1 ///////////////////////////////////////////////////////////////
2 // Copyright 2018 John Maddock. Distributed under the Boost
3 // Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
5
6 //[mpfr_variable
7
8 /*`
9 This example illustrates the use of variable-precision arithmetic with
10 the `mpfr_float` number type. We'll calculate the median of the
11 beta distribution to an absurdly high precision and compare the
12 accuracy and times taken for various methods. That is, we want
13 to calculate the value of `x` for which ['I[sub x](a, b) = 0.5].
14
15 Ultimately we'll use Newtons method and set the precision of
16 mpfr_float to have just enough digits at each iteration.
17
18 The full source of the this program is in [@../../example/mpfr_precision.cpp]
19
20 We'll skip over the #includes and using declations, and go straight to
21 some support code, first off a simple stopwatch for performance measurement:
22
23 */
24
25 //=template <class clock_type>
26 //=struct stopwatch { /*details \*/ };
27
28 /*`
29 We'll use `stopwatch<std::chono::high_resolution_clock>` as our performance measuring device.
30
31 We also have a small utility class for controlling the current precision of mpfr_float:
32
33 struct scoped_precision
34 {
35 unsigned p;
36 scoped_precision(unsigned new_p) : p(mpfr_float::default_precision())
37 {
38 mpfr_float::default_precision(new_p);
39 }
40 ~scoped_precision()
41 {
42 mpfr_float::default_precision(p);
43 }
44 };
45
46 */
47 //<-
48 #include <boost/multiprecision/mpfr.hpp>
49 #include <boost/math/special_functions/beta.hpp>
50 #include <boost/math/special_functions/relative_difference.hpp>
51 #include <iostream>
52 #include <chrono>
53
54 using boost::multiprecision::mpfr_float;
55 using boost::math::ibeta_inv;
56 using namespace boost::math::policies;
57
58 template <class clock_type>
59 struct stopwatch
60 {
61 public:
62 typedef typename clock_type::duration duration_type;
63
stopwatchstopwatch64 stopwatch() : m_start(clock_type::now()) { }
65
stopwatchstopwatch66 stopwatch(const stopwatch& other) : m_start(other.m_start) { }
67
operator =stopwatch68 stopwatch& operator=(const stopwatch& other)
69 {
70 m_start = other.m_start;
71 return *this;
72 }
73
~stopwatchstopwatch74 ~stopwatch() { }
75
elapsedstopwatch76 float elapsed() const
77 {
78 return float(std::chrono::nanoseconds((clock_type::now() - m_start)).count()) / 1e9f;
79 }
80
resetstopwatch81 void reset()
82 {
83 m_start = clock_type::now();
84 }
85
86 private:
87 typename clock_type::time_point m_start;
88 };
89
90 struct scoped_precision
91 {
92 unsigned p;
scoped_precisionscoped_precision93 scoped_precision(unsigned new_p) : p(mpfr_float::default_precision())
94 {
95 mpfr_float::default_precision(new_p);
96 }
~scoped_precisionscoped_precision97 ~scoped_precision()
98 {
99 mpfr_float::default_precision(p);
100 }
101 };
102 //->
103
104 /*`
105 We'll begin with a reference method that simply calls the Boost.Math function `ibeta_inv` and uses the
106 full working precision of the arguments throughout. Our reference function takes 3 arguments:
107
108 * The 2 parameters `a` and `b` of the beta distribution, and
109 * The number of decimal digits precision to achieve in the result.
110
111 We begin by setting the default working precision to that requested, and then, since we don't know where
112 our arguments `a` and `b` have been or what precision they have, we make a copy of them - note that since
113 copying also copies the precision as well as the value, we have to set the precision expicitly with a
114 second argument to the copy. Then we can simply return the result of `ibeta_inv`:
115 */
beta_distribution_median_method_1(mpfr_float const & a_,mpfr_float const & b_,unsigned digits10)116 mpfr_float beta_distribution_median_method_1(mpfr_float const& a_, mpfr_float const& b_, unsigned digits10)
117 {
118 scoped_precision sp(digits10);
119 mpfr_float half(0.5), a(a_, digits10), b(b_, digits10);
120 return ibeta_inv(a, b, half);
121 }
122 /*`
123 You be wondering why we needed to change the precision of our variables `a` and `b` as well as setting the default -
124 there are in fact two ways in which this can go wrong if we don't do that:
125
126 * The variables have too much precision - this will cause all arithmetic operations involving those types to be
127 promoted to the higher precision wasting precious calculation time.
128 * The variables have too little precision - this will cause expressions involving only those variables to be
129 calculated at the lower precision - for example if we calculate `exp(a)` internally, this will be evaluated at
130 the precision of `a`, and not the current default.
131
132 Since our reference method carries out all calculations at the full precision requested, an obvious refinement
133 would be to calculate a first approximation to `double` precision and then to use Newton steps to refine it further.
