• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ut Video encoder
3  * Copyright (c) 2012 Jan Ekström
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Ut Video encoder
25  */
26 
27 #include "libavutil/imgutils.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/opt.h"
30 
31 #include "avcodec.h"
32 #include "internal.h"
33 #include "bswapdsp.h"
34 #include "bytestream.h"
35 #include "put_bits.h"
36 #include "mathops.h"
37 #include "utvideo.h"
38 #include "huffman.h"
39 
40 typedef struct HuffEntry {
41     uint16_t sym;
42     uint8_t  len;
43     uint32_t code;
44 } HuffEntry;
45 
46 #if FF_API_PRIVATE_OPT
47 static const int ut_pred_order[5] = {
48     PRED_LEFT, PRED_MEDIAN, PRED_MEDIAN, PRED_NONE, PRED_GRADIENT
49 };
50 #endif
51 
52 /* Compare huffman tree nodes */
ut_huff_cmp_len(const void * a,const void * b)53 static int ut_huff_cmp_len(const void *a, const void *b)
54 {
55     const HuffEntry *aa = a, *bb = b;
56     return (aa->len - bb->len)*256 + aa->sym - bb->sym;
57 }
58 
59 /* Compare huffentry symbols */
huff_cmp_sym(const void * a,const void * b)60 static int huff_cmp_sym(const void *a, const void *b)
61 {
62     const HuffEntry *aa = a, *bb = b;
63     return aa->sym - bb->sym;
64 }
65 
utvideo_encode_close(AVCodecContext * avctx)66 static av_cold int utvideo_encode_close(AVCodecContext *avctx)
67 {
68     UtvideoContext *c = avctx->priv_data;
69     int i;
70 
71     av_freep(&c->slice_bits);
72     for (i = 0; i < 4; i++)
73         av_freep(&c->slice_buffer[i]);
74 
75     return 0;
76 }
77 
utvideo_encode_init(AVCodecContext * avctx)78 static av_cold int utvideo_encode_init(AVCodecContext *avctx)
79 {
80     UtvideoContext *c = avctx->priv_data;
81     int i, subsampled_height;
82     uint32_t original_format;
83 
84     c->avctx           = avctx;
85     c->frame_info_size = 4;
86     c->slice_stride    = FFALIGN(avctx->width, 32);
87 
88     switch (avctx->pix_fmt) {
89     case AV_PIX_FMT_GBRP:
90         c->planes        = 3;
91         avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
92         original_format  = UTVIDEO_RGB;
93         break;
94     case AV_PIX_FMT_GBRAP:
95         c->planes        = 4;
96         avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
97         original_format  = UTVIDEO_RGBA;
98         avctx->bits_per_coded_sample = 32;
99         break;
100     case AV_PIX_FMT_YUV420P:
101         if (avctx->width & 1 || avctx->height & 1) {
102             av_log(avctx, AV_LOG_ERROR,
103                    "4:2:0 video requires even width and height.\n");
104             return AVERROR_INVALIDDATA;
105         }
106         c->planes        = 3;
107         if (avctx->colorspace == AVCOL_SPC_BT709)
108             avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
109         else
110             avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
111         original_format  = UTVIDEO_420;
112         break;
113     case AV_PIX_FMT_YUV422P:
114         if (avctx->width & 1) {
115             av_log(avctx, AV_LOG_ERROR,
116                    "4:2:2 video requires even width.\n");
117             return AVERROR_INVALIDDATA;
118         }
119         c->planes        = 3;
120         if (avctx->colorspace == AVCOL_SPC_BT709)
121             avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
122         else
123             avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
124         original_format  = UTVIDEO_422;
125         break;
126     case AV_PIX_FMT_YUV444P:
127         c->planes        = 3;
128         if (avctx->colorspace == AVCOL_SPC_BT709)
129             avctx->codec_tag = MKTAG('U', 'L', 'H', '4');
130         else
131             avctx->codec_tag = MKTAG('U', 'L', 'Y', '4');
132         original_format  = UTVIDEO_444;
133         break;
134     default:
135         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
136                avctx->pix_fmt);
137         return AVERROR_INVALIDDATA;
138     }
139 
140     ff_bswapdsp_init(&c->bdsp);
141     ff_llvidencdsp_init(&c->llvidencdsp);
142 
143 #if FF_API_PRIVATE_OPT
144 FF_DISABLE_DEPRECATION_WARNINGS
145     /* Check the prediction method, and error out if unsupported */
146     if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
147         av_log(avctx, AV_LOG_WARNING,
148                "Prediction method %d is not supported in Ut Video.\n",
149                avctx->prediction_method);
150         return AVERROR_OPTION_NOT_FOUND;
151     }
152 
153     if (avctx->prediction_method == FF_PRED_PLANE) {
154         av_log(avctx, AV_LOG_ERROR,
155                "Plane prediction is not supported in Ut Video.\n");
156         return AVERROR_OPTION_NOT_FOUND;
157     }
158 
159     /* Convert from libavcodec prediction type to Ut Video's */
160     if (avctx->prediction_method)
161         c->frame_pred = ut_pred_order[avctx->prediction_method];
162 FF_ENABLE_DEPRECATION_WARNINGS
163 #endif
164 
165     if (c->frame_pred == PRED_GRADIENT) {
166         av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
167         return AVERROR_OPTION_NOT_FOUND;
168     }
169 
170     /*
171      * Check the asked slice count for obviously invalid
172      * values (> 256 or negative).
