1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/pgtable-nop4d.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12
13 /*
14 * Common bits between hash and Radix page table
15 */
16 #define _PAGE_BIT_SWAP_TYPE 0
17
18 #define _PAGE_EXEC 0x00001 /* execute permission */
19 #define _PAGE_WRITE 0x00002 /* write access allowed */
20 #define _PAGE_READ 0x00004 /* read access allowed */
21 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
24 #define _PAGE_SAO 0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY 0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
29 /*
30 * Software bits
31 */
32 #define _RPAGE_SW0 0x2000000000000000UL
33 #define _RPAGE_SW1 0x00800
34 #define _RPAGE_SW2 0x00400
35 #define _RPAGE_SW3 0x00200
36 #define _RPAGE_RSV1 0x00040UL
37
38 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL
39 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL
40 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL
41 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL
42 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL
43
44 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
45 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
46 /*
47 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
48 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
49 * differentiate between two use a SW field when invalidating.
50 *
51 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
52 *
53 * This is used only when _PAGE_PRESENT is cleared.
54 */
55 #define _PAGE_INVALID _RPAGE_SW0
56
57 /*
58 * Top and bottom bits of RPN which can be used by hash
59 * translation mode, because we expect them to be zero
60 * otherwise.
61 */
62 #define _RPAGE_RPN0 0x01000
63 #define _RPAGE_RPN1 0x02000
64 #define _RPAGE_RPN43 0x0080000000000000UL
65 #define _RPAGE_RPN42 0x0040000000000000UL
66 #define _RPAGE_RPN41 0x0020000000000000UL
67
68 /* Max physical address bit as per radix table */
69 #define _RPAGE_PA_MAX 56
70
71 /*
72 * Max physical address bit we will use for now.
73 *
74 * This is mostly a hardware limitation and for now Power9 has
75 * a 51 bit limit.
76 *
77 * This is different from the number of physical bit required to address
78 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
79 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
80 * number of sections we can support (SECTIONS_SHIFT).
81 *
82 * This is different from Radix page table limitation above and
83 * should always be less than that. The limit is done such that
84 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
85 * for hash linux page table specific bits.
86 *
87 * In order to be compatible with future hardware generations we keep
88 * some offsets and limit this for now to 53
89 */
90 #define _PAGE_PA_MAX 53
91
92 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
93 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
94 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
95
96 /*
97 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
98 * Instead of fixing all of them, add an alternate define which
99 * maps CI pte mapping.
100 */
101 #define _PAGE_NO_CACHE _PAGE_TOLERANT
102 /*
103 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
104 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
105 * and every thing below PAGE_SHIFT;
106 */
107 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
108 /*
109 * set of bits not changed in pmd_modify. Even though we have hash specific bits
110 * in here, on radix we expect them to be zero.
111 */
112 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115 /*
116 * user access blocked by key
117 */
118 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
120 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
121 _PAGE_RW | _PAGE_EXEC)
122 /*
123 * _PAGE_CHG_MASK masks of bits that are to be preserved across
124 * pgprot changes
125 */
126 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
128 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129
130 /*
131 * We define 2 sets of base prot bits, one for basic pages (ie,
132 * cacheable kernel and user pages) and one for non cacheable
133 * pages. We always set _PAGE_COHERENT when SMP is enabled or
134 * the processor might need it for DMA coherency.
135 */
136 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE (_PAGE_BASE_NC)
138
139 /* Permission masks used to generate the __P and __S table,
140 *
141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142 *
143 * Write permissions imply read permissions for now (we could make write-only
144 * pages on BookE but we don't bother for now). Execute permission control is
145 * possible on platforms that define _PAGE_EXEC
146 */
147 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164
165 /*
166 * Protection used for kernel text. We want the debuggers to be able to
167 * set breakpoints anywhere, so don't write protect the kernel text
168 * on platforms where such control is possible.
