1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36
37 #include <cmath>
38
39 // ICU PATCH: Customize header file paths for ICU.
40
41 #include "double-conversion-bignum-dtoa.h"
42
43 #include "double-conversion-bignum.h"
44 #include "double-conversion-ieee.h"
45
46 // ICU PATCH: Wrap in ICU namespace
47 U_NAMESPACE_BEGIN
48
49 namespace double_conversion {
50
NormalizedExponent(uint64_t significand,int exponent)51 static int NormalizedExponent(uint64_t significand, int exponent) {
52 DOUBLE_CONVERSION_ASSERT(significand != 0);
53 while ((significand & Double::kHiddenBit) == 0) {
54 significand = significand << 1;
55 exponent = exponent - 1;
56 }
57 return exponent;
58 }
59
60
61 // Forward declarations:
62 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
63 static int EstimatePower(int exponent);
64 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
65 // and denominator.
66 static void InitialScaledStartValues(uint64_t significand,
67 int exponent,
68 bool lower_boundary_is_closer,
69 int estimated_power,
70 bool need_boundary_deltas,
71 Bignum* numerator,
72 Bignum* denominator,
73 Bignum* delta_minus,
74 Bignum* delta_plus);
75 // Multiplies numerator/denominator so that its values lies in the range 1-10.
76 // Returns decimal_point s.t.
77 // v = numerator'/denominator' * 10^(decimal_point-1)
78 // where numerator' and denominator' are the values of numerator and
79 // denominator after the call to this function.
80 static void FixupMultiply10(int estimated_power, bool is_even,
81 int* decimal_point,
82 Bignum* numerator, Bignum* denominator,
83 Bignum* delta_minus, Bignum* delta_plus);
84 // Generates digits from the left to the right and stops when the generated
85 // digits yield the shortest decimal representation of v.
86 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
87 Bignum* delta_minus, Bignum* delta_plus,
88 bool is_even,
89 Vector<char> buffer, int* length);
90 // Generates 'requested_digits' after the decimal point.
91 static void BignumToFixed(int requested_digits, int* decimal_point,
92 Bignum* numerator, Bignum* denominator,
93 Vector<char> buffer, int* length);
94 // Generates 'count' digits of numerator/denominator.
95 // Once 'count' digits have been produced rounds the result depending on the
96 // remainder (remainders of exactly .5 round upwards). Might update the
97 // decimal_point when rounding up (for example for 0.9999).
98 static void GenerateCountedDigits(int count, int* decimal_point,
99 Bignum* numerator, Bignum* denominator,
100 Vector<char> buffer, int* length);
101
102
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)103 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
104 Vector<char> buffer, int* length, int* decimal_point) {
105 DOUBLE_CONVERSION_ASSERT(v > 0);
106 DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
107 uint64_t significand;
108 int exponent;
109 bool lower_boundary_is_closer;
110 if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
111 float f = static_cast<float>(v);
112 DOUBLE_CONVERSION_ASSERT(f == v);
113 significand = Single(f).Significand();
114 exponent = Single(f).Exponent();
115 lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
116 } else {
117 significand = Double(v).Significand();
118 exponent = Double(v).Exponent();
119 lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
120 }
121 bool need_boundary_deltas =
122 (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
123
124 bool is_even = (significand & 1) == 0;
125 int normalized_exponent = NormalizedExponent(significand, exponent);
126 // estimated_power might be too low by 1.
127 int estimated_power = EstimatePower(normalized_exponent);
128
129 // Shortcut for Fixed.
130 // The requested digits correspond to the digits after the point. If the
131 // number is much too small, then there is no need in trying to get any
132 // digits.
133 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
134 buffer[0] = '\0';
135 *length = 0;
136 // Set decimal-point to -requested_digits. This is what Gay does.
137 // Note that it should not have any effect anyways since the string is
138 // empty.
139 *decimal_point = -requested_digits;
140 return;
141 }
142
143 Bignum numerator;
144 Bignum denominator;
145 Bignum delta_minus;
146 Bignum delta_plus;
147 // Make sure the bignum can grow large enough. The smallest double equals
148 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
149 // The maximum double is 1.7976931348623157e308 which needs fewer than
150 // 308*4 binary digits.
151 DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4);
152 InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
153 estimated_power, need_boundary_deltas,
154 &numerator, &denominator,
155 &delta_minus, &delta_plus);
156 // We now have v = (numerator / denominator) * 10^estimated_power.
