1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
136 {
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
139
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
158 }
159 }
160 }
161 return 0;
162 }
163
164 /*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
171 {
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
191 }
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
204
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
216 }
217 }
218
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221
222 /**
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
229 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
232 {
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
237
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
246
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
249 /*
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 */
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
260
261 snum = first;
262 /*
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
266 */
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
287
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
291
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
297 }
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
302 }
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
306 }
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
318 }
319
320 sk_add_node_rcu(sk, &hslot->head);
321 hslot->count++;
322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323
324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 spin_lock(&hslot2->lock);
326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 sk->sk_family == AF_INET6)
328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 &hslot2->head);
330 else
331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 &hslot2->head);
333 hslot2->count++;
334 spin_unlock(&hslot2->lock);
335 }
336 sock_set_flag(sk, SOCK_RCU_FREE);
337 error = 0;
338 fail_unlock:
339 spin_unlock_bh(&hslot->lock);
340 fail:
341 return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 unsigned int hash2_nulladdr =
348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 unsigned int hash2_partial =
350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351
352 /* precompute partial secondary hash */
353 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 __be32 saddr, __be16 sport,
359 __be32 daddr, unsigned short hnum,
360 int dif, int sdif)
361 {
362 int score;
363 struct inet_sock *inet;
364 bool dev_match;
365
366 if (!net_eq(sock_net(sk), net) ||
367 udp_sk(sk)->udp_port_hash != hnum ||
368 ipv6_only_sock(sk))
369 return -1;
370
371 if (sk->sk_rcv_saddr != daddr)
372 return -1;
373
374 score = (sk->sk_family == PF_INET) ? 2 : 1;
375
376 inet = inet_sk(sk);
377 if (inet->inet_daddr) {
378 if (inet->inet_daddr != saddr)
379 return -1;
380 score += 4;
381 }
382
383 if (inet->inet_dport) {
384 if (inet->inet_dport != sport)
385 return -1;
386 score += 4;
387 }
388
389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 dif, sdif);
391 if (!dev_match)
392 return -1;
393 if (sk->sk_bound_dev_if)
394 score += 4;
395
396 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 score++;
398 return score;
399 }
400
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 const __u16 lport, const __be32 faddr,
403 const __be16 fport)
404 {
405 static u32 udp_ehash_secret __read_mostly;
406
407 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408
409 return __inet_ehashfn(laddr, lport, faddr, fport,
410 udp_ehash_secret + net_hash_mix(net));
411 }
412
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 struct sk_buff *skb,
415 __be32 saddr, __be16 sport,
416 __be32 daddr, unsigned short hnum)
417 {
418 struct sock *reuse_sk = NULL;
419 u32 hash;
420
421 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 reuse_sk = reuseport_select_sock(sk, hash, skb,
424 sizeof(struct udphdr));
425 }
426 return reuse_sk;
427 }
428
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 __be32 saddr, __be16 sport,
432 __be32 daddr, unsigned int hnum,
433 int dif, int sdif,
434 struct udp_hslot *hslot2,
435 struct sk_buff *skb)
436 {
437 struct sock *sk, *result;
438 int score, badness;
439
440 result = NULL;
441 badness = 0;
442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 score = compute_score(sk, net, saddr, sport,
444 daddr, hnum, dif, sdif);
445 if (score > badness) {
446 result = lookup_reuseport(net, sk, skb,
447 saddr, sport, daddr, hnum);
448 /* Fall back to scoring if group has connections */
449 if (result && !reuseport_has_conns(sk, false))
450 return result;
451
452 result = result ? : sk;
453 badness = score;
454 }
455 }
456 return result;
457 }
458
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)459 static struct sock *udp4_lookup_run_bpf(struct net *net,
460 struct udp_table *udptable,
461 struct sk_buff *skb,
462 __be32 saddr, __be16 sport,
463 __be32 daddr, u16 hnum)
464 {
465 struct sock *sk, *reuse_sk;
466 bool no_reuseport;
467
468 if (udptable != &udp_table)
469 return NULL; /* only UDP is supported */
470
471 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
472 saddr, sport, daddr, hnum, &sk);
473 if (no_reuseport || IS_ERR_OR_NULL(sk))
474 return sk;
475
476 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
477 if (reuse_sk)
478 sk = reuse_sk;
479 return sk;
480 }
481
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483 * harder than this. -DaveM
484 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 __be16 sport, __be32 daddr, __be16 dport, int dif,
487 int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 unsigned short hnum = ntohs(dport);
490 unsigned int hash2, slot2;
491 struct udp_hslot *hslot2;
492 struct sock *result, *sk;
493
494 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 slot2 = hash2 & udptable->mask;
496 hslot2 = &udptable->hash2[slot2];
497
498 /* Lookup connected or non-wildcard socket */
499 result = udp4_lib_lookup2(net, saddr, sport,
500 daddr, hnum, dif, sdif,
501 hslot2, skb);
502 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 goto done;
504
505 /* Lookup redirect from BPF */
506 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
507 sk = udp4_lookup_run_bpf(net, udptable, skb,
508 saddr, sport, daddr, hnum);
509 if (sk) {
510 result = sk;
511 goto done;
512 }
513 }
514
515 /* Got non-wildcard socket or error on first lookup */
516 if (result)
517 goto done;
518
519 /* Lookup wildcard sockets */
520 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 slot2 = hash2 & udptable->mask;
522 hslot2 = &udptable->hash2[slot2];
523
524 result = udp4_lib_lookup2(net, saddr, sport,
525 htonl(INADDR_ANY), hnum, dif, sdif,
526 hslot2, skb);
527 done:
528 if (IS_ERR(result))
529 return NULL;
530 return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535 __be16 sport, __be16 dport,
536 struct udp_table *udptable)
537 {
538 const struct iphdr *iph = ip_hdr(skb);
539
540 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541 iph->daddr, dport, inet_iif(skb),
542 inet_sdif(skb), udptable, skb);
543 }
544
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)545 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
546 __be16 sport, __be16 dport)
547 {
548 const struct iphdr *iph = ip_hdr(skb);
549
550 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 iph->daddr, dport, inet_iif(skb),
552 inet_sdif(skb), &udp_table, NULL);
553 }
554 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
555
556 /* Must be called under rcu_read_lock().
557 * Does increment socket refcount.
558 */
559 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)560 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
561 __be32 daddr, __be16 dport, int dif)
562 {
563 struct sock *sk;
564
565 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
566 dif, 0, &udp_table, NULL);
567 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
568 sk = NULL;
569 return sk;
570 }
571 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
572 #endif
573
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)574 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
575 __be16 loc_port, __be32 loc_addr,
576 __be16 rmt_port, __be32 rmt_addr,
577 int dif, int sdif, unsigned short hnum)
578 {
579 struct inet_sock *inet = inet_sk(sk);
580
581 if (!net_eq(sock_net(sk), net) ||
582 udp_sk(sk)->udp_port_hash != hnum ||
583 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
584 (inet->inet_dport != rmt_port && inet->inet_dport) ||
585 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
586 ipv6_only_sock(sk) ||
587 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
588 return false;
589 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
590 return false;
591 return true;
592 }
593
594 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)595 void udp_encap_enable(void)
596 {
597 static_branch_inc(&udp_encap_needed_key);
598 }
599 EXPORT_SYMBOL(udp_encap_enable);
600
601 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
602 * through error handlers in encapsulations looking for a match.
603 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)604 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
605 {
606 int i;
607
608 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
609 int (*handler)(struct sk_buff *skb, u32 info);
610 const struct ip_tunnel_encap_ops *encap;
611
612 encap = rcu_dereference(iptun_encaps[i]);
613 if (!encap)
614 continue;
615 handler = encap->err_handler;
616 if (handler && !handler(skb, info))
617 return 0;
618 }
619
620 return -ENOENT;
621 }
622
623 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
624 * reversing source and destination port: this will match tunnels that force the
625 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
626 * lwtunnels might actually break this assumption by being configured with
627 * different destination ports on endpoints, in this case we won't be able to
628 * trace ICMP messages back to them.
629 *
630 * If this doesn't match any socket, probe tunnels with arbitrary destination
631 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
632 * we've sent packets to won't necessarily match the local destination port.
633 *
634 * Then ask the tunnel implementation to match the error against a valid
635 * association.
636 *
637 * Return an error if we can't find a match, the socket if we need further
638 * processing, zero otherwise.
639 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)640 static struct sock *__udp4_lib_err_encap(struct net *net,
641 const struct iphdr *iph,
642 struct udphdr *uh,
643 struct udp_table *udptable,
644 struct sk_buff *skb, u32 info)
645 {
646 int network_offset, transport_offset;
647 struct sock *sk;
648
649 network_offset = skb_network_offset(skb);
650 transport_offset = skb_transport_offset(skb);
651
652 /* Network header needs to point to the outer IPv4 header inside ICMP */
653 skb_reset_network_header(skb);
654
655 /* Transport header needs to point to the UDP header */
656 skb_set_transport_header(skb, iph->ihl << 2);
657
658 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
659 iph->saddr, uh->dest, skb->dev->ifindex, 0,
660 udptable, NULL);
661 if (sk) {
662 int (*lookup)(struct sock *sk, struct sk_buff *skb);
663 struct udp_sock *up = udp_sk(sk);
664
665 lookup = READ_ONCE(up->encap_err_lookup);
666 if (!lookup || lookup(sk, skb))
667 sk = NULL;
668 }
669
670 if (!sk)
671 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
672
673 skb_set_transport_header(skb, transport_offset);
674 skb_set_network_header(skb, network_offset);
675
676 return sk;
677 }
678
679 /*
680 * This routine is called by the ICMP module when it gets some
681 * sort of error condition. If err < 0 then the socket should
682 * be closed and the error returned to the user. If err > 0
683 * it's just the icmp type << 8 | icmp code.
684 * Header points to the ip header of the error packet. We move
685 * on past this. Then (as it used to claim before adjustment)
686 * header points to the first 8 bytes of the udp header. We need
687 * to find the appropriate port.
688 */
689
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)690 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
691 {
692 struct inet_sock *inet;
693 const struct iphdr *iph = (const struct iphdr *)skb->data;
694 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
695 const int type = icmp_hdr(skb)->type;
696 const int code = icmp_hdr(skb)->code;
697 bool tunnel = false;
698 struct sock *sk;
699 int harderr;
700 int err;
701 struct net *net = dev_net(skb->dev);
702
703 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
704 iph->saddr, uh->source, skb->dev->ifindex,
705 inet_sdif(skb), udptable, NULL);
706 if (!sk) {
707 /* No socket for error: try tunnels before discarding */
708 sk = ERR_PTR(-ENOENT);
709 if (static_branch_unlikely(&udp_encap_needed_key)) {
710 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
711 info);
712 if (!sk)
713 return 0;
714 }
715
716 if (IS_ERR(sk)) {
717 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
718 return PTR_ERR(sk);
719 }
720
721 tunnel = true;
722 }
723
724 err = 0;
725 harderr = 0;
726 inet = inet_sk(sk);
727
728 switch (type) {
729 default:
730 case ICMP_TIME_EXCEEDED:
731 err = EHOSTUNREACH;
732 break;
733 case ICMP_SOURCE_QUENCH:
734 goto out;
735 case ICMP_PARAMETERPROB:
736 err = EPROTO;
737 harderr = 1;
738 break;
739 case ICMP_DEST_UNREACH:
740 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
741 ipv4_sk_update_pmtu(skb, sk, info);
742 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
743 err = EMSGSIZE;
744 harderr = 1;
745 break;
746 }
747 goto out;
748 }
749 err = EHOSTUNREACH;
750 if (code <= NR_ICMP_UNREACH) {
751 harderr = icmp_err_convert[code].fatal;
752 err = icmp_err_convert[code].errno;
753 }
754 break;
755 case ICMP_REDIRECT:
756 ipv4_sk_redirect(skb, sk);
757 goto out;
758 }
759
760 /*
761 * RFC1122: OK. Passes ICMP errors back to application, as per
762 * 4.1.3.3.
