• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution</title>
5<link rel="stylesheet" href="../../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../binom_eg.html" title="Binomial Distribution Examples">
9<link rel="prev" href="binomial_quiz_example.html" title="Binomial Quiz Example">
10<link rel="next" href="binom_size_eg.html" title="Estimating Sample Sizes for a Binomial Distribution.">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="binomial_quiz_example.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../binom_eg.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="binom_size_eg.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h5 class="title">
27<a name="math_toolkit.stat_tut.weg.binom_eg.binom_conf"></a><a class="link" href="binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">Calculating
28          Confidence Limits on the Frequency of Occurrence for a Binomial Distribution</a>
29</h5></div></div></div>
30<p>
31            Imagine you have a process that follows a binomial distribution: for
32            each trial conducted, an event either occurs or does it does not, referred
33            to as "successes" and "failures". If, by experiment,
34            you want to measure the frequency with which successes occur, the best
35            estimate is given simply by <span class="emphasis"><em>k</em></span> / <span class="emphasis"><em>N</em></span>,
36            for <span class="emphasis"><em>k</em></span> successes out of <span class="emphasis"><em>N</em></span> trials.
37            However our confidence in that estimate will be shaped by how many trials
38            were conducted, and how many successes were observed. The static member
39            functions <code class="computeroutput"><span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_lower_bound_on_p</span></code>
40            and <code class="computeroutput"><span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_upper_bound_on_p</span></code>
41            allow you to calculate the confidence intervals for your estimate of
42            the occurrence frequency.
43          </p>
44<p>
45            The sample program <a href="../../../../../../example/binomial_confidence_limits.cpp" target="_top">binomial_confidence_limits.cpp</a>
46            illustrates their use. It begins by defining a procedure that will print
47            a table of confidence limits for various degrees of certainty:
48          </p>
49<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
50<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iomanip</span><span class="special">&gt;</span>
51<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">binomial</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
52
53<span class="keyword">void</span> <span class="identifier">confidence_limits_on_frequency</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">trials</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">successes</span><span class="special">)</span>
54<span class="special">{</span>
55   <span class="comment">//</span>
56   <span class="comment">// trials = Total number of trials.</span>
57   <span class="comment">// successes = Total number of observed successes.</span>
58   <span class="comment">//</span>
59   <span class="comment">// Calculate confidence limits for an observed</span>
60   <span class="comment">// frequency of occurrence that follows a binomial</span>
61   <span class="comment">// distribution.</span>
62   <span class="comment">//</span>
63   <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">std</span><span class="special">;</span>
64   <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">;</span>
65
66   <span class="comment">// Print out general info:</span>
67   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span>
68      <span class="string">"___________________________________________\n"</span>
69      <span class="string">"2-Sided Confidence Limits For Success Ratio\n"</span>
70      <span class="string">"___________________________________________\n\n"</span><span class="special">;</span>
71   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">7</span><span class="special">);</span>
72   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">40</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">left</span> <span class="special">&lt;&lt;</span> <span class="string">"Number of Observations"</span> <span class="special">&lt;&lt;</span> <span class="string">"=  "</span> <span class="special">&lt;&lt;</span> <span class="identifier">trials</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span><span class="special">;</span>
73   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">40</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">left</span> <span class="special">&lt;&lt;</span> <span class="string">"Number of successes"</span> <span class="special">&lt;&lt;</span> <span class="string">"=  "</span> <span class="special">&lt;&lt;</span> <span class="identifier">successes</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span><span class="special">;</span>
74   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">40</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">left</span> <span class="special">&lt;&lt;</span> <span class="string">"Sample frequency of occurrence"</span> <span class="special">&lt;&lt;</span> <span class="string">"=  "</span> <span class="special">&lt;&lt;</span> <span class="keyword">double</span><span class="special">(</span><span class="identifier">successes</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">trials</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span><span class="special">;</span>
75</pre>
76<p>
77            The procedure now defines a table of significance levels: these are the
78            probabilities that the true occurrence frequency lies outside the calculated
79            interval:
80          </p>
