/third_party/boost/boost/math/distributions/detail/ |
D | derived_accessors.hpp | 2 // Use, modification and distribution are subject to the 15 // here, each distribution MUST SPECIALIZE AT LEAST ONE OF THESE 20 // that are specific to a particular distribution, but these generic 24 // of the distribution header, AFTER the distribution and its core 41 template <class Distribution> 42 typename Distribution::value_type variance(const Distribution& dist); 44 template <class Distribution> 45 inline typename Distribution::value_type standard_deviation(const Distribution& dist) in standard_deviation() 51 template <class Distribution> 52 inline typename Distribution::value_type variance(const Distribution& dist) in variance() [all …]
|
/third_party/boost/libs/math/doc/distributions/ |
D | non_members.qbk | 38 * [link math_toolkit.dist_ref.nmp.cdf_inv Inverse Cumulative Distribution Function]. 63 [h4:cdf Cumulative Distribution Function] 66 RealType cdf(const ``['Distribution-Type]``<RealType, ``__Policy``>& dist, const RealType& x); 73 the defined range for the distribution. 76 normal distribution: 80 [h4:ccdf Complement of the Cumulative Distribution Function] 82 template <class Distribution, class RealType> 83 RealType cdf(const ``['Unspecified-Complement-Type]``<Distribution, RealType>& comp); 93 the defined range for the distribution. 98 // standard normal distribution object: [all …]
|
D | gamma.qbk | 1 [section:gamma_dist Gamma (and Erlang) Distribution] 23 The gamma distribution is a continuous probability distribution. 25 Erlang Distribution. It is also closely related to the Poisson 28 When the shape parameter has an integer value, the distribution is the 29 [@http://en.wikipedia.org/wiki/Erlang_distribution Erlang distribution]. 31 integer value > 0, the Erlang distribution is not separately implemented. 35 distribution does not provide the typedef: 39 Instead if you want a double precision gamma distribution you can write 51 distribution can be defined by the PDF: 58 throughout. Therefore to construct a Gamma Distribution from a ['rate [all …]
|
D | triangular.qbk | 1 [section:triangular_dist Triangular Distribution] 21 …wer(lower), m_mode(mode), m_upper(upper) // Default is -1, 0, +1 symmetric triangular distribution. 30 The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution] 32 [@http://en.wikipedia.org/wiki/Probability_distribution probability distribution] 37 The triangular distribution is often used where the distribution is only vaguely known, 38 …ike the [@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution], 41 …//www.worldscibooks.com/mathematics/etextbook/5720/5720_chap1.pdf proxy for the beta distribution.] 42 The distribution is used in business decision making and project planning. 44 The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution] 45 is a distribution with the [all …]
|
D | inverse_chi_squared.qbk | 1 [section:inverse_chi_squared_dist Inverse Chi Squared Distribution] 24 The inverse chi squared distribution is a continuous probability distribution 25 of the *reciprocal* of a variable distributed according to the chi squared distribution. 28 using different symbols for the distribution pdf, 34 …wikipedia.org/wiki/Scaled-inverse-chi-square_distribution scaled inverse chi_squared distribution]. 37 …/en.wikipedia.org/wiki/Inverse-chi-square_distribution Wikipedia inverse chi_squared distribution]. 38 The 2nd Wikipedia inverse chi_squared distribution definition can be implemented 45 * Inverse chi_squared distribution [@http://en.wikipedia.org/wiki/Inverse-chi-square_distribution] 46 * Scaled inverse chi_squared distribution[@http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_d… 47 * R inverse chi_squared distribution functions [@http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/… [all …]
|
D | skew_normal.qbk | 1 [section:skew_normal_dist Skew Normal Distribution] 24 …RealType shape()const; // The distribution is right skewed if shape > 0 and is left skewed if shap… 25 // The distribution is normal if shape is zero. 30 The skew normal distribution is a variant of the most well known 31 Gaussian statistical distribution. 33 The skew normal distribution with shape zero resembles the 34 [@http://en.wikipedia.org/wiki/Normal_distribution Normal Distribution], 35 hence the latter can be regarded as a special case of the more generic skew normal distribution. 37 If the standard (mean = 0, scale = 1) normal distribution probability density function is 41 and the cumulative distribution function [all …]
|