763 */
764 if (tunnel) {
765 /* ...not for tunnels though: we don't have a sending socket */
766 goto out;
767 }
768 if (!inet->recverr) {
769 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
770 goto out;
771 } else
772 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
773
774 sk->sk_err = err;
775 sk->sk_error_report(sk);
776 out:
777 return 0;
778 }
779
udp_err(struct sk_buff * skb,u32 info)780 int udp_err(struct sk_buff *skb, u32 info)
781 {
782 return __udp4_lib_err(skb, info, &udp_table);
783 }
784
785 /*
786 * Throw away all pending data and cancel the corking. Socket is locked.
787 */
udp_flush_pending_frames(struct sock * sk)788 void udp_flush_pending_frames(struct sock *sk)
789 {
790 struct udp_sock *up = udp_sk(sk);
791
792 if (up->pending) {
793 up->len = 0;
794 up->pending = 0;
795 ip_flush_pending_frames(sk);
796 }
797 }
798 EXPORT_SYMBOL(udp_flush_pending_frames);
799
800 /**
801 * udp4_hwcsum - handle outgoing HW checksumming
802 * @skb: sk_buff containing the filled-in UDP header
803 * (checksum field must be zeroed out)
804 * @src: source IP address
805 * @dst: destination IP address
806 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)807 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
808 {
809 struct udphdr *uh = udp_hdr(skb);
810 int offset = skb_transport_offset(skb);
811 int len = skb->len - offset;
812 int hlen = len;
813 __wsum csum = 0;
814
815 if (!skb_has_frag_list(skb)) {
816 /*
817 * Only one fragment on the socket.
818 */
819 skb->csum_start = skb_transport_header(skb) - skb->head;
820 skb->csum_offset = offsetof(struct udphdr, check);
821 uh->check = ~csum_tcpudp_magic(src, dst, len,
822 IPPROTO_UDP, 0);
823 } else {
824 struct sk_buff *frags;
825
826 /*
827 * HW-checksum won't work as there are two or more
828 * fragments on the socket so that all csums of sk_buffs
829 * should be together
830 */
831 skb_walk_frags(skb, frags) {
832 csum = csum_add(csum, frags->csum);
833 hlen -= frags->len;
834 }
835
836 csum = skb_checksum(skb, offset, hlen, csum);
837 skb->ip_summed = CHECKSUM_NONE;
838
839 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
840 if (uh->check == 0)
841 uh->check = CSUM_MANGLED_0;
842 }
843 }
844 EXPORT_SYMBOL_GPL(udp4_hwcsum);
845
846 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
847 * for the simple case like when setting the checksum for a UDP tunnel.
848 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)849 void udp_set_csum(bool nocheck, struct sk_buff *skb,
850 __be32 saddr, __be32 daddr, int len)
851 {
852 struct udphdr *uh = udp_hdr(skb);
853
854 if (nocheck) {
855 uh->check = 0;
856 } else if (skb_is_gso(skb)) {
857 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
858 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
859 uh->check = 0;
860 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
861 if (uh->check == 0)
862 uh->check = CSUM_MANGLED_0;
863 } else {
864 skb->ip_summed = CHECKSUM_PARTIAL;
865 skb->csum_start = skb_transport_header(skb) - skb->head;
866 skb->csum_offset = offsetof(struct udphdr, check);
867 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
868 }
869 }
870 EXPORT_SYMBOL(udp_set_csum);
871
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)872 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
873 struct inet_cork *cork)
874 {
875 struct sock *sk = skb->sk;
876 struct inet_sock *inet = inet_sk(sk);
877 struct udphdr *uh;
878 int err = 0;
879 int is_udplite = IS_UDPLITE(sk);
880 int offset = skb_transport_offset(skb);
881 int len = skb->len - offset;
882 int datalen = len - sizeof(*uh);
883 __wsum csum = 0;
884
885 /*
886 * Create a UDP header
887 */
888 uh = udp_hdr(skb);
889 uh->source = inet->inet_sport;
890 uh->dest = fl4->fl4_dport;
891 uh->len = htons(len);
892 uh->check = 0;
893
894 if (cork->gso_size) {
895 const int hlen = skb_network_header_len(skb) +
896 sizeof(struct udphdr);
897
898 if (hlen + cork->gso_size > cork->fragsize) {
899 kfree_skb(skb);
900 return -EINVAL;
901 }
902 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
903 kfree_skb(skb);
904 return -EINVAL;
905 }
906 if (sk->sk_no_check_tx) {
907 kfree_skb(skb);
908 return -EINVAL;
909 }
910 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
911 dst_xfrm(skb_dst(skb))) {
912 kfree_skb(skb);
913 return -EIO;
914 }
915
916 if (datalen > cork->gso_size) {
917 skb_shinfo(skb)->gso_size = cork->gso_size;
918 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
919 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
920 cork->gso_size);
921 }
922 goto csum_partial;
923 }
924
925 if (is_udplite) /* UDP-Lite */
926 csum = udplite_csum(skb);
927
928 else if (sk->sk_no_check_tx) { /* UDP csum off */
929
930 skb->ip_summed = CHECKSUM_NONE;
931 goto send;
932
933 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
934 csum_partial:
935
936 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
937 goto send;
938
939 } else
940 csum = udp_csum(skb);
941
942 /* add protocol-dependent pseudo-header */
943 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
944 sk->sk_protocol, csum);
945 if (uh->check == 0)
946 uh->check = CSUM_MANGLED_0;
947
948 send:
949 err = ip_send_skb(sock_net(sk), skb);
950 if (err) {
951 if (err == -ENOBUFS && !inet->recverr) {
952 UDP_INC_STATS(sock_net(sk),
953 UDP_MIB_SNDBUFERRORS, is_udplite);
954 err = 0;
955 }
956 } else
957 UDP_INC_STATS(sock_net(sk),
958 UDP_MIB_OUTDATAGRAMS, is_udplite);
959 return err;
960 }
961
962 /*
963 * Push out all pending data as one UDP datagram. Socket is locked.
964 */
udp_push_pending_frames(struct sock * sk)965 int udp_push_pending_frames(struct sock *sk)
966 {
967 struct udp_sock *up = udp_sk(sk);
968 struct inet_sock *inet = inet_sk(sk);
969 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
970 struct sk_buff *skb;
971 int err = 0;
972
973 skb = ip_finish_skb(sk, fl4);
974 if (!skb)
975 goto out;
976
977 err = udp_send_skb(skb, fl4, &inet->cork.base);
978
979 out:
980 up->len = 0;
981 up->pending = 0;
982 return err;
983 }
984 EXPORT_SYMBOL(udp_push_pending_frames);
985
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)986 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
987 {
988 switch (cmsg->cmsg_type) {
989 case UDP_SEGMENT:
990 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
991 return -EINVAL;
992 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
993 return 0;
994 default:
995 return -EINVAL;
996 }
997 }
998
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)999 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1000 {
1001 struct cmsghdr *cmsg;
1002 bool need_ip = false;
1003 int err;
1004
1005 for_each_cmsghdr(cmsg, msg) {
1006 if (!CMSG_OK(msg, cmsg))
1007 return -EINVAL;
1008
1009 if (cmsg->cmsg_level != SOL_UDP) {
1010 need_ip = true;
1011 continue;
1012 }
1013
1014 err = __udp_cmsg_send(cmsg, gso_size);
1015 if (err)
1016 return err;
1017 }
1018
1019 return need_ip;
1020 }
1021 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1022
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1023 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1024 {
1025 struct inet_sock *inet = inet_sk(sk);
1026 struct udp_sock *up = udp_sk(sk);
1027 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1028 struct flowi4 fl4_stack;
1029 struct flowi4 *fl4;
1030 int ulen = len;
1031 struct ipcm_cookie ipc;
1032 struct rtable *rt = NULL;
1033 int free = 0;
1034 int connected = 0;
1035 __be32 daddr, faddr, saddr;
1036 __be16 dport;
1037 u8 tos;
1038 int err, is_udplite = IS_UDPLITE(sk);
1039 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1040 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1041 struct sk_buff *skb;
1042 struct ip_options_data opt_copy;
1043
1044 if (len > 0xFFFF)
1045 return -EMSGSIZE;
1046
1047 /*
1048 * Check the flags.
1049 */
1050
1051 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1052 return -EOPNOTSUPP;
1053
1054 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1055
1056 fl4 = &inet->cork.fl.u.ip4;
1057 if (up->pending) {
1058 /*
1059 * There are pending frames.
1060 * The socket lock must be held while it's corked.
1061 */
1062 lock_sock(sk);
1063 if (likely(up->pending)) {
1064 if (unlikely(up->pending != AF_INET)) {
1065 release_sock(sk);
1066 return -EINVAL;
1067 }
1068 goto do_append_data;
1069 }
1070 release_sock(sk);
1071 }
1072 ulen += sizeof(struct udphdr);
1073
1074 /*
1075 * Get and verify the address.
1076 */
1077 if (usin) {
1078 if (msg->msg_namelen < sizeof(*usin))
1079 return -EINVAL;
1080 if (usin->sin_family != AF_INET) {
1081 if (usin->sin_family != AF_UNSPEC)
1082 return -EAFNOSUPPORT;
1083 }
1084
1085 daddr = usin->sin_addr.s_addr;
1086 dport = usin->sin_port;
1087 if (dport == 0)
1088 return -EINVAL;
1089 } else {
1090 if (sk->sk_state != TCP_ESTABLISHED)
1091 return -EDESTADDRREQ;
1092 daddr = inet->inet_daddr;
1093 dport = inet->inet_dport;
1094 /* Open fast path for connected socket.