169 */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
175 #endif
176
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
179 #define PAGE_AGP (PAGE_KERNEL_NC)
180
181 #ifndef __ASSEMBLY__
182 /*
183 * page table defines
184 */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE __pte_index_size
191 #define PMD_INDEX_SIZE __pmd_index_size
192 #define PUD_INDEX_SIZE __pud_index_size
193 #define PGD_INDEX_SIZE __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX 0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198 * Because of use of pte fragments and THP, size of page table
199 * are not always derived out of index size above.
200 */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE __pte_table_size
206 #define PMD_TABLE_SIZE __pmd_table_size
207 #define PUD_TABLE_SIZE __pud_table_size
208 #define PGD_TABLE_SIZE __pgd_table_size
209
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS __pmd_val_bits
214 #define PUD_VAL_BITS __pud_val_bits
215 #define PGD_VAL_BITS __pgd_val_bits
216
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228
229 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
233
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE (1UL << PMD_SHIFT)
237 #define PMD_MASK (~(PMD_SIZE-1))
238
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE (1UL << PUD_SHIFT)
242 #define PUD_MASK (~(PUD_SIZE-1))
243
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK (~(PGDIR_SIZE-1))
248
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS 0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS 0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define P4D_MASKED_BITS 0xc0000000000000ffUL
255
256 /*
257 * Used as an indicator for rcu callback functions
258 */
259 enum pgtable_index {
260 PTE_INDEX = 0,
261 PMD_INDEX,
262 PUD_INDEX,
263 PGD_INDEX,
264 /*
265 * Below are used with 4k page size and hugetlb
266 */
267 HTLB_16M_INDEX,
268 HTLB_16G_INDEX,
269 };
270
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START __vmalloc_start
274 #define VMALLOC_END __vmalloc_end
275
ioremap_max_order(void)276 static inline unsigned int ioremap_max_order(void)
277 {
278 if (radix_enabled())
279 return PUD_SHIFT;
280 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297
298 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
299 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
300 #else
301 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
302 #endif
303
304
305 #ifdef CONFIG_PPC_64K_PAGES
306 #include <asm/book3s/64/pgtable-64k.h>
307 #else
308 #include <asm/book3s/64/pgtable-4k.h>
309 #endif
310
311 #include <asm/barrier.h>
312 /*
313 * IO space itself carved into the PIO region (ISA and PHB IO space) and
314 * the ioremap space
315 *
316 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
317 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
318 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
319 */
320 #define FULL_IO_SIZE 0x80000000ul
321 #define ISA_IO_BASE (KERN_IO_START)
322 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
323 #define PHB_IO_BASE (ISA_IO_END)
324 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
325 #define IOREMAP_BASE (PHB_IO_END)
326 #define IOREMAP_START (ioremap_bot)
327 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
328 #define FIXADDR_SIZE SZ_32M
329
330 /* Advertise special mapping type for AGP */
331 #define HAVE_PAGE_AGP
332
333 #ifndef __ASSEMBLY__
334
335 /*
336 * This is the default implementation of various PTE accessors, it's
337 * used in all cases except Book3S with 64K pages where we have a
338 * concept of sub-pages
339 */
340 #ifndef __real_pte
341
342 #define __real_pte(e, p, o) ((real_pte_t){(e)})
343 #define __rpte_to_pte(r) ((r).pte)
344 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
345
346 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
347 do { \
348 index = 0; \
349 shift = mmu_psize_defs[psize].shift; \
350
351 #define pte_iterate_hashed_end() } while(0)
352
353 /*
354 * We expect this to be called only for user addresses or kernel virtual
355 * addresses other than the linear mapping.
356 */
357 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
358
359 #endif /* __real_pte */
360
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)361 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
362 pte_t *ptep, unsigned long clr,
363 unsigned long set, int huge)
364 {
365 if (radix_enabled())
366 return radix__pte_update(mm, addr, ptep, clr, set, huge);
367 return hash__pte_update(mm, addr, ptep, clr, set, huge);
368 }
369 /*
370 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
371 * We currently remove entries from the hashtable regardless of whether
372 * the entry was young or dirty.
373 *
374 * We should be more intelligent about this but for the moment we override
375 * these functions and force a tlb flush unconditionally
376 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
377 * function for both hash and radix.