173      */
174     if (avctx->slices > 256 || avctx->slices < 0) {
175         av_log(avctx, AV_LOG_ERROR,
176                "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
177                avctx->slices);
178         return AVERROR(EINVAL);
179     }
180 
181     /* Check that the slice count is not larger than the subsampled height */
182     subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
183     if (avctx->slices > subsampled_height) {
184         av_log(avctx, AV_LOG_ERROR,
185                "Slice count %d is larger than the subsampling-applied height %d.\n",
186                avctx->slices, subsampled_height);
187         return AVERROR(EINVAL);
188     }
189 
190     /* extradata size is 4 * 32 bits */
191     avctx->extradata_size = 16;
192 
193     avctx->extradata = av_mallocz(avctx->extradata_size +
194                                   AV_INPUT_BUFFER_PADDING_SIZE);
195 
196     if (!avctx->extradata) {
197         av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
198         utvideo_encode_close(avctx);
199         return AVERROR(ENOMEM);
200     }
201 
202     for (i = 0; i < c->planes; i++) {
203         c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
204                                        AV_INPUT_BUFFER_PADDING_SIZE);
205         if (!c->slice_buffer[i]) {
206             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
207             utvideo_encode_close(avctx);
208             return AVERROR(ENOMEM);
209         }
210     }
211 
212     /*
213      * Set the version of the encoder.
214      * Last byte is "implementation ID", which is
215      * obtained from the creator of the format.
216      * Libavcodec has been assigned with the ID 0xF0.
217      */
218     AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
219 
220     /*
221      * Set the "original format"
222      * Not used for anything during decoding.
223      */
224     AV_WL32(avctx->extradata + 4, original_format);
225 
226     /* Write 4 as the 'frame info size' */
227     AV_WL32(avctx->extradata + 8, c->frame_info_size);
228 
229     /*
230      * Set how many slices are going to be used.
231      * By default uses multiple slices depending on the subsampled height.
232      * This enables multithreading in the official decoder.
233      */
234     if (!avctx->slices) {
235         c->slices = subsampled_height / 120;
236 
237         if (!c->slices)
238             c->slices = 1;
239         else if (c->slices > 256)
240             c->slices = 256;
241     } else {
242         c->slices = avctx->slices;
243     }
244 
245     /* Set compression mode */
246     c->compression = COMP_HUFF;
247 
248     /*
249      * Set the encoding flags:
250      * - Slice count minus 1
251      * - Interlaced encoding mode flag, set to zero for now.
252      * - Compression mode (none/huff)
253      * And write the flags.