1095 Route will not be used, if at least one option is set.
1096 */
1097 connected = 1;
1098 }
1099
1100 ipcm_init_sk(&ipc, inet);
1101 ipc.gso_size = READ_ONCE(up->gso_size);
1102
1103 if (msg->msg_controllen) {
1104 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1105 if (err > 0)
1106 err = ip_cmsg_send(sk, msg, &ipc,
1107 sk->sk_family == AF_INET6);
1108 if (unlikely(err < 0)) {
1109 kfree(ipc.opt);
1110 return err;
1111 }
1112 if (ipc.opt)
1113 free = 1;
1114 connected = 0;
1115 }
1116 if (!ipc.opt) {
1117 struct ip_options_rcu *inet_opt;
1118
1119 rcu_read_lock();
1120 inet_opt = rcu_dereference(inet->inet_opt);
1121 if (inet_opt) {
1122 memcpy(&opt_copy, inet_opt,
1123 sizeof(*inet_opt) + inet_opt->opt.optlen);
1124 ipc.opt = &opt_copy.opt;
1125 }
1126 rcu_read_unlock();
1127 }
1128
1129 if (cgroup_bpf_enabled && !connected) {
1130 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1131 (struct sockaddr *)usin, &ipc.addr);
1132 if (err)
1133 goto out_free;
1134 if (usin) {
1135 if (usin->sin_port == 0) {
1136 /* BPF program set invalid port. Reject it. */
1137 err = -EINVAL;
1138 goto out_free;
1139 }
1140 daddr = usin->sin_addr.s_addr;
1141 dport = usin->sin_port;
1142 }
1143 }
1144
1145 saddr = ipc.addr;
1146 ipc.addr = faddr = daddr;
1147
1148 if (ipc.opt && ipc.opt->opt.srr) {
1149 if (!daddr) {
1150 err = -EINVAL;
1151 goto out_free;
1152 }
1153 faddr = ipc.opt->opt.faddr;
1154 connected = 0;
1155 }
1156 tos = get_rttos(&ipc, inet);
1157 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1158 (msg->msg_flags & MSG_DONTROUTE) ||
1159 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1160 tos |= RTO_ONLINK;
1161 connected = 0;
1162 }
1163
1164 if (ipv4_is_multicast(daddr)) {
1165 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1166 ipc.oif = inet->mc_index;
1167 if (!saddr)
1168 saddr = inet->mc_addr;
1169 connected = 0;
1170 } else if (!ipc.oif) {
1171 ipc.oif = inet->uc_index;
1172 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1173 /* oif is set, packet is to local broadcast and
1174 * uc_index is set. oif is most likely set
1175 * by sk_bound_dev_if. If uc_index != oif check if the
1176 * oif is an L3 master and uc_index is an L3 slave.
1177 * If so, we want to allow the send using the uc_index.
1178 */
1179 if (ipc.oif != inet->uc_index &&
1180 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1181 inet->uc_index)) {
1182 ipc.oif = inet->uc_index;
1183 }
1184 }
1185
1186 if (connected)
1187 rt = (struct rtable *)sk_dst_check(sk, 0);
1188
1189 if (!rt) {
1190 struct net *net = sock_net(sk);
1191 __u8 flow_flags = inet_sk_flowi_flags(sk);
1192
1193 fl4 = &fl4_stack;
1194
1195 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1196 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1197 flow_flags,
1198 faddr, saddr, dport, inet->inet_sport,
1199 sk->sk_uid);
1200
1201 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1202 rt = ip_route_output_flow(net, fl4, sk);
1203 if (IS_ERR(rt)) {
1204 err = PTR_ERR(rt);
1205 rt = NULL;
1206 if (err == -ENETUNREACH)
1207 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1208 goto out;
1209 }
1210
1211 err = -EACCES;
1212 if ((rt->rt_flags & RTCF_BROADCAST) &&
1213 !sock_flag(sk, SOCK_BROADCAST))
1214 goto out;
1215 if (connected)
1216 sk_dst_set(sk, dst_clone(&rt->dst));
1217 }
1218
1219 if (msg->msg_flags&MSG_CONFIRM)
1220 goto do_confirm;
1221 back_from_confirm:
1222
1223 saddr = fl4->saddr;
1224 if (!ipc.addr)
1225 daddr = ipc.addr = fl4->daddr;
1226
1227 /* Lockless fast path for the non-corking case. */
1228 if (!corkreq) {
1229 struct inet_cork cork;
1230
1231 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1232 sizeof(struct udphdr), &ipc, &rt,
1233 &cork, msg->msg_flags);
1234 err = PTR_ERR(skb);
1235 if (!IS_ERR_OR_NULL(skb))
1236 err = udp_send_skb(skb, fl4, &cork);
1237 goto out;
1238 }
1239
1240 lock_sock(sk);
1241 if (unlikely(up->pending)) {
1242 /* The socket is already corked while preparing it. */
1243 /* ... which is an evident application bug. --ANK */
1244 release_sock(sk);
1245
1246 net_dbg_ratelimited("socket already corked\n");
1247 err = -EINVAL;
1248 goto out;
1249 }
1250 /*
1251 * Now cork the socket to pend data.
1252 */
1253 fl4 = &inet->cork.fl.u.ip4;
1254 fl4->daddr = daddr;
1255 fl4->saddr = saddr;
1256 fl4->fl4_dport = dport;
1257 fl4->fl4_sport = inet->inet_sport;
1258 up->pending = AF_INET;
1259
1260 do_append_data:
1261 up->len += ulen;
1262 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1263 sizeof(struct udphdr), &ipc, &rt,
1264 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1265 if (err)
1266 udp_flush_pending_frames(sk);
1267 else if (!corkreq)
1268 err = udp_push_pending_frames(sk);
1269 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1270 up->pending = 0;
1271 release_sock(sk);
1272
1273 out:
1274 ip_rt_put(rt);
1275 out_free:
1276 if (free)
1277 kfree(ipc.opt);
1278 if (!err)
1279 return len;
1280 /*
1281 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1282 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1283 * we don't have a good statistic (IpOutDiscards but it can be too many
1284 * things). We could add another new stat but at least for now that
1285 * seems like overkill.
1286 */
1287 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1288 UDP_INC_STATS(sock_net(sk),
1289 UDP_MIB_SNDBUFERRORS, is_udplite);
1290 }
1291 return err;
1292
1293 do_confirm:
1294 if (msg->msg_flags & MSG_PROBE)
1295 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1296 if (!(msg->msg_flags&MSG_PROBE) || len)
1297 goto back_from_confirm;
1298 err = 0;
1299 goto out;
1300 }
1301 EXPORT_SYMBOL(udp_sendmsg);
1302
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1303 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1304 size_t size, int flags)
1305 {
1306 struct inet_sock *inet = inet_sk(sk);
1307 struct udp_sock *up = udp_sk(sk);
1308 int ret;
1309
1310 if (flags & MSG_SENDPAGE_NOTLAST)
1311 flags |= MSG_MORE;
1312
1313 if (!up->pending) {
1314 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1315
1316 /* Call udp_sendmsg to specify destination address which
1317 * sendpage interface can't pass.
1318 * This will succeed only when the socket is connected.
1319 */
1320 ret = udp_sendmsg(sk, &msg, 0);
1321 if (ret < 0)
1322 return ret;
1323 }
1324
1325 lock_sock(sk);
1326
1327 if (unlikely(!up->pending)) {
1328 release_sock(sk);
1329
1330 net_dbg_ratelimited("cork failed\n");
1331 return -EINVAL;
1332 }
1333
1334 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1335 page, offset, size, flags);
1336 if (ret == -EOPNOTSUPP) {
1337 release_sock(sk);
1338 return sock_no_sendpage(sk->sk_socket, page, offset,
1339 size, flags);
1340 }
1341 if (ret < 0) {
1342 udp_flush_pending_frames(sk);
1343 goto out;
1344 }
1345
1346 up->len += size;
1347 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1348 ret = udp_push_pending_frames(sk);
1349 if (!ret)
1350 ret = size;
1351 out:
1352 release_sock(sk);
1353 return ret;
1354 }
1355
1356 #define UDP_SKB_IS_STATELESS 0x80000000
1357
1358 /* all head states (dst, sk, nf conntrack) except skb extensions are
1359 * cleared by udp_rcv().
1360 *
1361 * We need to preserve secpath, if present, to eventually process
1362 * IP_CMSG_PASSSEC at recvmsg() time.
1363 *
1364 * Other extensions can be cleared.
1365 */
udp_try_make_stateless(struct sk_buff * skb)1366 static bool udp_try_make_stateless(struct sk_buff *skb)
1367 {
1368 if (!skb_has_extensions(skb))
1369 return true;
1370
1371 if (!secpath_exists(skb)) {
1372 skb_ext_reset(skb);
1373 return true;
1374 }
1375
1376 return false;
1377 }
1378
udp_set_dev_scratch(struct sk_buff * skb)1379 static void udp_set_dev_scratch(struct sk_buff *skb)
1380 {
1381 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1382
1383 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1384 scratch->_tsize_state = skb->truesize;
1385 #if BITS_PER_LONG == 64
1386 scratch->len = skb->len;
1387 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1388 scratch->is_linear = !skb_is_nonlinear(skb);
1389 #endif
1390 if (udp_try_make_stateless(skb))
1391 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1392 }
1393
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1394 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1395 {
1396 /* We come here after udp_lib_checksum_complete() returned 0.
1397 * This means that __skb_checksum_complete() might have
1398 * set skb->csum_valid to 1.
1399 * On 64bit platforms, we can set csum_unnecessary
1400 * to true, but only if the skb is not shared.
1401 */
1402 #if BITS_PER_LONG == 64
1403 if (!skb_shared(skb))
1404 udp_skb_scratch(skb)->csum_unnecessary = true;
1405 #endif
1406 }
1407
udp_skb_truesize(struct sk_buff * skb)1408 static int udp_skb_truesize(struct sk_buff *skb)
1409 {
1410 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1411 }
1412
udp_skb_has_head_state(struct sk_buff * skb)1413 static bool udp_skb_has_head_state(struct sk_buff *skb)
1414 {
1415 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1416 }
1417
1418 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1419 static void udp_rmem_release(struct sock *sk, int size, int partial,
1420 bool rx_queue_lock_held)
1421 {
1422 struct udp_sock *up = udp_sk(sk);
1423 struct sk_buff_head *sk_queue;
1424 int amt;
1425
1426 if (likely(partial)) {
1427 up->forward_deficit += size;
1428 size = up->forward_deficit;
1429 if (size < (sk->sk_rcvbuf >> 2) &&
1430 !skb_queue_empty(&up->reader_queue))
1431 return;
1432 } else {
1433 size += up->forward_deficit;
1434 }
1435 up->forward_deficit = 0;
1436
1437 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1438 * if the called don't held it already
1439 */
1440 sk_queue = &sk->sk_receive_queue;
1441 if (!rx_queue_lock_held)
1442 spin_lock(&sk_queue->lock);
1443
1444
1445 sk->sk_forward_alloc += size;
1446 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1447 sk->sk_forward_alloc -= amt;
1448
1449 if (amt)
1450 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1451
1452 atomic_sub(size, &sk->sk_rmem_alloc);
1453
1454 /* this can save us from acquiring the rx queue lock on next receive */
1455 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1456
1457 if (!rx_queue_lock_held)
1458 spin_unlock(&sk_queue->lock);
1459 }
1460
1461 /* Note: called with reader_queue.lock held.
1462 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1463 * This avoids a cache line miss while receive_queue lock is held.
1464 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1465 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1466 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1467 {
1468 prefetch(&skb->data);
1469 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1470 }
1471 EXPORT_SYMBOL(udp_skb_destructor);
1472
1473 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1474 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1475 {
1476 prefetch(&skb->data);
1477 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1478 }
1479
1480 /* Idea of busylocks is to let producers grab an extra spinlock
1481 * to relieve pressure on the receive_queue spinlock shared by consumer.
1482 * Under flood, this means that only one producer can be in line
1483 * trying to acquire the receive_queue spinlock.