378 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)379 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
380 unsigned long addr, pte_t *ptep)
381 {
382 unsigned long old;
383
384 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
385 return 0;
386 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
387 return (old & _PAGE_ACCESSED) != 0;
388 }
389
390 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
391 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
392 ({ \
393 int __r; \
394 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
395 __r; \
396 })
397
__pte_write(pte_t pte)398 static inline int __pte_write(pte_t pte)
399 {
400 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
401 }
402
403 #ifdef CONFIG_NUMA_BALANCING
404 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)405 static inline bool pte_savedwrite(pte_t pte)
406 {
407 /*
408 * Saved write ptes are prot none ptes that doesn't have
409 * privileged bit sit. We mark prot none as one which has
410 * present and pviliged bit set and RWX cleared. To mark
411 * protnone which used to have _PAGE_WRITE set we clear
412 * the privileged bit.
413 */
414 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
415 }
416 #else
417 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)418 static inline bool pte_savedwrite(pte_t pte)
419 {
420 return false;
421 }
422 #endif
423
pte_write(pte_t pte)424 static inline int pte_write(pte_t pte)
425 {
426 return __pte_write(pte) || pte_savedwrite(pte);
427 }
428
pte_read(pte_t pte)429 static inline int pte_read(pte_t pte)
430 {
431 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
432 }
433
434 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)435 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
436 pte_t *ptep)
437 {
438 if (__pte_write(*ptep))
439 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
440 else if (unlikely(pte_savedwrite(*ptep)))
441 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
442 }
443
444 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)445 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
446 unsigned long addr, pte_t *ptep)
447 {
448 /*
449 * We should not find protnone for hugetlb, but this complete the
450 * interface.
451 */
452 if (__pte_write(*ptep))
453 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
454 else if (unlikely(pte_savedwrite(*ptep)))
455 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
456 }
457
458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)459 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
460 unsigned long addr, pte_t *ptep)
461 {
462 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
463 return __pte(old);
464 }
465
466 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)467 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
468 unsigned long addr,
469 pte_t *ptep, int full)
470 {
471 if (full && radix_enabled()) {
472 /*
473 * We know that this is a full mm pte clear and
474 * hence can be sure there is no parallel set_pte.
475 */
476 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
477 }
478 return ptep_get_and_clear(mm, addr, ptep);
479 }
480
481
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)482 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
483 pte_t * ptep)
484 {
485 pte_update(mm, addr, ptep, ~0UL, 0, 0);
486 }
487
pte_dirty(pte_t pte)488 static inline int pte_dirty(pte_t pte)
489 {
490 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
491 }
492
pte_young(pte_t pte)493 static inline int pte_young(pte_t pte)
494 {
495 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
496 }
497
pte_special(pte_t pte)498 static inline int pte_special(pte_t pte)
499 {
500 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
501 }
502
pte_exec(pte_t pte)503 static inline bool pte_exec(pte_t pte)
504 {
505 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
506 }
507
508
509 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)510 static inline bool pte_soft_dirty(pte_t pte)
511 {
512 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
513 }
514
pte_mksoft_dirty(pte_t pte)515 static inline pte_t pte_mksoft_dirty(pte_t pte)
516 {
517 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
518 }
519
pte_clear_soft_dirty(pte_t pte)520 static inline pte_t pte_clear_soft_dirty(pte_t pte)
521 {
522 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
523 }
524 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
525
526 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)527 static inline int pte_protnone(pte_t pte)
528 {
529 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
530 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
531 }
532
533 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)534 static inline pte_t pte_mk_savedwrite(pte_t pte)
535 {
536 /*
537 * Used by Autonuma subsystem to preserve the write bit
538 * while marking the pte PROT_NONE. Only allow this
539 * on PROT_NONE pte
540 */
541 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
542 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
543 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
544 }
545
546 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)547 static inline pte_t pte_clear_savedwrite(pte_t pte)
548 {
549 /*
550 * Used by KSM subsystem to make a protnone pte readonly.
