• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk, unsigned int log)
136 {
137 	struct sock *sk2;
138 	kuid_t uid = sock_i_uid(sk);
139 
140 	sk_for_each(sk2, &hslot->head) {
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    inet_rcv_saddr_equal(sk, sk2, true)) {
148 			if (sk2->sk_reuseport && sk->sk_reuseport &&
149 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 			    uid_eq(uid, sock_i_uid(sk2))) {
151 				if (!bitmap)
152 					return 0;
153 			} else {
154 				if (!bitmap)
155 					return 1;
156 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 					  bitmap);
158 			}
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Note: we still hold spinlock of primary hash chain, so no other writer
166  * can insert/delete a socket with local_port == num
167  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 				struct udp_hslot *hslot2,
170 				struct sock *sk)
171 {
172 	struct sock *sk2;
173 	kuid_t uid = sock_i_uid(sk);
174 	int res = 0;
175 
176 	spin_lock(&hslot2->lock);
177 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 		if (net_eq(sock_net(sk2), net) &&
179 		    sk2 != sk &&
180 		    (udp_sk(sk2)->udp_port_hash == num) &&
181 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 		    inet_rcv_saddr_equal(sk, sk2, true)) {
185 			if (sk2->sk_reuseport && sk->sk_reuseport &&
186 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 			    uid_eq(uid, sock_i_uid(sk2))) {
188 				res = 0;
189 			} else {
190 				res = 1;
191 			}
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 	struct net *net = sock_net(sk);
202 	kuid_t uid = sock_i_uid(sk);
203 	struct sock *sk2;
204 
205 	sk_for_each(sk2, &hslot->head) {
206 		if (net_eq(sock_net(sk2), net) &&
207 		    sk2 != sk &&
208 		    sk2->sk_family == sk->sk_family &&
209 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 		    inet_rcv_saddr_equal(sk, sk2, false)) {
214 			return reuseport_add_sock(sk, sk2,
215 						  inet_rcv_saddr_any(sk));
216 		}
217 	}
218 
219 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221 
222 /**
223  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224  *
225  *  @sk:          socket struct in question
226  *  @snum:        port number to look up
227  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228  *                   with NULL address
229  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 		     unsigned int hash2_nulladdr)
232 {
233 	struct udp_hslot *hslot, *hslot2;
234 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 	int    error = 1;
236 	struct net *net = sock_net(sk);
237 
238 	if (!snum) {
239 		int low, high, remaining;
240 		unsigned int rand;
241 		unsigned short first, last;
242 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 
244 		inet_get_local_port_range(net, &low, &high);
245 		remaining = (high - low) + 1;
246 
247 		rand = prandom_u32();
248 		first = reciprocal_scale(rand, remaining) + low;
249 		/*
250 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 		 */
252 		rand = (rand | 1) * (udptable->mask + 1);
253 		last = first + udptable->mask + 1;
254 		do {
255 			hslot = udp_hashslot(udptable, net, first);
256 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 			spin_lock_bh(&hslot->lock);
258 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 					    udptable->log);
260 
261 			snum = first;
262 			/*
263 			 * Iterate on all possible values of snum for this hash.
264 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 			 * give us randomization and full range coverage.
266 			 */
267 			do {
268 				if (low <= snum && snum <= high &&
269 				    !test_bit(snum >> udptable->log, bitmap) &&
270 				    !inet_is_local_reserved_port(net, snum))
271 					goto found;
272 				snum += rand;
273 			} while (snum != first);
274 			spin_unlock_bh(&hslot->lock);
275 			cond_resched();
276 		} while (++first != last);
277 		goto fail;
278 	} else {
279 		hslot = udp_hashslot(udptable, net, snum);
280 		spin_lock_bh(&hslot->lock);
281 		if (hslot->count > 10) {
282 			int exist;
283 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 
285 			slot2          &= udptable->mask;
286 			hash2_nulladdr &= udptable->mask;
287 
288 			hslot2 = udp_hashslot2(udptable, slot2);
289 			if (hslot->count < hslot2->count)
290 				goto scan_primary_hash;
291 
292 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 			if (!exist && (hash2_nulladdr != slot2)) {
294 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 							     sk);
297 			}
298 			if (exist)
299 				goto fail_unlock;
300 			else
301 				goto found;
302 		}
303 scan_primary_hash:
304 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 			goto fail_unlock;
306 	}
307 found:
308 	inet_sk(sk)->inet_num = snum;
309 	udp_sk(sk)->udp_port_hash = snum;
310 	udp_sk(sk)->udp_portaddr_hash ^= snum;
311 	if (sk_unhashed(sk)) {
312 		if (sk->sk_reuseport &&
313 		    udp_reuseport_add_sock(sk, hslot)) {
314 			inet_sk(sk)->inet_num = 0;
315 			udp_sk(sk)->udp_port_hash = 0;
316 			udp_sk(sk)->udp_portaddr_hash ^= snum;
317 			goto fail_unlock;
318 		}
319 
320 		sk_add_node_rcu(sk, &hslot->head);
321 		hslot->count++;
322 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 
324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 		spin_lock(&hslot2->lock);
326 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 		    sk->sk_family == AF_INET6)
328 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 					   &hslot2->head);
330 		else
331 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 					   &hslot2->head);
333 		hslot2->count++;
334 		spin_unlock(&hslot2->lock);
335 	}
336 	sock_set_flag(sk, SOCK_RCU_FREE);
337 	error = 0;
338 fail_unlock:
339 	spin_unlock_bh(&hslot->lock);
340 fail:
341 	return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344 
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 	unsigned int hash2_nulladdr =
348 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 	unsigned int hash2_partial =
350 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 
352 	/* precompute partial secondary hash */
353 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 			 __be32 saddr, __be16 sport,
359 			 __be32 daddr, unsigned short hnum,
360 			 int dif, int sdif)
361 {
362 	int score;
363 	struct inet_sock *inet;
364 	bool dev_match;
365 
366 	if (!net_eq(sock_net(sk), net) ||
367 	    udp_sk(sk)->udp_port_hash != hnum ||
368 	    ipv6_only_sock(sk))
369 		return -1;
370 
371 	if (sk->sk_rcv_saddr != daddr)
372 		return -1;
373 
374 	score = (sk->sk_family == PF_INET) ? 2 : 1;
375 
376 	inet = inet_sk(sk);
377 	if (inet->inet_daddr) {
378 		if (inet->inet_daddr != saddr)
379 			return -1;
380 		score += 4;
381 	}
382 
383 	if (inet->inet_dport) {
384 		if (inet->inet_dport != sport)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 					dif, sdif);
391 	if (!dev_match)
392 		return -1;
393 	if (sk->sk_bound_dev_if)
394 		score += 4;
395 
396 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 		score++;
398 	return score;
399 }
400 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 		       const __u16 lport, const __be32 faddr,
403 		       const __be16 fport)
404 {
405 	static u32 udp_ehash_secret __read_mostly;
406 
407 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408 
409 	return __inet_ehashfn(laddr, lport, faddr, fport,
410 			      udp_ehash_secret + net_hash_mix(net));
411 }
412 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 				     struct sk_buff *skb,
415 				     __be32 saddr, __be16 sport,
416 				     __be32 daddr, unsigned short hnum)
417 {
418 	struct sock *reuse_sk = NULL;
419 	u32 hash;
420 
421 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 		reuse_sk = reuseport_select_sock(sk, hash, skb,
424 						 sizeof(struct udphdr));
425 	}
426 	return reuse_sk;
427 }
428 
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 				     __be32 saddr, __be16 sport,
432 				     __be32 daddr, unsigned int hnum,
433 				     int dif, int sdif,
434 				     struct udp_hslot *hslot2,
435 				     struct sk_buff *skb)
436 {
437 	struct sock *sk, *result;
438 	int score, badness;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif);
445 		if (score > badness) {
446 			result = lookup_reuseport(net, sk, skb,
447 						  saddr, sport, daddr, hnum);
448 			/* Fall back to scoring if group has connections */
449 			if (result && !reuseport_has_conns(sk, false))
450 				return result;
451 
452 			result = result ? : sk;
453 			badness = score;
454 		}
455 	}
456 	return result;
457 }
458 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)459 static struct sock *udp4_lookup_run_bpf(struct net *net,
460 					struct udp_table *udptable,
461 					struct sk_buff *skb,
462 					__be32 saddr, __be16 sport,
463 					__be32 daddr, u16 hnum)
464 {
465 	struct sock *sk, *reuse_sk;
466 	bool no_reuseport;
467 
468 	if (udptable != &udp_table)
469 		return NULL; /* only UDP is supported */
470 
471 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
472 					    saddr, sport, daddr, hnum, &sk);
473 	if (no_reuseport || IS_ERR_OR_NULL(sk))
474 		return sk;
475 
476 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
477 	if (reuse_sk)
478 		sk = reuse_sk;
479 	return sk;
480 }
481 
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483  * harder than this. -DaveM
484  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 		__be16 sport, __be32 daddr, __be16 dport, int dif,
487 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 	unsigned short hnum = ntohs(dport);
490 	unsigned int hash2, slot2;
491 	struct udp_hslot *hslot2;
492 	struct sock *result, *sk;
493 
494 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 	slot2 = hash2 & udptable->mask;
496 	hslot2 = &udptable->hash2[slot2];
497 
498 	/* Lookup connected or non-wildcard socket */
499 	result = udp4_lib_lookup2(net, saddr, sport,
500 				  daddr, hnum, dif, sdif,
501 				  hslot2, skb);
502 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 		goto done;
504 
505 	/* Lookup redirect from BPF */
506 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
507 		sk = udp4_lookup_run_bpf(net, udptable, skb,
508 					 saddr, sport, daddr, hnum);
509 		if (sk) {
510 			result = sk;
511 			goto done;
512 		}
513 	}
514 
515 	/* Got non-wildcard socket or error on first lookup */
516 	if (result)
517 		goto done;
518 
519 	/* Lookup wildcard sockets */
520 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 	slot2 = hash2 & udptable->mask;
522 	hslot2 = &udptable->hash2[slot2];
523 
524 	result = udp4_lib_lookup2(net, saddr, sport,
525 				  htonl(INADDR_ANY), hnum, dif, sdif,
526 				  hslot2, skb);
527 done:
528 	if (IS_ERR(result))
529 		return NULL;
530 	return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535 						 __be16 sport, __be16 dport,
536 						 struct udp_table *udptable)
537 {
538 	const struct iphdr *iph = ip_hdr(skb);
539 
540 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541 				 iph->daddr, dport, inet_iif(skb),
542 				 inet_sdif(skb), udptable, skb);
543 }
544 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)545 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
546 				 __be16 sport, __be16 dport)
547 {
548 	const struct iphdr *iph = ip_hdr(skb);
549 
550 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 				 iph->daddr, dport, inet_iif(skb),
552 				 inet_sdif(skb), &udp_table, NULL);
553 }
554 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
555 
556 /* Must be called under rcu_read_lock().
557  * Does increment socket refcount.
558  */
559 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)560 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
561 			     __be32 daddr, __be16 dport, int dif)
562 {
563 	struct sock *sk;
564 
565 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
566 			       dif, 0, &udp_table, NULL);
567 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
568 		sk = NULL;
569 	return sk;
570 }
571 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
572 #endif
573 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)574 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
575 				       __be16 loc_port, __be32 loc_addr,
576 				       __be16 rmt_port, __be32 rmt_addr,
577 				       int dif, int sdif, unsigned short hnum)
578 {
579 	struct inet_sock *inet = inet_sk(sk);
580 
581 	if (!net_eq(sock_net(sk), net) ||
582 	    udp_sk(sk)->udp_port_hash != hnum ||
583 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
584 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
585 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
586 	    ipv6_only_sock(sk) ||
587 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
588 		return false;
589 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
590 		return false;
591 	return true;
592 }
593 
594 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)595 void udp_encap_enable(void)
596 {
597 	static_branch_inc(&udp_encap_needed_key);
598 }
599 EXPORT_SYMBOL(udp_encap_enable);
600 
601 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
602  * through error handlers in encapsulations looking for a match.
