1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "spirv_info.h"
26 #include "nir/nir_vla.h"
27 #include "util/debug.h"
28
29 static struct vtn_block *
vtn_block(struct vtn_builder * b,uint32_t value_id)30 vtn_block(struct vtn_builder *b, uint32_t value_id)
31 {
32 return vtn_value(b, value_id, vtn_value_type_block)->block;
33 }
34
35 static unsigned
glsl_type_count_function_params(const struct glsl_type * type)36 glsl_type_count_function_params(const struct glsl_type *type)
37 {
38 if (glsl_type_is_vector_or_scalar(type)) {
39 return 1;
40 } else if (glsl_type_is_array_or_matrix(type)) {
41 return glsl_get_length(type) *
42 glsl_type_count_function_params(glsl_get_array_element(type));
43 } else {
44 assert(glsl_type_is_struct_or_ifc(type));
45 unsigned count = 0;
46 unsigned elems = glsl_get_length(type);
47 for (unsigned i = 0; i < elems; i++) {
48 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
49 count += glsl_type_count_function_params(elem_type);
50 }
51 return count;
52 }
53 }
54
55 static void
glsl_type_add_to_function_params(const struct glsl_type * type,nir_function * func,unsigned * param_idx)56 glsl_type_add_to_function_params(const struct glsl_type *type,
57 nir_function *func,
58 unsigned *param_idx)
59 {
60 if (glsl_type_is_vector_or_scalar(type)) {
61 func->params[(*param_idx)++] = (nir_parameter) {
62 .num_components = glsl_get_vector_elements(type),
63 .bit_size = glsl_get_bit_size(type),
64 };
65 } else if (glsl_type_is_array_or_matrix(type)) {
66 unsigned elems = glsl_get_length(type);
67 const struct glsl_type *elem_type = glsl_get_array_element(type);
68 for (unsigned i = 0; i < elems; i++)
69 glsl_type_add_to_function_params(elem_type,func, param_idx);
70 } else {
71 assert(glsl_type_is_struct_or_ifc(type));
72 unsigned elems = glsl_get_length(type);
73 for (unsigned i = 0; i < elems; i++) {
74 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
75 glsl_type_add_to_function_params(elem_type, func, param_idx);
76 }
77 }
78 }
79
80 static void
vtn_ssa_value_add_to_call_params(struct vtn_builder * b,struct vtn_ssa_value * value,nir_call_instr * call,unsigned * param_idx)81 vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
82 struct vtn_ssa_value *value,
83 nir_call_instr *call,
84 unsigned *param_idx)
85 {
86 if (glsl_type_is_vector_or_scalar(value->type)) {
87 call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
88 } else {
89 unsigned elems = glsl_get_length(value->type);
90 for (unsigned i = 0; i < elems; i++) {
91 vtn_ssa_value_add_to_call_params(b, value->elems[i],
92 call, param_idx);
93 }
94 }
95 }
96
97 static void
vtn_ssa_value_load_function_param(struct vtn_builder * b,struct vtn_ssa_value * value,unsigned * param_idx)98 vtn_ssa_value_load_function_param(struct vtn_builder *b,
99 struct vtn_ssa_value *value,
100 unsigned *param_idx)
101 {
102 if (glsl_type_is_vector_or_scalar(value->type)) {
103 value->def = nir_load_param(&b->nb, (*param_idx)++);
104 } else {
105 unsigned elems = glsl_get_length(value->type);
106 for (unsigned i = 0; i < elems; i++)
107 vtn_ssa_value_load_function_param(b, value->elems[i], param_idx);
108 }
109 }
110
111 void
vtn_handle_function_call(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)112 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
113 const uint32_t *w, unsigned count)
114 {
115 struct vtn_function *vtn_callee =
116 vtn_value(b, w[3], vtn_value_type_function)->func;
117
118 vtn_callee->referenced = true;
119
120 nir_call_instr *call = nir_call_instr_create(b->nb.shader,
121 vtn_callee->nir_func);
122
123 unsigned param_idx = 0;
124
125 nir_deref_instr *ret_deref = NULL;
126 struct vtn_type *ret_type = vtn_callee->type->return_type;
127 if (ret_type->base_type != vtn_base_type_void) {
128 nir_variable *ret_tmp =
129 nir_local_variable_create(b->nb.impl,
130 glsl_get_bare_type(ret_type->type),
131 "return_tmp");
132 ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
133 call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
134 }
135
136 for (unsigned i = 0; i < vtn_callee->type->length; i++) {
137 vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, w[4 + i]),
138 call, ¶m_idx);
139 }
140 assert(param_idx == call->num_params);
141
142 nir_builder_instr_insert(&b->nb, &call->instr);
143
144 if (ret_type->base_type == vtn_base_type_void) {
145 vtn_push_value(b, w[2], vtn_value_type_undef);
146 } else {
147 vtn_push_ssa_value(b, w[2], vtn_local_load(b, ret_deref, 0));
148 }
149 }
150
151 static bool
vtn_cfg_handle_prepass_instruction(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)152 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
153 const uint32_t *w, unsigned count)
154 {
155 switch (opcode) {
156 case SpvOpFunction: {
157 vtn_assert(b->func == NULL);
158 b->func = rzalloc(b, struct vtn_function);
159
160 b->func->node.type = vtn_cf_node_type_function;
161 b->func->node.parent = NULL;
162 list_inithead(&b->func->body);
163 b->func->control = w[3];
164
165 UNUSED const struct glsl_type *result_type = vtn_get_type(b, w[1])->type;
166 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
167 val->func = b->func;
168
169 b->func->type = vtn_get_type(b, w[4]);
170 const struct vtn_type *func_type = b->func->type;
171
172 vtn_assert(func_type->return_type->type == result_type);
173
174 nir_function *func =
175 nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
176
177 unsigned num_params = 0;
178 for (unsigned i = 0; i < func_type->length; i++)
179 num_params += glsl_type_count_function_params(func_type->params[i]->type);
180
181 /* Add one parameter for the function return value */
182 if (func_type->return_type->base_type != vtn_base_type_void)
183 num_params++;
184
185 func->num_params = num_params;
186 func->params = ralloc_array(b->shader, nir_parameter, num_params);
187
188 unsigned idx = 0;
189 if (func_type->return_type->base_type != vtn_base_type_void) {
190 nir_address_format addr_format =
191 vtn_mode_to_address_format(b, vtn_variable_mode_function);
192 /* The return value is a regular pointer */
193 func->params[idx++] = (nir_parameter) {
194 .num_components = nir_address_format_num_components(addr_format),
195 .bit_size = nir_address_format_bit_size(addr_format),
196 };
197 }
198
199 for (unsigned i = 0; i < func_type->length; i++)
200 glsl_type_add_to_function_params(func_type->params[i]->type, func, &idx);
201 assert(idx == num_params);
202
203 b->func->nir_func = func;
204
205 /* Set up a nir_function_impl and the builder so we can load arguments
206 * directly in our OpFunctionParameter handler.