254      */
255     c->flags  = (c->slices - 1) << 24;
256     c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
257     c->flags |= c->compression;
258 
259     AV_WL32(avctx->extradata + 12, c->flags);
260 
261     return 0;
262 }
263 
mangle_rgb_planes(uint8_t * dst[4],ptrdiff_t dst_stride,uint8_t * const src[4],int planes,const int stride[4],int width,int height)264 static void mangle_rgb_planes(uint8_t *dst[4], ptrdiff_t dst_stride,
265                               uint8_t *const src[4], int planes, const int stride[4],
266                               int width, int height)
267 {
268     int i, j;
269     int k = 2 * dst_stride;
270     const uint8_t *sg = src[0];
271     const uint8_t *sb = src[1];
272     const uint8_t *sr = src[2];
273     const uint8_t *sa = src[3];
274     unsigned int g;
275 
276     for (j = 0; j < height; j++) {
277         if (planes == 3) {
278             for (i = 0; i < width; i++) {
279                 g         = sg[i];
280                 dst[0][k] = g;
281                 g        += 0x80;
282                 dst[1][k] = sb[i] - g;
283                 dst[2][k] = sr[i] - g;
284                 k++;
285             }
286         } else {
287             for (i = 0; i < width; i++) {
288                 g         = sg[i];
289                 dst[0][k] = g;
290                 g        += 0x80;
291                 dst[1][k] = sb[i] - g;
292                 dst[2][k] = sr[i] - g;
293                 dst[3][k] = sa[i];
294                 k++;
295             }
296             sa += stride[3];
297         }
298         k += dst_stride - width;
299         sg += stride[0];
300         sb += stride[1];
301         sr += stride[2];
302     }
303 }
304 
305 #undef A
306 #undef B
307 
308 /* Write data to a plane with median prediction */
median_predict(UtvideoContext * c,uint8_t * src,uint8_t * dst,ptrdiff_t stride,int width,int height)309 static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst,
310                            ptrdiff_t stride, int width, int height)
311 {
312     int i, j;
313     int A, B;
314     uint8_t prev;
315 
316     /* First line uses left neighbour prediction */
317     prev = 0x80; /* Set the initial value */
318     for (i = 0; i < width; i++) {
319         *dst++ = src[i] - prev;
320         prev   = src[i];
321     }
322 
323     if (height == 1)
324         return;
325 
326     src += stride;
327 
328     /*
329      * Second line uses top prediction for the first sample,
330      * and median for the rest.
331      */
332     A = B = 0;
333 
334     /* Rest of the coded part uses median prediction */
335     for (j = 1; j < height; j++) {
336         c->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &A, &B);
337         dst += width;
338         src += stride;
339     }
340 }
341 
342 /* Count the usage of values in a plane */
count_usage(uint8_t * src,int width,int height,uint64_t * counts)343 static void count_usage(uint8_t *src, int width,
344                         int height, uint64_t *counts)
345 {
346     int i, j;
347 
348     for (j = 0; j < height; j++) {
349         for (i = 0; i < width; i++) {
350             counts[src[i]]++;
351         }
352         src += width;
353     }
354 }
355 
356 /* Calculate the actual huffman codes from the code lengths */
calculate_codes(HuffEntry * he)357 static void calculate_codes(HuffEntry *he)
358 {
359     int last, i;
360     uint32_t code;
361 
362     qsort(he, 256, sizeof(*he), ut_huff_cmp_len);
363 
364     last = 255;
365     while (he[last].len == 255 && last)
366         last--;
367 
368     code = 0;
369     for (i = last; i >= 0; i--) {
370         he[i].code  = code >> (32 - he[i].len);
371         code       += 0x80000000u >> (he[i].len - 1);
372     }
373 
374     qsort(he, 256, sizeof(*he), huff_cmp_sym);
375 }
376 
377 /* Write huffman bit codes to a memory block */
write_huff_codes(uint8_t * src,uint8_t * dst,int dst_size,int width,int height,HuffEntry * he)378 static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
379                             int width, int height, HuffEntry *he)
380 {
381     PutBitContext pb;
382     int i, j;
383     int count;
384 
385     init_put_bits(&pb, dst, dst_size);
386 
387     /* Write the codes */
388     for (j = 0; j < height; j++) {
389         for (i = 0; i < width; i++)
390             put_bits(&pb, he[src[i]].len, he[src[i]].code);
391 
392         src += width;
393     }
394 
395     /* Pad output to a 32-bit boundary */
396     count = put_bits_count(&pb) & 0x1F;
397 
398     if (count)
399         put_bits(&pb, 32 - count, 0);
400 
401     /* Get the amount of bits written */
402     count = put_bits_count(&pb);
403 
404     /* Flush the rest with zeroes */
405     flush_put_bits(&pb);
406 
407     return count;
408 }
409 
encode_plane(AVCodecContext * avctx,uint8_t * src,uint8_t * dst,ptrdiff_t stride,int plane_no,int width,int height,PutByteContext * pb)410 static int encode_plane(AVCodecContext *avctx, uint8_t *src,
411                         uint8_t *dst, ptrdiff_t stride, int plane_no,
412                         int width, int height, PutByteContext *pb)
413 {
414     UtvideoContext *c        = avctx->priv_data;
415     uint8_t  lengths[256];
416     uint64_t counts[256]     = { 0 };
417 
418     HuffEntry he[256];
419 
