.4464580e+00,
8 6.1155282e-02, -6.1774445e-01, -7.9806983e-01, -1.3162321e-01,
9 1.8793458e+00, -7.2131783e-02, 1.5777060e-01, -7.7345490e-01,
10 1.9905651e-01, 4.5702778e-02, 1.5295692e-01, -4.7567880e-01,
[all …]
/third_party/boost/boost/math/quadrature/detail/
Dexp_sinh_detail.hpp21 // Returns the exp-sinh quadrature of a function f over the open interval (0, infinity)
44 … error, Real* L1, const char* function, Real tolerance, std::size_t* levels)->decltype(std::declva…
104 Real h = ldexp(Real(1), -static_cast<int>(row)); in extend_refinements()
105 const Real t_max = m_t_min + m_abscissas[0].size() - 1; in extend_refinements()
107 size_t k = (size_t)boost::math::lltrunc(ceil((t_max - m_t_min) / (2 * h))); in extend_refinements()
146 … error, Real* L1, const char* function, Real tolerance, std::size_t* levels)->decltype(std::declva… in integrate()
157 … nice error message for real valued integrals, but it's super awkward for complex-valued integrals: in integrate()
189 Real err = abs(I0 - I1); in integrate()
230 err = abs(I0 - I1); in integrate()
277 // m_t_min is chosen such that x = exp(pi/2 sinh(-t_max)) = very small, but not too small. in init()
[all …]
Dtanh_sinh_detail.hpp21 // Returns the tanh-sinh quadrature of a function f over the open interval (-1, 1)
123 Real h = ldexp(Real(1), -static_cast<int>(row)); in extend_refinements()
125 std::size_t n = boost::math::itrunc(ceil((m_t_max - h) / (2 * h))); in extend_refinements()
132 …m_abscissas[row].push_back(pos < m_t_crossover ? abscissa_at_t(pos) : -abscissa_complement_at_t(po… in extend_refinements()
164 Real l = log(sqrt((2 - x) / x)); in t_from_abscissa_complement()
202 // in the case that is even. Then, if we only evaluate f(-x_i) for abscissa values in integrate()
203 // i <= max_left_index we will never evaluate f(-x_i) at the left endpoint. in integrate()
209 std::size_t max_left_position(m_abscissas[0].size() - 1); in integrate()
217 --max_left_position; in integrate()
219 --max_right_position; in integrate()
[all …]
/third_party/boost/libs/math/doc/graphs/hypergeometric_1f1/
Dnegative_b_incalculable.js8 "9.776405e+02",
9 "2.971681e+02",
10 "6.738031e+02",
11 "3.577449e+02",
12 "9.524528e+02",
13 "7.932738e+02",
14 "4.997620e+02",
15 "5.377993e+02",
16 "1.939530e+02",
17 "5.360604e+02",
[all …]
/third_party/skia/third_party/externals/abseil-cpp/absl/strings/internal/
Dpow10_helper.cc7 // https://www.apache.org/licenses/LICENSE-2.0
28 // down, but this is not completely specified for floating-point literals in
35 0.0, 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316,
36 1e-315, 1e-314, 1e-313, 1e-312, 1e-311, 1e-310, 1e-309, 1e-308, 1e-307,
37 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300, 1e-299, 1e-298,
38 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289,
39 1e-288, 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280,
40 1e-279, 1e-278, 1e-277, 1e-276, 1e-275, 1e-274, 1e-273, 1e-272, 1e-271,
41 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264, 1e-263, 1e-262,
42 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253,
[all …]
/third_party/abseil-cpp/absl/strings/internal/
Dpow10_helper.cc7 // https://www.apache.org/licenses/LICENSE-2.0
28 // down, but this is not completely specified for floating-point literals in
35 0.0, 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316,
36 1e-315, 1e-314, 1e-313, 1e-312, 1e-311, 1e-310, 1e-309, 1e-308, 1e-307,
37 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300, 1e-299, 1e-298,
38 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289,
39 1e-288, 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280,
40 1e-279, 1e-278, 1e-277, 1e-276, 1e-275, 1e-274, 1e-273, 1e-272, 1e-271,
41 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264, 1e-263, 1e-262,
42 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253,
[all …]
/third_party/boost/libs/multiprecision/test/
Dstring_data.ipp7 "1e+08",
8 "1.e+08",
9 "+1e+08",
10 "1.2e+08",
11 "+1.2e+08",
12 "1.2e+08",
16 "1.2e+08",
17 "1.2e+08",
18 "+1.2e+08",
19 "1.23e+08",
[all …]
/third_party/boost/libs/math/test/
Dhypergeometric_1f1_large_regularized.ipp12-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
13-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
14-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
15-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
16-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