207 */
208 nir_function_impl *impl = nir_function_impl_create(func);
209 nir_builder_init(&b->nb, impl);
210 b->nb.cursor = nir_before_cf_list(&impl->body);
211 b->nb.exact = b->exact;
212
213 b->func_param_idx = 0;
214
215 /* The return value is the first parameter */
216 if (func_type->return_type->base_type != vtn_base_type_void)
217 b->func_param_idx++;
218 break;
219 }
220
221 case SpvOpFunctionEnd:
222 b->func->end = w;
223 if (b->func->start_block == NULL) {
224 /* In this case, the function didn't have any actual blocks. It's
225 * just a prototype so delete the function_impl.
226 */
227 b->func->nir_func->impl = NULL;
228 }
229 b->func = NULL;
230 break;
231
232 case SpvOpFunctionParameter: {
233 vtn_assert(b->func_param_idx < b->func->nir_func->num_params);
234 struct vtn_type *type = vtn_get_type(b, w[1]);
235 struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
236 vtn_ssa_value_load_function_param(b, value, &b->func_param_idx);
237 vtn_push_ssa_value(b, w[2], value);
238 break;
239 }
240
241 case SpvOpLabel: {
242 vtn_assert(b->block == NULL);
243 b->block = rzalloc(b, struct vtn_block);
244 b->block->node.type = vtn_cf_node_type_block;
245 b->block->label = w;
246 vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
247
248 if (b->func->start_block == NULL) {
249 /* This is the first block encountered for this function. In this
250 * case, we set the start block and add it to the list of
251 * implemented functions that we'll walk later.
252 */
253 b->func->start_block = b->block;
254 list_addtail(&b->func->node.link, &b->functions);
255 }
256 break;
257 }
258
259 case SpvOpSelectionMerge:
260 case SpvOpLoopMerge:
261 vtn_assert(b->block && b->block->merge == NULL);
262 b->block->merge = w;
263 break;
264
265 case SpvOpBranch:
266 case SpvOpBranchConditional:
267 case SpvOpSwitch:
268 case SpvOpKill:
269 case SpvOpTerminateInvocation:
270 case SpvOpIgnoreIntersectionKHR:
271 case SpvOpTerminateRayKHR:
272 case SpvOpReturn:
273 case SpvOpReturnValue:
274 case SpvOpUnreachable:
275 vtn_assert(b->block && b->block->branch == NULL);
276 b->block->branch = w;
277 b->block = NULL;
278 break;
279
280 default:
281 /* Continue on as per normal */
282 return true;
283 }
284
285 return true;
286 }
287
288 /* This function performs a depth-first search of the cases and puts them
289 * in fall-through order.
290 */
291 static void
vtn_order_case(struct vtn_switch * swtch,struct vtn_case * cse)292 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
293 {
294 if (cse->visited)
295 return;
296
297 cse->visited = true;
298
299 list_del(&cse->node.link);
300
301 if (cse->fallthrough) {
302 vtn_order_case(swtch, cse->fallthrough);
303
304 /* If we have a fall-through, place this case right before the case it
305 * falls through to. This ensures that fallthroughs come one after
306 * the other. These two can never get separated because that would
307 * imply something else falling through to the same case. Also, this
308 * can't break ordering because the DFS ensures that this case is
309 * visited before anything that falls through to it.
310 */
311 list_addtail(&cse->node.link, &cse->fallthrough->node.link);
312 } else {
313 list_add(&cse->node.link, &swtch->cases);
314 }
315 }
316
317 static void
vtn_switch_order_cases(struct vtn_switch * swtch)318 vtn_switch_order_cases(struct vtn_switch *swtch)
319 {
320 struct list_head cases;
321 list_replace(&swtch->cases, &cases);
322 list_inithead(&swtch->cases);
323 while (!list_is_empty(&cases)) {
324 struct vtn_case *cse =
325 list_first_entry(&cases, struct vtn_case, node.link);
326 vtn_order_case(swtch, cse);
327 }
328 }
329
330 static void
vtn_block_set_merge_cf_node(struct vtn_builder * b,struct vtn_block * block,struct vtn_cf_node * cf_node)331 vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
332 struct vtn_cf_node *cf_node)
333 {
334 vtn_fail_if(block->merge_cf_node != NULL,
335 "The merge block declared by a header block cannot be a "
336 "merge block declared by any other header block.");
337
338 block->merge_cf_node = cf_node;
339 }
340
341 #define VTN_DECL_CF_NODE_FIND(_type) \
342 static inline struct vtn_##_type * \
343 vtn_cf_node_find_##_type(struct vtn_cf_node *node) \
344 { \
345 while (node && node->type != vtn_cf_node_type_##_type) \
346 node = node->parent; \
347 return (struct vtn_##_type *)node; \
348 }
349
350 VTN_DECL_CF_NODE_FIND(if)
VTN_DECL_CF_NODE_FIND(loop)351 VTN_DECL_CF_NODE_FIND(loop)
352 VTN_DECL_CF_NODE_FIND(case)
353 VTN_DECL_CF_NODE_FIND(switch)
354 VTN_DECL_CF_NODE_FIND(function)
355
356 static enum vtn_branch_type
357 vtn_handle_branch(struct vtn_builder *b,
358 struct vtn_cf_node *cf_parent,
359 struct vtn_block *target_block)
360 {
361 struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
362
363 /* Detect a loop back-edge first. That way none of the code below
364 * accidentally operates on a loop back-edge.