1484 * These busylock can be allocated on a per cpu manner, instead of a
1485 * per socket one (that would consume a cache line per socket)
1486 */
1487 static int udp_busylocks_log __read_mostly;
1488 static spinlock_t *udp_busylocks __read_mostly;
1489
busylock_acquire(void * ptr)1490 static spinlock_t *busylock_acquire(void *ptr)
1491 {
1492 spinlock_t *busy;
1493
1494 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1495 spin_lock(busy);
1496 return busy;
1497 }
1498
busylock_release(spinlock_t * busy)1499 static void busylock_release(spinlock_t *busy)
1500 {
1501 if (busy)
1502 spin_unlock(busy);
1503 }
1504
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1505 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1506 {
1507 struct sk_buff_head *list = &sk->sk_receive_queue;
1508 int rmem, delta, amt, err = -ENOMEM;
1509 spinlock_t *busy = NULL;
1510 int size;
1511
1512 /* try to avoid the costly atomic add/sub pair when the receive
1513 * queue is full; always allow at least a packet
1514 */
1515 rmem = atomic_read(&sk->sk_rmem_alloc);
1516 if (rmem > sk->sk_rcvbuf)
1517 goto drop;
1518
1519 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1520 * having linear skbs :
1521 * - Reduce memory overhead and thus increase receive queue capacity
1522 * - Less cache line misses at copyout() time
1523 * - Less work at consume_skb() (less alien page frag freeing)
1524 */
1525 if (rmem > (sk->sk_rcvbuf >> 1)) {
1526 skb_condense(skb);
1527
1528 busy = busylock_acquire(sk);
1529 }
1530 size = skb->truesize;
1531 udp_set_dev_scratch(skb);
1532
1533 /* we drop only if the receive buf is full and the receive
1534 * queue contains some other skb
1535 */
1536 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1537 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1538 goto uncharge_drop;
1539
1540 spin_lock(&list->lock);
1541 if (size >= sk->sk_forward_alloc) {
1542 amt = sk_mem_pages(size);
1543 delta = amt << SK_MEM_QUANTUM_SHIFT;
1544 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1545 err = -ENOBUFS;
1546 spin_unlock(&list->lock);
1547 goto uncharge_drop;
1548 }
1549
1550 sk->sk_forward_alloc += delta;
1551 }
1552
1553 sk->sk_forward_alloc -= size;
1554
1555 /* no need to setup a destructor, we will explicitly release the
1556 * forward allocated memory on dequeue
1557 */
1558 sock_skb_set_dropcount(sk, skb);
1559
1560 __skb_queue_tail(list, skb);
1561 spin_unlock(&list->lock);
1562
1563 if (!sock_flag(sk, SOCK_DEAD))
1564 sk->sk_data_ready(sk);
1565
1566 busylock_release(busy);
1567 return 0;
1568
1569 uncharge_drop:
1570 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1571
1572 drop:
1573 atomic_inc(&sk->sk_drops);
1574 busylock_release(busy);
1575 return err;
1576 }
1577 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1578
udp_destruct_sock(struct sock * sk)1579 void udp_destruct_sock(struct sock *sk)
1580 {
1581 /* reclaim completely the forward allocated memory */
1582 struct udp_sock *up = udp_sk(sk);
1583 unsigned int total = 0;
1584 struct sk_buff *skb;
1585
1586 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1587 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1588 total += skb->truesize;
1589 kfree_skb(skb);
1590 }
1591 udp_rmem_release(sk, total, 0, true);
1592
1593 inet_sock_destruct(sk);
1594 }
1595 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1596
udp_init_sock(struct sock * sk)1597 int udp_init_sock(struct sock *sk)
1598 {
1599 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1600 sk->sk_destruct = udp_destruct_sock;
1601 return 0;
1602 }
1603 EXPORT_SYMBOL_GPL(udp_init_sock);
1604
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1605 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1606 {
1607 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1608 bool slow = lock_sock_fast(sk);
1609
1610 sk_peek_offset_bwd(sk, len);
1611 unlock_sock_fast(sk, slow);
1612 }
1613
1614 if (!skb_unref(skb))
1615 return;
1616
1617 /* In the more common cases we cleared the head states previously,
1618 * see __udp_queue_rcv_skb().
1619 */
1620 if (unlikely(udp_skb_has_head_state(skb)))
1621 skb_release_head_state(skb);
1622 __consume_stateless_skb(skb);
1623 }
1624 EXPORT_SYMBOL_GPL(skb_consume_udp);
1625
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1626 static struct sk_buff *__first_packet_length(struct sock *sk,
1627 struct sk_buff_head *rcvq,
1628 int *total)
1629 {
1630 struct sk_buff *skb;
1631
1632 while ((skb = skb_peek(rcvq)) != NULL) {
1633 if (udp_lib_checksum_complete(skb)) {
1634 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1635 IS_UDPLITE(sk));
1636 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1637 IS_UDPLITE(sk));
1638 atomic_inc(&sk->sk_drops);
1639 __skb_unlink(skb, rcvq);
1640 *total += skb->truesize;
1641 kfree_skb(skb);
1642 } else {
1643 udp_skb_csum_unnecessary_set(skb);
1644 break;
1645 }
1646 }
1647 return skb;
1648 }
1649
1650 /**
1651 * first_packet_length - return length of first packet in receive queue
1652 * @sk: socket
1653 *
1654 * Drops all bad checksum frames, until a valid one is found.
1655 * Returns the length of found skb, or -1 if none is found.
1656 */
first_packet_length(struct sock * sk)1657 static int first_packet_length(struct sock *sk)
1658 {
1659 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1660 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1661 struct sk_buff *skb;
1662 int total = 0;
1663 int res;
1664
1665 spin_lock_bh(&rcvq->lock);
1666 skb = __first_packet_length(sk, rcvq, &total);
1667 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1668 spin_lock(&sk_queue->lock);
1669 skb_queue_splice_tail_init(sk_queue, rcvq);
1670 spin_unlock(&sk_queue->lock);
1671
1672 skb = __first_packet_length(sk, rcvq, &total);
1673 }
1674 res = skb ? skb->len : -1;
1675 if (total)
1676 udp_rmem_release(sk, total, 1, false);
1677 spin_unlock_bh(&rcvq->lock);
1678 return res;
1679 }
1680
1681 /*
1682 * IOCTL requests applicable to the UDP protocol
1683 */
1684
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1685 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1686 {
1687 switch (cmd) {
1688 case SIOCOUTQ:
1689 {
1690 int amount = sk_wmem_alloc_get(sk);
1691
1692 return put_user(amount, (int __user *)arg);
1693 }
1694
1695 case SIOCINQ:
1696 {
1697 int amount = max_t(int, 0, first_packet_length(sk));
1698
1699 return put_user(amount, (int __user *)arg);
1700 }
1701
1702 default:
1703 return -ENOIOCTLCMD;
1704 }
1705
1706 return 0;
1707 }
1708 EXPORT_SYMBOL(udp_ioctl);
1709
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1710 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1711 int noblock, int *off, int *err)
1712 {
1713 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1714 struct sk_buff_head *queue;
1715 struct sk_buff *last;
1716 long timeo;
1717 int error;
1718
1719 queue = &udp_sk(sk)->reader_queue;
1720 flags |= noblock ? MSG_DONTWAIT : 0;
1721 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1722 do {
1723 struct sk_buff *skb;
1724
1725 error = sock_error(sk);
1726 if (error)
1727 break;
1728
1729 error = -EAGAIN;
1730 do {
1731 spin_lock_bh(&queue->lock);
1732 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1733 err, &last);
1734 if (skb) {
1735 if (!(flags & MSG_PEEK))
1736 udp_skb_destructor(sk, skb);
1737 spin_unlock_bh(&queue->lock);
1738 return skb;
1739 }
1740
1741 if (skb_queue_empty_lockless(sk_queue)) {
1742 spin_unlock_bh(&queue->lock);
1743 goto busy_check;
1744 }
1745
1746 /* refill the reader queue and walk it again
1747 * keep both queues locked to avoid re-acquiring
1748 * the sk_receive_queue lock if fwd memory scheduling
1749 * is needed.
1750 */
1751 spin_lock(&sk_queue->lock);
1752 skb_queue_splice_tail_init(sk_queue, queue);
1753
1754 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1755 err, &last);
1756 if (skb && !(flags & MSG_PEEK))
1757 udp_skb_dtor_locked(sk, skb);
1758 spin_unlock(&sk_queue->lock);
1759 spin_unlock_bh(&queue->lock);
1760 if (skb)
1761 return skb;
1762
1763 busy_check:
1764 if (!sk_can_busy_loop(sk))
1765 break;
1766
1767 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1768 } while (!skb_queue_empty_lockless(sk_queue));
1769
1770 /* sk_queue is empty, reader_queue may contain peeked packets */
1771 } while (timeo &&
1772 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1773 &error, &timeo,
1774 (struct sk_buff *)sk_queue));
1775
1776 *err = error;
1777 return NULL;
1778 }
1779 EXPORT_SYMBOL(__skb_recv_udp);
1780
1781 /*
1782 * This should be easy, if there is something there we
1783 * return it, otherwise we block.
1784 */
1785
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1786 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1787 int flags, int *addr_len)
1788 {
1789 struct inet_sock *inet = inet_sk(sk);
1790 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1791 struct sk_buff *skb;
1792 unsigned int ulen, copied;
1793 int off, err, peeking = flags & MSG_PEEK;
1794 int is_udplite = IS_UDPLITE(sk);
1795 bool checksum_valid = false;
1796
1797 if (flags & MSG_ERRQUEUE)
1798 return ip_recv_error(sk, msg, len, addr_len);
1799
1800 try_again:
1801 off = sk_peek_offset(sk, flags);
1802 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1803 if (!skb)
1804 return err;
1805
1806 ulen = udp_skb_len(skb);
1807 copied = len;
1808 if (copied > ulen - off)
1809 copied = ulen - off;
1810 else if (copied < ulen)
1811 msg->msg_flags |= MSG_TRUNC;
1812
1813 /*
1814 * If checksum is needed at all, try to do it while copying the
1815 * data. If the data is truncated, or if we only want a partial
1816 * coverage checksum (UDP-Lite), do it before the copy.
1817 */
1818
1819 if (copied < ulen || peeking ||
1820 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1821 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1822 !__udp_lib_checksum_complete(skb);
1823 if (!checksum_valid)
1824 goto csum_copy_err;
1825 }
1826
1827 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1828 if (udp_skb_is_linear(skb))
1829 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1830 else
1831 err = skb_copy_datagram_msg(skb, off, msg, copied);
1832 } else {
1833 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1834
1835 if (err == -EINVAL)
1836 goto csum_copy_err;
1837 }
1838
1839 if (unlikely(err)) {
1840 if (!peeking) {
1841 atomic_inc(&sk->sk_drops);
1842 UDP_INC_STATS(sock_net(sk),
1843 UDP_MIB_INERRORS, is_udplite);
1844 }
1845 kfree_skb(skb);
1846 return err;
1847 }
1848
1849 if (!peeking)
1850 UDP_INC_STATS(sock_net(sk),
1851 UDP_MIB_INDATAGRAMS, is_udplite);
1852
1853 sock_recv_ts_and_drops(msg, sk, skb);
1854
1855 /* Copy the address. */
1856 if (sin) {
1857 sin->sin_family = AF_INET;
1858 sin->sin_port = udp_hdr(skb)->source;
1859 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1860 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1861 *addr_len = sizeof(*sin);
1862
1863 if (cgroup_bpf_enabled)
1864 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1865 (struct sockaddr *)sin);
1866 }
1867
1868 if (udp_sk(sk)->gro_enabled)
1869 udp_cmsg_recv(msg, sk, skb);
1870
1871 if (inet->cmsg_flags)
1872 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1873
1874 err = copied;
1875 if (flags & MSG_TRUNC)
1876 err = ulen;
1877
1878 skb_consume_udp(sk, skb, peeking ? -err : err);
1879 return err;
1880
1881 csum_copy_err:
1882 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1883 udp_skb_destructor)) {
1884 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1885 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1886 }
1887 kfree_skb(skb);
1888
1889 /* starting over for a new packet, but check if we need to yield */
1890 cond_resched();
1891 msg->msg_flags &= ~MSG_TRUNC;
1892 goto try_again;
1893 }
1894
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1895 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1896 {
1897 /* This check is replicated from __ip4_datagram_connect() and
1898 * intended to prevent BPF program called below from accessing bytes
1899 * that are out of the bound specified by user in addr_len.