D | dist_tutorial.qbk | 3 [def __binomial_distrib [link math_toolkit.dist_ref.dists.binomial_dist Binomial Distribution]] 4 …__chi_squared_distrib [link math_toolkit.dist_ref.dists.chi_squared_dist Chi Squared Distribution]] 5 [def __normal_distrib [link math_toolkit.dist_ref.dists.normal_dist Normal Distribution]] 6 [def __F_distrib [link math_toolkit.dist_ref.dists.f_dist Fisher F Distribution]] 7 [def __students_t_distrib [link math_toolkit.dist_ref.dists.students_t_dist Students t Distribution… 23 In order to use a distribution /my_distribution/ you will need to include 27 For example, to use the Students-t distribution include either 31 You also need to bring distribution names into scope, 42 Each kind of distribution in this library is a class type - an object, with member functions. 57 * It encapsulates the kind of distribution in the C++ type system; [all …]
|
D | inverse_gaussian.qbk | 1 [section:inverse_gaussian_dist Inverse Gaussian (or Inverse Normal) Distribution] 25 The Inverse Gaussian distribution distribution is a continuous probability distribution. 27 The distribution is also called 'normal-inverse Gaussian distribution', 28 and 'normal Inverse' distribution. 32 The Inverse Gaussian distribution was first studied in relation to Brownian motion. 38 (So ['inverse] in the name may mislead: it does [*not] relate to the inverse of a distribution). 40 The tails of the distribution decrease more slowly than the normal distribution. 42 where numerically large values are more probable than is the case for the normal distribution. 53 [@http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution distribution]. 55 Weisstein, Eric W. "Inverse Gaussian Distribution." From MathWorld--A Wolfram Web Resource.] [all …]
|
/third_party/boost/libs/random/doc/ |
D | distributions.qbk | 10 this library provides distribution functions which map one distribution 11 (often a uniform distribution provided by some generator) to another. 18 values of the specified distribution or otherwise do not converge 22 [[distribution] [explanation] [example]] 23 [[__uniform_smallint] [discrete uniform distribution on a small set of integers 27 [[__uniform_int_distribution] [discrete uniform distribution on a set of integers; the 31 [[__uniform_01] [continuous uniform distribution on the range [0,1); 34 [[__uniform_real_distribution] [continuous uniform distribution on some range [min, max) of 42 [[distribution] [explanation] [example]] 44 distribution with configurable probability] [all …]
|
/third_party/mindspore/mindspore/nn/probability/distribution/ |
D | transformed_distribution.py | 15 """Transformed Distribution""" 21 from .distribution import Distribution 26 class TransformedDistribution(Distribution): 28 Transformed Distribution. 29 This class contains a bijector and a distribution and transforms the original distribution 30 to a new distribution through the operation defined by the bijector. 34 distribution (Distribution): The original distribution. Must has a float dtype. 37 will use this seed; elsewise, the underlying distribution's seed will be used. 38 name (str): The name of the transformed distribution. Default: 'transformed_distribution'. 44 The arguments used to initialize the original distribution cannot be None. [all …]
|
D | log_normal.py | 15 """LogNormal Distribution""" 20 import mindspore.nn.probability.distribution as msd 27 LogNormal distribution. 28 …A log-normal (or lognormal) distribution is a continuous probability distribution of a random vari… 29 …normally distributed. It is constructed as the exponential transformation of a Normal distribution. 32 …float, list, numpy.ndarray, Tensor): The mean of the underlying Normal distribution. Default: None. 34 Normal distribution. Default: None. 36 dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. 37 name (str): the name of the distribution. Default: 'LogNormal'. 51 >>> import mindspore.nn.probability.distribution as msd [all …]
|
D | uniform.py | 15 """Uniform Distribution""" 21 from .distribution import Distribution 26 class Uniform(Distribution): 28 Example class: Uniform Distribution. 31 … low (int, float, list, numpy.ndarray, Tensor): The lower bound of the distribution. Default: None. 32 …high (int, float, list, numpy.ndarray, Tensor): The upper bound of the distribution. Default: None. 35 name (str): The name of the distribution. Default: 'Uniform'. 48 >>> import mindspore.nn.probability.distribution as msd 50 >>> # To initialize a Uniform distribution of the lower bound 0.0 and the higher bound 1.0. 52 >>> # A Uniform distribution can be initialized without arguments. [all …]
|
D | cauchy.py | 15 """Cauchy Distribution""" 21 from .distribution import Distribution 26 class Cauchy(Distribution): 28 Cauchy distribution. 31 loc (int, float, list, numpy.ndarray, Tensor): The location of the Cauchy distribution. 32 scale (int, float, list, numpy.ndarray, Tensor): The scale of the Cauchy distribution. 35 name (str): The name of the distribution. Default: 'Cauchy'. 44 Cauchy distribution is not supported on GPU backend. 49 >>> import mindspore.nn.probability.distribution as msd 51 >>> # To initialize a Cauchy distribution of loc 3.0 and scale 4.0. [all …]