365 */
366 if (loop && target_block == loop->header_block)
367 return vtn_branch_type_loop_back_edge;
368
369 /* Try to detect fall-through */
370 if (target_block->switch_case) {
371 /* When it comes to handling switch cases, we can break calls to
372 * vtn_handle_branch into two cases: calls from within a case construct
373 * and calls for the jump to each case construct. In the second case,
374 * cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
375 * return the outer switch case in which this switch is contained. It's
376 * fine if the target block is a switch case from an outer switch as
377 * long as it is also the switch break for this switch.
378 */
379 struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
380
381 /* This doesn't get called for the OpSwitch */
382 vtn_fail_if(switch_case == NULL,
383 "A switch case can only be entered through an OpSwitch or "
384 "falling through from another switch case.");
385
386 /* Because block->switch_case is only set on the entry block for a given
387 * switch case, we only ever get here if we're jumping to the start of a
388 * switch case. It's possible, however, that a switch case could jump
389 * to itself via a back-edge. That *should* get caught by the loop
390 * handling case above but if we have a back edge without a loop merge,
391 * we could en up here.
392 */
393 vtn_fail_if(target_block->switch_case == switch_case,
394 "A switch cannot fall-through to itself. Likely, there is "
395 "a back-edge which is not to a loop header.");
396
397 vtn_fail_if(target_block->switch_case->node.parent !=
398 switch_case->node.parent,
399 "A switch case fall-through must come from the same "
400 "OpSwitch construct");
401
402 vtn_fail_if(switch_case->fallthrough != NULL &&
403 switch_case->fallthrough != target_block->switch_case,
404 "Each case construct can have at most one branch to "
405 "another case construct");
406
407 switch_case->fallthrough = target_block->switch_case;
408
409 /* We don't immediately return vtn_branch_type_switch_fallthrough
410 * because it may also be a loop or switch break for an inner loop or
411 * switch and that takes precedence.
412 */
413 }
414
415 if (loop && target_block == loop->cont_block)
416 return vtn_branch_type_loop_continue;
417
418 /* We walk blocks as a breadth-first search on the control-flow construct
419 * tree where, when we find a construct, we add the vtn_cf_node for that
420 * construct and continue iterating at the merge target block (if any).
421 * Therefore, we want merges whose with parent == cf_parent to be treated
422 * as regular branches. We only want to consider merges if they break out
423 * of the current CF construct.
424 */
425 if (target_block->merge_cf_node != NULL &&
426 target_block->merge_cf_node->parent != cf_parent) {
427 switch (target_block->merge_cf_node->type) {
428 case vtn_cf_node_type_if:
429 for (struct vtn_cf_node *node = cf_parent;
430 node != target_block->merge_cf_node; node = node->parent) {
431 vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
432 "Branching to the merge block of a selection "
433 "construct can only be used to break out of a "
434 "selection construct");
435
436 struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
437
438 /* This should be guaranteed by our iteration */
439 assert(if_stmt->merge_block != target_block);
440
441 vtn_fail_if(if_stmt->merge_block != NULL,
442 "Branching to the merge block of a selection "
443 "construct can only be used to break out of the "
444 "inner most nested selection level");
445 }
446 return vtn_branch_type_if_merge;
447
448 case vtn_cf_node_type_loop:
449 vtn_fail_if(target_block->merge_cf_node != &loop->node,
450 "Loop breaks can only break out of the inner most "
451 "nested loop level");
452 return vtn_branch_type_loop_break;
453
454 case vtn_cf_node_type_switch: {
455 struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
456 vtn_fail_if(target_block->merge_cf_node != &swtch->node,
457 "Switch breaks can only break out of the inner most "
458 "nested switch level");
459 return vtn_branch_type_switch_break;
460 }
461
462 default:
463 unreachable("Invalid CF node type for a merge");
464 }
465 }
466
467 if (target_block->switch_case)
468 return vtn_branch_type_switch_fallthrough;
469
470 return vtn_branch_type_none;
471 }
472
473 struct vtn_cfg_work_item {
474 struct list_head link;
475
476 struct vtn_cf_node *cf_parent;
477 struct list_head *cf_list;
478 struct vtn_block *start_block;
479 };
480
481 static void
vtn_add_cfg_work_item(struct vtn_builder * b,struct list_head * work_list,struct vtn_cf_node * cf_parent,struct list_head * cf_list,struct vtn_block * start_block)482 vtn_add_cfg_work_item(struct vtn_builder *b,
483 struct list_head *work_list,
484 struct vtn_cf_node *cf_parent,
485 struct list_head *cf_list,
486 struct vtn_block *start_block)
487 {
488 struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
489 work->cf_parent = cf_parent;
490 work->cf_list = cf_list;
491 work->start_block = start_block;
492 list_addtail(&work->link, work_list);
493 }
494
495 /* returns the default block */
496 static void
vtn_parse_switch(struct vtn_builder * b,struct vtn_switch * swtch,const uint32_t * branch,struct list_head * case_list)497 vtn_parse_switch(struct vtn_builder *b,
498 struct vtn_switch *swtch,
499 const uint32_t *branch,
500 struct list_head *case_list)
501 {
502 const uint32_t *branch_end = branch + (branch[0] >> SpvWordCountShift);
503
504 struct vtn_value *sel_val = vtn_untyped_value(b, branch[1]);
505 vtn_fail_if(!sel_val->type ||
506 sel_val->type->base_type != vtn_base_type_scalar,
507 "Selector of OpSwitch must have a type of OpTypeInt");
508
509 nir_alu_type sel_type =
510 nir_get_nir_type_for_glsl_type(sel_val->type->type);
511 vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
512 nir_alu_type_get_base_type(sel_type) != nir_type_uint,
513 "Selector of OpSwitch must have a type of OpTypeInt");
514
515 struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
516
517 bool is_default = true;
518 const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
519 for (const uint32_t *w = branch + 2; w < branch_end;) {
520 uint64_t literal = 0;
521 if (!is_default) {
522 if (bitsize <= 32) {
523 literal = *(w++);
524 } else {
525 assert(bitsize == 64);
526 literal = vtn_u64_literal(w);
527 w += 2;
528 }
529 }
530 struct vtn_block *case_block = vtn_block(b, *(w++));
531
532 struct hash_entry *case_entry =
533 _mesa_hash_table_search(block_to_case, case_block);
534
535 struct vtn_case *cse;
536 if (case_entry) {
537 cse = case_entry->data;
538 } else {
539 cse = rzalloc(b, struct vtn_case);
540
541 cse->node.type = vtn_cf_node_type_case;
542 cse->node.parent = swtch ? &swtch->node : NULL;
543 cse->block = case_block;
544 list_inithead(&cse->body);
545 util_dynarray_init(&cse->values, b);
546
547 list_addtail(&cse->node.link, case_list);
548 _mesa_hash_table_insert(block_to_case, case_block, cse);
549 }
550
551 if (is_default) {
552 cse->is_default = true;
553 } else {
554 util_dynarray_append(&cse->values, uint64_t, literal);
555 }
556
557 is_default = false;
558 }
559
560 _mesa_hash_table_destroy(block_to_case, NULL);
561 }
562
563 /* Processes a block and returns the next block to process or NULL if we've
564 * reached the end of the construct.