81<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">alpha</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.25</span><span class="special">,</span> <span class="number">0.1</span><span class="special">,</span> <span class="number">0.05</span><span class="special">,</span> <span class="number">0.01</span><span class="special">,</span> <span class="number">0.001</span><span class="special">,</span> <span class="number">0.0001</span><span class="special">,</span> <span class="number">0.00001</span> <span class="special">};</span>
82</pre>
83<p>
84            Some pretty printing of the table header follows:
85          </p>
86<pre class="programlisting"><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\n\n"</span>
87        <span class="string">"_______________________________________________________________________\n"</span>
88        <span class="string">"Confidence        Lower CP       Upper CP       Lower JP       Upper JP\n"</span>
89        <span class="string">" Value (%)        Limit          Limit          Limit          Limit\n"</span>
90        <span class="string">"_______________________________________________________________________\n"</span><span class="special">;</span>
91</pre>
92<p>
93            And now for the important part - the intervals themselves - for each
94            value of <span class="emphasis"><em>alpha</em></span>, we call <code class="computeroutput"><span class="identifier">find_lower_bound_on_p</span></code>
95            and <code class="computeroutput"><span class="identifier">find_lower_upper_on_p</span></code>
96            to obtain lower and upper bounds respectively. Note that since we are
97            calculating a two-sided interval, we must divide the value of alpha in
98            two.
99          </p>
100<p>
101            Please note that calculating two separate <span class="emphasis"><em>single sided bounds</em></span>,
102            each with risk level α is not the same thing as calculating a two sided
103            interval. Had we calculate two single-sided intervals each with a risk
104            that the true value is outside the interval of α, then:
105          </p>
106<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
107                The risk that it is less than the lower bound is α.
108              </li></ul></div>
109<p>
110            and
111          </p>
112<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
113                The risk that it is greater than the upper bound is also α.
114              </li></ul></div>
115<p>
116            So the risk it is outside <span class="bold"><strong>upper or lower bound</strong></span>,
117            is <span class="bold"><strong>twice</strong></span> alpha, and the probability
118            that it is inside the bounds is therefore not nearly as high as one might
119            have thought. This is why α/2 must be used in the calculations below.
120          </p>
121<p>
122            In contrast, had we been calculating a single-sided interval, for example:
123            <span class="emphasis"><em>"Calculate a lower bound so that we are P% sure that the
124            true occurrence frequency is greater than some value"</em></span>
125            then we would <span class="bold"><strong>not</strong></span> have divided by two.
126          </p>
127<p>
128            Finally note that <code class="computeroutput"><span class="identifier">binomial_distribution</span></code>
129            provides a choice of two methods for the calculation, we print out the
130            results from both methods in this example:
131          </p>
132<pre class="programlisting">   <span class="keyword">for</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">alpha</span><span class="special">)/</span><span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">alpha</span><span class="special">[</span><span class="number">0</span><span class="special">]);</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
133   <span class="special">{</span>
134      <span class="comment">// Confidence value:</span>
135      <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">fixed</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">3</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">10</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">right</span> <span class="special">&lt;&lt;</span> <span class="number">100</span> <span class="special">*</span> <span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]);</span>
136      <span class="comment">// Calculate Clopper Pearson bounds:</span>
137      <span class="keyword">double</span> <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
138                     <span class="identifier">trials</span><span class="special">,</span> <span class="identifier">successes</span><span class="special">,</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]/</span><span class="number">2</span><span class="special">);</span>
139      <span class="keyword">double</span> <span class="identifier">u</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
140                     <span class="identifier">trials</span><span class="special">,</span> <span class="identifier">successes</span><span class="special">,</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]/</span><span class="number">2</span><span class="special">);</span>
141      <span class="comment">// Print Clopper Pearson Limits:</span>
142      <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">fixed</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">5</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">right</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span><span class="special">;</span>
143      <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">fixed</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">5</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">right</span> <span class="special">&lt;&lt;</span> <span class="identifier">u</span><span class="special">;</span>
144      <span class="comment">// Calculate Jeffreys Prior Bounds:</span>
145      <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
146            <span class="identifier">trials</span><span class="special">,</span> <span class="identifier">successes</span><span class="special">,</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]/</span><span class="number">2</span><span class="special">,</span>