603  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)604 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
605 {
606 	int i;
607 
608 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
609 		int (*handler)(struct sk_buff *skb, u32 info);
610 		const struct ip_tunnel_encap_ops *encap;
611 
612 		encap = rcu_dereference(iptun_encaps[i]);
613 		if (!encap)
614 			continue;
615 		handler = encap->err_handler;
616 		if (handler && !handler(skb, info))
617 			return 0;
618 	}
619 
620 	return -ENOENT;
621 }
622 
623 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
624  * reversing source and destination port: this will match tunnels that force the
625  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
626  * lwtunnels might actually break this assumption by being configured with
627  * different destination ports on endpoints, in this case we won't be able to
628  * trace ICMP messages back to them.
629  *
630  * If this doesn't match any socket, probe tunnels with arbitrary destination
631  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
632  * we've sent packets to won't necessarily match the local destination port.
633  *
634  * Then ask the tunnel implementation to match the error against a valid
635  * association.
636  *
637  * Return an error if we can't find a match, the socket if we need further
638  * processing, zero otherwise.
639  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)640 static struct sock *__udp4_lib_err_encap(struct net *net,
641 					 const struct iphdr *iph,
642 					 struct udphdr *uh,
643 					 struct udp_table *udptable,
644 					 struct sk_buff *skb, u32 info)
645 {
646 	int network_offset, transport_offset;
647 	struct sock *sk;
648 
649 	network_offset = skb_network_offset(skb);
650 	transport_offset = skb_transport_offset(skb);
651 
652 	/* Network header needs to point to the outer IPv4 header inside ICMP */
653 	skb_reset_network_header(skb);
654 
655 	/* Transport header needs to point to the UDP header */
656 	skb_set_transport_header(skb, iph->ihl << 2);
657 
658 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
659 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
660 			       udptable, NULL);
661 	if (sk) {
662 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
663 		struct udp_sock *up = udp_sk(sk);
664 
665 		lookup = READ_ONCE(up->encap_err_lookup);
666 		if (!lookup || lookup(sk, skb))
667 			sk = NULL;
668 	}
669 
670 	if (!sk)
671 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
672 
673 	skb_set_transport_header(skb, transport_offset);
674 	skb_set_network_header(skb, network_offset);
675 
676 	return sk;
677 }
678 
679 /*
680  * This routine is called by the ICMP module when it gets some
681  * sort of error condition.  If err < 0 then the socket should
682  * be closed and the error returned to the user.  If err > 0
683  * it's just the icmp type << 8 | icmp code.
684  * Header points to the ip header of the error packet. We move
685  * on past this. Then (as it used to claim before adjustment)
686  * header points to the first 8 bytes of the udp header.  We need
687  * to find the appropriate port.
688  */
689 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)690 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
691 {
692 	struct inet_sock *inet;
693 	const struct iphdr *iph = (const struct iphdr *)skb->data;
694 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
695 	const int type = icmp_hdr(skb)->type;
696 	const int code = icmp_hdr(skb)->code;
697 	bool tunnel = false;
698 	struct sock *sk;
699 	int harderr;
700 	int err;
701 	struct net *net = dev_net(skb->dev);
702 
703 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
704 			       iph->saddr, uh->source, skb->dev->ifindex,
705 			       inet_sdif(skb), udptable, NULL);
706 	if (!sk) {
707 		/* No socket for error: try tunnels before discarding */
708 		sk = ERR_PTR(-ENOENT);
709 		if (static_branch_unlikely(&udp_encap_needed_key)) {
710 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
711 						  info);
712 			if (!sk)
713 				return 0;
714 		}
715 
716 		if (IS_ERR(sk)) {
717 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
718 			return PTR_ERR(sk);
719 		}
720 
721 		tunnel = true;
722 	}
723 
724 	err = 0;
725 	harderr = 0;
726 	inet = inet_sk(sk);
727 
728 	switch (type) {
729 	default:
730 	case ICMP_TIME_EXCEEDED:
731 		err = EHOSTUNREACH;
732 		break;
733 	case ICMP_SOURCE_QUENCH:
734 		goto out;
735 	case ICMP_PARAMETERPROB:
736 		err = EPROTO;
737 		harderr = 1;
738 		break;
739 	case ICMP_DEST_UNREACH:
740 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
741 			ipv4_sk_update_pmtu(skb, sk, info);
742 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
743 				err = EMSGSIZE;
744 				harderr = 1;
745 				break;
746 			}
747 			goto out;
748 		}
749 		err = EHOSTUNREACH;
750 		if (code <= NR_ICMP_UNREACH) {
751 			harderr = icmp_err_convert[code].fatal;
752 			err = icmp_err_convert[code].errno;
753 		}
754 		break;
755 	case ICMP_REDIRECT:
756 		ipv4_sk_redirect(skb, sk);
757 		goto out;
758 	}
759 
760 	/*
761 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
762 	 *	4.1.3.3.
763 	 */
764 	if (tunnel) {
765 		/* ...not for tunnels though: we don't have a sending socket */
766 		goto out;
767 	}
768 	if (!inet->recverr) {
769 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
770 			goto out;
771 	} else
772 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
773 
774 	sk->sk_err = err;
775 	sk->sk_error_report(sk);
776 out:
777 	return 0;
778 }
779 
udp_err(struct sk_buff * skb,u32 info)780 int udp_err(struct sk_buff *skb, u32 info)
781 {
782 	return __udp4_lib_err(skb, info, &udp_table);
783 }
784 
785 /*
786  * Throw away all pending data and cancel the corking. Socket is locked.
787  */
udp_flush_pending_frames(struct sock * sk)788 void udp_flush_pending_frames(struct sock *sk)
789 {
790 	struct udp_sock *up = udp_sk(sk);
791 
792 	if (up->pending) {
793 		up->len = 0;
794 		up->pending = 0;
795 		ip_flush_pending_frames(sk);
796 	}
797 }
798 EXPORT_SYMBOL(udp_flush_pending_frames);
799 
800 /**
801  * 	udp4_hwcsum  -  handle outgoing HW checksumming
802  * 	@skb: 	sk_buff containing the filled-in UDP header
803  * 	        (checksum field must be zeroed out)
804  *	@src:	source IP address
805  *	@dst:	destination IP address
806  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)807 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
808 {
809 	struct udphdr *uh = udp_hdr(skb);
810 	int offset = skb_transport_offset(skb);
811 	int len = skb->len - offset;
812 	int hlen = len;
813 	__wsum csum = 0;
814 
815 	if (!skb_has_frag_list(skb)) {
816 		/*
817 		 * Only one fragment on the socket.
818 		 */
819 		skb->csum_start = skb_transport_header(skb) - skb->head;
820 		skb->csum_offset = offsetof(struct udphdr, check);
821 		uh->check = ~csum_tcpudp_magic(src, dst, len,
822 					       IPPROTO_UDP, 0);
823 	} else {
824 		struct sk_buff *frags;
825 
826 		/*
827 		 * HW-checksum won't work as there are two or more
828 		 * fragments on the socket so that all csums of sk_buffs
829 		 * should be together
830 		 */
831 		skb_walk_frags(skb, frags) {
832 			csum = csum_add(csum, frags->csum);
833 			hlen -= frags->len;
834 		}
835 
836 		csum = skb_checksum(skb, offset, hlen, csum);
837 		skb->ip_summed = CHECKSUM_NONE;
838 
839 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
840 		if (uh->check == 0)
841 			uh->check = CSUM_MANGLED_0;
842 	}
843 }
844 EXPORT_SYMBOL_GPL(udp4_hwcsum);
845 
846 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
847  * for the simple case like when setting the checksum for a UDP tunnel.
848  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)849 void udp_set_csum(bool nocheck, struct sk_buff *skb,
850 		  __be32 saddr, __be32 daddr, int len)
851 {
852 	struct udphdr *uh = udp_hdr(skb);
853 
854 	if (nocheck) {
855 		uh->check = 0;
856 	} else if (skb_is_gso(skb)) {
857 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
858 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
859 		uh->check = 0;
860 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
861 		if (uh->check == 0)
862 			uh->check = CSUM_MANGLED_0;
863 	} else {
864 		skb->ip_summed = CHECKSUM_PARTIAL;
865 		skb->csum_start = skb_transport_header(skb) - skb->head;
866 		skb->csum_offset = offsetof(struct udphdr, check);
867 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
868 	}
869 }
870 EXPORT_SYMBOL(udp_set_csum);
871 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)872 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
873 			struct inet_cork *cork)
874 {
875 	struct sock *sk = skb->sk;
876 	struct inet_sock *inet = inet_sk(sk);
877 	struct udphdr *uh;
878 	int err = 0;
879 	int is_udplite = IS_UDPLITE(sk);
880 	int offset = skb_transport_offset(skb);
881 	int len = skb->len - offset;
882 	int datalen = len - sizeof(*uh);
883 	__wsum csum = 0;
884 
885 	/*
886 	 * Create a UDP header
887 	 */
888 	uh = udp_hdr(skb);
889 	uh->source = inet->inet_sport;
890 	uh->dest = fl4->fl4_dport;
891 	uh->len = htons(len);
892 	uh->check = 0;
893 
894 	if (cork->gso_size) {
895 		const int hlen = skb_network_header_len(skb) +
896 				 sizeof(struct udphdr);
897 
898 		if (hlen + cork->gso_size > cork->fragsize) {
899 			kfree_skb(skb);
900 			return -EINVAL;
901 		}
902 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
903 			kfree_skb(skb);
904 			return -EINVAL;
905 		}
906 		if (sk->sk_no_check_tx) {
907 			kfree_skb(skb);
908 			return -EINVAL;
909 		}
910 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
911 		    dst_xfrm(skb_dst(skb))) {
912 			kfree_skb(skb);
913 			return -EIO;
914 		}
915 
916 		if (datalen > cork->gso_size) {
917 			skb_shinfo(skb)->gso_size = cork->gso_size;
918 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
919 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
920 								 cork->gso_size);
921 		}
922 		goto csum_partial;
923 	}
924 
925 	if (is_udplite)  				 /*     UDP-Lite      */
926 		csum = udplite_csum(skb);
927 
928 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
929 
930 		skb->ip_summed = CHECKSUM_NONE;
931 		goto send;
932 
933 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
934 csum_partial:
935 
936 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
937 		goto send;
938 
939 	} else
940 		csum = udp_csum(skb);
941 
942 	/* add protocol-dependent pseudo-header */
943 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
944 				      sk->sk_protocol, csum);
945 	if (uh->check == 0)
946 		uh->check = CSUM_MANGLED_0;
947 
948 send:
949 	err = ip_send_skb(sock_net(sk), skb);
950 	if (err) {
951 		if (err == -ENOBUFS && !inet->recverr) {
952 			UDP_INC_STATS(sock_net(sk),
953 				      UDP_MIB_SNDBUFERRORS, is_udplite);
954 			err = 0;
955 		}
956 	} else
957 		UDP_INC_STATS(sock_net(sk),
958 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
959 	return err;
960 }
961 
962 /*
963  * Push out all pending data as one UDP datagram. Socket is locked.