565 */
566 static struct vtn_block *
vtn_process_block(struct vtn_builder * b,struct list_head * work_list,struct vtn_cf_node * cf_parent,struct list_head * cf_list,struct vtn_block * block)567 vtn_process_block(struct vtn_builder *b,
568 struct list_head *work_list,
569 struct vtn_cf_node *cf_parent,
570 struct list_head *cf_list,
571 struct vtn_block *block)
572 {
573 if (!list_is_empty(cf_list)) {
574 /* vtn_process_block() acts like an iterator: it processes the given
575 * block and then returns the next block to process. For a given
576 * control-flow construct, vtn_build_cfg() calls vtn_process_block()
577 * repeatedly until it finally returns NULL. Therefore, we know that
578 * the only blocks on which vtn_process_block() can be called are either
579 * the first block in a construct or a block that vtn_process_block()
580 * returned for the current construct. If cf_list is empty then we know
581 * that we're processing the first block in the construct and we have to
582 * add it to the list.
583 *
584 * If cf_list is not empty, then it must be the block returned by the
585 * previous call to vtn_process_block(). We know a priori that
586 * vtn_process_block only returns either normal branches
587 * (vtn_branch_type_none) or merge target blocks.
588 */
589 switch (vtn_handle_branch(b, cf_parent, block)) {
590 case vtn_branch_type_none:
591 /* For normal branches, we want to process them and add them to the
592 * current construct. Merge target blocks also look like normal
593 * branches from the perspective of this construct. See also
594 * vtn_handle_branch().
595 */
596 break;
597
598 case vtn_branch_type_loop_continue:
599 case vtn_branch_type_switch_fallthrough:
600 /* The two cases where we can get early exits from a construct that
601 * are not to that construct's merge target are loop continues and
602 * switch fall-throughs. In these cases, we need to break out of the
603 * current construct by returning NULL.
604 */
605 return NULL;
606
607 default:
608 /* The only way we can get here is if something was used as two kinds
609 * of merges at the same time and that's illegal.
610 */
611 vtn_fail("A block was used as a merge target from two or more "
612 "structured control-flow constructs");
613 }
614 }
615
616 /* Once a block has been processed, it is placed into and the list link
617 * will point to something non-null. If we see a node we've already
618 * processed here, it either exists in multiple functions or it's an
619 * invalid back-edge.
620 */
621 if (block->node.parent != NULL) {
622 vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
623 vtn_cf_node_find_function(cf_parent),
624 "A block cannot exist in two functions at the "
625 "same time");
626
627 vtn_fail("Invalid back or cross-edge in the CFG");
628 }
629
630 if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
631 block->loop == NULL) {
632 vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
633 (*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
634 "An OpLoopMerge instruction must immediately precede "
635 "either an OpBranch or OpBranchConditional instruction.");
636
637 struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
638
639 loop->node.type = vtn_cf_node_type_loop;
640 loop->node.parent = cf_parent;
641 list_inithead(&loop->body);
642 list_inithead(&loop->cont_body);
643 loop->header_block = block;
644 loop->break_block = vtn_block(b, block->merge[1]);
645 loop->cont_block = vtn_block(b, block->merge[2]);
646 loop->control = block->merge[3];
647
648 list_addtail(&loop->node.link, cf_list);
649 block->loop = loop;
650
651 /* Note: The work item for the main loop body will start with the
652 * current block as its start block. If we weren't careful, we would
653 * get here again and end up in an infinite loop. This is why we set
654 * block->loop above and check for it before creating one. This way,
655 * we only create the loop once and the second iteration that tries to
656 * handle this loop goes to the cases below and gets handled as a
657 * regular block.
658 */
659 vtn_add_cfg_work_item(b, work_list, &loop->node,
660 &loop->body, loop->header_block);
661
662 /* For continue targets, SPIR-V guarantees the following:
663 *
664 * - the Continue Target must dominate the back-edge block
665 * - the back-edge block must post dominate the Continue Target
666 *
667 * If the header block is the same as the continue target, this
668 * condition is trivially satisfied and there is no real continue
669 * section.
670 */
671 if (loop->cont_block != loop->header_block) {
672 vtn_add_cfg_work_item(b, work_list, &loop->node,
673 &loop->cont_body, loop->cont_block);
674 }
675
676 vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
677
678 return loop->break_block;
679 }
680
681 /* Add the block to the CF list */
682 block->node.parent = cf_parent;
683 list_addtail(&block->node.link, cf_list);
684
685 switch (*block->branch & SpvOpCodeMask) {
686 case SpvOpBranch: {
687 struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
688
689 block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
690
691 if (block->branch_type == vtn_branch_type_none)
692 return branch_block;
693 else
694 return NULL;
695 }
696
697 case SpvOpReturn:
698 case SpvOpReturnValue:
699 block->branch_type = vtn_branch_type_return;
700 return NULL;
701
702 case SpvOpKill:
703 block->branch_type = vtn_branch_type_discard;
704 return NULL;
705
706 case SpvOpTerminateInvocation:
707 block->branch_type = vtn_branch_type_terminate_invocation;
708 return NULL;
709
710 case SpvOpIgnoreIntersectionKHR:
711 block->branch_type = vtn_branch_type_ignore_intersection;
712 return NULL;
713
714 case SpvOpTerminateRayKHR:
715 block->branch_type = vtn_branch_type_terminate_ray;
716 return NULL;
717
718 case SpvOpBranchConditional: {
719 struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
720 vtn_fail_if(!cond_val->type ||
721 cond_val->type->base_type != vtn_base_type_scalar ||
722 cond_val->type->type != glsl_bool_type(),
723 "Condition must be a Boolean type scalar");
724
725 struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
726
727 if_stmt->node.type = vtn_cf_node_type_if;
728 if_stmt->node.parent = cf_parent;
729 if_stmt->header_block = block;
730 list_inithead(&if_stmt->then_body);
731 list_inithead(&if_stmt->else_body);
732
733 list_addtail(&if_stmt->node.link, cf_list);
734
735 if (block->merge &&
736 (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
737 /* We may not always have a merge block and that merge doesn't
738 * technically have to be an OpSelectionMerge. We could have a block
739 * with an OpLoopMerge which ends in an OpBranchConditional.