157 FixupMultiply10(estimated_power, is_even, decimal_point,
158 &numerator, &denominator,
159 &delta_minus, &delta_plus);
160 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
161 // 1 <= (numerator + delta_plus) / denominator < 10
162 switch (mode) {
163 case BIGNUM_DTOA_SHORTEST:
164 case BIGNUM_DTOA_SHORTEST_SINGLE:
165 GenerateShortestDigits(&numerator, &denominator,
166 &delta_minus, &delta_plus,
167 is_even, buffer, length);
168 break;
169 case BIGNUM_DTOA_FIXED:
170 BignumToFixed(requested_digits, decimal_point,
171 &numerator, &denominator,
172 buffer, length);
173 break;
174 case BIGNUM_DTOA_PRECISION:
175 GenerateCountedDigits(requested_digits, decimal_point,
176 &numerator, &denominator,
177 buffer, length);
178 break;
179 default:
180 DOUBLE_CONVERSION_UNREACHABLE();
181 }
182 buffer[*length] = '\0';
183 }
184
185
186 // The procedure starts generating digits from the left to the right and stops
187 // when the generated digits yield the shortest decimal representation of v. A
188 // decimal representation of v is a number lying closer to v than to any other
189 // double, so it converts to v when read.
190 //
191 // This is true if d, the decimal representation, is between m- and m+, the
192 // upper and lower boundaries. d must be strictly between them if !is_even.
193 // m- := (numerator - delta_minus) / denominator
194 // m+ := (numerator + delta_plus) / denominator
195 //
196 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
197 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
198 // will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)199 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
200 Bignum* delta_minus, Bignum* delta_plus,
201 bool is_even,
202 Vector<char> buffer, int* length) {
203 // Small optimization: if delta_minus and delta_plus are the same just reuse
204 // one of the two bignums.
205 if (Bignum::Equal(*delta_minus, *delta_plus)) {
206 delta_plus = delta_minus;
207 }
208 *length = 0;
209 for (;;) {
210 uint16_t digit;
211 digit = numerator->DivideModuloIntBignum(*denominator);
212 DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
213 // digit = numerator / denominator (integer division).
214 // numerator = numerator % denominator.
215 buffer[(*length)++] = static_cast<char>(digit + '0');
216
217 // Can we stop already?
218 // If the remainder of the division is less than the distance to the lower
219 // boundary we can stop. In this case we simply round down (discarding the
220 // remainder).
221 // Similarly we test if we can round up (using the upper boundary).
222 bool in_delta_room_minus;
223 bool in_delta_room_plus;
224 if (is_even) {
225 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
226 } else {
227 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
228 }
229 if (is_even) {
230 in_delta_room_plus =
231 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
232 } else {
233 in_delta_room_plus =
234 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
235 }
236 if (!in_delta_room_minus && !in_delta_room_plus) {
237 // Prepare for next iteration.
238 numerator->Times10();
239 delta_minus->Times10();
240 // We optimized delta_plus to be equal to delta_minus (if they share the
241 // same value). So don't multiply delta_plus if they point to the same
242 // object.
243 if (delta_minus != delta_plus) {
244 delta_plus->Times10();
245 }
246 } else if (in_delta_room_minus && in_delta_room_plus) {
247 // Let's see if 2*numerator < denominator.
248 // If yes, then the next digit would be < 5 and we can round down.
249 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
250 if (compare < 0) {
251 // Remaining digits are less than .5. -> Round down (== do nothing).
252 } else if (compare > 0) {
253 // Remaining digits are more than .5 of denominator. -> Round up.
254 // Note that the last digit could not be a '9' as otherwise the whole
255 // loop would have stopped earlier.
256 // We still have an assert here in case the preconditions were not
257 // satisfied.
258 DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
259 buffer[(*length) - 1]++;
260 } else {
261 // Halfway case.
262 // TODO(floitsch): need a way to solve half-way cases.
263 // For now let's round towards even (since this is what Gay seems to
264 // do).
265
266 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
267 // Round down => Do nothing.
268 } else {
269 DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
270 buffer[(*length) - 1]++;
271 }
272 }
273 return;
274 } else if (in_delta_room_minus) {
275 // Round down (== do nothing).
276 return;
277 } else { // in_delta_room_plus
278 // Round up.
279 // Note again that the last digit could not be '9' since this would have
280 // stopped the loop earlier.
281 // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not
282 // satisfied.
283 DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9');
284 buffer[(*length) - 1]++;
285 return;
286 }
287 }
288 }
289
290
291 // Let v = numerator / denominator < 10.
