• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // negative_binomial_example2.cpp
2 
3 // Copyright Paul A. Bristow 2007, 2010.
4 
5 // Use, modification and distribution are subject to the
6 // Boost Software License, Version 1.0.
7 // (See accompanying file LICENSE_1_0.txt
8 // or copy at http://www.boost.org/LICENSE_1_0.txt)
9 
10 // Simple example demonstrating use of the Negative Binomial Distribution.
11 
12 #include <boost/math/distributions/negative_binomial.hpp>
13   using boost::math::negative_binomial_distribution;
14   using boost::math::negative_binomial; // typedef
15 
16 // In a sequence of trials or events
17 // (Bernoulli, independent, yes or no, succeed or fail)
18 // with success_fraction probability p,
19 // negative_binomial is the probability that k or fewer failures
20 // precede the r th trial's success.
21 
22 #include <iostream>
23 using std::cout;
24 using std::endl;
25 using std::setprecision;
26 using std::showpoint;
27 using std::setw;
28 using std::left;
29 using std::right;
30 #include <limits>
31 using std::numeric_limits;
32 
main()33 int main()
34 {
35   cout << "Negative_binomial distribution - simple example 2" << endl;
36   // Construct a negative binomial distribution with:
37   // 8 successes (r), success fraction (p) 0.25 = 25% or 1 in 4 successes.
38   negative_binomial mynbdist(8, 0.25); // Shorter method using typedef.
39 
40   // Display (to check) properties of the distribution just constructed.
41   cout << "mean(mynbdist) = " << mean(mynbdist) << endl; // 24
42   cout << "mynbdist.successes() = " << mynbdist.successes()  << endl; // 8
43   // r th successful trial, after k failures, is r + k th trial.
44   cout << "mynbdist.success_fraction() = " << mynbdist.success_fraction() << endl;
45   // success_fraction = failures/successes or k/r = 0.25 or 25%.
46   cout << "mynbdist.percent success  = " << mynbdist.success_fraction() * 100 << "%"  << endl;
47   // Show as % too.
48   // Show some cumulative distribution function values for failures k = 2 and 8
49   cout << "cdf(mynbdist, 2.) = " << cdf(mynbdist, 2.) << endl; // 0.000415802001953125
50   cout << "cdf(mynbdist, 8.) = " << cdf(mynbdist, 8.) << endl; // 0.027129956288263202
51   cout << "cdf(complement(mynbdist, 8.)) = " << cdf(complement(mynbdist, 8.)) << endl; // 0.9728700437117368
52   // Check that cdf plus its complement is unity.
53   cout << "cdf + complement = " << cdf(mynbdist, 8.) + cdf(complement(mynbdist, 8.))  << endl; // 1
54   // Note: No complement for pdf!
55 
56   // Compare cdf with sum of pdfs.
57   double sum = 0.; // Calculate the sum of all the pdfs,
58   int k = 20; // for 20 failures
59   for(signed i = 0; i <= k; ++i)
60   {
61     sum += pdf(mynbdist, double(i));
62   }
63   // Compare with the cdf
64   double cdf8 = cdf(mynbdist, static_cast<double>(k));
65   double diff = sum - cdf8; // Expect the difference to be very small.
66   cout << setprecision(17) << "Sum pdfs = " << sum << ' ' // sum = 0.40025683281803698
67   << ", cdf = " << cdf(mynbdist, static_cast<double>(k)) //  cdf = 0.40025683281803687
68   << ", difference = "  // difference = 0.50000000000000000
69   << setprecision(1) << diff/ (std::numeric_limits<double>::epsilon() * sum)
70   << " in epsilon units." << endl;
71 
72   // Note: Use boost::math::tools::epsilon rather than std::numeric_limits
73   //  to cover RealTypes that do not specialize numeric_limits.
74 
75 //[neg_binomial_example2
76 
77   // Print a table of values that can be used to plot
78   // using Excel, or some other superior graphical display tool.
79 
80   cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
81   cout << showpoint << endl; // include trailing zeros.
82   // This is a maximum possible precision for the type (here double) to suit a reference table.