740 */
741 if_stmt->merge_block = vtn_block(b, block->merge[1]);
742 vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
743
744 if_stmt->control = block->merge[2];
745 }
746
747 struct vtn_block *then_block = vtn_block(b, block->branch[2]);
748 if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
749 if (if_stmt->then_type == vtn_branch_type_none) {
750 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
751 &if_stmt->then_body, then_block);
752 }
753
754 struct vtn_block *else_block = vtn_block(b, block->branch[3]);
755 if (then_block != else_block) {
756 if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
757 if (if_stmt->else_type == vtn_branch_type_none) {
758 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
759 &if_stmt->else_body, else_block);
760 }
761 }
762
763 return if_stmt->merge_block;
764 }
765
766 case SpvOpSwitch: {
767 struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
768
769 swtch->node.type = vtn_cf_node_type_switch;
770 swtch->node.parent = cf_parent;
771 swtch->selector = block->branch[1];
772 list_inithead(&swtch->cases);
773
774 list_addtail(&swtch->node.link, cf_list);
775
776 /* We may not always have a merge block */
777 if (block->merge) {
778 vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
779 "An OpLoopMerge instruction must immediately precede "
780 "either an OpBranch or OpBranchConditional "
781 "instruction.");
782 swtch->break_block = vtn_block(b, block->merge[1]);
783 vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
784 }
785
786 /* First, we go through and record all of the cases. */
787 vtn_parse_switch(b, swtch, block->branch, &swtch->cases);
788
789 /* Gather the branch types for the switch */
790 vtn_foreach_cf_node(case_node, &swtch->cases) {
791 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
792
793 cse->type = vtn_handle_branch(b, &swtch->node, cse->block);
794 switch (cse->type) {
795 case vtn_branch_type_none:
796 /* This is a "real" cases which has stuff in it */
797 vtn_fail_if(cse->block->switch_case != NULL,
798 "OpSwitch has a case which is also in another "
799 "OpSwitch construct");
800 cse->block->switch_case = cse;
801 vtn_add_cfg_work_item(b, work_list, &cse->node,
802 &cse->body, cse->block);
803 break;
804
805 case vtn_branch_type_switch_break:
806 case vtn_branch_type_loop_break:
807 case vtn_branch_type_loop_continue:
808 /* Switch breaks as well as loop breaks and continues can be
809 * used to break out of a switch construct or as direct targets
810 * of the OpSwitch.
811 */
812 break;
813
814 default:
815 vtn_fail("Target of OpSwitch is not a valid structured exit "
816 "from the switch construct.");
817 }
818 }
819
820 return swtch->break_block;
821 }
822
823 case SpvOpUnreachable:
824 return NULL;
825
826 default:
827 vtn_fail("Block did not end with a valid branch instruction");
828 }
829 }
830
831 void
vtn_build_cfg(struct vtn_builder * b,const uint32_t * words,const uint32_t * end)832 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
833 {
834 vtn_foreach_instruction(b, words, end,
835 vtn_cfg_handle_prepass_instruction);
836
837 if (b->shader->info.stage == MESA_SHADER_KERNEL)
838 return;
839
840 vtn_foreach_cf_node(func_node, &b->functions) {
841 struct vtn_function *func = vtn_cf_node_as_function(func_node);
842
843 /* We build the CFG for each function by doing a breadth-first search on
844 * the control-flow graph. We keep track of our state using a worklist.
845 * Doing a BFS ensures that we visit each structured control-flow
846 * construct and its merge node before we visit the stuff inside the
847 * construct.
848 */
849 struct list_head work_list;
850 list_inithead(&work_list);
851 vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
852 func->start_block);
853
854 while (!list_is_empty(&work_list)) {
855 struct vtn_cfg_work_item *work =
856 list_first_entry(&work_list, struct vtn_cfg_work_item, link);
857 list_del(&work->link);
858
859 for (struct vtn_block *block = work->start_block; block; ) {
860 block = vtn_process_block(b, &work_list, work->cf_parent,
861 work->cf_list, block);
862 }
863 }
864 }
865 }
866
867 static bool
vtn_handle_phis_first_pass(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)868 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
869 const uint32_t *w, unsigned count)
870 {
871 if (opcode == SpvOpLabel)
872 return true; /* Nothing to do */
873
874 /* If this isn't a phi node, stop. */
875 if (opcode != SpvOpPhi)
876 return false;
877
878 /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
879 * For each phi, we create a variable with the appropreate type and
880 * do a load from that variable. Then, in a second pass, we add
881 * stores to that variable to each of the predecessor blocks.
882 *
883 * We could do something more intelligent here. However, in order to
884 * handle loops and things properly, we really need dominance
885 * information. It would end up basically being the into-SSA
886 * algorithm all over again. It's easier if we just let
887 * lower_vars_to_ssa do that for us instead of repeating it here.
888 */
889 struct vtn_type *type = vtn_get_type(b, w[1]);
890 nir_variable *phi_var =
891 nir_local_variable_create(b->nb.impl, type->type, "phi");
892 _mesa_hash_table_insert(b->phi_table, w, phi_var);
893
894 vtn_push_ssa_value(b, w[2],
895 vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
896
897 return true;
898 }
899
900 static bool
vtn_handle_phi_second_pass(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)901 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
902 const uint32_t *w, unsigned count)
903 {
904 if (opcode != SpvOpPhi)
905 return true;
906
907 struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
908
909 /* It's possible that this phi is in an unreachable block in which case it
910 * may never have been emitted and therefore may not be in the hash table.