964  */
udp_push_pending_frames(struct sock * sk)965 int udp_push_pending_frames(struct sock *sk)
966 {
967 	struct udp_sock  *up = udp_sk(sk);
968 	struct inet_sock *inet = inet_sk(sk);
969 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
970 	struct sk_buff *skb;
971 	int err = 0;
972 
973 	skb = ip_finish_skb(sk, fl4);
974 	if (!skb)
975 		goto out;
976 
977 	err = udp_send_skb(skb, fl4, &inet->cork.base);
978 
979 out:
980 	up->len = 0;
981 	up->pending = 0;
982 	return err;
983 }
984 EXPORT_SYMBOL(udp_push_pending_frames);
985 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)986 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
987 {
988 	switch (cmsg->cmsg_type) {
989 	case UDP_SEGMENT:
990 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
991 			return -EINVAL;
992 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
993 		return 0;
994 	default:
995 		return -EINVAL;
996 	}
997 }
998 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)999 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1000 {
1001 	struct cmsghdr *cmsg;
1002 	bool need_ip = false;
1003 	int err;
1004 
1005 	for_each_cmsghdr(cmsg, msg) {
1006 		if (!CMSG_OK(msg, cmsg))
1007 			return -EINVAL;
1008 
1009 		if (cmsg->cmsg_level != SOL_UDP) {
1010 			need_ip = true;
1011 			continue;
1012 		}
1013 
1014 		err = __udp_cmsg_send(cmsg, gso_size);
1015 		if (err)
1016 			return err;
1017 	}
1018 
1019 	return need_ip;
1020 }
1021 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1022 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1023 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1024 {
1025 	struct inet_sock *inet = inet_sk(sk);
1026 	struct udp_sock *up = udp_sk(sk);
1027 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1028 	struct flowi4 fl4_stack;
1029 	struct flowi4 *fl4;
1030 	int ulen = len;
1031 	struct ipcm_cookie ipc;
1032 	struct rtable *rt = NULL;
1033 	int free = 0;
1034 	int connected = 0;
1035 	__be32 daddr, faddr, saddr;
1036 	__be16 dport;
1037 	u8  tos;
1038 	int err, is_udplite = IS_UDPLITE(sk);
1039 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1040 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1041 	struct sk_buff *skb;
1042 	struct ip_options_data opt_copy;
1043 
1044 	if (len > 0xFFFF)
1045 		return -EMSGSIZE;
1046 
1047 	/*
1048 	 *	Check the flags.
1049 	 */
1050 
1051 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1052 		return -EOPNOTSUPP;
1053 
1054 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1055 
1056 	fl4 = &inet->cork.fl.u.ip4;
1057 	if (up->pending) {
1058 		/*
1059 		 * There are pending frames.
1060 		 * The socket lock must be held while it's corked.
1061 		 */
1062 		lock_sock(sk);
1063 		if (likely(up->pending)) {
1064 			if (unlikely(up->pending != AF_INET)) {
1065 				release_sock(sk);
1066 				return -EINVAL;
1067 			}
1068 			goto do_append_data;
1069 		}
1070 		release_sock(sk);
1071 	}
1072 	ulen += sizeof(struct udphdr);
1073 
1074 	/*
1075 	 *	Get and verify the address.
1076 	 */
1077 	if (usin) {
1078 		if (msg->msg_namelen < sizeof(*usin))
1079 			return -EINVAL;
1080 		if (usin->sin_family != AF_INET) {
1081 			if (usin->sin_family != AF_UNSPEC)
1082 				return -EAFNOSUPPORT;
1083 		}
1084 
1085 		daddr = usin->sin_addr.s_addr;
1086 		dport = usin->sin_port;
1087 		if (dport == 0)
1088 			return -EINVAL;
1089 	} else {
1090 		if (sk->sk_state != TCP_ESTABLISHED)
1091 			return -EDESTADDRREQ;
1092 		daddr = inet->inet_daddr;
1093 		dport = inet->inet_dport;
1094 		/* Open fast path for connected socket.
1095 		   Route will not be used, if at least one option is set.
1096 		 */
1097 		connected = 1;
1098 	}
1099 
1100 	ipcm_init_sk(&ipc, inet);
1101 	ipc.gso_size = READ_ONCE(up->gso_size);
1102 
1103 	if (msg->msg_controllen) {
1104 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1105 		if (err > 0)
1106 			err = ip_cmsg_send(sk, msg, &ipc,
1107 					   sk->sk_family == AF_INET6);
1108 		if (unlikely(err < 0)) {
1109 			kfree(ipc.opt);
1110 			return err;
1111 		}
1112 		if (ipc.opt)
1113 			free = 1;
1114 		connected = 0;
1115 	}
1116 	if (!ipc.opt) {
1117 		struct ip_options_rcu *inet_opt;
1118 
1119 		rcu_read_lock();
1120 		inet_opt = rcu_dereference(inet->inet_opt);
1121 		if (inet_opt) {
1122 			memcpy(&opt_copy, inet_opt,
1123 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1124 			ipc.opt = &opt_copy.opt;
1125 		}
1126 		rcu_read_unlock();
1127 	}
1128 
1129 	if (cgroup_bpf_enabled && !connected) {
1130 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1131 					    (struct sockaddr *)usin, &ipc.addr);
1132 		if (err)
1133 			goto out_free;
1134 		if (usin) {
1135 			if (usin->sin_port == 0) {
1136 				/* BPF program set invalid port. Reject it. */
1137 				err = -EINVAL;
1138 				goto out_free;
1139 			}
1140 			daddr = usin->sin_addr.s_addr;
1141 			dport = usin->sin_port;
1142 		}
1143 	}
1144 
1145 	saddr = ipc.addr;
1146 	ipc.addr = faddr = daddr;
1147 
1148 	if (ipc.opt && ipc.opt->opt.srr) {
1149 		if (!daddr) {
1150 			err = -EINVAL;
1151 			goto out_free;
1152 		}
1153 		faddr = ipc.opt->opt.faddr;
1154 		connected = 0;
1155 	}
1156 	tos = get_rttos(&ipc, inet);
1157 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1158 	    (msg->msg_flags & MSG_DONTROUTE) ||
1159 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1160 		tos |= RTO_ONLINK;
1161 		connected = 0;
1162 	}
1163 
1164 	if (ipv4_is_multicast(daddr)) {
1165 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1166 			ipc.oif = inet->mc_index;
1167 		if (!saddr)
1168 			saddr = inet->mc_addr;
1169 		connected = 0;
1170 	} else if (!ipc.oif) {
1171 		ipc.oif = inet->uc_index;
1172 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1173 		/* oif is set, packet is to local broadcast and
1174 		 * uc_index is set. oif is most likely set
1175 		 * by sk_bound_dev_if. If uc_index != oif check if the
1176 		 * oif is an L3 master and uc_index is an L3 slave.
1177 		 * If so, we want to allow the send using the uc_index.
1178 		 */
1179 		if (ipc.oif != inet->uc_index &&
1180 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1181 							      inet->uc_index)) {
1182 			ipc.oif = inet->uc_index;
1183 		}
1184 	}
1185 
1186 	if (connected)
1187 		rt = (struct rtable *)sk_dst_check(sk, 0);
1188 
1189 	if (!rt) {
1190 		struct net *net = sock_net(sk);
1191 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1192 
1193 		fl4 = &fl4_stack;
1194 
1195 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1196 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1197 				   flow_flags,
1198 				   faddr, saddr, dport, inet->inet_sport,
1199 				   sk->sk_uid);
1200 
1201 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1202 		rt = ip_route_output_flow(net, fl4, sk);
1203 		if (IS_ERR(rt)) {
1204 			err = PTR_ERR(rt);
1205 			rt = NULL;
1206 			if (err == -ENETUNREACH)
1207 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1208 			goto out;
1209 		}
1210 
1211 		err = -EACCES;
1212 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1213 		    !sock_flag(sk, SOCK_BROADCAST))
1214 			goto out;
1215 		if (connected)
1216 			sk_dst_set(sk, dst_clone(&rt->dst));
1217 	}
1218 
1219 	if (msg->msg_flags&MSG_CONFIRM)
1220 		goto do_confirm;
1221 back_from_confirm:
1222 
1223 	saddr = fl4->saddr;
1224 	if (!ipc.addr)
1225 		daddr = ipc.addr = fl4->daddr;
1226 
1227 	/* Lockless fast path for the non-corking case. */
1228 	if (!corkreq) {
1229 		struct inet_cork cork;
1230 
1231 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1232 				  sizeof(struct udphdr), &ipc, &rt,
1233 				  &cork, msg->msg_flags);
1234 		err = PTR_ERR(skb);
1235 		if (!IS_ERR_OR_NULL(skb))
1236 			err = udp_send_skb(skb, fl4, &cork);
1237 		goto out;
1238 	}
1239 
1240 	lock_sock(sk);
1241 	if (unlikely(up->pending)) {
1242 		/* The socket is already corked while preparing it. */
1243 		/* ... which is an evident application bug. --ANK */
1244 		release_sock(sk);
1245 
1246 		net_dbg_ratelimited("socket already corked\n");
1247 		err = -EINVAL;
1248 		goto out;
1249 	}
1250 	/*
1251 	 *	Now cork the socket to pend data.
1252 	 */
1253 	fl4 = &inet->cork.fl.u.ip4;
1254 	fl4->daddr = daddr;
1255 	fl4->saddr = saddr;
1256 	fl4->fl4_dport = dport;
1257 	fl4->fl4_sport = inet->inet_sport;
1258 	up->pending = AF_INET;
1259 
1260 do_append_data:
1261 	up->len += ulen;
1262 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1263 			     sizeof(struct udphdr), &ipc, &rt,
1264 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1265 	if (err)
1266 		udp_flush_pending_frames(sk);
1267 	else if (!corkreq)
1268 		err = udp_push_pending_frames(sk);
1269 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1270 		up->pending = 0;
1271 	release_sock(sk);
1272 
1273 out:
1274 	ip_rt_put(rt);
1275 out_free:
1276 	if (free)
1277 		kfree(ipc.opt);
1278 	if (!err)
1279 		return len;
1280 	/*
1281 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1282 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1283 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1284 	 * things).  We could add another new stat but at least for now that
1285 	 * seems like overkill.
1286 	 */
1287 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1288 		UDP_INC_STATS(sock_net(sk),
1289 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1290 	}
1291 	return err;
1292 
1293 do_confirm:
1294 	if (msg->msg_flags & MSG_PROBE)
1295 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1296 	if (!(msg->msg_flags&MSG_PROBE) || len)
1297 		goto back_from_confirm;
1298 	err = 0;
1299 	goto out;
1300 }
1301 EXPORT_SYMBOL(udp_sendmsg);
1302 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1303 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1304 		 size_t size, int flags)
1305 {
1306 	struct inet_sock *inet = inet_sk(sk);
1307 	struct udp_sock *up = udp_sk(sk);
1308 	int ret;
1309 
1310 	if (flags & MSG_SENDPAGE_NOTLAST)
1311 		flags |= MSG_MORE;
1312 
1313 	if (!up->pending) {
1314 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1315 
1316 		/* Call udp_sendmsg to specify destination address which
1317 		 * sendpage interface can't pass.
1318 		 * This will succeed only when the socket is connected.
1319 		 */
1320 		ret = udp_sendmsg(sk, &msg, 0);
1321 		if (ret < 0)
1322 			return ret;
1323 	}
1324 
1325 	lock_sock(sk);
1326 
1327 	if (unlikely(!up->pending)) {
1328 		release_sock(sk);
1329 
1330 		net_dbg_ratelimited("cork failed\n");
1331 		return -EINVAL;
1332 	}
1333 
1334 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1335 			     page, offset, size, flags);
1336 	if (ret == -EOPNOTSUPP) {
1337 		release_sock(sk);
1338 		return sock_no_sendpage(sk->sk_socket, page, offset,
1339 					size, flags);
1340 	}
1341 	if (ret < 0) {
1342 		udp_flush_pending_frames(sk);
1343 		goto out;
1344 	}
1345 
1346 	up->len += size;
1347 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1348 		ret = udp_push_pending_frames(sk);
1349 	if (!ret)
1350 		ret = size;
1351 out:
1352 	release_sock(sk);
1353 	return ret;
1354 }
1355 
1356 #define UDP_SKB_IS_STATELESS 0x80000000
1357 
1358 /* all head states (dst, sk, nf conntrack) except skb extensions are
1359  * cleared by udp_rcv().
1360  *
1361  * We need to preserve secpath, if present, to eventually process
1362  * IP_CMSG_PASSSEC at recvmsg() time.
1363  *
1364  * Other extensions can be cleared.
1365  */
udp_try_make_stateless(struct sk_buff * skb)1366 static bool udp_try_make_stateless(struct sk_buff *skb)
1367 {
1368 	if (!skb_has_extensions(skb))
1369 		return true;
1370 
1371 	if (!secpath_exists(skb)) {
1372 		skb_ext_reset(skb);
1373 		return true;
1374 	}
1375 
1376 	return false;
1377 }
1378 
udp_set_dev_scratch(struct sk_buff * skb)1379 static void udp_set_dev_scratch(struct sk_buff *skb)
1380 {
1381 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1382 
1383 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1384 	scratch->_tsize_state = skb->truesize;
1385 #if BITS_PER_LONG == 64
1386 	scratch->len = skb->len;
1387 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1388 	scratch->is_linear = !skb_is_nonlinear(skb);
1389 #endif
1390 	if (udp_try_make_stateless(skb))
1391 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1392 }
1393 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1394 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1395 {
1396 	/* We come here after udp_lib_checksum_complete() returned 0.