1900 */
1901 if (addr_len < sizeof(struct sockaddr_in))
1902 return -EINVAL;
1903
1904 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1905 }
1906 EXPORT_SYMBOL(udp_pre_connect);
1907
__udp_disconnect(struct sock * sk,int flags)1908 int __udp_disconnect(struct sock *sk, int flags)
1909 {
1910 struct inet_sock *inet = inet_sk(sk);
1911 /*
1912 * 1003.1g - break association.
1913 */
1914
1915 sk->sk_state = TCP_CLOSE;
1916 inet->inet_daddr = 0;
1917 inet->inet_dport = 0;
1918 sock_rps_reset_rxhash(sk);
1919 sk->sk_bound_dev_if = 0;
1920 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1921 inet_reset_saddr(sk);
1922 if (sk->sk_prot->rehash &&
1923 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1924 sk->sk_prot->rehash(sk);
1925 }
1926
1927 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1928 sk->sk_prot->unhash(sk);
1929 inet->inet_sport = 0;
1930 }
1931 sk_dst_reset(sk);
1932 return 0;
1933 }
1934 EXPORT_SYMBOL(__udp_disconnect);
1935
udp_disconnect(struct sock * sk,int flags)1936 int udp_disconnect(struct sock *sk, int flags)
1937 {
1938 lock_sock(sk);
1939 __udp_disconnect(sk, flags);
1940 release_sock(sk);
1941 return 0;
1942 }
1943 EXPORT_SYMBOL(udp_disconnect);
1944
udp_lib_unhash(struct sock * sk)1945 void udp_lib_unhash(struct sock *sk)
1946 {
1947 if (sk_hashed(sk)) {
1948 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1949 struct udp_hslot *hslot, *hslot2;
1950
1951 hslot = udp_hashslot(udptable, sock_net(sk),
1952 udp_sk(sk)->udp_port_hash);
1953 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1954
1955 spin_lock_bh(&hslot->lock);
1956 if (rcu_access_pointer(sk->sk_reuseport_cb))
1957 reuseport_detach_sock(sk);
1958 if (sk_del_node_init_rcu(sk)) {
1959 hslot->count--;
1960 inet_sk(sk)->inet_num = 0;
1961 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1962
1963 spin_lock(&hslot2->lock);
1964 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1965 hslot2->count--;
1966 spin_unlock(&hslot2->lock);
1967 }
1968 spin_unlock_bh(&hslot->lock);
1969 }
1970 }
1971 EXPORT_SYMBOL(udp_lib_unhash);
1972
1973 /*
1974 * inet_rcv_saddr was changed, we must rehash secondary hash
1975 */
udp_lib_rehash(struct sock * sk,u16 newhash)1976 void udp_lib_rehash(struct sock *sk, u16 newhash)
1977 {
1978 if (sk_hashed(sk)) {
1979 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1980 struct udp_hslot *hslot, *hslot2, *nhslot2;
1981
1982 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1983 nhslot2 = udp_hashslot2(udptable, newhash);
1984 udp_sk(sk)->udp_portaddr_hash = newhash;
1985
1986 if (hslot2 != nhslot2 ||
1987 rcu_access_pointer(sk->sk_reuseport_cb)) {
1988 hslot = udp_hashslot(udptable, sock_net(sk),
1989 udp_sk(sk)->udp_port_hash);
1990 /* we must lock primary chain too */
1991 spin_lock_bh(&hslot->lock);
1992 if (rcu_access_pointer(sk->sk_reuseport_cb))
1993 reuseport_detach_sock(sk);
1994
1995 if (hslot2 != nhslot2) {
1996 spin_lock(&hslot2->lock);
1997 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1998 hslot2->count--;
1999 spin_unlock(&hslot2->lock);
2000
2001 spin_lock(&nhslot2->lock);
2002 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2003 &nhslot2->head);
2004 nhslot2->count++;
2005 spin_unlock(&nhslot2->lock);
2006 }
2007
2008 spin_unlock_bh(&hslot->lock);
2009 }
2010 }
2011 }
2012 EXPORT_SYMBOL(udp_lib_rehash);
2013
udp_v4_rehash(struct sock * sk)2014 void udp_v4_rehash(struct sock *sk)
2015 {
2016 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2017 inet_sk(sk)->inet_rcv_saddr,
2018 inet_sk(sk)->inet_num);
2019 udp_lib_rehash(sk, new_hash);
2020 }
2021
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2022 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2023 {
2024 int rc;
2025
2026 if (inet_sk(sk)->inet_daddr) {
2027 sock_rps_save_rxhash(sk, skb);
2028 sk_mark_napi_id(sk, skb);
2029 sk_incoming_cpu_update(sk);
2030 } else {
2031 sk_mark_napi_id_once(sk, skb);
2032 }
2033
2034 rc = __udp_enqueue_schedule_skb(sk, skb);
2035 if (rc < 0) {
2036 int is_udplite = IS_UDPLITE(sk);
2037
2038 /* Note that an ENOMEM error is charged twice */
2039 if (rc == -ENOMEM)
2040 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2041 is_udplite);
2042 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2043 kfree_skb(skb);
2044 trace_udp_fail_queue_rcv_skb(rc, sk);
2045 return -1;
2046 }
2047
2048 return 0;
2049 }
2050
2051 /* returns:
2052 * -1: error
2053 * 0: success
2054 * >0: "udp encap" protocol resubmission
2055 *
2056 * Note that in the success and error cases, the skb is assumed to
2057 * have either been requeued or freed.
2058 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2059 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2060 {
2061 struct udp_sock *up = udp_sk(sk);
2062 int is_udplite = IS_UDPLITE(sk);
2063
2064 /*
2065 * Charge it to the socket, dropping if the queue is full.
2066 */
2067 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2068 goto drop;
2069 nf_reset_ct(skb);
2070
2071 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2072 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2073
2074 /*
2075 * This is an encapsulation socket so pass the skb to
2076 * the socket's udp_encap_rcv() hook. Otherwise, just
2077 * fall through and pass this up the UDP socket.
2078 * up->encap_rcv() returns the following value:
2079 * =0 if skb was successfully passed to the encap
2080 * handler or was discarded by it.
2081 * >0 if skb should be passed on to UDP.
2082 * <0 if skb should be resubmitted as proto -N
2083 */
2084
2085 /* if we're overly short, let UDP handle it */
2086 encap_rcv = READ_ONCE(up->encap_rcv);
2087 if (encap_rcv) {
2088 int ret;
2089
2090 /* Verify checksum before giving to encap */
2091 if (udp_lib_checksum_complete(skb))
2092 goto csum_error;
2093
2094 ret = encap_rcv(sk, skb);
2095 if (ret <= 0) {
2096 __UDP_INC_STATS(sock_net(sk),
2097 UDP_MIB_INDATAGRAMS,
2098 is_udplite);
2099 return -ret;
2100 }
2101 }
2102
2103 /* FALLTHROUGH -- it's a UDP Packet */
2104 }
2105
2106 /*
2107 * UDP-Lite specific tests, ignored on UDP sockets
2108 */
2109 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2110
2111 /*
2112 * MIB statistics other than incrementing the error count are
2113 * disabled for the following two types of errors: these depend
2114 * on the application settings, not on the functioning of the
2115 * protocol stack as such.
2116 *
2117 * RFC 3828 here recommends (sec 3.3): "There should also be a
2118 * way ... to ... at least let the receiving application block
2119 * delivery of packets with coverage values less than a value
2120 * provided by the application."
2121 */
2122 if (up->pcrlen == 0) { /* full coverage was set */
2123 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2124 UDP_SKB_CB(skb)->cscov, skb->len);
2125 goto drop;
2126 }
2127 /* The next case involves violating the min. coverage requested
2128 * by the receiver. This is subtle: if receiver wants x and x is
2129 * greater than the buffersize/MTU then receiver will complain
2130 * that it wants x while sender emits packets of smaller size y.
2131 * Therefore the above ...()->partial_cov statement is essential.
2132 */
2133 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2134 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2135 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2136 goto drop;
2137 }
2138 }
2139
2140 prefetch(&sk->sk_rmem_alloc);
2141 if (rcu_access_pointer(sk->sk_filter) &&
2142 udp_lib_checksum_complete(skb))
2143 goto csum_error;
2144
2145 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2146 goto drop;
2147
2148 udp_csum_pull_header(skb);
2149
2150 ipv4_pktinfo_prepare(sk, skb);
2151 return __udp_queue_rcv_skb(sk, skb);
2152
2153 csum_error:
2154 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2155 drop:
2156 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2157 atomic_inc(&sk->sk_drops);
2158 kfree_skb(skb);
2159 return -1;
2160 }
2161
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2162 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2163 {
2164 struct sk_buff *next, *segs;
2165 int ret;
2166
2167 if (likely(!udp_unexpected_gso(sk, skb)))
2168 return udp_queue_rcv_one_skb(sk, skb);
2169
2170 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2171 __skb_push(skb, -skb_mac_offset(skb));
2172 segs = udp_rcv_segment(sk, skb, true);
2173 skb_list_walk_safe(segs, skb, next) {
2174 __skb_pull(skb, skb_transport_offset(skb));
2175 ret = udp_queue_rcv_one_skb(sk, skb);
2176 if (ret > 0)
2177 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2178 }
2179 return 0;
2180 }
2181
2182 /* For TCP sockets, sk_rx_dst is protected by socket lock
2183 * For UDP, we use xchg() to guard against concurrent changes.
2184 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2185 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2186 {
2187 struct dst_entry *old;
2188
2189 if (dst_hold_safe(dst)) {
2190 old = xchg(&sk->sk_rx_dst, dst);
2191 dst_release(old);
2192 return old != dst;
2193 }
2194 return false;
2195 }
2196 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2197
2198 /*
2199 * Multicasts and broadcasts go to each listener.
2200 *
2201 * Note: called only from the BH handler context.