911 * In this case, there's no var for it and it's safe to just bail.
912 */
913 if (phi_entry == NULL)
914 return true;
915
916 nir_variable *phi_var = phi_entry->data;
917
918 for (unsigned i = 3; i < count; i += 2) {
919 struct vtn_block *pred = vtn_block(b, w[i + 1]);
920
921 /* If block does not have end_nop, that is because it is an unreacheable
922 * block, and hence it is not worth to handle it */
923 if (!pred->end_nop)
924 continue;
925
926 b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
927
928 struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
929
930 vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
931 }
932
933 return true;
934 }
935
936 static void
vtn_emit_branch(struct vtn_builder * b,enum vtn_branch_type branch_type,nir_variable * switch_fall_var,bool * has_switch_break)937 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
938 nir_variable *switch_fall_var, bool *has_switch_break)
939 {
940 switch (branch_type) {
941 case vtn_branch_type_if_merge:
942 break; /* Nothing to do */
943 case vtn_branch_type_switch_break:
944 nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
945 *has_switch_break = true;
946 break;
947 case vtn_branch_type_switch_fallthrough:
948 break; /* Nothing to do */
949 case vtn_branch_type_loop_break:
950 nir_jump(&b->nb, nir_jump_break);
951 break;
952 case vtn_branch_type_loop_continue:
953 nir_jump(&b->nb, nir_jump_continue);
954 break;
955 case vtn_branch_type_loop_back_edge:
956 break;
957 case vtn_branch_type_return:
958 nir_jump(&b->nb, nir_jump_return);
959 break;
960 case vtn_branch_type_discard:
961 if (b->convert_discard_to_demote)
962 nir_demote(&b->nb);
963 else
964 nir_discard(&b->nb);
965 break;
966 case vtn_branch_type_terminate_invocation:
967 nir_terminate(&b->nb);
968 break;
969 case vtn_branch_type_ignore_intersection:
970 nir_ignore_ray_intersection(&b->nb);
971 nir_jump(&b->nb, nir_jump_halt);
972 break;
973 case vtn_branch_type_terminate_ray:
974 nir_terminate_ray(&b->nb);
975 nir_jump(&b->nb, nir_jump_halt);
976 break;
977 default:
978 vtn_fail("Invalid branch type");
979 }
980 }
981
982 static nir_ssa_def *
vtn_switch_case_condition(struct vtn_builder * b,struct vtn_switch * swtch,nir_ssa_def * sel,struct vtn_case * cse)983 vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
984 nir_ssa_def *sel, struct vtn_case *cse)
985 {
986 if (cse->is_default) {
987 nir_ssa_def *any = nir_imm_false(&b->nb);
988 vtn_foreach_cf_node(other_node, &swtch->cases) {
989 struct vtn_case *other = vtn_cf_node_as_case(other_node);
990 if (other->is_default)
991 continue;
992
993 any = nir_ior(&b->nb, any,
994 vtn_switch_case_condition(b, swtch, sel, other));
995 }
996 return nir_inot(&b->nb, any);
997 } else {
998 nir_ssa_def *cond = nir_imm_false(&b->nb);
999 util_dynarray_foreach(&cse->values, uint64_t, val)
1000 cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1001 return cond;
1002 }
1003 }
1004
1005 static nir_loop_control
vtn_loop_control(struct vtn_builder * b,struct vtn_loop * vtn_loop)1006 vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1007 {
1008 if (vtn_loop->control == SpvLoopControlMaskNone)
1009 return nir_loop_control_none;
1010 else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1011 return nir_loop_control_dont_unroll;
1012 else if (vtn_loop->control & SpvLoopControlUnrollMask)
1013 return nir_loop_control_unroll;
1014 else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1015 vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1016 vtn_loop->control & SpvLoopControlMinIterationsMask ||
1017 vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1018 vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1019 vtn_loop->control & SpvLoopControlPeelCountMask ||
1020 vtn_loop->control & SpvLoopControlPartialCountMask) {
1021 /* We do not do anything special with these yet. */
1022 return nir_loop_control_none;
1023 } else {
1024 vtn_fail("Invalid loop control");
1025 }
1026 }
1027
1028 static nir_selection_control
vtn_selection_control(struct vtn_builder * b,struct vtn_if * vtn_if)1029 vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1030 {
1031 if (vtn_if->control == SpvSelectionControlMaskNone)
1032 return nir_selection_control_none;
1033 else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1034 return nir_selection_control_dont_flatten;
1035 else if (vtn_if->control & SpvSelectionControlFlattenMask)
1036 return nir_selection_control_flatten;
1037 else
1038 vtn_fail("Invalid selection control");
1039 }
1040
1041 static void
vtn_emit_ret_store(struct vtn_builder * b,struct vtn_block * block)1042 vtn_emit_ret_store(struct vtn_builder *b, struct vtn_block *block)
1043 {
1044 if ((*block->branch & SpvOpCodeMask) != SpvOpReturnValue)
1045 return;
1046
1047 vtn_fail_if(b->func->type->return_type->base_type == vtn_base_type_void,
1048 "Return with a value from a function returning void");
1049 struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1050 const struct glsl_type *ret_type =
1051 glsl_get_bare_type(b->func->type->return_type->type);
1052 nir_deref_instr *ret_deref =
1053 nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1054 nir_var_function_temp, ret_type, 0);
1055 vtn_local_store(b, src, ret_deref, 0);
1056 }
1057
1058 static void
vtn_emit_cf_list_structured(struct vtn_builder * b,struct list_head * cf_list,nir_variable * switch_fall_var,bool * has_switch_break,vtn_instruction_handler handler)1059 vtn_emit_cf_list_structured(struct vtn_builder *b, struct list_head *cf_list,
1060 nir_variable *switch_fall_var,
1061 bool *has_switch_break,
1062 vtn_instruction_handler handler)
1063 {
1064 vtn_foreach_cf_node(node, cf_list) {
1065 switch (node->type) {
1066 case vtn_cf_node_type_block: {
1067 struct vtn_block *block = vtn_cf_node_as_block(node);
1068
1069 const uint32_t *block_start = block->label;
1070 const uint32_t *block_end = block->merge ? block->merge :
1071 block->branch;
1072
1073 block_start = vtn_foreach_instruction(b, block_start, block_end,
1074 vtn_handle_phis_first_pass);
1075
1076 vtn_foreach_instruction(b, block_start, block_end, handler);
1077
1078 block->end_nop = nir_nop(&b->nb);
1079
1080 vtn_emit_ret_store(b, block);
1081
1082 if (block->branch_type != vtn_branch_type_none) {
1083 vtn_emit_branch(b, block->branch_type,
1084 switch_fall_var, has_switch_break);
1085 return;
1086 }
1087
1088 break;
1089 }
1090
1091 case vtn_cf_node_type_if: {
1092 struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1093 const uint32_t *branch = vtn_if->header_block->branch;
1094 vtn_assert((branch[0] & SpvOpCodeMask) == SpvOpBranchConditional);
1095
1096 /* If both branches are the same, just emit the first block, which is
1097 * the only one we filled when building the CFG.