292 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
293 // from left to right. Once 'count' digits have been produced we decide wether
294 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
295 // as 9.999999 propagate a carry all the way, and change the
296 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> buffer,int * length)297 static void GenerateCountedDigits(int count, int* decimal_point,
298 Bignum* numerator, Bignum* denominator,
299 Vector<char> buffer, int* length) {
300 DOUBLE_CONVERSION_ASSERT(count >= 0);
301 for (int i = 0; i < count - 1; ++i) {
302 uint16_t digit;
303 digit = numerator->DivideModuloIntBignum(*denominator);
304 DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
305 // digit = numerator / denominator (integer division).
306 // numerator = numerator % denominator.
307 buffer[i] = static_cast<char>(digit + '0');
308 // Prepare for next iteration.
309 numerator->Times10();
310 }
311 // Generate the last digit.
312 uint16_t digit;
313 digit = numerator->DivideModuloIntBignum(*denominator);
314 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
315 digit++;
316 }
317 DOUBLE_CONVERSION_ASSERT(digit <= 10);
318 buffer[count - 1] = static_cast<char>(digit + '0');
319 // Correct bad digits (in case we had a sequence of '9's). Propagate the
320 // carry until we hat a non-'9' or til we reach the first digit.
321 for (int i = count - 1; i > 0; --i) {
322 if (buffer[i] != '0' + 10) break;
323 buffer[i] = '0';
324 buffer[i - 1]++;
325 }
326 if (buffer[0] == '0' + 10) {
327 // Propagate a carry past the top place.
328 buffer[0] = '1';
329 (*decimal_point)++;
330 }
331 *length = count;
332 }
333
334
335 // Generates 'requested_digits' after the decimal point. It might omit
336 // trailing '0's. If the input number is too small then no digits at all are
337 // generated (ex.: 2 fixed digits for 0.00001).
338 //
339 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> buffer,int * length)340 static void BignumToFixed(int requested_digits, int* decimal_point,
341 Bignum* numerator, Bignum* denominator,
342 Vector<char> buffer, int* length) {
343 // Note that we have to look at more than just the requested_digits, since
344 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
345 // Even though the power of v equals 0 we can't just stop here.
346 if (-(*decimal_point) > requested_digits) {
347 // The number is definitively too small.
348 // Ex: 0.001 with requested_digits == 1.
349 // Set decimal-point to -requested_digits. This is what Gay does.
350 // Note that it should not have any effect anyways since the string is
351 // empty.
352 *decimal_point = -requested_digits;
353 *length = 0;
354 return;
355 } else if (-(*decimal_point) == requested_digits) {
356 // We only need to verify if the number rounds down or up.
357 // Ex: 0.04 and 0.06 with requested_digits == 1.
358 DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits);
359 // Initially the fraction lies in range (1, 10]. Multiply the denominator
360 // by 10 so that we can compare more easily.
361 denominator->Times10();
362 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
363 // If the fraction is >= 0.5 then we have to include the rounded
364 // digit.
365 buffer[0] = '1';
366 *length = 1;
367 (*decimal_point)++;
368 } else {
369 // Note that we caught most of similar cases earlier.
370 *length = 0;
371 }
372 return;
373 } else {
374 // The requested digits correspond to the digits after the point.
375 // The variable 'needed_digits' includes the digits before the point.
376 int needed_digits = (*decimal_point) + requested_digits;
377 GenerateCountedDigits(needed_digits, decimal_point,
378 numerator, denominator,
379 buffer, length);
380 }
381 }
382
383
384 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
385 // v = f * 2^exponent and 2^52 <= f < 2^53.
386 // v is hence a normalized double with the given exponent. The output is an
387 // approximation for the exponent of the decimal approximation .digits * 10^k.
388 //
389 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
390 // Note: this property holds for v's upper boundary m+ too.
391 // 10^k <= m+ < 10^k+1.
392 // (see explanation below).
393 //
394 // Examples:
395 // EstimatePower(0) => 16
396 // EstimatePower(-52) => 0
397 //
398 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)399 static int EstimatePower(int exponent) {
400 // This function estimates log10 of v where v = f*2^e (with e == exponent).
401 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
402 // Note that f is bounded by its container size. Let p = 53 (the double's
403 // significand size). Then 2^(p-1) <= f < 2^p.
404 //
405 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
406 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
407 // The computed number undershoots by less than 0.631 (when we compute log3
408 // and not log10).
409 //
410 // Optimization: since we only need an approximated result this computation
411 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
412 // not really measurable, though.
413 //
414 // Since we want to avoid overshooting we decrement by 1e10 so that
415 // floating-point imprecisions don't affect us.
416 //
417 // Explanation for v's boundary m+: the computation takes advantage of
418 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
419 // (even for denormals where the delta can be much more important).
420
421 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
422
423 // For doubles len(f) == 53 (don't forget the hidden bit).