420     uint32_t offset = 0, slice_len = 0;
421     const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
422     int      i, sstart, send = 0;
423     int      symbol;
424     int      ret;
425 
426     /* Do prediction / make planes */
427     switch (c->frame_pred) {
428     case PRED_NONE:
429         for (i = 0; i < c->slices; i++) {
430             sstart = send;
431             send   = height * (i + 1) / c->slices & cmask;
432             av_image_copy_plane(dst + sstart * width, width,
433                                 src + sstart * stride, stride,
434                                 width, send - sstart);
435         }
436         break;
437     case PRED_LEFT:
438         for (i = 0; i < c->slices; i++) {
439             sstart = send;
440             send   = height * (i + 1) / c->slices & cmask;
441             c->llvidencdsp.sub_left_predict(dst + sstart * width, src + sstart * stride, stride, width, send - sstart);
442         }
443         break;
444     case PRED_MEDIAN:
445         for (i = 0; i < c->slices; i++) {
446             sstart = send;
447             send   = height * (i + 1) / c->slices & cmask;
448             median_predict(c, src + sstart * stride, dst + sstart * width,
449                            stride, width, send - sstart);
450         }
451         break;
452     default:
453         av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
454                c->frame_pred);
455         return AVERROR_OPTION_NOT_FOUND;
456     }
457 
458     /* Count the usage of values */
459     count_usage(dst, width, height, counts);
460 
461     /* Check for a special case where only one symbol was used */
462     for (symbol = 0; symbol < 256; symbol++) {
463         /* If non-zero count is found, see if it matches width * height */
464         if (counts[symbol]) {
465             /* Special case if only one symbol was used */
466             if (counts[symbol] == width * (int64_t)height) {
467                 /*
468                  * Write a zero for the single symbol
469                  * used in the plane, else 0xFF.
470                  */
471                 for (i = 0; i < 256; i++) {
472                     if (i == symbol)
473                         bytestream2_put_byte(pb, 0);
474                     else
475                         bytestream2_put_byte(pb, 0xFF);
476                 }
477 
478                 /* Write zeroes for lengths */
479                 for (i = 0; i < c->slices; i++)
480                     bytestream2_put_le32(pb, 0);
481 
482                 /* And that's all for that plane folks */
483                 return 0;
484             }
485             break;
486         }
487     }
488 
489     /* Calculate huffman lengths */
490     if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
491         return ret;
492 
493     /*
494      * Write the plane's header into the output packet:
495      * - huffman code lengths (256 bytes)
496      * - slice end offsets (gotten from the slice lengths)
497      */
498     for (i = 0; i < 256; i++) {
499         bytestream2_put_byte(pb, lengths[i]);
500 
501         he[i].len = lengths[i];
502         he[i].sym = i;
503     }
504 
505     /* Calculate the huffman codes themselves */
506     calculate_codes(he);
507 
508     send = 0;
509     for (i = 0; i < c->slices; i++) {
510         sstart  = send;
511         send    = height * (i + 1) / c->slices & cmask;
512 
513         /*
514          * Write the huffman codes to a buffer,
515          * get the offset in bits and convert to bytes.
516          */
517         offset += write_huff_codes(dst + sstart * width, c->slice_bits,
518                                    width * height + 4, width,
519                                    send - sstart, he) >> 3;
520 
521         slice_len = offset - slice_len;
522 
523         /* Byteswap the written huffman codes */
524         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
525                           (uint32_t *) c->slice_bits,
526                           slice_len >> 2);
527 
528         /* Write the offset to the stream */
529         bytestream2_put_le32(pb, offset);
530 
531         /* Seek to the data part of the packet */
532         bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
533                            offset - slice_len, SEEK_CUR);
534 
535         /* Write the slices' data into the output packet */
536         bytestream2_put_buffer(pb, c->slice_bits, slice_len);
537 
538         /* Seek back to the slice offsets */
539         bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
540                            SEEK_CUR);
541 
542         slice_len = offset;
543     }
544 
545     /* And at the end seek to the end of written slice(s) */
546     bytestream2_seek_p(pb, offset, SEEK_CUR);
547 
548     return 0;
549 }
550 
utvideo_encode_frame(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * pic,int * got_packet)551 static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
552                                 const AVFrame *pic, int *got_packet)
553 {
554     UtvideoContext *c = avctx->priv_data;
555     PutByteContext pb;
556 
557     uint32_t frame_info;
558 
559     uint8_t *dst;
560 
561     int width = avctx->width, height = avctx->height;
562     int i, ret = 0;
563 