1098 */
1099 if (branch[2] == branch[3]) {
1100 vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1101 switch_fall_var, has_switch_break, handler);
1102 break;
1103 }
1104
1105 bool sw_break = false;
1106
1107 nir_if *nif =
1108 nir_push_if(&b->nb, vtn_get_nir_ssa(b, branch[1]));
1109
1110 nif->control = vtn_selection_control(b, vtn_if);
1111
1112 if (vtn_if->then_type == vtn_branch_type_none) {
1113 vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1114 switch_fall_var, &sw_break, handler);
1115 } else {
1116 vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1117 }
1118
1119 nir_push_else(&b->nb, nif);
1120 if (vtn_if->else_type == vtn_branch_type_none) {
1121 vtn_emit_cf_list_structured(b, &vtn_if->else_body,
1122 switch_fall_var, &sw_break, handler);
1123 } else {
1124 vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1125 }
1126
1127 nir_pop_if(&b->nb, nif);
1128
1129 /* If we encountered a switch break somewhere inside of the if,
1130 * then it would have been handled correctly by calling
1131 * emit_cf_list or emit_branch for the interrior. However, we
1132 * need to predicate everything following on wether or not we're
1133 * still going.
1134 */
1135 if (sw_break) {
1136 *has_switch_break = true;
1137 nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1138 }
1139 break;
1140 }
1141
1142 case vtn_cf_node_type_loop: {
1143 struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1144
1145 nir_loop *loop = nir_push_loop(&b->nb);
1146 loop->control = vtn_loop_control(b, vtn_loop);
1147
1148 vtn_emit_cf_list_structured(b, &vtn_loop->body, NULL, NULL, handler);
1149
1150 if (!list_is_empty(&vtn_loop->cont_body)) {
1151 /* If we have a non-trivial continue body then we need to put
1152 * it at the beginning of the loop with a flag to ensure that
1153 * it doesn't get executed in the first iteration.
1154 */
1155 nir_variable *do_cont =
1156 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1157
1158 b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1159 nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1160
1161 b->nb.cursor = nir_before_cf_list(&loop->body);
1162
1163 nir_if *cont_if =
1164 nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1165
1166 vtn_emit_cf_list_structured(b, &vtn_loop->cont_body, NULL, NULL,
1167 handler);
1168
1169 nir_pop_if(&b->nb, cont_if);
1170
1171 nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1172 }
1173
1174 nir_pop_loop(&b->nb, loop);
1175 break;
1176 }
1177
1178 case vtn_cf_node_type_switch: {
1179 struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1180
1181 /* Before we can emit anything, we need to sort the list of cases in
1182 * fall-through order.
1183 */
1184 vtn_switch_order_cases(vtn_switch);
1185
1186 /* First, we create a variable to keep track of whether or not the
1187 * switch is still going at any given point. Any switch breaks
1188 * will set this variable to false.
1189 */
1190 nir_variable *fall_var =
1191 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1192 nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1193
1194 nir_ssa_def *sel = vtn_get_nir_ssa(b, vtn_switch->selector);
1195
1196 /* Now we can walk the list of cases and actually emit code */
1197 vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1198 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1199
1200 /* If this case jumps directly to the break block, we don't have
1201 * to handle the case as the body is empty and doesn't fall
1202 * through.
1203 */
1204 if (cse->block == vtn_switch->break_block)
1205 continue;
1206
1207 /* Figure out the condition */
1208 nir_ssa_def *cond =
1209 vtn_switch_case_condition(b, vtn_switch, sel, cse);
1210 /* Take fallthrough into account */
1211 cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1212
1213 nir_if *case_if = nir_push_if(&b->nb, cond);
1214
1215 bool has_break = false;
1216 nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1217 vtn_emit_cf_list_structured(b, &cse->body, fall_var, &has_break,
1218 handler);
1219 (void)has_break; /* We don't care */
1220
1221 nir_pop_if(&b->nb, case_if);
1222 }
1223
1224 break;
1225 }
1226
1227 default:
1228 vtn_fail("Invalid CF node type");
1229 }
1230 }
1231 }
1232
1233 static struct nir_block *
vtn_new_unstructured_block(struct vtn_builder * b,struct vtn_function * func)1234 vtn_new_unstructured_block(struct vtn_builder *b, struct vtn_function *func)
1235 {
1236 struct nir_block *n = nir_block_create(b->shader);
1237 exec_list_push_tail(&func->nir_func->impl->body, &n->cf_node.node);
1238 n->cf_node.parent = &func->nir_func->impl->cf_node;
1239 return n;
1240 }
1241
1242 static void
vtn_add_unstructured_block(struct vtn_builder * b,struct vtn_function * func,struct list_head * work_list,struct vtn_block * block)1243 vtn_add_unstructured_block(struct vtn_builder *b,
1244 struct vtn_function *func,
1245 struct list_head *work_list,
1246 struct vtn_block *block)
1247 {
1248 if (!block->block) {
1249 block->block = vtn_new_unstructured_block(b, func);
1250 list_addtail(&block->node.link, work_list);
1251 }
1252 }
1253
1254 static void
vtn_emit_cf_func_unstructured(struct vtn_builder * b,struct vtn_function * func,vtn_instruction_handler handler)1255 vtn_emit_cf_func_unstructured(struct vtn_builder *b, struct vtn_function *func,