17-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
18-8.1472375000000000000000000000000000000000e+05), SC_(-1.9048027038574218750000000000000000000000e
19-8.1472375000000000000000000000000000000000e+05), SC_(-1.4533019566442817449569702148437500000000e…
20-8.1472375000000000000000000000000000000000e+05), SC_(-1.4533019566442817449569702148437500000000e…
21-8.1472375000000000000000000000000000000000e+05), SC_(-1.4533019566442817449569702148437500000000e…
[all …]
Djacobi_elliptic.ipp12e-02), SC_(9.7540378570556640625000000000000000000000000000000000000000000000000000000000000000000…
13e-02), SC_(1.2698680162429809570312500000000000000000000000000000000000000000000000000000000000000…
14e-02), SC_(1.3547700643539428710937500000000000000000000000000000000000000000000000000000000000000…
15e-02), SC_(1.8838196992874145507812500000000000000000000000000000000000000000000000000000000000000…
16e-02), SC_(2.2103404998779296875000000000000000000000000000000000000000000000000000000000000000000…
17e-02), SC_(2.7849817276000976562500000000000000000000000000000000000000000000000000000000000000000…
18e-02), SC_(3.0816698074340820312500000000000000000000000000000000000000000000000000000000000000000…
19e-02), SC_(5.4688143730163574218750000000000000000000000000000000000000000000000000000000000000000…
20e-02), SC_(5.4722046852111816406250000000000000000000000000000000000000000000000000000000000000000…
21e-02), SC_(6.3235926628112792968750000000000000000000000000000000000000000000000000000000000000000…
[all …]
Djacobi_elliptic_small.ipp12e-12), SC_(1.6504814008555523940913190017454326152801513671875000000000000000000000000000000000000…
13e-12), SC_(2.0654207510961697380480472929775714874267578125000000000000000000000000000000000000000…
14e-12), SC_(6.9332300317581641024844429921358823776245117187500000000000000000000000000000000000000…
15e-12), SC_(1.3351444949627477853937307372689247131347656250000000000000000000000000000000000000000…
16e-12), SC_(1.6399812063916385795891983434557914733886718750000000000000000000000000000000000000000…
17e-12), SC_(5.7301594025283009159466018900275230407714843750000000000000000000000000000000000000000…
18e-12), SC_(1.1137313293829720350913703441619873046875000000000000000000000000000000000000000000000…
19e-12), SC_(1.4214707189097453010617755353450775146484375000000000000000000000000000000000000000000…
20e-12), SC_(3.8006320313144215106149204075336456298828125000000000000000000000000000000000000000000…
21e-12), SC_(6.0916272026645401638234034180641174316406250000000000000000000000000000000000000000000…
[all …]
Dhypergeometric_1F1_big.ipp12-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
13-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
14-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
15-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
16-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
17-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
18-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
19-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
20-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
21-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
[all …]
Dhypergeometric_2F1.ipp12-9.9895538330078125000000000000000000000000e+01), SC_(-9.3285552978515625000000000000000000000000e
13-9.9073181152343750000000000000000000000000e+01), SC_(-9.3136535644531250000000000000000000000000e
14-9.7619598388671875000000000000000000000000e+01), SC_(4.5390945434570312500000000000000000000000e+…
15-9.6902587890625000000000000000000000000000e+01), SC_(6.3223403930664062500000000000000000000000e+…
16-9.6603424072265625000000000000000000000000e+01), SC_(-2.0321739196777343750000000000000000000000e
17-9.5892852783203125000000000000000000000000e+01), SC_(-9.6531707763671875000000000000000000000000e
18-9.4954376220703125000000000000000000000000e+01), SC_(-5.9686599731445312500000000000000000000000e
19-9.3891815185546875000000000000000000000000e+01), SC_(-1.5204330444335937500000000000000000000000e
20-9.3601806640625000000000000000000000000000e+01), SC_(-9.5872192382812500000000000000000000000000e
21-9.3479858398437500000000000000000000000000e+01), SC_(-8.7491363525390625000000000000000000000000e
[all …]
Dibeta_derivative_large_data.ipp8e-05), SC_(3.9078187500000000000000000000000000000000e+04), SC_(9.13384497165679931640625000000000…
9e-05), SC_(2.2662017494440078735351562500000000000000e-02), SC_(1.35563462972640991210937500000000…