1397 	 * This means that __skb_checksum_complete() might have
1398 	 * set skb->csum_valid to 1.
1399 	 * On 64bit platforms, we can set csum_unnecessary
1400 	 * to true, but only if the skb is not shared.
1401 	 */
1402 #if BITS_PER_LONG == 64
1403 	if (!skb_shared(skb))
1404 		udp_skb_scratch(skb)->csum_unnecessary = true;
1405 #endif
1406 }
1407 
udp_skb_truesize(struct sk_buff * skb)1408 static int udp_skb_truesize(struct sk_buff *skb)
1409 {
1410 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1411 }
1412 
udp_skb_has_head_state(struct sk_buff * skb)1413 static bool udp_skb_has_head_state(struct sk_buff *skb)
1414 {
1415 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1416 }
1417 
1418 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1419 static void udp_rmem_release(struct sock *sk, int size, int partial,
1420 			     bool rx_queue_lock_held)
1421 {
1422 	struct udp_sock *up = udp_sk(sk);
1423 	struct sk_buff_head *sk_queue;
1424 	int amt;
1425 
1426 	if (likely(partial)) {
1427 		up->forward_deficit += size;
1428 		size = up->forward_deficit;
1429 		if (size < (sk->sk_rcvbuf >> 2) &&
1430 		    !skb_queue_empty(&up->reader_queue))
1431 			return;
1432 	} else {
1433 		size += up->forward_deficit;
1434 	}
1435 	up->forward_deficit = 0;
1436 
1437 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1438 	 * if the called don't held it already
1439 	 */
1440 	sk_queue = &sk->sk_receive_queue;
1441 	if (!rx_queue_lock_held)
1442 		spin_lock(&sk_queue->lock);
1443 
1444 
1445 	sk->sk_forward_alloc += size;
1446 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1447 	sk->sk_forward_alloc -= amt;
1448 
1449 	if (amt)
1450 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1451 
1452 	atomic_sub(size, &sk->sk_rmem_alloc);
1453 
1454 	/* this can save us from acquiring the rx queue lock on next receive */
1455 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1456 
1457 	if (!rx_queue_lock_held)
1458 		spin_unlock(&sk_queue->lock);
1459 }
1460 
1461 /* Note: called with reader_queue.lock held.
1462  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1463  * This avoids a cache line miss while receive_queue lock is held.
1464  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1465  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1466 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	prefetch(&skb->data);
1469 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1470 }
1471 EXPORT_SYMBOL(udp_skb_destructor);
1472 
1473 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1474 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1475 {
1476 	prefetch(&skb->data);
1477 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1478 }
1479 
1480 /* Idea of busylocks is to let producers grab an extra spinlock
1481  * to relieve pressure on the receive_queue spinlock shared by consumer.
1482  * Under flood, this means that only one producer can be in line
1483  * trying to acquire the receive_queue spinlock.
1484  * These busylock can be allocated on a per cpu manner, instead of a
1485  * per socket one (that would consume a cache line per socket)
1486  */
1487 static int udp_busylocks_log __read_mostly;
1488 static spinlock_t *udp_busylocks __read_mostly;
1489 
busylock_acquire(void * ptr)1490 static spinlock_t *busylock_acquire(void *ptr)
1491 {
1492 	spinlock_t *busy;
1493 
1494 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1495 	spin_lock(busy);
1496 	return busy;
1497 }
1498 
busylock_release(spinlock_t * busy)1499 static void busylock_release(spinlock_t *busy)
1500 {
1501 	if (busy)
1502 		spin_unlock(busy);
1503 }
1504 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1505 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1506 {
1507 	struct sk_buff_head *list = &sk->sk_receive_queue;
1508 	int rmem, delta, amt, err = -ENOMEM;
1509 	spinlock_t *busy = NULL;
1510 	int size;
1511 
1512 	/* try to avoid the costly atomic add/sub pair when the receive
1513 	 * queue is full; always allow at least a packet
1514 	 */
1515 	rmem = atomic_read(&sk->sk_rmem_alloc);
1516 	if (rmem > sk->sk_rcvbuf)
1517 		goto drop;
1518 
1519 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1520 	 * having linear skbs :
1521 	 * - Reduce memory overhead and thus increase receive queue capacity
1522 	 * - Less cache line misses at copyout() time
1523 	 * - Less work at consume_skb() (less alien page frag freeing)
1524 	 */
1525 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1526 		skb_condense(skb);
1527 
1528 		busy = busylock_acquire(sk);
1529 	}
1530 	size = skb->truesize;
1531 	udp_set_dev_scratch(skb);
1532 
1533 	/* we drop only if the receive buf is full and the receive
1534 	 * queue contains some other skb
1535 	 */
1536 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1537 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1538 		goto uncharge_drop;
1539 
1540 	spin_lock(&list->lock);
1541 	if (size >= sk->sk_forward_alloc) {
1542 		amt = sk_mem_pages(size);
1543 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1544 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1545 			err = -ENOBUFS;
1546 			spin_unlock(&list->lock);
1547 			goto uncharge_drop;
1548 		}
1549 
1550 		sk->sk_forward_alloc += delta;
1551 	}
1552 
1553 	sk->sk_forward_alloc -= size;
1554 
1555 	/* no need to setup a destructor, we will explicitly release the
1556 	 * forward allocated memory on dequeue
1557 	 */
1558 	sock_skb_set_dropcount(sk, skb);
1559 
1560 	__skb_queue_tail(list, skb);
1561 	spin_unlock(&list->lock);
1562 
1563 	if (!sock_flag(sk, SOCK_DEAD))
1564 		sk->sk_data_ready(sk);
1565 
1566 	busylock_release(busy);
1567 	return 0;
1568 
1569 uncharge_drop:
1570 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1571 
1572 drop:
1573 	atomic_inc(&sk->sk_drops);
1574 	busylock_release(busy);
1575 	return err;
1576 }
1577 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1578 
udp_destruct_sock(struct sock * sk)1579 void udp_destruct_sock(struct sock *sk)
1580 {
1581 	/* reclaim completely the forward allocated memory */
1582 	struct udp_sock *up = udp_sk(sk);
1583 	unsigned int total = 0;
1584 	struct sk_buff *skb;
1585 
1586 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1587 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1588 		total += skb->truesize;
1589 		kfree_skb(skb);
1590 	}
1591 	udp_rmem_release(sk, total, 0, true);
1592 
1593 	inet_sock_destruct(sk);
1594 }
1595 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1596 
udp_init_sock(struct sock * sk)1597 int udp_init_sock(struct sock *sk)
1598 {
1599 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1600 	sk->sk_destruct = udp_destruct_sock;
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL_GPL(udp_init_sock);
1604 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1605 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1606 {
1607 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1608 		bool slow = lock_sock_fast(sk);
1609 
1610 		sk_peek_offset_bwd(sk, len);
1611 		unlock_sock_fast(sk, slow);
1612 	}
1613 
1614 	if (!skb_unref(skb))
1615 		return;
1616 
1617 	/* In the more common cases we cleared the head states previously,
1618 	 * see __udp_queue_rcv_skb().
1619 	 */
1620 	if (unlikely(udp_skb_has_head_state(skb)))
1621 		skb_release_head_state(skb);
1622 	__consume_stateless_skb(skb);
1623 }
1624 EXPORT_SYMBOL_GPL(skb_consume_udp);
1625 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1626 static struct sk_buff *__first_packet_length(struct sock *sk,
1627 					     struct sk_buff_head *rcvq,
1628 					     int *total)
1629 {
1630 	struct sk_buff *skb;
1631 
1632 	while ((skb = skb_peek(rcvq)) != NULL) {
1633 		if (udp_lib_checksum_complete(skb)) {
1634 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1635 					IS_UDPLITE(sk));
1636 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1637 					IS_UDPLITE(sk));
1638 			atomic_inc(&sk->sk_drops);
1639 			__skb_unlink(skb, rcvq);
1640 			*total += skb->truesize;
1641 			kfree_skb(skb);
1642 		} else {
1643 			udp_skb_csum_unnecessary_set(skb);
1644 			break;
1645 		}
1646 	}
1647 	return skb;
1648 }
1649 
1650 /**
1651  *	first_packet_length	- return length of first packet in receive queue
1652  *	@sk: socket
1653  *
1654  *	Drops all bad checksum frames, until a valid one is found.
1655  *	Returns the length of found skb, or -1 if none is found.
1656  */
first_packet_length(struct sock * sk)1657 static int first_packet_length(struct sock *sk)
1658 {
1659 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1660 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1661 	struct sk_buff *skb;
1662 	int total = 0;
1663 	int res;
1664 
1665 	spin_lock_bh(&rcvq->lock);
1666 	skb = __first_packet_length(sk, rcvq, &total);
1667 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1668 		spin_lock(&sk_queue->lock);
1669 		skb_queue_splice_tail_init(sk_queue, rcvq);
1670 		spin_unlock(&sk_queue->lock);
1671 
1672 		skb = __first_packet_length(sk, rcvq, &total);
1673 	}
1674 	res = skb ? skb->len : -1;
1675 	if (total)
1676 		udp_rmem_release(sk, total, 1, false);
1677 	spin_unlock_bh(&rcvq->lock);
1678 	return res;
1679 }
1680 
1681 /*
1682  *	IOCTL requests applicable to the UDP protocol
1683  */
1684 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1685 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1686 {
1687 	switch (cmd) {
1688 	case SIOCOUTQ:
1689 	{
1690 		int amount = sk_wmem_alloc_get(sk);
1691 
1692 		return put_user(amount, (int __user *)arg);
1693 	}
1694 
1695 	case SIOCINQ:
1696 	{
1697 		int amount = max_t(int, 0, first_packet_length(sk));
1698 
1699 		return put_user(amount, (int __user *)arg);
1700 	}
1701 
1702 	default:
1703 		return -ENOIOCTLCMD;
1704 	}
1705 
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(udp_ioctl);
1709 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1710 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1711 			       int noblock, int *off, int *err)
1712 {
1713 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1714 	struct sk_buff_head *queue;
1715 	struct sk_buff *last;
1716 	long timeo;
1717 	int error;
1718 
1719 	queue = &udp_sk(sk)->reader_queue;
1720 	flags |= noblock ? MSG_DONTWAIT : 0;
1721 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1722 	do {
1723 		struct sk_buff *skb;
1724 
1725 		error = sock_error(sk);
1726 		if (error)
1727 			break;
1728 
1729 		error = -EAGAIN;
1730 		do {
1731 			spin_lock_bh(&queue->lock);
1732 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1733 							err, &last);
1734 			if (skb) {
1735 				if (!(flags & MSG_PEEK))
1736 					udp_skb_destructor(sk, skb);
1737 				spin_unlock_bh(&queue->lock);
1738 				return skb;
1739 			}
1740 
1741 			if (skb_queue_empty_lockless(sk_queue)) {
1742 				spin_unlock_bh(&queue->lock);
1743 				goto busy_check;
1744 			}
1745 
1746 			/* refill the reader queue and walk it again
1747 			 * keep both queues locked to avoid re-acquiring
1748 			 * the sk_receive_queue lock if fwd memory scheduling
1749 			 * is needed.
1750 			 */
1751 			spin_lock(&sk_queue->lock);
1752 			skb_queue_splice_tail_init(sk_queue, queue);
1753 
1754 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1755 							err, &last);
1756 			if (skb && !(flags & MSG_PEEK))
1757 				udp_skb_dtor_locked(sk, skb);
1758 			spin_unlock(&sk_queue->lock);
1759 			spin_unlock_bh(&queue->lock);
1760 			if (skb)
1761 				return skb;
1762 
1763 busy_check:
1764 			if (!sk_can_busy_loop(sk))
1765 				break;
1766 
1767 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1768 		} while (!skb_queue_empty_lockless(sk_queue));
1769 
1770 		/* sk_queue is empty, reader_queue may contain peeked packets */
1771 	} while (timeo &&
1772 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1773 					      &error, &timeo,
1774 					      (struct sk_buff *)sk_queue));
1775 
1776 	*err = error;
1777 	return NULL;
1778 }
1779 EXPORT_SYMBOL(__skb_recv_udp);
1780 
1781 /*
1782  * 	This should be easy, if there is something there we
1783  * 	return it, otherwise we block.