2202 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2203 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2204 struct udphdr *uh,
2205 __be32 saddr, __be32 daddr,
2206 struct udp_table *udptable,
2207 int proto)
2208 {
2209 struct sock *sk, *first = NULL;
2210 unsigned short hnum = ntohs(uh->dest);
2211 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2212 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2213 unsigned int offset = offsetof(typeof(*sk), sk_node);
2214 int dif = skb->dev->ifindex;
2215 int sdif = inet_sdif(skb);
2216 struct hlist_node *node;
2217 struct sk_buff *nskb;
2218
2219 if (use_hash2) {
2220 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2221 udptable->mask;
2222 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2223 start_lookup:
2224 hslot = &udptable->hash2[hash2];
2225 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2226 }
2227
2228 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2229 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2230 uh->source, saddr, dif, sdif, hnum))
2231 continue;
2232
2233 if (!first) {
2234 first = sk;
2235 continue;
2236 }
2237 nskb = skb_clone(skb, GFP_ATOMIC);
2238
2239 if (unlikely(!nskb)) {
2240 atomic_inc(&sk->sk_drops);
2241 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2242 IS_UDPLITE(sk));
2243 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2244 IS_UDPLITE(sk));
2245 continue;
2246 }
2247 if (udp_queue_rcv_skb(sk, nskb) > 0)
2248 consume_skb(nskb);
2249 }
2250
2251 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2252 if (use_hash2 && hash2 != hash2_any) {
2253 hash2 = hash2_any;
2254 goto start_lookup;
2255 }
2256
2257 if (first) {
2258 if (udp_queue_rcv_skb(first, skb) > 0)
2259 consume_skb(skb);
2260 } else {
2261 kfree_skb(skb);
2262 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2263 proto == IPPROTO_UDPLITE);
2264 }
2265 return 0;
2266 }
2267
2268 /* Initialize UDP checksum. If exited with zero value (success),
2269 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2270 * Otherwise, csum completion requires checksumming packet body,
2271 * including udp header and folding it to skb->csum.
2272 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2273 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2274 int proto)
2275 {
2276 int err;
2277
2278 UDP_SKB_CB(skb)->partial_cov = 0;
2279 UDP_SKB_CB(skb)->cscov = skb->len;
2280
2281 if (proto == IPPROTO_UDPLITE) {
2282 err = udplite_checksum_init(skb, uh);
2283 if (err)
2284 return err;
2285
2286 if (UDP_SKB_CB(skb)->partial_cov) {
2287 skb->csum = inet_compute_pseudo(skb, proto);
2288 return 0;
2289 }
2290 }
2291
2292 /* Note, we are only interested in != 0 or == 0, thus the
2293 * force to int.
2294 */
2295 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2296 inet_compute_pseudo);
2297 if (err)
2298 return err;
2299
2300 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2301 /* If SW calculated the value, we know it's bad */
2302 if (skb->csum_complete_sw)
2303 return 1;
2304
2305 /* HW says the value is bad. Let's validate that.
2306 * skb->csum is no longer the full packet checksum,
2307 * so don't treat it as such.
2308 */
2309 skb_checksum_complete_unset(skb);
2310 }
2311
2312 return 0;
2313 }
2314
2315 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2316 * return code conversion for ip layer consumption
2317 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2318 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2319 struct udphdr *uh)
2320 {
2321 int ret;
2322
2323 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2324 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2325
2326 ret = udp_queue_rcv_skb(sk, skb);
2327
2328 /* a return value > 0 means to resubmit the input, but
2329 * it wants the return to be -protocol, or 0
2330 */
2331 if (ret > 0)
2332 return -ret;
2333 return 0;
2334 }
2335
2336 /*
2337 * All we need to do is get the socket, and then do a checksum.
2338 */
2339
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2340 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2341 int proto)
2342 {
2343 struct sock *sk;
2344 struct udphdr *uh;
2345 unsigned short ulen;
2346 struct rtable *rt = skb_rtable(skb);
2347 __be32 saddr, daddr;
2348 struct net *net = dev_net(skb->dev);
2349 bool refcounted;
2350
2351 /*
2352 * Validate the packet.
2353 */
2354 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2355 goto drop; /* No space for header. */
2356
2357 uh = udp_hdr(skb);
2358 ulen = ntohs(uh->len);
2359 saddr = ip_hdr(skb)->saddr;
2360 daddr = ip_hdr(skb)->daddr;
2361
2362 if (ulen > skb->len)
2363 goto short_packet;
2364
2365 if (proto == IPPROTO_UDP) {
2366 /* UDP validates ulen. */
2367 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2368 goto short_packet;
2369 uh = udp_hdr(skb);
2370 }
2371
2372 if (udp4_csum_init(skb, uh, proto))
2373 goto csum_error;
2374
2375 sk = skb_steal_sock(skb, &refcounted);
2376 if (sk) {
2377 struct dst_entry *dst = skb_dst(skb);
2378 int ret;
2379
2380 if (unlikely(sk->sk_rx_dst != dst))
2381 udp_sk_rx_dst_set(sk, dst);
2382
2383 ret = udp_unicast_rcv_skb(sk, skb, uh);
2384 if (refcounted)
2385 sock_put(sk);
2386 return ret;
2387 }
2388
2389 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2390 return __udp4_lib_mcast_deliver(net, skb, uh,
2391 saddr, daddr, udptable, proto);
2392
2393 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2394 if (sk)
2395 return udp_unicast_rcv_skb(sk, skb, uh);
2396
2397 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2398 goto drop;
2399 nf_reset_ct(skb);
2400
2401 /* No socket. Drop packet silently, if checksum is wrong */
2402 if (udp_lib_checksum_complete(skb))
2403 goto csum_error;
2404
2405 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2406 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2407
2408 /*
2409 * Hmm. We got an UDP packet to a port to which we
2410 * don't wanna listen. Ignore it.
2411 */
2412 kfree_skb(skb);
2413 return 0;
2414
2415 short_packet:
2416 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2417 proto == IPPROTO_UDPLITE ? "Lite" : "",
2418 &saddr, ntohs(uh->source),
2419 ulen, skb->len,
2420 &daddr, ntohs(uh->dest));
2421 goto drop;
2422
2423 csum_error:
2424 /*
2425 * RFC1122: OK. Discards the bad packet silently (as far as
2426 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2427 */
2428 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2429 proto == IPPROTO_UDPLITE ? "Lite" : "",
2430 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2431 ulen);
2432 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2433 drop:
2434 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2435 kfree_skb(skb);
2436 return 0;
2437 }
2438
2439 /* We can only early demux multicast if there is a single matching socket.
2440 * If more than one socket found returns NULL
2441 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2442 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2443 __be16 loc_port, __be32 loc_addr,
2444 __be16 rmt_port, __be32 rmt_addr,
2445 int dif, int sdif)
2446 {
2447 struct sock *sk, *result;
2448 unsigned short hnum = ntohs(loc_port);
2449 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2450 struct udp_hslot *hslot = &udp_table.hash[slot];
2451
2452 /* Do not bother scanning a too big list */
2453 if (hslot->count > 10)
2454 return NULL;
2455
2456 result = NULL;
2457 sk_for_each_rcu(sk, &hslot->head) {
2458 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2459 rmt_port, rmt_addr, dif, sdif, hnum)) {
2460 if (result)
2461 return NULL;
2462 result = sk;
2463 }
2464 }
2465
2466 return result;
2467 }
2468
2469 /* For unicast we should only early demux connected sockets or we can
2470 * break forwarding setups. The chains here can be long so only check
2471 * if the first socket is an exact match and if not move on.
2472 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2473 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2474 __be16 loc_port, __be32 loc_addr,
2475 __be16 rmt_port, __be32 rmt_addr,
2476 int dif, int sdif)
2477 {
2478 unsigned short hnum = ntohs(loc_port);
2479 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2480 unsigned int slot2 = hash2 & udp_table.mask;
2481 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2482 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2483 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2484 struct sock *sk;
2485
2486 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2487 if (INET_MATCH(sk, net, acookie, rmt_addr,
2488 loc_addr, ports, dif, sdif))
2489 return sk;
2490 /* Only check first socket in chain */
2491 break;
2492 }
2493 return NULL;
2494 }
2495
udp_v4_early_demux(struct sk_buff * skb)2496 int udp_v4_early_demux(struct sk_buff *skb)
2497 {
2498 struct net *net = dev_net(skb->dev);
2499 struct in_device *in_dev = NULL;
2500 const struct iphdr *iph;
2501 const struct udphdr *uh;
2502 struct sock *sk = NULL;
2503 struct dst_entry *dst;
2504 int dif = skb->dev->ifindex;
2505 int sdif = inet_sdif(skb);
2506 int ours;
2507
2508 /* validate the packet */
2509 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2510 return 0;
2511
2512 iph = ip_hdr(skb);
2513 uh = udp_hdr(skb);
2514
2515 if (skb->pkt_type == PACKET_MULTICAST) {
2516 in_dev = __in_dev_get_rcu(skb->dev);
2517
2518 if (!in_dev)
2519 return 0;
2520
2521 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2522 iph->protocol);
2523 if (!ours)
2524 return 0;
2525
2526 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2527 uh->source, iph->saddr,
2528 dif, sdif);
2529 } else if (skb->pkt_type == PACKET_HOST) {
2530 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2531 uh->source, iph->saddr, dif, sdif);
2532 }
2533
2534 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2535 return 0;
2536
2537 skb->sk = sk;
2538 skb->destructor = sock_efree;
2539 dst = READ_ONCE(sk->sk_rx_dst);
2540
2541 if (dst)
2542 dst = dst_check(dst, 0);
2543 if (dst) {
2544 u32 itag = 0;
2545
2546 /* set noref for now.