10e-05), SC_(3.6544218659400939941406250000000000000000e-02), SC_(9.68870878219604492187500000000000…
11e-05), SC_(2.4451760109513998031616210937500000000000e-03), SC_(1.35563462972640991210937500000000…
12e-05), SC_(1.5964560210704803466796875000000000000000e-02), SC_(3.08236211538314819335937500000000…
13e-05), SC_(2.4110496093750000000000000000000000000000e+04), SC_(1.35563462972640991210937500000000…
14e-05), SC_(2.6168341796875000000000000000000000000000e+04), SC_(1.27074122428894042968750000000000…
15e-05), SC_(4.9762740731239318847656250000000000000000e-02), SC_(6.32396042346954345703125000000000…
16e-05), SC_(3.1888823286863043904304504394531250000000e-05), SC_(8.14742207527160644531250000000000…
17e-05), SC_(2.8241312503814697265625000000000000000000e+00), SC_(6.32396042346954345703125000000000…
[all …]
Dhypergeometric_0F2.ipp12-4.8646093750000000000000000000000000000000e+02), SC_(4.2926367187500000000000000000000000000000e+…
13-4.6555395507812500000000000000000000000000e+02), SC_(1.6360552978515625000000000000000000000000e+…
14-4.6428833007812500000000000000000000000000e+02), SC_(-1.3870599365234375000000000000000000000000e
15-4.6355883789062500000000000000000000000000e+02), SC_(-3.1312744140625000000000000000000000000000e
16-4.5382861328125000000000000000000000000000e+02), SC_(-3.5088610839843750000000000000000000000000e
17-3.8753552246093750000000000000000000000000e+02), SC_(4.1573547363281250000000000000000000000000e+…
18-3.8100231933593750000000000000000000000000e+02), SC_(-4.3967193603515625000000000000000000000000e
19-3.7410339355468750000000000000000000000000e+02), SC_(-1.1844155883789062500000000000000000000000e
20-3.5811364746093750000000000000000000000000e+02), SC_(-4.9521655273437500000000000000000000000000e
21-3.2613488769531250000000000000000000000000e+02), SC_(-3.2881335449218750000000000000000000000000e
[all …]
Dhypergeometric_1f1_log_large.ipp11 static const boost::array<boost::array<T, 4>, 1940-28> hypergeometric_1f1_log_large = {{
12-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
13-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
14-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
15-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
16-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
17-8.1472375000000000000000000000000000000000e+05), SC_(-1.2220855000000000000000000000000000000000e
18-8.1472375000000000000000000000000000000000e+05), SC_(-2.0321554687500000000000000000000000000000e
19-8.1472375000000000000000000000000000000000e+05), SC_(-2.0321554687500000000000000000000000000000e
20-8.1472375000000000000000000000000000000000e+05), SC_(-2.0321554687500000000000000000000000000000e
[all …]
Djacobi_near_1.ipp12-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
13-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
14-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
15-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
16-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
17-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
18-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
19-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
20-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
21-4.02459716796875000000000000000000000000000000000000000000000000000000000000000000000000000000000…
[all …]
Dhypergeometric_2F2.ipp12-4.6568273925781250000000000000000000000000e+02), SC_(2.7491040039062500000000000000000000000000e+…
13-4.4878356933593750000000000000000000000000e+02), SC_(2.9519995117187500000000000000000000000000e+…
14-4.2414575195312500000000000000000000000000e+02), SC_(-9.5791503906250000000000000000000000000000e
15-4.0245959472656250000000000000000000000000e+02), SC_(4.7220581054687500000000000000000000000000e+…
16-3.9334729003906250000000000000000000000000e+02), SC_(-1.4558105468750000000000000000000000000000e
17-3.9013830566406250000000000000000000000000e+02), SC_(-1.4624359130859375000000000000000000000000e
18-3.8258239746093750000000000000000000000000e+02), SC_(-1.7503649902343750000000000000000000000000e
19-3.7009387207031250000000000000000000000000e+02), SC_(-3.4556164550781250000000000000000000000000e
20-3.6802673339843750000000000000000000000000e+02), SC_(-9.6985168457031250000000000000000000000000e
21-3.6393151855468750000000000000000000000000e+02), SC_(3.0211145019531250000000000000000000000000e+…
[all …]
Dpowm1_data.ipp10 …897724151611328125000000000e-02), SC_(-9.68600749969482421875000000000000000e-01), SC_(6.131396497…