564     /* Allocate a new packet if needed, and set it to the pointer dst */
565     ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
566                            c->planes + 4, 0);
567 
568     if (ret < 0)
569         return ret;
570 
571     dst = pkt->data;
572 
573     bytestream2_init_writer(&pb, dst, pkt->size);
574 
575     av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
576 
577     if (!c->slice_bits) {
578         av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
579         return AVERROR(ENOMEM);
580     }
581 
582     /* In case of RGB, mangle the planes to Ut Video's format */
583     if (avctx->pix_fmt == AV_PIX_FMT_GBRAP || avctx->pix_fmt == AV_PIX_FMT_GBRP)
584         mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data,
585                           c->planes, pic->linesize, width, height);
586 
587     /* Deal with the planes */
588     switch (avctx->pix_fmt) {
589     case AV_PIX_FMT_GBRP:
590     case AV_PIX_FMT_GBRAP:
591         for (i = 0; i < c->planes; i++) {
592             ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
593                                c->slice_buffer[i], c->slice_stride, i,
594                                width, height, &pb);
595 
596             if (ret) {
597                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
598                 return ret;
599             }
600         }
601         break;
602     case AV_PIX_FMT_YUV444P:
603         for (i = 0; i < c->planes; i++) {
604             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
605                                pic->linesize[i], i, width, height, &pb);
606 
607             if (ret) {
608                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
609                 return ret;
610             }
611         }
612         break;
613     case AV_PIX_FMT_YUV422P:
614         for (i = 0; i < c->planes; i++) {
615             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
616                                pic->linesize[i], i, width >> !!i, height, &pb);
617 
618             if (ret) {
619                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
620                 return ret;
621             }
622         }
623         break;
624     case AV_PIX_FMT_YUV420P:
625         for (i = 0; i < c->planes; i++) {
626             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
627                                pic->linesize[i], i, width >> !!i, height >> !!i,
628                                &pb);
629 
630             if (ret) {
631                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
632                 return ret;
633             }
634         }
635         break;
636     default:
637         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
638                avctx->pix_fmt);
639         return AVERROR_INVALIDDATA;
640     }
641 
642     /*
643      * Write frame information (LE 32-bit unsigned)
644      * into the output packet.
645      * Contains the prediction method.
646      */
647     frame_info = c->frame_pred << 8;
648     bytestream2_put_le32(&pb, frame_info);
649 
650     /*
651      * At least currently Ut Video is IDR only.
652      * Set flags accordingly.
653      */
654 #if FF_API_CODED_FRAME
655 FF_DISABLE_DEPRECATION_WARNINGS
656     avctx->coded_frame->key_frame = 1;
657     avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
658 FF_ENABLE_DEPRECATION_WARNINGS
659 #endif
660 
661     pkt->size   = bytestream2_tell_p(&pb);
662     pkt->flags |= AV_PKT_FLAG_KEY;
663 
664     /* Packet should be done */
665     *got_packet = 1;
666 
667     return 0;
668 }
669 
670 #define OFFSET(x) offsetof(UtvideoContext, x)
671 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
672 static const AVOption options[] = {
673 { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, { .i64 = PRED_LEFT }, PRED_NONE, PRED_MEDIAN, VE, "pred" },
674     { "none",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_NONE }, INT_MIN, INT_MAX, VE, "pred" },
675     { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_LEFT }, INT_MIN, INT_MAX, VE, "pred" },
676     { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_GRADIENT }, INT_MIN, INT_MAX, VE, "pred" },
677     { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_MEDIAN }, INT_MIN, INT_MAX, VE, "pred" },
678 
679     { NULL},
680 };
681 
682 static const AVClass utvideo_class = {
683     .class_name = "utvideo",
684     .item_name  = av_default_item_name,
685     .option     = options,
686     .version    = LIBAVUTIL_VERSION_INT,
687 };
688 
689 AVCodec ff_utvideo_encoder = {
690     .name           = "utvideo",
691     .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
692     .type           = AVMEDIA_TYPE_VIDEO,
693     .id             = AV_CODEC_ID_UTVIDEO,
694     .priv_data_size = sizeof(UtvideoContext),
695     .priv_class     = &utvideo_class,
696     .init           = utvideo_encode_init,
697     .encode2        = utvideo_encode_frame,
698     .close          = utvideo_encode_close,
699     .capabilities   = AV_CODEC_CAP_FRAME_THREADS,
700     .pix_fmts       = (const enum AVPixelFormat[]) {
701                           AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
702                           AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE
703                       },
704 };
705