2547 * any place which wants to hold dst has to call
2548 * dst_hold_safe()
2549 */
2550 skb_dst_set_noref(skb, dst);
2551
2552 /* for unconnected multicast sockets we need to validate
2553 * the source on each packet
2554 */
2555 if (!inet_sk(sk)->inet_daddr && in_dev)
2556 return ip_mc_validate_source(skb, iph->daddr,
2557 iph->saddr,
2558 iph->tos & IPTOS_RT_MASK,
2559 skb->dev, in_dev, &itag);
2560 }
2561 return 0;
2562 }
2563
udp_rcv(struct sk_buff * skb)2564 int udp_rcv(struct sk_buff *skb)
2565 {
2566 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2567 }
2568
udp_destroy_sock(struct sock * sk)2569 void udp_destroy_sock(struct sock *sk)
2570 {
2571 struct udp_sock *up = udp_sk(sk);
2572 bool slow = lock_sock_fast(sk);
2573
2574 /* protects from races with udp_abort() */
2575 sock_set_flag(sk, SOCK_DEAD);
2576 udp_flush_pending_frames(sk);
2577 unlock_sock_fast(sk, slow);
2578 if (static_branch_unlikely(&udp_encap_needed_key)) {
2579 if (up->encap_type) {
2580 void (*encap_destroy)(struct sock *sk);
2581 encap_destroy = READ_ONCE(up->encap_destroy);
2582 if (encap_destroy)
2583 encap_destroy(sk);
2584 }
2585 if (up->encap_enabled)
2586 static_branch_dec(&udp_encap_needed_key);
2587 }
2588 }
2589
2590 /*
2591 * Socket option code for UDP
2592 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2593 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2594 sockptr_t optval, unsigned int optlen,
2595 int (*push_pending_frames)(struct sock *))
2596 {
2597 struct udp_sock *up = udp_sk(sk);
2598 int val, valbool;
2599 int err = 0;
2600 int is_udplite = IS_UDPLITE(sk);
2601
2602 if (optlen < sizeof(int))
2603 return -EINVAL;
2604
2605 if (copy_from_sockptr(&val, optval, sizeof(val)))
2606 return -EFAULT;
2607
2608 valbool = val ? 1 : 0;
2609
2610 switch (optname) {
2611 case UDP_CORK:
2612 if (val != 0) {
2613 WRITE_ONCE(up->corkflag, 1);
2614 } else {
2615 WRITE_ONCE(up->corkflag, 0);
2616 lock_sock(sk);
2617 push_pending_frames(sk);
2618 release_sock(sk);
2619 }
2620 break;
2621
2622 case UDP_ENCAP:
2623 switch (val) {
2624 case 0:
2625 #ifdef CONFIG_XFRM
2626 case UDP_ENCAP_ESPINUDP:
2627 case UDP_ENCAP_ESPINUDP_NON_IKE:
2628 #if IS_ENABLED(CONFIG_IPV6)
2629 if (sk->sk_family == AF_INET6)
2630 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2631 else
2632 #endif
2633 up->encap_rcv = xfrm4_udp_encap_rcv;
2634 #endif
2635 fallthrough;
2636 case UDP_ENCAP_L2TPINUDP:
2637 up->encap_type = val;
2638 lock_sock(sk);
2639 udp_tunnel_encap_enable(sk->sk_socket);
2640 release_sock(sk);
2641 break;
2642 default:
2643 err = -ENOPROTOOPT;
2644 break;
2645 }
2646 break;
2647
2648 case UDP_NO_CHECK6_TX:
2649 up->no_check6_tx = valbool;
2650 break;
2651
2652 case UDP_NO_CHECK6_RX:
2653 up->no_check6_rx = valbool;
2654 break;
2655
2656 case UDP_SEGMENT:
2657 if (val < 0 || val > USHRT_MAX)
2658 return -EINVAL;
2659 WRITE_ONCE(up->gso_size, val);
2660 break;
2661
2662 case UDP_GRO:
2663 lock_sock(sk);
2664
2665 /* when enabling GRO, accept the related GSO packet type */
2666 if (valbool)
2667 udp_tunnel_encap_enable(sk->sk_socket);
2668 up->gro_enabled = valbool;
2669 up->accept_udp_l4 = valbool;
2670 release_sock(sk);
2671 break;
2672
2673 /*
2674 * UDP-Lite's partial checksum coverage (RFC 3828).
2675 */
2676 /* The sender sets actual checksum coverage length via this option.
2677 * The case coverage > packet length is handled by send module. */
2678 case UDPLITE_SEND_CSCOV:
2679 if (!is_udplite) /* Disable the option on UDP sockets */
2680 return -ENOPROTOOPT;
2681 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2682 val = 8;
2683 else if (val > USHRT_MAX)
2684 val = USHRT_MAX;
2685 up->pcslen = val;
2686 up->pcflag |= UDPLITE_SEND_CC;
2687 break;
2688
2689 /* The receiver specifies a minimum checksum coverage value. To make
2690 * sense, this should be set to at least 8 (as done below). If zero is
2691 * used, this again means full checksum coverage. */
2692 case UDPLITE_RECV_CSCOV:
2693 if (!is_udplite) /* Disable the option on UDP sockets */
2694 return -ENOPROTOOPT;
2695 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2696 val = 8;
2697 else if (val > USHRT_MAX)
2698 val = USHRT_MAX;
2699 up->pcrlen = val;
2700 up->pcflag |= UDPLITE_RECV_CC;
2701 break;
2702
2703 default:
2704 err = -ENOPROTOOPT;
2705 break;
2706 }
2707
2708 return err;
2709 }
2710 EXPORT_SYMBOL(udp_lib_setsockopt);
2711
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2712 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2713 unsigned int optlen)
2714 {
2715 if (level == SOL_UDP || level == SOL_UDPLITE)
2716 return udp_lib_setsockopt(sk, level, optname,
2717 optval, optlen,
2718 udp_push_pending_frames);
2719 return ip_setsockopt(sk, level, optname, optval, optlen);
2720 }
2721
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2722 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2723 char __user *optval, int __user *optlen)
2724 {
2725 struct udp_sock *up = udp_sk(sk);
2726 int val, len;
2727
2728 if (get_user(len, optlen))
2729 return -EFAULT;
2730
2731 len = min_t(unsigned int, len, sizeof(int));
2732
2733 if (len < 0)
2734 return -EINVAL;
2735
2736 switch (optname) {
2737 case UDP_CORK:
2738 val = READ_ONCE(up->corkflag);
2739 break;
2740
2741 case UDP_ENCAP:
2742 val = up->encap_type;
2743 break;
2744
2745 case UDP_NO_CHECK6_TX:
2746 val = up->no_check6_tx;
2747 break;
2748
2749 case UDP_NO_CHECK6_RX:
2750 val = up->no_check6_rx;
2751 break;
2752
2753 case UDP_SEGMENT:
2754 val = READ_ONCE(up->gso_size);
2755 break;
2756
2757 case UDP_GRO:
2758 val = up->gro_enabled;
2759 break;
2760
2761 /* The following two cannot be changed on UDP sockets, the return is
2762 * always 0 (which corresponds to the full checksum coverage of UDP). */
2763 case UDPLITE_SEND_CSCOV:
2764 val = up->pcslen;
2765 break;
2766
2767 case UDPLITE_RECV_CSCOV:
2768 val = up->pcrlen;
2769 break;
2770
2771 default:
2772 return -ENOPROTOOPT;
2773 }
2774
2775 if (put_user(len, optlen))
2776 return -EFAULT;
2777 if (copy_to_user(optval, &val, len))
2778 return -EFAULT;
2779 return 0;
2780 }
2781 EXPORT_SYMBOL(udp_lib_getsockopt);
2782
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2783 int udp_getsockopt(struct sock *sk, int level, int optname,
2784 char __user *optval, int __user *optlen)
2785 {
2786 if (level == SOL_UDP || level == SOL_UDPLITE)
2787 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2788 return ip_getsockopt(sk, level, optname, optval, optlen);
2789 }
2790
2791 /**
2792 * udp_poll - wait for a UDP event.
2793 * @file: - file struct
2794 * @sock: - socket
2795 * @wait: - poll table
2796 *
2797 * This is same as datagram poll, except for the special case of
2798 * blocking sockets. If application is using a blocking fd
2799 * and a packet with checksum error is in the queue;
2800 * then it could get return from select indicating data available
2801 * but then block when reading it. Add special case code
2802 * to work around these arguably broken applications.
2803 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2804 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2805 {
2806 __poll_t mask = datagram_poll(file, sock, wait);
2807 struct sock *sk = sock->sk;
2808
2809 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2810 mask |= EPOLLIN | EPOLLRDNORM;
2811
2812 /* Check for false positives due to checksum errors */
2813 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2814 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2815 mask &= ~(EPOLLIN | EPOLLRDNORM);
2816
2817 return mask;
2818
2819 }
2820 EXPORT_SYMBOL(udp_poll);
2821
udp_abort(struct sock * sk,int err)2822 int udp_abort(struct sock *sk, int err)
2823 {
2824 lock_sock(sk);
2825
2826 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2827 * with close()
2828 */
2829 if (sock_flag(sk, SOCK_DEAD))
2830 goto out;
2831
2832 sk->sk_err = err;
2833 sk->sk_error_report(sk);
2834 __udp_disconnect(sk, 0);
2835
2836 out:
2837 release_sock(sk);
2838
2839 return 0;
2840 }
2841 EXPORT_SYMBOL_GPL(udp_abort);
2842
2843 struct proto udp_prot = {
2844 .name = "UDP",
2845 .owner = THIS_MODULE,
2846 .close = udp_lib_close,
2847 .pre_connect = udp_pre_connect,
2848 .connect = ip4_datagram_connect,
2849 .disconnect = udp_disconnect,
2850 .ioctl = udp_ioctl,
2851 .init = udp_init_sock,
2852 .destroy = udp_destroy_sock,
2853 .setsockopt = udp_setsockopt,
2854 .getsockopt = udp_getsockopt,
2855 .sendmsg = udp_sendmsg,
2856 .recvmsg = udp_recvmsg,
2857 .sendpage = udp_sendpage,
2858 .release_cb = ip4_datagram_release_cb,
2859 .hash = udp_lib_hash,
2860 .unhash = udp_lib_unhash,
2861 .rehash = udp_v4_rehash,
2862 .get_port = udp_v4_get_port,
2863 .memory_allocated = &udp_memory_allocated,
2864 .sysctl_mem = sysctl_udp_mem,
2865 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2866 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2867 .obj_size = sizeof(struct udp_sock),
2868 .h.udp_table = &udp_table,
2869 .diag_destroy = udp_abort,
2870 };
2871 EXPORT_SYMBOL(udp_prot);
2872
2873 /* ------------------------------------------------------------------------ */
2874 #ifdef CONFIG_PROC_FS
2875
udp_get_first(struct seq_file * seq,int start)2876 static struct sock *udp_get_first(struct seq_file *seq, int start)
2877 {
2878 struct sock *sk;
2879 struct udp_seq_afinfo *afinfo;
2880 struct udp_iter_state *state = seq->private;
2881 struct net *net = seq_file_net(seq);
2882
2883 if (state->bpf_seq_afinfo)
2884 afinfo = state->bpf_seq_afinfo;
2885 else
2886 afinfo = PDE_DATA(file_inode(seq->file));
2887
2888 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2889 ++state->bucket) {
2890 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2891
2892 if (hlist_empty(&hslot->head))
2893 continue;
2894
2895 spin_lock_bh(&hslot->lock);
2896 sk_for_each(sk, &hslot->head) {
2897 if (!net_eq(sock_net(sk), net))
2898 continue;
2899 if (afinfo->family == AF_UNSPEC ||
2900 sk->sk_family == afinfo->family)
2901 goto found;
2902 }
2903 spin_unlock_bh(&hslot->lock);
2904 }
2905 sk = NULL;
2906 found:
2907 return sk;
2908 }
2909
udp_get_next(struct seq_file * seq,struct sock * sk)2910 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2911 {
2912 struct udp_seq_afinfo *afinfo;
2913 struct udp_iter_state *state = seq->private;
2914 struct net *net = seq_file_net(seq);
2915
2916 if (state->bpf_seq_afinfo)
2917 afinfo = state->bpf_seq_afinfo;
2918 else
2919 afinfo = PDE_DATA(file_inode(seq->file));
2920
2921 do {
2922 sk = sk_next(sk);
2923 } while (sk && (!net_eq(sock_net(sk), net) ||
