• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright Paul A. Bristow 2013.
2 //  Copyright Nakhar Agrawal 2013.
3 //  Copyright John Maddock 2013.
4 //  Copyright Christopher Kormanyos 2013.
5 
6 //  Use, modification and distribution are subject to the
7 //  Boost Software License, Version 1.0. (See accompanying file
8 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9 
10 #pragma warning (disable : 4100) // unreferenced formal parameter.
11 #pragma warning (disable : 4127) // conditional expression is constant.
12 
13 //#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
14 
15 #include <boost/multiprecision/cpp_dec_float.hpp>
16 #include <boost/math/special_functions/bernoulli.hpp>
17 
18 #include <iostream>
19 
20 /* First 50 from 2 to 100 inclusive: */
21 /* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */
22 
23 //SC_(0.1666666666666666666666666666666666666666),
24 //SC_(-0.0333333333333333333333333333333333333333),
25 //SC_(0.0238095238095238095238095238095238095238),
26 //SC_(-0.0333333333333333333333333333333333333333),
27 //SC_(0.0757575757575757575757575757575757575757),
28 //SC_(-0.2531135531135531135531135531135531135531),
29 //SC_(1.1666666666666666666666666666666666666666),
30 //SC_(-7.0921568627450980392156862745098039215686),
31 //SC_(54.9711779448621553884711779448621553884711),
32 
main()33 int main()
34 {
35   //[bernoulli_example_1
36 
37 /*`A simple example computes the value of B[sub 4] where the return type is `double`,
38 note that the argument to bernoulli_b2n is ['2] not ['4] since it computes B[sub 2N].
39 
40 
41 */
42   try
43   { // It is always wise to use try'n'catch blocks around Boost.Math functions
44     // so that any informative error messages can be displayed in the catch block.
45   std::cout
46     << std::setprecision(std::numeric_limits<double>::digits10)
47     << boost::math::bernoulli_b2n<double>(2) << std::endl;
48 
49 /*`So B[sub 4] == -1/30 == -0.0333333333333333
50 
51 If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`,
52 we can calculate the value of much larger numbers like B[sub 200]
53 and also obtain much higher precision.
54 */
55 
56   std::cout
57     << std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
58     << boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;
59 
60 //] //[/bernoulli_example_1]
61 
62 //[bernoulli_example_2
63 /*`We can compute and save all the float-precision Bernoulli numbers from one call.
64 */
65   std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.
66 
67   // Start with Bernoulli number 0.
68   boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even Bernoulli numbers.
69 
70   for(size_t i = 0; i < bn.size(); i++)
71   { // Show vector of even Bernoulli numbers, showing all significant decimal digits.
72       std::cout << std::setprecision(std::numeric_limits<float>::digits10)
73           << i*2 << ' '
74           << bn[i]
75           << std::endl;
76   }
77 //] //[/bernoulli_example_2]
78 
79   }
80   catch(const std::exception& ex)
81   {
82      std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
83   }
84 
85 
86 //[bernoulli_example_3
87 /*`Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed
88   before it overflows the exponent.
89   By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.
90 */
91   try
92   {
93     std::cout
94     << std::setprecision(std::numeric_limits<float>::digits10)
95     << "Bernoulli number " << 33 * 2 <<std::endl;
96 
97     std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
98   }
99   catch (std::exception ex)
100   {
101     std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
102   }
103 
104 /*`
105 and we will get a helpful error message (provided try'n'catch blocks are used).
106 */
107 
108 //] //[/bernoulli_example_3]
109 
110 //[bernoulli_example_4
111 /*For example:
112 */
113    std::cout << "boost::math::max_bernoulli_b2n<float>::value = "  << boost::math::max_bernoulli_b2n<float>::value << std::endl;
114    std::cout << "Maximum Bernoulli number using float is " << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;
115    std::cout << "boost::math::max_bernoulli_b2n<double>::value = "  << boost::math::max_bernoulli_b2n<double>::value << std::endl;
116    std::cout << "Maximum Bernoulli number using double is " << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;
117   //] //[/bernoulli_example_4]
118 
119 //[tangent_example_1
120 
121 /*`We can compute and save a few Tangent numbers.
122 */
123   std::vector<float> tn; // Space for some `float` precision Tangent numbers.
124 
125   // Start with Bernoulli number 0.
126   boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent numbers.
127 
128   for(size_t i = 0; i < tn.size(); i++)
129   { // Show vector of even Tangent numbers, showing all significant decimal digits.
130       std::cout << std::setprecision(std::numeric_limits<float>::digits10)
131           << " "
132           << tn[i];
133   }
134   std::cout << std::endl;
135 
136 //] [/tangent_example_1]
137 
138 // 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312
139 
140 
141 
142 } // int main()
143 
144 /*
145 
146 //[bernoulli_output_1
147   -3.6470772645191354362138308865549944904868234686191e+215
148 //] //[/bernoulli_output_1]
149 
150 //[bernoulli_output_2
151 
152   0 1
153   2 0.166667
154   4 -0.0333333
155   6 0.0238095
156   8 -0.0333333
157   10 0.0757576
158   12 -0.253114
159   14 1.16667
160   16 -7.09216
161   18 54.9712
162   20 -529.124
163   22 6192.12
164   24 -86580.3
165   26 1.42552e+006
166   28 -2.72982e+007
167   30 6.01581e+008
168   32 -1.51163e+010
169   34 4.29615e+011
170   36 -1.37117e+013
171   38 4.88332e+014
172   40 -1.92966e+016
173   42 8.41693e+017
174   44 -4.03381e+019
175   46 2.11507e+021
176   48 -1.20866e+023
177   50 7.50087e+024
178   52 -5.03878e+026
179   54 3.65288e+028
180   56 -2.84988e+030
181   58 2.38654e+032
182   60 -2.14e+034
183   62 2.0501e+036
184 //] //[/bernoulli_output_2]
185 
186 //[bernoulli_output_3
187  Bernoulli number 66
188  Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
189  Overflow evaluating function at 33
190 //] //[/bernoulli_output_3]
191 //[bernoulli_output_4
192   boost::math::max_bernoulli_b2n<float>::value = 32
193   Maximum Bernoulli number using float is -2.0938e+038
194   boost::math::max_bernoulli_b2n<double>::value = 129
195   Maximum Bernoulli number using double is 1.33528e+306
196 //] //[/bernoulli_output_4]
197 
198 
199 //[tangent_output_1
200    1 2 16 272 7936 353792
201 //] [/tangent_output_1]
202 
203 
204 
205 */
206 
207 
208