147            <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">jeffreys_prior_interval</span><span class="special">);</span>
148      <span class="identifier">u</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
149            <span class="identifier">trials</span><span class="special">,</span> <span class="identifier">successes</span><span class="special">,</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]/</span><span class="number">2</span><span class="special">,</span>
150            <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;::</span><span class="identifier">jeffreys_prior_interval</span><span class="special">);</span>
151      <span class="comment">// Print Jeffreys Prior Limits:</span>
152      <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">fixed</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">5</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">right</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span><span class="special">;</span>
153      <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">fixed</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">5</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">right</span> <span class="special">&lt;&lt;</span> <span class="identifier">u</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
154   <span class="special">}</span>
155   <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
156<span class="special">}</span>
157</pre>
158<p>
159            And that's all there is to it. Let's see some sample output for a 2 in
160            10 success ratio, first for 20 trials:
161          </p>
162<pre class="programlisting">___________________________________________
1632-Sided Confidence Limits For Success Ratio
164___________________________________________
165
166Number of Observations                  =  20
167Number of successes                     =  4
168Sample frequency of occurrence          =  0.2
169
170
171_______________________________________________________________________
172Confidence        Lower CP       Upper CP       Lower JP       Upper JP
173 Value (%)        Limit          Limit          Limit          Limit
174_______________________________________________________________________
175    50.000        0.12840        0.29588        0.14974        0.26916
176    75.000        0.09775        0.34633        0.11653        0.31861
177    90.000        0.07135        0.40103        0.08734        0.37274
178    95.000        0.05733        0.43661        0.07152        0.40823
179    99.000        0.03576        0.50661        0.04655        0.47859
180    99.900        0.01905        0.58632        0.02634        0.55960
181    99.990        0.01042        0.64997        0.01530        0.62495
182    99.999        0.00577        0.70216        0.00901        0.67897
183</pre>
184<p>
185            As you can see, even at the 95% confidence level the bounds are really
186            quite wide (this example is chosen to be easily compared to the one in
187            the <a href="http://www.itl.nist.gov/div898/handbook/" target="_top">NIST/SEMATECH
188            e-Handbook of Statistical Methods.</a> <a href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm" target="_top">here</a>).
189            Note also that the Clopper-Pearson calculation method (CP above) produces
190            quite noticeably more pessimistic estimates than the Jeffreys Prior method
191            (JP above).
192          </p>
193<p>
194            Compare that with the program output for 2000 trials:
195          </p>
196<pre class="programlisting">___________________________________________
1972-Sided Confidence Limits For Success Ratio
198___________________________________________
199
200Number of Observations                  =  2000
201Number of successes                     =  400
202Sample frequency of occurrence          =  0.2000000
203
204
205_______________________________________________________________________
206Confidence        Lower CP       Upper CP       Lower JP       Upper JP
207 Value (%)        Limit          Limit          Limit          Limit
208_______________________________________________________________________
209    50.000        0.19382        0.20638        0.19406        0.20613
210    75.000        0.18965        0.21072        0.18990        0.21047
211    90.000        0.18537        0.21528        0.18561        0.21503
212    95.000        0.18267        0.21821        0.18291        0.21796
213    99.000        0.17745        0.22400        0.17769        0.22374
214    99.900        0.17150        0.23079        0.17173        0.23053
215    99.990        0.16658        0.23657        0.16681        0.23631
216    99.999        0.16233        0.24169        0.16256        0.24143
217</pre>
218<p>
219            Now even when the confidence level is very high, the limits are really
220            quite close to the experimentally calculated value of 0.2. Furthermore
221            the difference between the two calculation methods is now really quite
222            small.
223          </p>
224</div>
225<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
226<td align="left"></td>
227<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
228      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
229      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
230      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
231      Daryle Walker and Xiaogang Zhang<p>
232        Distributed under the Boost Software License, Version 1.0. (See accompanying
233        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
234      </p>
235</div></td>
236</tr></table>
237<hr>
238<div class="spirit-nav">
239<a accesskey="p" href="binomial_quiz_example.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../binom_eg.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="binom_size_eg.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
240</div>
241</body>
242</html>
243