424 const int kSignificandSize = Double::kSignificandSize;
425 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
426 return static_cast<int>(estimate);
427 }
428
429
430 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(uint64_t significand,int exponent,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)431 static void InitialScaledStartValuesPositiveExponent(
432 uint64_t significand, int exponent,
433 int estimated_power, bool need_boundary_deltas,
434 Bignum* numerator, Bignum* denominator,
435 Bignum* delta_minus, Bignum* delta_plus) {
436 // A positive exponent implies a positive power.
437 DOUBLE_CONVERSION_ASSERT(estimated_power >= 0);
438 // Since the estimated_power is positive we simply multiply the denominator
439 // by 10^estimated_power.
440
441 // numerator = v.
442 numerator->AssignUInt64(significand);
443 numerator->ShiftLeft(exponent);
444 // denominator = 10^estimated_power.
445 denominator->AssignPowerUInt16(10, estimated_power);
446
447 if (need_boundary_deltas) {
448 // Introduce a common denominator so that the deltas to the boundaries are
449 // integers.
450 denominator->ShiftLeft(1);
451 numerator->ShiftLeft(1);
452 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
453 // denominator (of 2) delta_plus equals 2^e.
454 delta_plus->AssignUInt16(1);
455 delta_plus->ShiftLeft(exponent);
456 // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
457 delta_minus->AssignUInt16(1);
458 delta_minus->ShiftLeft(exponent);
459 }
460 }
461
462
463 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(uint64_t significand,int exponent,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)464 static void InitialScaledStartValuesNegativeExponentPositivePower(
465 uint64_t significand, int exponent,
466 int estimated_power, bool need_boundary_deltas,
467 Bignum* numerator, Bignum* denominator,
468 Bignum* delta_minus, Bignum* delta_plus) {
469 // v = f * 2^e with e < 0, and with estimated_power >= 0.
470 // This means that e is close to 0 (have a look at how estimated_power is
471 // computed).
472
473 // numerator = significand
474 // since v = significand * 2^exponent this is equivalent to
475 // numerator = v * / 2^-exponent
476 numerator->AssignUInt64(significand);
477 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
478 denominator->AssignPowerUInt16(10, estimated_power);
479 denominator->ShiftLeft(-exponent);
480
481 if (need_boundary_deltas) {
482 // Introduce a common denominator so that the deltas to the boundaries are
483 // integers.
484 denominator->ShiftLeft(1);
485 numerator->ShiftLeft(1);
486 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
487 // denominator (of 2) delta_plus equals 2^e.
488 // Given that the denominator already includes v's exponent the distance
489 // to the boundaries is simply 1.
490 delta_plus->AssignUInt16(1);
491 // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
492 delta_minus->AssignUInt16(1);
493 }
494 }
495
496
497 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(uint64_t significand,int exponent,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)498 static void InitialScaledStartValuesNegativeExponentNegativePower(
499 uint64_t significand, int exponent,
500 int estimated_power, bool need_boundary_deltas,
501 Bignum* numerator, Bignum* denominator,
502 Bignum* delta_minus, Bignum* delta_plus) {
503 // Instead of multiplying the denominator with 10^estimated_power we
504 // multiply all values (numerator and deltas) by 10^-estimated_power.
505
506 // Use numerator as temporary container for power_ten.
507 Bignum* power_ten = numerator;
508 power_ten->AssignPowerUInt16(10, -estimated_power);
509
510 if (need_boundary_deltas) {
511 // Since power_ten == numerator we must make a copy of 10^estimated_power
512 // before we complete the computation of the numerator.
513 // delta_plus = delta_minus = 10^estimated_power
514 delta_plus->AssignBignum(*power_ten);
515 delta_minus->AssignBignum(*power_ten);
516 }
517
518 // numerator = significand * 2 * 10^-estimated_power
519 // since v = significand * 2^exponent this is equivalent to
520 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
521 // Remember: numerator has been abused as power_ten. So no need to assign it
522 // to itself.
523 DOUBLE_CONVERSION_ASSERT(numerator == power_ten);
524 numerator->MultiplyByUInt64(significand);
525
526 // denominator = 2 * 2^-exponent with exponent < 0.
527 denominator->AssignUInt16(1);
528 denominator->ShiftLeft(-exponent);
529
530 if (need_boundary_deltas) {
531 // Introduce a common denominator so that the deltas to the boundaries are
532 // integers.
533 numerator->ShiftLeft(1);
534 denominator->ShiftLeft(1);
535 // With this shift the boundaries have their correct value, since
536 // delta_plus = 10^-estimated_power, and
537 // delta_minus = 10^-estimated_power.
538 // These assignments have been done earlier.