1784  */
1785 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1786 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1787 		int flags, int *addr_len)
1788 {
1789 	struct inet_sock *inet = inet_sk(sk);
1790 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1791 	struct sk_buff *skb;
1792 	unsigned int ulen, copied;
1793 	int off, err, peeking = flags & MSG_PEEK;
1794 	int is_udplite = IS_UDPLITE(sk);
1795 	bool checksum_valid = false;
1796 
1797 	if (flags & MSG_ERRQUEUE)
1798 		return ip_recv_error(sk, msg, len, addr_len);
1799 
1800 try_again:
1801 	off = sk_peek_offset(sk, flags);
1802 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1803 	if (!skb)
1804 		return err;
1805 
1806 	ulen = udp_skb_len(skb);
1807 	copied = len;
1808 	if (copied > ulen - off)
1809 		copied = ulen - off;
1810 	else if (copied < ulen)
1811 		msg->msg_flags |= MSG_TRUNC;
1812 
1813 	/*
1814 	 * If checksum is needed at all, try to do it while copying the
1815 	 * data.  If the data is truncated, or if we only want a partial
1816 	 * coverage checksum (UDP-Lite), do it before the copy.
1817 	 */
1818 
1819 	if (copied < ulen || peeking ||
1820 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1821 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1822 				!__udp_lib_checksum_complete(skb);
1823 		if (!checksum_valid)
1824 			goto csum_copy_err;
1825 	}
1826 
1827 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1828 		if (udp_skb_is_linear(skb))
1829 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1830 		else
1831 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1832 	} else {
1833 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1834 
1835 		if (err == -EINVAL)
1836 			goto csum_copy_err;
1837 	}
1838 
1839 	if (unlikely(err)) {
1840 		if (!peeking) {
1841 			atomic_inc(&sk->sk_drops);
1842 			UDP_INC_STATS(sock_net(sk),
1843 				      UDP_MIB_INERRORS, is_udplite);
1844 		}
1845 		kfree_skb(skb);
1846 		return err;
1847 	}
1848 
1849 	if (!peeking)
1850 		UDP_INC_STATS(sock_net(sk),
1851 			      UDP_MIB_INDATAGRAMS, is_udplite);
1852 
1853 	sock_recv_ts_and_drops(msg, sk, skb);
1854 
1855 	/* Copy the address. */
1856 	if (sin) {
1857 		sin->sin_family = AF_INET;
1858 		sin->sin_port = udp_hdr(skb)->source;
1859 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1860 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1861 		*addr_len = sizeof(*sin);
1862 
1863 		if (cgroup_bpf_enabled)
1864 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1865 							(struct sockaddr *)sin);
1866 	}
1867 
1868 	if (udp_sk(sk)->gro_enabled)
1869 		udp_cmsg_recv(msg, sk, skb);
1870 
1871 	if (inet->cmsg_flags)
1872 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1873 
1874 	err = copied;
1875 	if (flags & MSG_TRUNC)
1876 		err = ulen;
1877 
1878 	skb_consume_udp(sk, skb, peeking ? -err : err);
1879 	return err;
1880 
1881 csum_copy_err:
1882 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1883 				 udp_skb_destructor)) {
1884 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1885 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1886 	}
1887 	kfree_skb(skb);
1888 
1889 	/* starting over for a new packet, but check if we need to yield */
1890 	cond_resched();
1891 	msg->msg_flags &= ~MSG_TRUNC;
1892 	goto try_again;
1893 }
1894 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1895 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1896 {
1897 	/* This check is replicated from __ip4_datagram_connect() and
1898 	 * intended to prevent BPF program called below from accessing bytes
1899 	 * that are out of the bound specified by user in addr_len.
1900 	 */
1901 	if (addr_len < sizeof(struct sockaddr_in))
1902 		return -EINVAL;
1903 
1904 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1905 }
1906 EXPORT_SYMBOL(udp_pre_connect);
1907 
__udp_disconnect(struct sock * sk,int flags)1908 int __udp_disconnect(struct sock *sk, int flags)
1909 {
1910 	struct inet_sock *inet = inet_sk(sk);
1911 	/*
1912 	 *	1003.1g - break association.
1913 	 */
1914 
1915 	sk->sk_state = TCP_CLOSE;
1916 	inet->inet_daddr = 0;
1917 	inet->inet_dport = 0;
1918 	sock_rps_reset_rxhash(sk);
1919 	sk->sk_bound_dev_if = 0;
1920 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1921 		inet_reset_saddr(sk);
1922 		if (sk->sk_prot->rehash &&
1923 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1924 			sk->sk_prot->rehash(sk);
1925 	}
1926 
1927 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1928 		sk->sk_prot->unhash(sk);
1929 		inet->inet_sport = 0;
1930 	}
1931 	sk_dst_reset(sk);
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL(__udp_disconnect);
1935 
udp_disconnect(struct sock * sk,int flags)1936 int udp_disconnect(struct sock *sk, int flags)
1937 {
1938 	lock_sock(sk);
1939 	__udp_disconnect(sk, flags);
1940 	release_sock(sk);
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL(udp_disconnect);
1944 
udp_lib_unhash(struct sock * sk)1945 void udp_lib_unhash(struct sock *sk)
1946 {
1947 	if (sk_hashed(sk)) {
1948 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1949 		struct udp_hslot *hslot, *hslot2;
1950 
1951 		hslot  = udp_hashslot(udptable, sock_net(sk),
1952 				      udp_sk(sk)->udp_port_hash);
1953 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1954 
1955 		spin_lock_bh(&hslot->lock);
1956 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1957 			reuseport_detach_sock(sk);
1958 		if (sk_del_node_init_rcu(sk)) {
1959 			hslot->count--;
1960 			inet_sk(sk)->inet_num = 0;
1961 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1962 
1963 			spin_lock(&hslot2->lock);
1964 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1965 			hslot2->count--;
1966 			spin_unlock(&hslot2->lock);
1967 		}
1968 		spin_unlock_bh(&hslot->lock);
1969 	}
1970 }
1971 EXPORT_SYMBOL(udp_lib_unhash);
1972 
1973 /*
1974  * inet_rcv_saddr was changed, we must rehash secondary hash
1975  */
udp_lib_rehash(struct sock * sk,u16 newhash)1976 void udp_lib_rehash(struct sock *sk, u16 newhash)
1977 {
1978 	if (sk_hashed(sk)) {
1979 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1980 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1981 
1982 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1983 		nhslot2 = udp_hashslot2(udptable, newhash);
1984 		udp_sk(sk)->udp_portaddr_hash = newhash;
1985 
1986 		if (hslot2 != nhslot2 ||
1987 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1988 			hslot = udp_hashslot(udptable, sock_net(sk),
1989 					     udp_sk(sk)->udp_port_hash);
1990 			/* we must lock primary chain too */
1991 			spin_lock_bh(&hslot->lock);
1992 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1993 				reuseport_detach_sock(sk);
1994 
1995 			if (hslot2 != nhslot2) {
1996 				spin_lock(&hslot2->lock);
1997 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1998 				hslot2->count--;
1999 				spin_unlock(&hslot2->lock);
2000 
2001 				spin_lock(&nhslot2->lock);
2002 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2003 							 &nhslot2->head);
2004 				nhslot2->count++;
2005 				spin_unlock(&nhslot2->lock);
2006 			}
2007 
2008 			spin_unlock_bh(&hslot->lock);
2009 		}
2010 	}
2011 }
2012 EXPORT_SYMBOL(udp_lib_rehash);
2013 
udp_v4_rehash(struct sock * sk)2014 void udp_v4_rehash(struct sock *sk)
2015 {
2016 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2017 					  inet_sk(sk)->inet_rcv_saddr,
2018 					  inet_sk(sk)->inet_num);
2019 	udp_lib_rehash(sk, new_hash);
2020 }
2021 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2022 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2023 {
2024 	int rc;
2025 
2026 	if (inet_sk(sk)->inet_daddr) {
2027 		sock_rps_save_rxhash(sk, skb);
2028 		sk_mark_napi_id(sk, skb);
2029 		sk_incoming_cpu_update(sk);
2030 	} else {
2031 		sk_mark_napi_id_once(sk, skb);
2032 	}
2033 
2034 	rc = __udp_enqueue_schedule_skb(sk, skb);
2035 	if (rc < 0) {
2036 		int is_udplite = IS_UDPLITE(sk);
2037 
2038 		/* Note that an ENOMEM error is charged twice */
2039 		if (rc == -ENOMEM)
2040 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2041 					is_udplite);
2042 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2043 		kfree_skb(skb);
2044 		trace_udp_fail_queue_rcv_skb(rc, sk);
2045 		return -1;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 /* returns:
2052  *  -1: error
2053  *   0: success
2054  *  >0: "udp encap" protocol resubmission
2055  *
2056  * Note that in the success and error cases, the skb is assumed to
2057  * have either been requeued or freed.
2058  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2059 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2060 {
2061 	struct udp_sock *up = udp_sk(sk);
2062 	int is_udplite = IS_UDPLITE(sk);
2063 
2064 	/*
2065 	 *	Charge it to the socket, dropping if the queue is full.
2066 	 */
2067 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2068 		goto drop;
2069 	nf_reset_ct(skb);
2070 
2071 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2072 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2073 
2074 		/*
2075 		 * This is an encapsulation socket so pass the skb to
2076 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2077 		 * fall through and pass this up the UDP socket.
2078 		 * up->encap_rcv() returns the following value:
2079 		 * =0 if skb was successfully passed to the encap
2080 		 *    handler or was discarded by it.
2081 		 * >0 if skb should be passed on to UDP.
2082 		 * <0 if skb should be resubmitted as proto -N
2083 		 */
2084 
2085 		/* if we're overly short, let UDP handle it */
2086 		encap_rcv = READ_ONCE(up->encap_rcv);
2087 		if (encap_rcv) {
2088 			int ret;
2089 
2090 			/* Verify checksum before giving to encap */
2091 			if (udp_lib_checksum_complete(skb))
2092 				goto csum_error;
2093 
2094 			ret = encap_rcv(sk, skb);
2095 			if (ret <= 0) {
2096 				__UDP_INC_STATS(sock_net(sk),
2097 						UDP_MIB_INDATAGRAMS,
2098 						is_udplite);
2099 				return -ret;
2100 			}
2101 		}
2102 
2103 		/* FALLTHROUGH -- it's a UDP Packet */
2104 	}
2105 
2106 	/*
2107 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2108 	 */
2109 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2110 
2111 		/*
2112 		 * MIB statistics other than incrementing the error count are
2113 		 * disabled for the following two types of errors: these depend
2114 		 * on the application settings, not on the functioning of the
2115 		 * protocol stack as such.
2116 		 *
2117 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2118 		 * way ... to ... at least let the receiving application block
2119 		 * delivery of packets with coverage values less than a value
2120 		 * provided by the application."
2121 		 */
2122 		if (up->pcrlen == 0) {          /* full coverage was set  */
2123 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2124 					    UDP_SKB_CB(skb)->cscov, skb->len);
2125 			goto drop;
2126 		}
2127 		/* The next case involves violating the min. coverage requested
2128 		 * by the receiver. This is subtle: if receiver wants x and x is
2129 		 * greater than the buffersize/MTU then receiver will complain
2130 		 * that it wants x while sender emits packets of smaller size y.
2131 		 * Therefore the above ...()->partial_cov statement is essential.