83   int maxk = static_cast<int>(2. * mynbdist.successes() /  mynbdist.success_fraction());
84   // This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
85   cout << "\n"" k            pdf                      cdf""\n" << endl;
86   for (int k = 0; k < maxk; k++)
87   {
88     cout << right << setprecision(17) << showpoint
89       << right << setw(3) << k  << ", "
90       << left << setw(25) << pdf(mynbdist, static_cast<double>(k))
91       << left << setw(25) << cdf(mynbdist, static_cast<double>(k))
92       << endl;
93   }
94   cout << endl;
95 //] [/ neg_binomial_example2]
96   return 0;
97 } // int main()
98 
99 /*
100 
101 Output is:
102 
103 negative_binomial distribution - simple example 2
104 mean(mynbdist) = 24
105 mynbdist.successes() = 8
106 mynbdist.success_fraction() = 0.25
107 mynbdist.percent success  = 25%
108 cdf(mynbdist, 2.) = 0.000415802001953125
109 cdf(mynbdist, 8.) = 0.027129956288263202
110 cdf(complement(mynbdist, 8.)) = 0.9728700437117368
111 cdf + complement = 1
112 Sum pdfs = 0.40025683281803692 , cdf = 0.40025683281803687, difference = 0.25 in epsilon units.
113 
114 //[neg_binomial_example2_1
115  k            pdf                      cdf
116   0, 1.5258789062500000e-005  1.5258789062500003e-005
117   1, 9.1552734375000000e-005  0.00010681152343750000
118   2, 0.00030899047851562522   0.00041580200195312500
119   3, 0.00077247619628906272   0.0011882781982421875
120   4, 0.0015932321548461918    0.0027815103530883789
121   5, 0.0028678178787231476    0.0056493282318115234
122   6, 0.0046602040529251142    0.010309532284736633
123   7, 0.0069903060793876605    0.017299838364124298
124   8, 0.0098301179241389001    0.027129956288263202
125   9, 0.013106823898851871     0.040236780187115073
126  10, 0.016711200471036140     0.056947980658151209
127  11, 0.020509200578089786     0.077457181236241013
128  12, 0.024354675686481652     0.10181185692272265
129  13, 0.028101548869017230     0.12991340579173993
130  14, 0.031614242477644432     0.16152764826938440
131  15, 0.034775666725408917     0.19630331499479325
132  16, 0.037492515688331451     0.23379583068312471
133  17, 0.039697957787645101     0.27349378847076977
134  18, 0.041352039362130305     0.31484582783290005
135  19, 0.042440250924291580     0.35728607875719176
136  20, 0.042970754060845245     0.40025683281803687
137  21, 0.042970754060845225     0.44322758687888220
138  22, 0.042482450037426581     0.48571003691630876
139  23, 0.041558918514873783     0.52726895543118257
140  24, 0.040260202311284021     0.56752915774246648
141  25, 0.038649794218832620     0.60617895196129912
142  26, 0.036791631035234917     0.64297058299653398
143  27, 0.034747651533277427     0.67771823452981139
144  28, 0.032575923312447595     0.71029415784225891
145  29, 0.030329307911589130     0.74062346575384819
146  30, 0.028054609818219924     0.76867807557206813
147  31, 0.025792141284492545     0.79447021685656061
148  32, 0.023575629142856460     0.81804584599941710
149  33, 0.021432390129869489     0.83947823612928651
150  34, 0.019383705779220189     0.85886194190850684
151  35, 0.017445335201298231     0.87630727710980494
152  36, 0.015628112784496322     0.89193538989430121
153  37, 0.013938587078064250     0.90587397697236549
154  38, 0.012379666154859701     0.91825364312722524
155  39, 0.010951243136991251     0.92920488626421649
156  40, 0.0096507830144735539    0.93885566927869002
157  41, 0.0084738582566109364    0.94732952753530097
158  42, 0.0074146259745345548    0.95474415350983555
159  43, 0.0064662435824429246    0.96121039709227851
160  44, 0.0056212231142827853    0.96683162020656122
161  45, 0.0048717266990450708    0.97170334690560634
162  46, 0.0042098073105878630    0.97591315421619418
163  47, 0.0036275999165703964    0.97954075413276465
164  48, 0.0031174686783026818    0.98265822281106729
165  49, 0.0026721160099737302    0.98533033882104104
166  50, 0.0022846591885275322    0.98761499800956853
167  51, 0.0019486798960970148    0.98956367790566557
168  52, 0.0016582516423517923    0.99122192954801736
169  53, 0.0014079495076571762    0.99262987905567457
170  54, 0.0011928461106539983    0.99382272516632852
171  55, 0.0010084971662802015    0.99483122233260868
172  56, 0.00085091948404891532   0.99568214181665760
173  57, 0.00071656377604119542   0.99639870559269883
174  58, 0.00060228420831048650   0.99700098980100937
175  59, 0.00050530624256557675   0.99750629604357488
176  60, 0.00042319397814867202   0.99792949002172360
177  61, 0.00035381791615708398   0.99828330793788067
178  62, 0.00029532382517950324   0.99857863176306016
179  63, 0.00024610318764958566   0.99882473495070978
180 //] [neg_binomial_example2_1 end of Quickbook]
181 
182 */
183