2924 (afinfo->family != AF_UNSPEC &&
2925 sk->sk_family != afinfo->family)));
2926
2927 if (!sk) {
2928 if (state->bucket <= afinfo->udp_table->mask)
2929 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2930 return udp_get_first(seq, state->bucket + 1);
2931 }
2932 return sk;
2933 }
2934
udp_get_idx(struct seq_file * seq,loff_t pos)2935 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2936 {
2937 struct sock *sk = udp_get_first(seq, 0);
2938
2939 if (sk)
2940 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2941 --pos;
2942 return pos ? NULL : sk;
2943 }
2944
udp_seq_start(struct seq_file * seq,loff_t * pos)2945 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2946 {
2947 struct udp_iter_state *state = seq->private;
2948 state->bucket = MAX_UDP_PORTS;
2949
2950 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2951 }
2952 EXPORT_SYMBOL(udp_seq_start);
2953
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2954 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2955 {
2956 struct sock *sk;
2957
2958 if (v == SEQ_START_TOKEN)
2959 sk = udp_get_idx(seq, 0);
2960 else
2961 sk = udp_get_next(seq, v);
2962
2963 ++*pos;
2964 return sk;
2965 }
2966 EXPORT_SYMBOL(udp_seq_next);
2967
udp_seq_stop(struct seq_file * seq,void * v)2968 void udp_seq_stop(struct seq_file *seq, void *v)
2969 {
2970 struct udp_seq_afinfo *afinfo;
2971 struct udp_iter_state *state = seq->private;
2972
2973 if (state->bpf_seq_afinfo)
2974 afinfo = state->bpf_seq_afinfo;
2975 else
2976 afinfo = PDE_DATA(file_inode(seq->file));
2977
2978 if (state->bucket <= afinfo->udp_table->mask)
2979 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2980 }
2981 EXPORT_SYMBOL(udp_seq_stop);
2982
2983 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2984 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2985 int bucket)
2986 {
2987 struct inet_sock *inet = inet_sk(sp);
2988 __be32 dest = inet->inet_daddr;
2989 __be32 src = inet->inet_rcv_saddr;
2990 __u16 destp = ntohs(inet->inet_dport);
2991 __u16 srcp = ntohs(inet->inet_sport);
2992
2993 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2994 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2995 bucket, src, srcp, dest, destp, sp->sk_state,
2996 sk_wmem_alloc_get(sp),
2997 udp_rqueue_get(sp),
2998 0, 0L, 0,
2999 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3000 0, sock_i_ino(sp),
3001 refcount_read(&sp->sk_refcnt), sp,
3002 atomic_read(&sp->sk_drops));
3003 }
3004
udp4_seq_show(struct seq_file * seq,void * v)3005 int udp4_seq_show(struct seq_file *seq, void *v)
3006 {
3007 seq_setwidth(seq, 127);
3008 if (v == SEQ_START_TOKEN)
3009 seq_puts(seq, " sl local_address rem_address st tx_queue "
3010 "rx_queue tr tm->when retrnsmt uid timeout "
3011 "inode ref pointer drops");
3012 else {
3013 struct udp_iter_state *state = seq->private;
3014
3015 udp4_format_sock(v, seq, state->bucket);
3016 }
3017 seq_pad(seq, '\n');
3018 return 0;
3019 }
3020
3021 #ifdef CONFIG_BPF_SYSCALL
3022 struct bpf_iter__udp {
3023 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3024 __bpf_md_ptr(struct udp_sock *, udp_sk);
3025 uid_t uid __aligned(8);
3026 int bucket __aligned(8);
3027 };
3028
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3029 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3030 struct udp_sock *udp_sk, uid_t uid, int bucket)
3031 {
3032 struct bpf_iter__udp ctx;
3033
3034 meta->seq_num--; /* skip SEQ_START_TOKEN */
3035 ctx.meta = meta;
3036 ctx.udp_sk = udp_sk;
3037 ctx.uid = uid;
3038 ctx.bucket = bucket;
3039 return bpf_iter_run_prog(prog, &ctx);
3040 }
3041
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3042 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3043 {
3044 struct udp_iter_state *state = seq->private;
3045 struct bpf_iter_meta meta;
3046 struct bpf_prog *prog;
3047 struct sock *sk = v;
3048 uid_t uid;
3049
3050 if (v == SEQ_START_TOKEN)
3051 return 0;
3052
3053 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3054 meta.seq = seq;
3055 prog = bpf_iter_get_info(&meta, false);
3056 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3057 }
3058
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3059 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3060 {
3061 struct bpf_iter_meta meta;
3062 struct bpf_prog *prog;
3063
3064 if (!v) {
3065 meta.seq = seq;
3066 prog = bpf_iter_get_info(&meta, true);
3067 if (prog)
3068 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3069 }
3070
3071 udp_seq_stop(seq, v);
3072 }
3073
3074 static const struct seq_operations bpf_iter_udp_seq_ops = {
3075 .start = udp_seq_start,
3076 .next = udp_seq_next,
3077 .stop = bpf_iter_udp_seq_stop,
3078 .show = bpf_iter_udp_seq_show,
3079 };
3080 #endif
3081
3082 const struct seq_operations udp_seq_ops = {
3083 .start = udp_seq_start,
3084 .next = udp_seq_next,
3085 .stop = udp_seq_stop,
3086 .show = udp4_seq_show,
3087 };
3088 EXPORT_SYMBOL(udp_seq_ops);
3089
3090 static struct udp_seq_afinfo udp4_seq_afinfo = {
3091 .family = AF_INET,
3092 .udp_table = &udp_table,
3093 };
3094
udp4_proc_init_net(struct net * net)3095 static int __net_init udp4_proc_init_net(struct net *net)
3096 {
3097 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3098 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3099 return -ENOMEM;
3100 return 0;
3101 }
3102
udp4_proc_exit_net(struct net * net)3103 static void __net_exit udp4_proc_exit_net(struct net *net)
3104 {
3105 remove_proc_entry("udp", net->proc_net);
3106 }
3107
3108 static struct pernet_operations udp4_net_ops = {
3109 .init = udp4_proc_init_net,
3110 .exit = udp4_proc_exit_net,
3111 };
3112
udp4_proc_init(void)3113 int __init udp4_proc_init(void)
3114 {
3115 return register_pernet_subsys(&udp4_net_ops);
3116 }
3117
udp4_proc_exit(void)3118 void udp4_proc_exit(void)
3119 {
3120 unregister_pernet_subsys(&udp4_net_ops);
3121 }
3122 #endif /* CONFIG_PROC_FS */
3123
3124 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3125 static int __init set_uhash_entries(char *str)
3126 {
3127 ssize_t ret;
3128
3129 if (!str)
3130 return 0;
3131
3132 ret = kstrtoul(str, 0, &uhash_entries);
3133 if (ret)
3134 return 0;
3135
3136 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3137 uhash_entries = UDP_HTABLE_SIZE_MIN;
3138 return 1;
3139 }
3140 __setup("uhash_entries=", set_uhash_entries);
3141
udp_table_init(struct udp_table * table,const char * name)3142 void __init udp_table_init(struct udp_table *table, const char *name)
3143 {
3144 unsigned int i;
3145
3146 table->hash = alloc_large_system_hash(name,
3147 2 * sizeof(struct udp_hslot),
3148 uhash_entries,
3149 21, /* one slot per 2 MB */
3150 0,
3151 &table->log,
3152 &table->mask,
3153 UDP_HTABLE_SIZE_MIN,
3154 64 * 1024);
3155
3156 table->hash2 = table->hash + (table->mask + 1);
3157 for (i = 0; i <= table->mask; i++) {
3158 INIT_HLIST_HEAD(&table->hash[i].head);
3159 table->hash[i].count = 0;
3160 spin_lock_init(&table->hash[i].lock);
3161 }
3162 for (i = 0; i <= table->mask; i++) {
3163 INIT_HLIST_HEAD(&table->hash2[i].head);
3164 table->hash2[i].count = 0;
3165 spin_lock_init(&table->hash2[i].lock);
3166 }
3167 }
3168
udp_flow_hashrnd(void)3169 u32 udp_flow_hashrnd(void)
3170 {
3171 static u32 hashrnd __read_mostly;
3172
3173 net_get_random_once(&hashrnd, sizeof(hashrnd));
3174
3175 return hashrnd;
3176 }
3177 EXPORT_SYMBOL(udp_flow_hashrnd);
3178
__udp_sysctl_init(struct net * net)3179 static void __udp_sysctl_init(struct net *net)
3180 {
3181 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3182 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3183
3184 #ifdef CONFIG_NET_L3_MASTER_DEV
3185 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3186 #endif
3187 }
3188
udp_sysctl_init(struct net * net)3189 static int __net_init udp_sysctl_init(struct net *net)
3190 {
3191 __udp_sysctl_init(net);
3192 return 0;
3193 }
3194
3195 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3196 .init = udp_sysctl_init,
3197 };
3198
3199 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3200 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3201 struct udp_sock *udp_sk, uid_t uid, int bucket)
3202
3203 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3204 {
3205 struct udp_iter_state *st = priv_data;
3206 struct udp_seq_afinfo *afinfo;
3207 int ret;
3208
3209 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3210 if (!afinfo)
3211 return -ENOMEM;
3212
3213 afinfo->family = AF_UNSPEC;
3214 afinfo->udp_table = &udp_table;
3215 st->bpf_seq_afinfo = afinfo;
3216 ret = bpf_iter_init_seq_net(priv_data, aux);
3217 if (ret)
3218 kfree(afinfo);
3219 return ret;
3220 }
3221
bpf_iter_fini_udp(void * priv_data)3222 static void bpf_iter_fini_udp(void *priv_data)
3223 {
3224 struct udp_iter_state *st = priv_data;
3225
3226 kfree(st->bpf_seq_afinfo);
3227 bpf_iter_fini_seq_net(priv_data);
3228 }
3229
3230 static const struct bpf_iter_seq_info udp_seq_info = {
3231 .seq_ops = &bpf_iter_udp_seq_ops,
3232 .init_seq_private = bpf_iter_init_udp,
3233 .fini_seq_private = bpf_iter_fini_udp,
3234 .seq_priv_size = sizeof(struct udp_iter_state),
3235 };
3236
3237 static struct bpf_iter_reg udp_reg_info = {
3238 .target = "udp",
3239 .ctx_arg_info_size = 1,
3240 .ctx_arg_info = {
3241 { offsetof(struct bpf_iter__udp, udp_sk),
3242 PTR_TO_BTF_ID_OR_NULL },
3243 },
3244 .seq_info = &udp_seq_info,
3245 };
3246
bpf_iter_register(void)3247 static void __init bpf_iter_register(void)
3248 {
3249 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3250 if (bpf_iter_reg_target(&udp_reg_info))
3251 pr_warn("Warning: could not register bpf iterator udp\n");
3252 }
3253 #endif
3254
udp_init(void)3255 void __init udp_init(void)
3256 {
3257 unsigned long limit;
3258 unsigned int i;
3259
3260 udp_table_init(&udp_table, "UDP");
3261 limit = nr_free_buffer_pages() / 8;
3262 limit = max(limit, 128UL);
3263 sysctl_udp_mem[0] = limit / 4 * 3;
3264 sysctl_udp_mem[1] = limit;
3265 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3266
3267 __udp_sysctl_init(&init_net);
3268
3269 /* 16 spinlocks per cpu */
3270 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3271 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3272 GFP_KERNEL);
3273 if (!udp_busylocks)
3274 panic("UDP: failed to alloc udp_busylocks\n");
3275 for (i = 0; i < (1U << udp_busylocks_log); i++)
3276 spin_lock_init(udp_busylocks + i);
3277
3278 if (register_pernet_subsys(&udp_sysctl_ops))
3279 panic("UDP: failed to init sysctl parameters.\n");
3280
3281 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3282 bpf_iter_register();
3283 #endif
3284 }
3285