2132 		 */
2133 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2134 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2135 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2136 			goto drop;
2137 		}
2138 	}
2139 
2140 	prefetch(&sk->sk_rmem_alloc);
2141 	if (rcu_access_pointer(sk->sk_filter) &&
2142 	    udp_lib_checksum_complete(skb))
2143 			goto csum_error;
2144 
2145 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2146 		goto drop;
2147 
2148 	udp_csum_pull_header(skb);
2149 
2150 	ipv4_pktinfo_prepare(sk, skb);
2151 	return __udp_queue_rcv_skb(sk, skb);
2152 
2153 csum_error:
2154 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2155 drop:
2156 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2157 	atomic_inc(&sk->sk_drops);
2158 	kfree_skb(skb);
2159 	return -1;
2160 }
2161 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2162 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2163 {
2164 	struct sk_buff *next, *segs;
2165 	int ret;
2166 
2167 	if (likely(!udp_unexpected_gso(sk, skb)))
2168 		return udp_queue_rcv_one_skb(sk, skb);
2169 
2170 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2171 	__skb_push(skb, -skb_mac_offset(skb));
2172 	segs = udp_rcv_segment(sk, skb, true);
2173 	skb_list_walk_safe(segs, skb, next) {
2174 		__skb_pull(skb, skb_transport_offset(skb));
2175 		ret = udp_queue_rcv_one_skb(sk, skb);
2176 		if (ret > 0)
2177 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2178 	}
2179 	return 0;
2180 }
2181 
2182 /* For TCP sockets, sk_rx_dst is protected by socket lock
2183  * For UDP, we use xchg() to guard against concurrent changes.
2184  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2185 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2186 {
2187 	struct dst_entry *old;
2188 
2189 	if (dst_hold_safe(dst)) {
2190 		old = xchg(&sk->sk_rx_dst, dst);
2191 		dst_release(old);
2192 		return old != dst;
2193 	}
2194 	return false;
2195 }
2196 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2197 
2198 /*
2199  *	Multicasts and broadcasts go to each listener.
2200  *
2201  *	Note: called only from the BH handler context.
2202  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2203 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2204 				    struct udphdr  *uh,
2205 				    __be32 saddr, __be32 daddr,
2206 				    struct udp_table *udptable,
2207 				    int proto)
2208 {
2209 	struct sock *sk, *first = NULL;
2210 	unsigned short hnum = ntohs(uh->dest);
2211 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2212 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2213 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2214 	int dif = skb->dev->ifindex;
2215 	int sdif = inet_sdif(skb);
2216 	struct hlist_node *node;
2217 	struct sk_buff *nskb;
2218 
2219 	if (use_hash2) {
2220 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2221 			    udptable->mask;
2222 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2223 start_lookup:
2224 		hslot = &udptable->hash2[hash2];
2225 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2226 	}
2227 
2228 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2229 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2230 					 uh->source, saddr, dif, sdif, hnum))
2231 			continue;
2232 
2233 		if (!first) {
2234 			first = sk;
2235 			continue;
2236 		}
2237 		nskb = skb_clone(skb, GFP_ATOMIC);
2238 
2239 		if (unlikely(!nskb)) {
2240 			atomic_inc(&sk->sk_drops);
2241 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2242 					IS_UDPLITE(sk));
2243 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2244 					IS_UDPLITE(sk));
2245 			continue;
2246 		}
2247 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2248 			consume_skb(nskb);
2249 	}
2250 
2251 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2252 	if (use_hash2 && hash2 != hash2_any) {
2253 		hash2 = hash2_any;
2254 		goto start_lookup;
2255 	}
2256 
2257 	if (first) {
2258 		if (udp_queue_rcv_skb(first, skb) > 0)
2259 			consume_skb(skb);
2260 	} else {
2261 		kfree_skb(skb);
2262 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2263 				proto == IPPROTO_UDPLITE);
2264 	}
2265 	return 0;
2266 }
2267 
2268 /* Initialize UDP checksum. If exited with zero value (success),
2269  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2270  * Otherwise, csum completion requires checksumming packet body,
2271  * including udp header and folding it to skb->csum.
2272  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2273 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2274 				 int proto)
2275 {
2276 	int err;
2277 
2278 	UDP_SKB_CB(skb)->partial_cov = 0;
2279 	UDP_SKB_CB(skb)->cscov = skb->len;
2280 
2281 	if (proto == IPPROTO_UDPLITE) {
2282 		err = udplite_checksum_init(skb, uh);
2283 		if (err)
2284 			return err;
2285 
2286 		if (UDP_SKB_CB(skb)->partial_cov) {
2287 			skb->csum = inet_compute_pseudo(skb, proto);
2288 			return 0;
2289 		}
2290 	}
2291 
2292 	/* Note, we are only interested in != 0 or == 0, thus the
2293 	 * force to int.
2294 	 */
2295 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2296 							inet_compute_pseudo);
2297 	if (err)
2298 		return err;
2299 
2300 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2301 		/* If SW calculated the value, we know it's bad */
2302 		if (skb->csum_complete_sw)
2303 			return 1;
2304 
2305 		/* HW says the value is bad. Let's validate that.
2306 		 * skb->csum is no longer the full packet checksum,
2307 		 * so don't treat it as such.
2308 		 */
2309 		skb_checksum_complete_unset(skb);
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2316  * return code conversion for ip layer consumption
2317  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2318 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2319 			       struct udphdr *uh)
2320 {
2321 	int ret;
2322 
2323 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2324 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2325 
2326 	ret = udp_queue_rcv_skb(sk, skb);
2327 
2328 	/* a return value > 0 means to resubmit the input, but
2329 	 * it wants the return to be -protocol, or 0
2330 	 */
2331 	if (ret > 0)
2332 		return -ret;
2333 	return 0;
2334 }
2335 
2336 /*
2337  *	All we need to do is get the socket, and then do a checksum.
2338  */
2339 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2340 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2341 		   int proto)
2342 {
2343 	struct sock *sk;
2344 	struct udphdr *uh;
2345 	unsigned short ulen;
2346 	struct rtable *rt = skb_rtable(skb);
2347 	__be32 saddr, daddr;
2348 	struct net *net = dev_net(skb->dev);
2349 	bool refcounted;
2350 
2351 	/*
2352 	 *  Validate the packet.
2353 	 */
2354 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2355 		goto drop;		/* No space for header. */
2356 
2357 	uh   = udp_hdr(skb);
2358 	ulen = ntohs(uh->len);
2359 	saddr = ip_hdr(skb)->saddr;
2360 	daddr = ip_hdr(skb)->daddr;
2361 
2362 	if (ulen > skb->len)
2363 		goto short_packet;
2364 
2365 	if (proto == IPPROTO_UDP) {
2366 		/* UDP validates ulen. */
2367 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2368 			goto short_packet;
2369 		uh = udp_hdr(skb);
2370 	}
2371 
2372 	if (udp4_csum_init(skb, uh, proto))
2373 		goto csum_error;
2374 
2375 	sk = skb_steal_sock(skb, &refcounted);
2376 	if (sk) {
2377 		struct dst_entry *dst = skb_dst(skb);
2378 		int ret;
2379 
2380 		if (unlikely(sk->sk_rx_dst != dst))
2381 			udp_sk_rx_dst_set(sk, dst);
2382 
2383 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2384 		if (refcounted)
2385 			sock_put(sk);
2386 		return ret;
2387 	}
2388 
2389 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2390 		return __udp4_lib_mcast_deliver(net, skb, uh,
2391 						saddr, daddr, udptable, proto);
2392 
2393 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2394 	if (sk)
2395 		return udp_unicast_rcv_skb(sk, skb, uh);
2396 
2397 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2398 		goto drop;
2399 	nf_reset_ct(skb);
2400 
2401 	/* No socket. Drop packet silently, if checksum is wrong */
2402 	if (udp_lib_checksum_complete(skb))
2403 		goto csum_error;
2404 
2405 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2406 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2407 
2408 	/*
2409 	 * Hmm.  We got an UDP packet to a port to which we
2410 	 * don't wanna listen.  Ignore it.
2411 	 */
2412 	kfree_skb(skb);
2413 	return 0;
2414 
2415 short_packet:
2416 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2417 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2418 			    &saddr, ntohs(uh->source),
2419 			    ulen, skb->len,
2420 			    &daddr, ntohs(uh->dest));
2421 	goto drop;
2422 
2423 csum_error:
2424 	/*
2425 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2426 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2427 	 */
2428 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2429 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2430 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2431 			    ulen);
2432 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2433 drop:
2434 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2435 	kfree_skb(skb);
2436 	return 0;
2437 }
2438 
2439 /* We can only early demux multicast if there is a single matching socket.
2440  * If more than one socket found returns NULL
2441  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2442 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2443 						  __be16 loc_port, __be32 loc_addr,
2444 						  __be16 rmt_port, __be32 rmt_addr,
2445 						  int dif, int sdif)
2446 {
2447 	struct sock *sk, *result;
2448 	unsigned short hnum = ntohs(loc_port);
2449 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2450 	struct udp_hslot *hslot = &udp_table.hash[slot];
2451 
2452 	/* Do not bother scanning a too big list */
2453 	if (hslot->count > 10)
2454 		return NULL;
2455 
2456 	result = NULL;
2457 	sk_for_each_rcu(sk, &hslot->head) {
2458 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2459 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2460 			if (result)
2461 				return NULL;
2462 			result = sk;
2463 		}
2464 	}
2465 
2466 	return result;
2467 }
2468 
2469 /* For unicast we should only early demux connected sockets or we can
2470  * break forwarding setups.  The chains here can be long so only check
2471  * if the first socket is an exact match and if not move on.
2472  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2473 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2474 					    __be16 loc_port, __be32 loc_addr,
2475 					    __be16 rmt_port, __be32 rmt_addr,
2476 					    int dif, int sdif)
2477 {
2478 	unsigned short hnum = ntohs(loc_port);
2479 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2480 	unsigned int slot2 = hash2 & udp_table.mask;
2481 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2482 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2483 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2484 	struct sock *sk;
2485 
2486 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2487 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2488 			       loc_addr, ports, dif, sdif))
2489 			return sk;
2490 		/* Only check first socket in chain */
2491 		break;
2492 	}
2493 	return NULL;
2494 }
2495 
udp_v4_early_demux(struct sk_buff * skb)2496 int udp_v4_early_demux(struct sk_buff *skb)
2497 {
2498 	struct net *net = dev_net(skb->dev);
2499 	struct in_device *in_dev = NULL;
2500 	const struct iphdr *iph;
2501 	const struct udphdr *uh;
2502 	struct sock *sk = NULL;
2503 	struct dst_entry *dst;
2504 	int dif = skb->dev->ifindex;
2505 	int sdif = inet_sdif(skb);
2506 	int ours;
2507 
2508 	/* validate the packet */
2509 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2510 		return 0;
2511 
2512 	iph = ip_hdr(skb);
2513 	uh = udp_hdr(skb);
2514 
2515 	if (skb->pkt_type == PACKET_MULTICAST) {
2516 		in_dev = __in_dev_get_rcu(skb->dev);
2517 
2518 		if (!in_dev)
2519 			return 0;
2520 
2521 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2522 				       iph->protocol);
2523 		if (!ours)
2524 			return 0;
2525 
2526 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2527 						   uh->source, iph->saddr,
2528 						   dif, sdif);
2529 	} else if (skb->pkt_type == PACKET_HOST) {
2530 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2531 					     uh->source, iph->saddr, dif, sdif);
2532 	}
2533 
2534 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2535 		return 0;
2536 
2537 	skb->sk = sk;
2538 	skb->destructor = sock_efree;
2539 	dst = READ_ONCE(sk->sk_rx_dst);
2540 
2541 	if (dst)
2542 		dst = dst_check(dst, 0);
2543 	if (dst) {
2544 		u32 itag = 0;
2545 
2546 		/* set noref for now.