539 // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
540 }
541 }
542
543
544 // Let v = significand * 2^exponent.
545 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
546 // and denominator. The functions GenerateShortestDigits and
547 // GenerateCountedDigits will then convert this ratio to its decimal
548 // representation d, with the required accuracy.
549 // Then d * 10^estimated_power is the representation of v.
550 // (Note: the fraction and the estimated_power might get adjusted before
551 // generating the decimal representation.)
552 //
553 // The initial start values consist of:
554 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
555 // - a scaled (common) denominator.
556 // optionally (used by GenerateShortestDigits to decide if it has the shortest
557 // decimal converting back to v):
558 // - v - m-: the distance to the lower boundary.
559 // - m+ - v: the distance to the upper boundary.
560 //
561 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
562 //
563 // Let ep == estimated_power, then the returned values will satisfy:
564 // v / 10^ep = numerator / denominator.
565 // v's boundaries m- and m+:
566 // m- / 10^ep == v / 10^ep - delta_minus / denominator
567 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
568 // Or in other words:
569 // m- == v - delta_minus * 10^ep / denominator;
570 // m+ == v + delta_plus * 10^ep / denominator;
571 //
572 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
573 // or 10^k <= v < 10^(k+1)
574 // we then have 0.1 <= numerator/denominator < 1
575 // or 1 <= numerator/denominator < 10
576 //
577 // It is then easy to kickstart the digit-generation routine.
578 //
579 // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
580 // or BIGNUM_DTOA_SHORTEST_SINGLE.
581
InitialScaledStartValues(uint64_t significand,int exponent,bool lower_boundary_is_closer,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)582 static void InitialScaledStartValues(uint64_t significand,
583 int exponent,
584 bool lower_boundary_is_closer,
585 int estimated_power,
586 bool need_boundary_deltas,
587 Bignum* numerator,
588 Bignum* denominator,
589 Bignum* delta_minus,
590 Bignum* delta_plus) {
591 if (exponent >= 0) {
592 InitialScaledStartValuesPositiveExponent(
593 significand, exponent, estimated_power, need_boundary_deltas,
594 numerator, denominator, delta_minus, delta_plus);
595 } else if (estimated_power >= 0) {
596 InitialScaledStartValuesNegativeExponentPositivePower(
597 significand, exponent, estimated_power, need_boundary_deltas,
598 numerator, denominator, delta_minus, delta_plus);
599 } else {
600 InitialScaledStartValuesNegativeExponentNegativePower(
601 significand, exponent, estimated_power, need_boundary_deltas,
602 numerator, denominator, delta_minus, delta_plus);
603 }
604
605 if (need_boundary_deltas && lower_boundary_is_closer) {
606 // The lower boundary is closer at half the distance of "normal" numbers.
607 // Increase the common denominator and adapt all but the delta_minus.
608 denominator->ShiftLeft(1); // *2
609 numerator->ShiftLeft(1); // *2
610 delta_plus->ShiftLeft(1); // *2
611 }
612 }
613
614
615 // This routine multiplies numerator/denominator so that its values lies in the
616 // range 1-10. That is after a call to this function we have:
617 // 1 <= (numerator + delta_plus) /denominator < 10.
618 // Let numerator the input before modification and numerator' the argument
619 // after modification, then the output-parameter decimal_point is such that
620 // numerator / denominator * 10^estimated_power ==
621 // numerator' / denominator' * 10^(decimal_point - 1)
622 // In some cases estimated_power was too low, and this is already the case. We
623 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
624 // estimated_power) but do not touch the numerator or denominator.
625 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)626 static void FixupMultiply10(int estimated_power, bool is_even,
627 int* decimal_point,
628 Bignum* numerator, Bignum* denominator,
629 Bignum* delta_minus, Bignum* delta_plus) {
630 bool in_range;
631 if (is_even) {
632 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
633 // are rounded to the closest floating-point number with even significand.
634 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
635 } else {
636 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
637 }
638 if (in_range) {
639 // Since numerator + delta_plus >= denominator we already have
640 // 1 <= numerator/denominator < 10. Simply update the estimated_power.
641 *decimal_point = estimated_power + 1;
642 } else {
643 *decimal_point = estimated_power;
644 numerator->Times10();
645 if (Bignum::Equal(*delta_minus, *delta_plus)) {
646 delta_minus->Times10();
647 delta_plus->AssignBignum(*delta_minus);
648 } else {
649 delta_minus->Times10();
650 delta_plus->Times10();
651 }
652 }
653 }
654
655 } // namespace double_conversion
656
657 // ICU PATCH: Close ICU namespace
658 U_NAMESPACE_END
659 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
660