|
D | gamma.py | 15 """Gamma Distribution""" 22 from .distribution import Distribution 27 class Gamma(Distribution): 29 Gamma distribution. 33 also know as alpha of the Gamma distribution. Default: None. 35 beta of the Gamma distribution. Default: None. 38 name (str): The name of the distribution. Default: 'Gamma'. 51 >>> import mindspore.nn.probability.distribution as msd 53 >>> # To initialize a Gamma distribution of the concentration 3.0 and the rate 4.0. 55 >>> # A Gamma distribution can be initialized without arguments. [all …]
|
D | normal.py | 15 """Normal Distribution""" 21 from .distribution import Distribution 26 class Normal(Distribution): 28 Normal distribution. 31 …mean (int, float, list, numpy.ndarray, Tensor): The mean of the Normal distribution. Default: None. 32 …at, list, numpy.ndarray, Tensor): The standard deviation of the Normal distribution. Default: None. 35 name (str): The name of the distribution. Default: 'Normal'. 48 >>> import mindspore.nn.probability.distribution as msd 50 >>> # To initialize a Normal distribution of the mean 3.0 and the standard deviation 4.0. 52 >>> # A Normal distribution can be initialized without arguments. [all …]
|
D | logistic.py | 15 """Logistic Distribution""" 21 from .distribution import Distribution 26 class Logistic(Distribution): 28 Logistic distribution. 31 …loc (int, float, list, numpy.ndarray, Tensor): The location of the Logistic distribution. Default:… 32 …scale (int, float, list, numpy.ndarray, Tensor): The scale of the Logistic distribution. Default: … 35 name (str): The name of the distribution. Default: 'Logistic'. 48 >>> import mindspore.nn.probability.distribution as msd 50 >>> # To initialize a Logistic distribution of loc 3.0 and scale 4.0. 52 >>> # A Logistic distribution can be initialized without arguments. [all …]
|
/third_party/boost/libs/math/example/ |
D | inverse_chi_squared_bayes_eg.cpp | 6 // Use, modification and distribution are subject to the 37 // Examples of using the inverse_chi_squared distribution. in main() 41 The scaled-inversed-chi-squared distribution is the conjugate prior distribution in main() 42 for the variance ([sigma][super 2]) parameter of a normal distribution in main() 48 itself described through a distribution. Parameters in main() 52 the scaled-inverse-chi-squared distribution as prior and posterior distribution in main() 53 for the variance parameter of a normal distribution. in main() 63 (As the scaled-inversed-chi-squared is another parameterization of the inverse-gamma distribution, in main() 64 this example could also have used the inverse-gamma distribution). in main() 70 following (approximately) a normal distribution. Depending on various production conditions in main() [all …]
|
/third_party/boost/boost/graph/distributed/adjlist/ |
D | initialize.hpp | 3 // Use, modification and distribution is subject to the Boost Software 24 vertices_size_type, const base_distribution_type& distribution, in initialize() argument 29 if ((process_id_type)distribution(first->first) == id) { in initialize() 30 vertex_descriptor source(id, distribution.local(first->first)); in initialize() 31 vertex_descriptor target(distribution(first->second), in initialize() 32 distribution.local(first->second)); in initialize() 47 vertices_size_type, const base_distribution_type& distribution, in initialize() argument 52 if (static_cast<process_id_type>(distribution(first->first)) == id) { in initialize() 53 vertex_descriptor source(id, distribution.local(first->first)); in initialize() 54 vertex_descriptor target(distribution(first->second), in initialize() [all …]
|
/third_party/mindspore/mindspore/nn/probability/bnn_layers/ |
D | dense_variational.py | 20 from ..distribution.normal import Normal 128 matrix sampling from posterior distribution of weight, and :math:`\text{bias}` is a 130 has_bias is True). The bias vector is sampling from posterior distribution of 141 weight_prior_fn (Cell): The prior distribution for weight. 142 It must return a mindspore distribution instance. 144 normal distribution). The current version only supports normal distribution. 145 weight_posterior_fn (function): The posterior distribution for sampling weight. 147 distribution instance. Default: normal_post_fn. 148 The current version only supports normal distribution. 149 bias_prior_fn (Cell): The prior distribution for bias vector. It must return [all …]
|
/third_party/boost/libs/math/doc/html/indexes/ |