2547 		 * any place which wants to hold dst has to call
2548 		 * dst_hold_safe()
2549 		 */
2550 		skb_dst_set_noref(skb, dst);
2551 
2552 		/* for unconnected multicast sockets we need to validate
2553 		 * the source on each packet
2554 		 */
2555 		if (!inet_sk(sk)->inet_daddr && in_dev)
2556 			return ip_mc_validate_source(skb, iph->daddr,
2557 						     iph->saddr,
2558 						     iph->tos & IPTOS_RT_MASK,
2559 						     skb->dev, in_dev, &itag);
2560 	}
2561 	return 0;
2562 }
2563 
udp_rcv(struct sk_buff * skb)2564 int udp_rcv(struct sk_buff *skb)
2565 {
2566 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2567 }
2568 
udp_destroy_sock(struct sock * sk)2569 void udp_destroy_sock(struct sock *sk)
2570 {
2571 	struct udp_sock *up = udp_sk(sk);
2572 	bool slow = lock_sock_fast(sk);
2573 
2574 	/* protects from races with udp_abort() */
2575 	sock_set_flag(sk, SOCK_DEAD);
2576 	udp_flush_pending_frames(sk);
2577 	unlock_sock_fast(sk, slow);
2578 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2579 		if (up->encap_type) {
2580 			void (*encap_destroy)(struct sock *sk);
2581 			encap_destroy = READ_ONCE(up->encap_destroy);
2582 			if (encap_destroy)
2583 				encap_destroy(sk);
2584 		}
2585 		if (up->encap_enabled)
2586 			static_branch_dec(&udp_encap_needed_key);
2587 	}
2588 }
2589 
2590 /*
2591  *	Socket option code for UDP
2592  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2593 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2594 		       sockptr_t optval, unsigned int optlen,
2595 		       int (*push_pending_frames)(struct sock *))
2596 {
2597 	struct udp_sock *up = udp_sk(sk);
2598 	int val, valbool;
2599 	int err = 0;
2600 	int is_udplite = IS_UDPLITE(sk);
2601 
2602 	if (optlen < sizeof(int))
2603 		return -EINVAL;
2604 
2605 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2606 		return -EFAULT;
2607 
2608 	valbool = val ? 1 : 0;
2609 
2610 	switch (optname) {
2611 	case UDP_CORK:
2612 		if (val != 0) {
2613 			WRITE_ONCE(up->corkflag, 1);
2614 		} else {
2615 			WRITE_ONCE(up->corkflag, 0);
2616 			lock_sock(sk);
2617 			push_pending_frames(sk);
2618 			release_sock(sk);
2619 		}
2620 		break;
2621 
2622 	case UDP_ENCAP:
2623 		switch (val) {
2624 		case 0:
2625 #ifdef CONFIG_XFRM
2626 		case UDP_ENCAP_ESPINUDP:
2627 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2628 #if IS_ENABLED(CONFIG_IPV6)
2629 			if (sk->sk_family == AF_INET6)
2630 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2631 			else
2632 #endif
2633 				up->encap_rcv = xfrm4_udp_encap_rcv;
2634 #endif
2635 			fallthrough;
2636 		case UDP_ENCAP_L2TPINUDP:
2637 			up->encap_type = val;
2638 			lock_sock(sk);
2639 			udp_tunnel_encap_enable(sk->sk_socket);
2640 			release_sock(sk);
2641 			break;
2642 		default:
2643 			err = -ENOPROTOOPT;
2644 			break;
2645 		}
2646 		break;
2647 
2648 	case UDP_NO_CHECK6_TX:
2649 		up->no_check6_tx = valbool;
2650 		break;
2651 
2652 	case UDP_NO_CHECK6_RX:
2653 		up->no_check6_rx = valbool;
2654 		break;
2655 
2656 	case UDP_SEGMENT:
2657 		if (val < 0 || val > USHRT_MAX)
2658 			return -EINVAL;
2659 		WRITE_ONCE(up->gso_size, val);
2660 		break;
2661 
2662 	case UDP_GRO:
2663 		lock_sock(sk);
2664 
2665 		/* when enabling GRO, accept the related GSO packet type */
2666 		if (valbool)
2667 			udp_tunnel_encap_enable(sk->sk_socket);
2668 		up->gro_enabled = valbool;
2669 		up->accept_udp_l4 = valbool;
2670 		release_sock(sk);
2671 		break;
2672 
2673 	/*
2674 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2675 	 */
2676 	/* The sender sets actual checksum coverage length via this option.
2677 	 * The case coverage > packet length is handled by send module. */
2678 	case UDPLITE_SEND_CSCOV:
2679 		if (!is_udplite)         /* Disable the option on UDP sockets */
2680 			return -ENOPROTOOPT;
2681 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2682 			val = 8;
2683 		else if (val > USHRT_MAX)
2684 			val = USHRT_MAX;
2685 		up->pcslen = val;
2686 		up->pcflag |= UDPLITE_SEND_CC;
2687 		break;
2688 
2689 	/* The receiver specifies a minimum checksum coverage value. To make
2690 	 * sense, this should be set to at least 8 (as done below). If zero is
2691 	 * used, this again means full checksum coverage.                     */
2692 	case UDPLITE_RECV_CSCOV:
2693 		if (!is_udplite)         /* Disable the option on UDP sockets */
2694 			return -ENOPROTOOPT;
2695 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2696 			val = 8;
2697 		else if (val > USHRT_MAX)
2698 			val = USHRT_MAX;
2699 		up->pcrlen = val;
2700 		up->pcflag |= UDPLITE_RECV_CC;
2701 		break;
2702 
2703 	default:
2704 		err = -ENOPROTOOPT;
2705 		break;
2706 	}
2707 
2708 	return err;
2709 }
2710 EXPORT_SYMBOL(udp_lib_setsockopt);
2711 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2712 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2713 		   unsigned int optlen)
2714 {
2715 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2716 		return udp_lib_setsockopt(sk, level, optname,
2717 					  optval, optlen,
2718 					  udp_push_pending_frames);
2719 	return ip_setsockopt(sk, level, optname, optval, optlen);
2720 }
2721 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2722 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2723 		       char __user *optval, int __user *optlen)
2724 {
2725 	struct udp_sock *up = udp_sk(sk);
2726 	int val, len;
2727 
2728 	if (get_user(len, optlen))
2729 		return -EFAULT;
2730 
2731 	len = min_t(unsigned int, len, sizeof(int));
2732 
2733 	if (len < 0)
2734 		return -EINVAL;
2735 
2736 	switch (optname) {
2737 	case UDP_CORK:
2738 		val = READ_ONCE(up->corkflag);
2739 		break;
2740 
2741 	case UDP_ENCAP:
2742 		val = up->encap_type;
2743 		break;
2744 
2745 	case UDP_NO_CHECK6_TX:
2746 		val = up->no_check6_tx;
2747 		break;
2748 
2749 	case UDP_NO_CHECK6_RX:
2750 		val = up->no_check6_rx;
2751 		break;
2752 
2753 	case UDP_SEGMENT:
2754 		val = READ_ONCE(up->gso_size);
2755 		break;
2756 
2757 	case UDP_GRO:
2758 		val = up->gro_enabled;
2759 		break;
2760 
2761 	/* The following two cannot be changed on UDP sockets, the return is
2762 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2763 	case UDPLITE_SEND_CSCOV:
2764 		val = up->pcslen;
2765 		break;
2766 
2767 	case UDPLITE_RECV_CSCOV:
2768 		val = up->pcrlen;
2769 		break;
2770 
2771 	default:
2772 		return -ENOPROTOOPT;
2773 	}
2774 
2775 	if (put_user(len, optlen))
2776 		return -EFAULT;
2777 	if (copy_to_user(optval, &val, len))
2778 		return -EFAULT;
2779 	return 0;
2780 }
2781 EXPORT_SYMBOL(udp_lib_getsockopt);
2782 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2783 int udp_getsockopt(struct sock *sk, int level, int optname,
2784 		   char __user *optval, int __user *optlen)
2785 {
2786 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2787 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2788 	return ip_getsockopt(sk, level, optname, optval, optlen);
2789 }
2790 
2791 /**
2792  * 	udp_poll - wait for a UDP event.
2793  *	@file: - file struct
2794  *	@sock: - socket
2795  *	@wait: - poll table
2796  *
2797  *	This is same as datagram poll, except for the special case of
2798  *	blocking sockets. If application is using a blocking fd
2799  *	and a packet with checksum error is in the queue;
2800  *	then it could get return from select indicating data available
2801  *	but then block when reading it. Add special case code
2802  *	to work around these arguably broken applications.
2803  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2804 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2805 {
2806 	__poll_t mask = datagram_poll(file, sock, wait);
2807 	struct sock *sk = sock->sk;
2808 
2809 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2810 		mask |= EPOLLIN | EPOLLRDNORM;
2811 
2812 	/* Check for false positives due to checksum errors */
2813 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2814 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2815 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2816 
2817 	return mask;
2818 
2819 }
2820 EXPORT_SYMBOL(udp_poll);
2821 
udp_abort(struct sock * sk,int err)2822 int udp_abort(struct sock *sk, int err)
2823 {
2824 	lock_sock(sk);
2825 
2826 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2827 	 * with close()
2828 	 */
2829 	if (sock_flag(sk, SOCK_DEAD))
2830 		goto out;
2831 
2832 	sk->sk_err = err;
2833 	sk->sk_error_report(sk);
2834 	__udp_disconnect(sk, 0);
2835 
2836 out:
2837 	release_sock(sk);
2838 
2839 	return 0;
2840 }
2841 EXPORT_SYMBOL_GPL(udp_abort);
2842 
2843 struct proto udp_prot = {
2844 	.name			= "UDP",
2845 	.owner			= THIS_MODULE,
2846 	.close			= udp_lib_close,
2847 	.pre_connect		= udp_pre_connect,
2848 	.connect		= ip4_datagram_connect,
2849 	.disconnect		= udp_disconnect,
2850 	.ioctl			= udp_ioctl,
2851 	.init			= udp_init_sock,
2852 	.destroy		= udp_destroy_sock,
2853 	.setsockopt		= udp_setsockopt,
2854 	.getsockopt		= udp_getsockopt,
2855 	.sendmsg		= udp_sendmsg,
2856 	.recvmsg		= udp_recvmsg,
2857 	.sendpage		= udp_sendpage,
2858 	.release_cb		= ip4_datagram_release_cb,
2859 	.hash			= udp_lib_hash,
2860 	.unhash			= udp_lib_unhash,
2861 	.rehash			= udp_v4_rehash,
2862 	.get_port		= udp_v4_get_port,
2863 	.memory_allocated	= &udp_memory_allocated,
2864 	.sysctl_mem		= sysctl_udp_mem,
2865 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2866 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2867 	.obj_size		= sizeof(struct udp_sock),
2868 	.h.udp_table		= &udp_table,
2869 	.diag_destroy		= udp_abort,
2870 };
2871 EXPORT_SYMBOL(udp_prot);
2872 
2873 /* ------------------------------------------------------------------------ */
2874 #ifdef CONFIG_PROC_FS
2875 
udp_get_first(struct seq_file * seq,int start)2876 static struct sock *udp_get_first(struct seq_file *seq, int start)
2877 {
2878 	struct sock *sk;
2879 	struct udp_seq_afinfo *afinfo;
2880 	struct udp_iter_state *state = seq->private;
2881 	struct net *net = seq_file_net(seq);
2882 
2883 	if (state->bpf_seq_afinfo)
2884 		afinfo = state->bpf_seq_afinfo;
2885 	else
2886 		afinfo = PDE_DATA(file_inode(seq->file));
2887 
2888 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2889 	     ++state->bucket) {
2890 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2891 
2892 		if (hlist_empty(&hslot->head))
2893 			continue;
2894 
2895 		spin_lock_bh(&hslot->lock);
2896 		sk_for_each(sk, &hslot->head) {
2897 			if (!net_eq(sock_net(sk), net))
2898 				continue;
2899 			if (afinfo->family == AF_UNSPEC ||
2900 			    sk->sk_family == afinfo->family)
2901 				goto found;
2902 		}
2903 		spin_unlock_bh(&hslot->lock);
2904 	}
2905 	sk = NULL;
2906 found:
2907 	return sk;
2908 }
2909 
udp_get_next(struct seq_file * seq,struct sock * sk)2910 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2911 {
2912 	struct udp_seq_afinfo *afinfo;
2913 	struct udp_iter_state *state = seq->private;
2914 	struct net *net = seq_file_net(seq);
2915 
2916 	if (state->bpf_seq_afinfo)
2917 		afinfo = state->bpf_seq_afinfo;
2918 	else
2919 		afinfo = PDE_DATA(file_inode(seq->file));