1256 vtn_instruction_handler handler)
1257 {
1258 struct list_head work_list;
1259 list_inithead(&work_list);
1260
1261 func->start_block->block = nir_start_block(func->nir_func->impl);
1262 list_addtail(&func->start_block->node.link, &work_list);
1263 while (!list_is_empty(&work_list)) {
1264 struct vtn_block *block =
1265 list_first_entry(&work_list, struct vtn_block, node.link);
1266 list_del(&block->node.link);
1267
1268 vtn_assert(block->block);
1269
1270 const uint32_t *block_start = block->label;
1271 const uint32_t *block_end = block->branch;
1272
1273 b->nb.cursor = nir_after_block(block->block);
1274 block_start = vtn_foreach_instruction(b, block_start, block_end,
1275 vtn_handle_phis_first_pass);
1276 vtn_foreach_instruction(b, block_start, block_end, handler);
1277 block->end_nop = nir_nop(&b->nb);
1278
1279 SpvOp op = *block_end & SpvOpCodeMask;
1280 switch (op) {
1281 case SpvOpBranch: {
1282 struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
1283 vtn_add_unstructured_block(b, func, &work_list, branch_block);
1284 nir_goto(&b->nb, branch_block->block);
1285 break;
1286 }
1287
1288 case SpvOpBranchConditional: {
1289 nir_ssa_def *cond = vtn_ssa_value(b, block->branch[1])->def;
1290 struct vtn_block *then_block = vtn_block(b, block->branch[2]);
1291 struct vtn_block *else_block = vtn_block(b, block->branch[3]);
1292
1293 vtn_add_unstructured_block(b, func, &work_list, then_block);
1294 if (then_block == else_block) {
1295 nir_goto(&b->nb, then_block->block);
1296 } else {
1297 vtn_add_unstructured_block(b, func, &work_list, else_block);
1298 nir_goto_if(&b->nb, then_block->block, nir_src_for_ssa(cond),
1299 else_block->block);
1300 }
1301
1302 break;
1303 }
1304
1305 case SpvOpSwitch: {
1306 struct list_head cases;
1307 list_inithead(&cases);
1308 vtn_parse_switch(b, NULL, block->branch, &cases);
1309
1310 nir_ssa_def *sel = vtn_get_nir_ssa(b, block->branch[1]);
1311
1312 struct vtn_case *def = NULL;
1313 vtn_foreach_cf_node(case_node, &cases) {
1314 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1315 if (cse->is_default) {
1316 assert(def == NULL);
1317 def = cse;
1318 continue;
1319 }
1320
1321 nir_ssa_def *cond = nir_imm_false(&b->nb);
1322 util_dynarray_foreach(&cse->values, uint64_t, val)
1323 cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1324
1325 /* block for the next check */
1326 nir_block *e = vtn_new_unstructured_block(b, func);
1327 vtn_add_unstructured_block(b, func, &work_list, cse->block);
1328
1329 /* add branching */
1330 nir_goto_if(&b->nb, cse->block->block, nir_src_for_ssa(cond), e);
1331 b->nb.cursor = nir_after_block(e);
1332 }
1333
1334 vtn_assert(def != NULL);
1335 vtn_add_unstructured_block(b, func, &work_list, def->block);
1336
1337 /* now that all cases are handled, branch into the default block */
1338 nir_goto(&b->nb, def->block->block);
1339 break;
1340 }
1341
1342 case SpvOpKill: {
1343 nir_discard(&b->nb);
1344 nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1345 break;
1346 }
1347
1348 case SpvOpUnreachable:
1349 case SpvOpReturn:
1350 case SpvOpReturnValue: {
1351 vtn_emit_ret_store(b, block);
1352 nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1353 break;
1354 }
1355
1356 default:
1357 vtn_fail("Unhandled opcode %s", spirv_op_to_string(op));
1358 }
1359 }
1360 }
1361
1362 void
vtn_function_emit(struct vtn_builder * b,struct vtn_function * func,vtn_instruction_handler instruction_handler)1363 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1364 vtn_instruction_handler instruction_handler)
1365 {
1366 static int force_unstructured = -1;
1367 if (force_unstructured < 0) {
1368 force_unstructured =
1369 env_var_as_boolean("MESA_SPIRV_FORCE_UNSTRUCTURED", false);
1370 }
1371
1372 nir_function_impl *impl = func->nir_func->impl;
1373 nir_builder_init(&b->nb, impl);
1374 b->func = func;
1375 b->nb.cursor = nir_after_cf_list(&impl->body);
1376 b->nb.exact = b->exact;
1377 b->phi_table = _mesa_pointer_hash_table_create(b);
1378
1379 if (b->shader->info.stage == MESA_SHADER_KERNEL || force_unstructured) {
1380 impl->structured = false;
1381 vtn_emit_cf_func_unstructured(b, func, instruction_handler);
1382 } else {
1383 vtn_emit_cf_list_structured(b, &func->body, NULL, NULL,
1384 instruction_handler);
1385 }
1386
1387 vtn_foreach_instruction(b, func->start_block->label, func->end,
1388 vtn_handle_phi_second_pass);
1389
1390 if (func->nir_func->impl->structured)
1391 nir_copy_prop_impl(impl);
1392 nir_rematerialize_derefs_in_use_blocks_impl(impl);
1393
1394 /*
1395 * There are some cases where we need to repair SSA to insert
1396 * the needed phi nodes:
1397 *
1398 * - Continue blocks for loops get inserted before the body of the loop
1399 * but instructions in the continue may use SSA defs in the loop body.
1400 *
1401 * - Early termination instructions `OpKill` and `OpTerminateInvocation`,
1402 * in NIR. They're represented by regular intrinsics with no control-flow
1403 * semantics. This means that the SSA form from the SPIR-V may not
1404 * 100% match NIR.
1405 *
1406 * - Switches with only default case may also define SSA which may
1407 * subsequently be used out of the switch.
1408 */
1409 if (func->nir_func->impl->structured)
1410 nir_repair_ssa_impl(impl);
1411
1412 func->emitted = true;
1413 }
1414