D | s03.html | 36 …ef/dists/arcine_dist.html" title="Arcsine Distribution"><span class="index-entry-level-1">Arcsine … 49 …ts/bernoulli_dist.html" title="Bernoulli Distribution"><span class="index-entry-level-1">Bernoulli… 53 …/dist_ref/dists/beta_dist.html" title="Beta Distribution"><span class="index-entry-level-1">Beta D… 57 …dists/binomial_dist.html" title="Binomial Distribution"><span class="index-entry-level-1">Binomial… 67 …auchy_dist.html" title="Cauchy-Lorentz Distribution"><span class="index-entry-level-1">Cauchy-Lore… 76 …i_squared_dist.html" title="Chi Squared Distribution"><span class="index-entry-level-1">Chi Square… 114 …dists/exp_dist.html" title="Exponential Distribution"><span class="index-entry-level-1">Exponentia… 118 …xtreme_dist.html" title="Extreme Value Distribution"><span class="index-entry-level-1">Extreme Val… 128 …toolkit/dist_ref/dists/f_dist.html" title="F Distribution"><span class="index-entry-level-1">F Dis… 159 …dist.html" title="Gamma (and Erlang) Distribution"><span class="index-entry-level-1">Gamma (and Er… [all …]
|
/third_party/boost/libs/compute/test/ |
D | test_discrete_distribution.cpp | 40 // setup the discrete distribution to produce integers 0 and 1 in BOOST_AUTO_TEST_CASE() 42 boost::compute::discrete_distribution<uint_> distribution(weights, weights+2); in BOOST_AUTO_TEST_CASE() local 45 distribution.generate(vec.begin(), vec.end(), engine, queue); in BOOST_AUTO_TEST_CASE() 70 // setup the discrete distribution in BOOST_AUTO_TEST_CASE() 71 boost::compute::discrete_distribution<uint_> distribution( in BOOST_AUTO_TEST_CASE() local 75 std::vector<double> p = distribution.probabilities(); in BOOST_AUTO_TEST_CASE() 81 BOOST_CHECK_EQUAL((distribution.min)(), uint_(0)); in BOOST_AUTO_TEST_CASE() 82 BOOST_CHECK_EQUAL((distribution.max)(), uint_(3)); in BOOST_AUTO_TEST_CASE() 85 distribution.generate(vec.begin(), vec.end(), engine, queue); in BOOST_AUTO_TEST_CASE() 107 boost::compute::discrete_distribution<uint_> distribution; in BOOST_AUTO_TEST_CASE() local [all …]
|
/third_party/boost/libs/math/doc/html/math_toolkit/dist_ref/ |
D | dists.html | 10 <link rel="next" href="dists/arcine_dist.html" title="Arcsine Distribution"> 30 <dt><span class="section"><a href="dists/arcine_dist.html">Arcsine Distribution</a></span></dt> 32 Distribution</a></span></dt> 33 <dt><span class="section"><a href="dists/beta_dist.html">Beta Distribution</a></span></dt> 35 Distribution</a></span></dt> 37 Distribution</a></span></dt> 39 Distribution</a></span></dt> 41 Cumulative Distribution Function</a></span></dt> 42 <dt><span class="section"><a href="dists/exp_dist.html">Exponential Distribution</a></span></dt> 44 Distribution</a></span></dt> [all …]
|
/third_party/boost/libs/math/doc/html/math_toolkit/ |
D | dist_ref.html | 33 <dt><span class="section"><a href="dist_ref/dists/arcine_dist.html">Arcsine Distribution</a></span>… 35 Distribution</a></span></dt> 36 <dt><span class="section"><a href="dist_ref/dists/beta_dist.html">Beta Distribution</a></span></dt> 38 Distribution</a></span></dt> 40 Distribution</a></span></dt> 42 Distribution</a></span></dt> 44 Cumulative Distribution Function</a></span></dt> 45 <dt><span class="section"><a href="dist_ref/dists/exp_dist.html">Exponential Distribution</a></span… 47 Distribution</a></span></dt> 48 <dt><span class="section"><a href="dist_ref/dists/f_dist.html">F Distribution</a></span></dt> [all …]
|
/third_party/boost/boost/random/ |
D | variate_generator.hpp | 32 * generator together with a random number distribution. 50 template<class Engine, class Distribution> 58 typedef Distribution distribution_type; 59 typedef typename Distribution::result_type result_type; 67 * Distribution throws. 69 variate_generator(Engine e, Distribution d) in variate_generator() 72 /** Returns: distribution()(engine()) */ 75 * Returns: distribution()(engine(), value). 90 distribution_type& distribution() { return _dist; } in distribution() function in boost::random::variate_generator 92 * Returns: A reference to the associated random distribution. [all …]
|
D | non_central_chi_squared_distribution.hpp | 32 * The noncentral chi-squared distribution is a real valued distribution with 33 * two parameter, @c k and @c lambda. The distribution produces values > 0. 35 * This is the distribution of the sum of squares of k Normal distributed 39 * The distribution function is 64 * @c k and @c lambda are the parameter of the distribution. 76 /** Returns the @c k parameter of the distribution */ 79 /** Returns the @c lambda parameter of the distribution */ 82 /** Writes the parameters of the distribution to a @c std::ostream. */ 89 /** Reads the parameters of the distribution from a @c std::istream. */ 110 * @c lambda are the parameter of the distribution. [all …]
|