11 …393009185791015625000000000e-02), SC_(-4.72685337066650390625000000000000000e-01), SC_(6.577951258…
12 …702415466308593750000000000e-02), SC_(-9.95417833328247070312500000000000000e-01), SC_(6.320820711…
13 …961425781250000000000000000e+01), SC_(4.45825457572937011718750000000000000e-02), SC_(1.2103797446…
14 …224121093750000000000000000e+01), SC_(3.72042804956436157226562500000000000e-02), SC_(1.0807671381…
15 …188476562500000000000000000e+00), SC_(5.66981583833694458007812500000000000e-02), SC_(1.3942525394…
16 …188476562500000000000000000e+00), SC_(5.44746965169906616210937500000000000e-02), SC_(1.3360789529…
17 …821289062500000000000000000e+01), SC_(2.39999949932098388671875000000000000e-01), SC_(7.3780476499…
18 …821289062500000000000000000e+01), SC_(2.59999990463256835937500000000000000e-01), SC_(8.1970551116…
19 …393009185791015625000000000e-02), SC_(-4.72685337066650390625000000000000000e-01), SC_(6.577951258…
[all …]
Djacobi_large_phi.ipp12-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
13-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
14-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
15-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
16-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
17-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
18-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
19-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
20-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
21-1.60983886718750000000000000000000000000000000000000000000000000000000000000000000000000000000000…
[all …]
Dhypergeometric_2F0.ipp12-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
13-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
14-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
15-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
16-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
17-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
18-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
19-2.0000000000000000000000000000000000000000e+01), SC_(-1.4920528411865234375000000000000000000000e
20-2.0000000000000000000000000000000000000000e+01), SC_(-1.4580921173095703125000000000000000000000e
21-2.0000000000000000000000000000000000000000e+01), SC_(-1.4580921173095703125000000000000000000000e
[all …]
Dhypergeometric_1F2.ipp12-4.9536584472656250000000000000000000000000e+02), SC_(-4.6568273925781250000000000000000000000000e
13-4.8809802246093750000000000000000000000000e+02), SC_(2.2695471191406250000000000000000000000000e+…
14-4.5697619628906250000000000000000000000000e+02), SC_(4.0843359375000000000000000000000000000000e+…
15-4.2414575195312500000000000000000000000000e+02), SC_(-9.5791503906250000000000000000000000000000e
16-4.2182446289062500000000000000000000000000e+02), SC_(3.5445092773437500000000000000000000000000e+…
17-4.1556420898437500000000000000000000000000e+02), SC_(-1.5376660156250000000000000000000000000000e
18-4.0354553222656250000000000000000000000000e+02), SC_(-2.7658007812500000000000000000000000000000e
19-4.0286828613281250000000000000000000000000e+02), SC_(4.9406848144531250000000000000000000000000e+…
20-3.9334729003906250000000000000000000000000e+02), SC_(-1.4558105468750000000000000000000000000000e
21-3.8100231933593750000000000000000000000000e+02), SC_(-4.3967193603515625000000000000000000000000e
[all …]
/third_party/python/Lib/test/
Dfloating_points.txt1 # These numbers are used to test floating point binary-to-decimal conversion.
5 # independent tool for testing floating-point arithmetic II: Conversions,
6 # ACM Transactions on Mathematical Software 27:2 (March 2001), pp. 119-140.
9 -0E0
11 15E-1
12 125E-2
13 1125E-3
14 10625E-4
15 103125E-5
16 1015625E-6
[all …]
/third_party/python/Lib/test/decimaltestdata/
Dquantize.decTest1 ------------------------------------------------------------------------
2 -- quantize.decTest -- decimal quantize operation --
3 -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
4 ------------------------------------------------------------------------
5 -- Please see the document "General Decimal Arithmetic Testcases" --
6 -- at http://www2.hursley.ibm.com/decimal for the description of --
7 -- these testcases. --
8 -- --
9 -- These testcases are experimental ('beta' versions), and they --
10 -- may contain errors. They are offered on an as-is basis. In --
[all …]

12345678910>>...55