134
135 Our function begins the same as before: set the new default precision and then make copies of our arguments
136 at the correct precision. We then call `ibeta_inv` with all double precision arguments, promote the result
137 to an `mpfr_float` and perform Newton steps to obtain the result. Note that our termination condition is somewhat
138 crude: we simply assume that we have approximately 14 digits correct from the double-precision approximation and
139 that the precision doubles with each step. We also cheat, and use an internal Boost.Math function that calculates
140 ['I[sub x](a, b)] and its derivative in one go:
141
142 */
beta_distribution_median_method_2(mpfr_float const & a_,mpfr_float const & b_,unsigned digits10)143 mpfr_float beta_distribution_median_method_2(mpfr_float const& a_, mpfr_float const& b_, unsigned digits10)
144 {
145 scoped_precision sp(digits10);
146 mpfr_float half(0.5), a(a_, digits10), b(b_, digits10);
147 mpfr_float guess = ibeta_inv((double)a, (double)b, 0.5);
148 unsigned current_digits = 14;
149 mpfr_float f, f1;
150 while (current_digits < digits10)
151 {
152 f = boost::math::detail::ibeta_imp(a, b, guess, boost::math::policies::policy<>(), false, true, &f1) - half;
153 guess -= f / f1;
154 current_digits *= 2;
155 }
156 return guess;
157 }
158 /*`
159 Before we refine the method further, it might be wise to take stock and see how methods 1 and 2 compare.
160 We'll ask them both for 1500 digit precision, and compare against the value produced by `ibeta_inv` at 1700 digits.
161 Here's what the results look like:
162
163 [pre
164 Method 1 time = 0.611647
165 Relative error: 2.99991e-1501
166 Method 2 time = 0.646746
167 Relative error: 7.55843e-1501
168 ]
169
170 Clearly they are both equally accurate, but Method 1 is actually faster and our plan for improved performance
171 hasn't actually worked. It turns out that we're not actually comparing like with like, because `ibeta_inv` uses
172 Halley iteration internally which churns out more digits of precision rather more rapidly than Newton iteration.
173 So the time we save by refining an initial `double` approximation, then loose it again by taking more iterations
174 to get to the result.
175
176 Time for a more refined approach. It follows the same form as Method 2, but now we set the working precision
177 within the Newton iteration loop, to just enough digits to cover the expected precision at each step. That means
178 we also create new copies of our arguments at the correct precision within the loop, and likewise change the precision
179 of the current `guess` each time through:
180
181 */
182
beta_distribution_median_method_3(mpfr_float const & a_,mpfr_float const & b_,unsigned digits10)183 mpfr_float beta_distribution_median_method_3(mpfr_float const& a_, mpfr_float const& b_, unsigned digits10)
184 {
185 mpfr_float guess = ibeta_inv((double)a_, (double)b_, 0.5);
186 unsigned current_digits = 14;
187 mpfr_float f(0, current_digits), f1(0, current_digits), delta(1);
188 while (current_digits < digits10)
189 {
190 current_digits *= 2;
191 scoped_precision sp((std::min)(current_digits, digits10));
192 mpfr_float a(a_, mpfr_float::default_precision()), b(b_, mpfr_float::default_precision());
193 guess.precision(mpfr_float::default_precision());
194 f = boost::math::detail::ibeta_imp(a, b, guess, boost::math::policies::policy<>(), false, true, &f1) - 0.5f;
195 guess -= f / f1;
196 }
197 return guess;
198 }
199
200 /*`
201 The new performance results look much more promising:
202
203 [pre
204 Method 1 time = 0.591244
205 Relative error: 2.99991e-1501
206 Method 2 time = 0.622679
207 Relative error: 7.55843e-1501
208 Method 3 time = 0.143393
209 Relative error: 4.03898e-1501
210 ]
211
212 This time we're 4x faster than `ibeta_inv`, and no doubt that could be improved a little more by carefully
213 optimising the number of iterations and the method (Halley vs Newton) taken.
214
215 Finally, here's the driver code for the above methods:
216
217 */
218
main()219 int main()
220 {
221 try {
222 mpfr_float a(10), b(20);
223
224 mpfr_float true_value = beta_distribution_median_method_1(a, b, 1700);
225
226 stopwatch<std::chrono::high_resolution_clock> my_stopwatch;
227
228 mpfr_float v1 = beta_distribution_median_method_1(a, b, 1500);
229 float hp_time = my_stopwatch.elapsed();
230 std::cout << "Method 1 time = " << hp_time << std::endl;
231 std::cout << "Relative error: " << boost::math::relative_difference(v1, true_value) << std::endl;
232
233 my_stopwatch.reset();
234 mpfr_float v2 = beta_distribution_median_method_2(a, b, 1500);
235 hp_time = my_stopwatch.elapsed();
236 std::cout << "Method 2 time = " << hp_time << std::endl;
237 std::cout << "Relative error: " << boost::math::relative_difference(v2, true_value) << std::endl;
238
239 my_stopwatch.reset();
240 mpfr_float v3 = beta_distribution_median_method_3(a, b, 1500);
241 hp_time = my_stopwatch.elapsed();
242 std::cout << "Method 3 time = " << hp_time << std::endl;
243 std::cout << "Relative error: " << boost::math::relative_difference(v3, true_value) << std::endl;
244 }
245 catch (const std::exception& e)
246 {
247 std::cout << "Found exception with message: " << e.what() << std::endl;
248 }
249 return 0;
250 }
251 //] //[/mpfr_variable]
252
253