2920 
2921 	do {
2922 		sk = sk_next(sk);
2923 	} while (sk && (!net_eq(sock_net(sk), net) ||
2924 			(afinfo->family != AF_UNSPEC &&
2925 			 sk->sk_family != afinfo->family)));
2926 
2927 	if (!sk) {
2928 		if (state->bucket <= afinfo->udp_table->mask)
2929 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2930 		return udp_get_first(seq, state->bucket + 1);
2931 	}
2932 	return sk;
2933 }
2934 
udp_get_idx(struct seq_file * seq,loff_t pos)2935 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2936 {
2937 	struct sock *sk = udp_get_first(seq, 0);
2938 
2939 	if (sk)
2940 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2941 			--pos;
2942 	return pos ? NULL : sk;
2943 }
2944 
udp_seq_start(struct seq_file * seq,loff_t * pos)2945 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2946 {
2947 	struct udp_iter_state *state = seq->private;
2948 	state->bucket = MAX_UDP_PORTS;
2949 
2950 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2951 }
2952 EXPORT_SYMBOL(udp_seq_start);
2953 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2954 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2955 {
2956 	struct sock *sk;
2957 
2958 	if (v == SEQ_START_TOKEN)
2959 		sk = udp_get_idx(seq, 0);
2960 	else
2961 		sk = udp_get_next(seq, v);
2962 
2963 	++*pos;
2964 	return sk;
2965 }
2966 EXPORT_SYMBOL(udp_seq_next);
2967 
udp_seq_stop(struct seq_file * seq,void * v)2968 void udp_seq_stop(struct seq_file *seq, void *v)
2969 {
2970 	struct udp_seq_afinfo *afinfo;
2971 	struct udp_iter_state *state = seq->private;
2972 
2973 	if (state->bpf_seq_afinfo)
2974 		afinfo = state->bpf_seq_afinfo;
2975 	else
2976 		afinfo = PDE_DATA(file_inode(seq->file));
2977 
2978 	if (state->bucket <= afinfo->udp_table->mask)
2979 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2980 }
2981 EXPORT_SYMBOL(udp_seq_stop);
2982 
2983 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2984 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2985 		int bucket)
2986 {
2987 	struct inet_sock *inet = inet_sk(sp);
2988 	__be32 dest = inet->inet_daddr;
2989 	__be32 src  = inet->inet_rcv_saddr;
2990 	__u16 destp	  = ntohs(inet->inet_dport);
2991 	__u16 srcp	  = ntohs(inet->inet_sport);
2992 
2993 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2994 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2995 		bucket, src, srcp, dest, destp, sp->sk_state,
2996 		sk_wmem_alloc_get(sp),
2997 		udp_rqueue_get(sp),
2998 		0, 0L, 0,
2999 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3000 		0, sock_i_ino(sp),
3001 		refcount_read(&sp->sk_refcnt), sp,
3002 		atomic_read(&sp->sk_drops));
3003 }
3004 
udp4_seq_show(struct seq_file * seq,void * v)3005 int udp4_seq_show(struct seq_file *seq, void *v)
3006 {
3007 	seq_setwidth(seq, 127);
3008 	if (v == SEQ_START_TOKEN)
3009 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3010 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3011 			   "inode ref pointer drops");
3012 	else {
3013 		struct udp_iter_state *state = seq->private;
3014 
3015 		udp4_format_sock(v, seq, state->bucket);
3016 	}
3017 	seq_pad(seq, '\n');
3018 	return 0;
3019 }
3020 
3021 #ifdef CONFIG_BPF_SYSCALL
3022 struct bpf_iter__udp {
3023 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3024 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3025 	uid_t uid __aligned(8);
3026 	int bucket __aligned(8);
3027 };
3028 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3029 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3030 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3031 {
3032 	struct bpf_iter__udp ctx;
3033 
3034 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3035 	ctx.meta = meta;
3036 	ctx.udp_sk = udp_sk;
3037 	ctx.uid = uid;
3038 	ctx.bucket = bucket;
3039 	return bpf_iter_run_prog(prog, &ctx);
3040 }
3041 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3042 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3043 {
3044 	struct udp_iter_state *state = seq->private;
3045 	struct bpf_iter_meta meta;
3046 	struct bpf_prog *prog;
3047 	struct sock *sk = v;
3048 	uid_t uid;
3049 
3050 	if (v == SEQ_START_TOKEN)
3051 		return 0;
3052 
3053 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3054 	meta.seq = seq;
3055 	prog = bpf_iter_get_info(&meta, false);
3056 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3057 }
3058 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3059 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3060 {
3061 	struct bpf_iter_meta meta;
3062 	struct bpf_prog *prog;
3063 
3064 	if (!v) {
3065 		meta.seq = seq;
3066 		prog = bpf_iter_get_info(&meta, true);
3067 		if (prog)
3068 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3069 	}
3070 
3071 	udp_seq_stop(seq, v);
3072 }
3073 
3074 static const struct seq_operations bpf_iter_udp_seq_ops = {
3075 	.start		= udp_seq_start,
3076 	.next		= udp_seq_next,
3077 	.stop		= bpf_iter_udp_seq_stop,
3078 	.show		= bpf_iter_udp_seq_show,
3079 };
3080 #endif
3081 
3082 const struct seq_operations udp_seq_ops = {
3083 	.start		= udp_seq_start,
3084 	.next		= udp_seq_next,
3085 	.stop		= udp_seq_stop,
3086 	.show		= udp4_seq_show,
3087 };
3088 EXPORT_SYMBOL(udp_seq_ops);
3089 
3090 static struct udp_seq_afinfo udp4_seq_afinfo = {
3091 	.family		= AF_INET,
3092 	.udp_table	= &udp_table,
3093 };
3094 
udp4_proc_init_net(struct net * net)3095 static int __net_init udp4_proc_init_net(struct net *net)
3096 {
3097 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3098 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3099 		return -ENOMEM;
3100 	return 0;
3101 }
3102 
udp4_proc_exit_net(struct net * net)3103 static void __net_exit udp4_proc_exit_net(struct net *net)
3104 {
3105 	remove_proc_entry("udp", net->proc_net);
3106 }
3107 
3108 static struct pernet_operations udp4_net_ops = {
3109 	.init = udp4_proc_init_net,
3110 	.exit = udp4_proc_exit_net,
3111 };
3112 
udp4_proc_init(void)3113 int __init udp4_proc_init(void)
3114 {
3115 	return register_pernet_subsys(&udp4_net_ops);
3116 }
3117 
udp4_proc_exit(void)3118 void udp4_proc_exit(void)
3119 {
3120 	unregister_pernet_subsys(&udp4_net_ops);
3121 }
3122 #endif /* CONFIG_PROC_FS */
3123 
3124 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3125 static int __init set_uhash_entries(char *str)
3126 {
3127 	ssize_t ret;
3128 
3129 	if (!str)
3130 		return 0;
3131 
3132 	ret = kstrtoul(str, 0, &uhash_entries);
3133 	if (ret)
3134 		return 0;
3135 
3136 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3137 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3138 	return 1;
3139 }
3140 __setup("uhash_entries=", set_uhash_entries);
3141 
udp_table_init(struct udp_table * table,const char * name)3142 void __init udp_table_init(struct udp_table *table, const char *name)
3143 {
3144 	unsigned int i;
3145 
3146 	table->hash = alloc_large_system_hash(name,
3147 					      2 * sizeof(struct udp_hslot),
3148 					      uhash_entries,
3149 					      21, /* one slot per 2 MB */
3150 					      0,
3151 					      &table->log,
3152 					      &table->mask,
3153 					      UDP_HTABLE_SIZE_MIN,
3154 					      64 * 1024);
3155 
3156 	table->hash2 = table->hash + (table->mask + 1);
3157 	for (i = 0; i <= table->mask; i++) {
3158 		INIT_HLIST_HEAD(&table->hash[i].head);
3159 		table->hash[i].count = 0;
3160 		spin_lock_init(&table->hash[i].lock);
3161 	}
3162 	for (i = 0; i <= table->mask; i++) {
3163 		INIT_HLIST_HEAD(&table->hash2[i].head);
3164 		table->hash2[i].count = 0;
3165 		spin_lock_init(&table->hash2[i].lock);
3166 	}
3167 }
3168 
udp_flow_hashrnd(void)3169 u32 udp_flow_hashrnd(void)
3170 {
3171 	static u32 hashrnd __read_mostly;
3172 
3173 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3174 
3175 	return hashrnd;
3176 }
3177 EXPORT_SYMBOL(udp_flow_hashrnd);
3178 
__udp_sysctl_init(struct net * net)3179 static void __udp_sysctl_init(struct net *net)
3180 {
3181 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3182 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3183 
3184 #ifdef CONFIG_NET_L3_MASTER_DEV
3185 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3186 #endif
3187 }
3188 
udp_sysctl_init(struct net * net)3189 static int __net_init udp_sysctl_init(struct net *net)
3190 {
3191 	__udp_sysctl_init(net);
3192 	return 0;
3193 }
3194 
3195 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3196 	.init	= udp_sysctl_init,
3197 };
3198 
3199 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3200 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3201 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3202 
3203 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3204 {
3205 	struct udp_iter_state *st = priv_data;
3206 	struct udp_seq_afinfo *afinfo;
3207 	int ret;
3208 
3209 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3210 	if (!afinfo)
3211 		return -ENOMEM;
3212 
3213 	afinfo->family = AF_UNSPEC;
3214 	afinfo->udp_table = &udp_table;
3215 	st->bpf_seq_afinfo = afinfo;
3216 	ret = bpf_iter_init_seq_net(priv_data, aux);
3217 	if (ret)
3218 		kfree(afinfo);
3219 	return ret;
3220 }
3221 
bpf_iter_fini_udp(void * priv_data)3222 static void bpf_iter_fini_udp(void *priv_data)
3223 {
3224 	struct udp_iter_state *st = priv_data;
3225 
3226 	kfree(st->bpf_seq_afinfo);
3227 	bpf_iter_fini_seq_net(priv_data);
3228 }
3229 
3230 static const struct bpf_iter_seq_info udp_seq_info = {
3231 	.seq_ops		= &bpf_iter_udp_seq_ops,
3232 	.init_seq_private	= bpf_iter_init_udp,
3233 	.fini_seq_private	= bpf_iter_fini_udp,
3234 	.seq_priv_size		= sizeof(struct udp_iter_state),
3235 };
3236 
3237 static struct bpf_iter_reg udp_reg_info = {
3238 	.target			= "udp",
3239 	.ctx_arg_info_size	= 1,
3240 	.ctx_arg_info		= {
3241 		{ offsetof(struct bpf_iter__udp, udp_sk),
3242 		  PTR_TO_BTF_ID_OR_NULL },
3243 	},
3244 	.seq_info		= &udp_seq_info,
3245 };
3246 
bpf_iter_register(void)3247 static void __init bpf_iter_register(void)
3248 {
3249 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3250 	if (bpf_iter_reg_target(&udp_reg_info))
3251 		pr_warn("Warning: could not register bpf iterator udp\n");
3252 }
3253 #endif
3254 
udp_init(void)3255 void __init udp_init(void)
3256 {
3257 	unsigned long limit;
3258 	unsigned int i;
3259 
3260 	udp_table_init(&udp_table, "UDP");
3261 	limit = nr_free_buffer_pages() / 8;
3262 	limit = max(limit, 128UL);
3263 	sysctl_udp_mem[0] = limit / 4 * 3;
3264 	sysctl_udp_mem[1] = limit;
3265 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3266 
3267 	__udp_sysctl_init(&init_net);
3268 
3269 	/* 16 spinlocks per cpu */
3270 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3271 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3272 				GFP_KERNEL);
3273 	if (!udp_busylocks)
3274 		panic("UDP: failed to alloc udp_busylocks\n");
3275 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3276 		spin_lock_init(udp_busylocks + i);
3277 
3278 	if (register_pernet_subsys(&udp_sysctl_ops))
3279 		panic("UDP: failed to init sysctl parameters.\n");
3280 
3281 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3282 	bpf_iter_register();
3283 #endif
3284 }
3285