551 */
552 VM_BUG_ON(!pte_protnone(pte));
553 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
554 }
555 #else
556 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)557 static inline pte_t pte_clear_savedwrite(pte_t pte)
558 {
559 VM_WARN_ON(1);
560 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
561 }
562 #endif /* CONFIG_NUMA_BALANCING */
563
pte_hw_valid(pte_t pte)564 static inline bool pte_hw_valid(pte_t pte)
565 {
566 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
567 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
568 }
569
pte_present(pte_t pte)570 static inline int pte_present(pte_t pte)
571 {
572 /*
573 * A pte is considerent present if _PAGE_PRESENT is set.
574 * We also need to consider the pte present which is marked
575 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
576 * if we find _PAGE_PRESENT cleared.
577 */
578
579 if (pte_hw_valid(pte))
580 return true;
581 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
582 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
583 }
584
585 #ifdef CONFIG_PPC_MEM_KEYS
586 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
587 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)588 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
589 {
590 return true;
591 }
592 #endif /* CONFIG_PPC_MEM_KEYS */
593
pte_user(pte_t pte)594 static inline bool pte_user(pte_t pte)
595 {
596 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
597 }
598
599 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)600 static inline bool pte_access_permitted(pte_t pte, bool write)
601 {
602 /*
603 * _PAGE_READ is needed for any access and will be
604 * cleared for PROT_NONE
605 */
606 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
607 return false;
608
609 if (write && !pte_write(pte))
610 return false;
611
612 return arch_pte_access_permitted(pte_val(pte), write, 0);
613 }
614
615 /*
616 * Conversion functions: convert a page and protection to a page entry,
617 * and a page entry and page directory to the page they refer to.
618 *
619 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
620 * long for now.
621 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)622 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
623 {
624 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
625 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
626
627 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
628 }
629
pte_pfn(pte_t pte)630 static inline unsigned long pte_pfn(pte_t pte)
631 {
632 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
633 }
634
635 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)636 static inline pte_t pte_wrprotect(pte_t pte)
637 {
638 if (unlikely(pte_savedwrite(pte)))
639 return pte_clear_savedwrite(pte);
640 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
641 }
642
pte_exprotect(pte_t pte)643 static inline pte_t pte_exprotect(pte_t pte)
644 {
645 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
646 }
647
pte_mkclean(pte_t pte)648 static inline pte_t pte_mkclean(pte_t pte)
649 {
650 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
651 }
652
pte_mkold(pte_t pte)653 static inline pte_t pte_mkold(pte_t pte)
654 {
655 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
656 }
657
pte_mkexec(pte_t pte)658 static inline pte_t pte_mkexec(pte_t pte)
659 {
660 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
661 }
662
pte_mkwrite(pte_t pte)663 static inline pte_t pte_mkwrite(pte_t pte)
664 {
665 /*
666 * write implies read, hence set both
667 */
668 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
669 }
670
pte_mkdirty(pte_t pte)671 static inline pte_t pte_mkdirty(pte_t pte)
672 {
673 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
674 }
675
pte_mkyoung(pte_t pte)676 static inline pte_t pte_mkyoung(pte_t pte)
677 {
678 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
679 }
680
pte_mkspecial(pte_t pte)681 static inline pte_t pte_mkspecial(pte_t pte)
682 {
683 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
684 }
685
pte_mkhuge(pte_t pte)686 static inline pte_t pte_mkhuge(pte_t pte)
687 {
688 return pte;
689 }
690
pte_mkdevmap(pte_t pte)691 static inline pte_t pte_mkdevmap(pte_t pte)
692 {
693 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
694 }
695
pte_mkprivileged(pte_t pte)696 static inline pte_t pte_mkprivileged(pte_t pte)
697 {
698 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
699 }
700
pte_mkuser(pte_t pte)701 static inline pte_t pte_mkuser(pte_t pte)
702 {
703 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
704 }
705
706 /*
707 * This is potentially called with a pmd as the argument, in which case it's not
708 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
709 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
710 * use in page directory entries (ie. non-ptes).
711 */
pte_devmap(pte_t pte)712 static inline int pte_devmap(pte_t pte)
713 {
714 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
715
716 return (pte_raw(pte) & mask) == mask;
717 }
718
pte_modify(pte_t pte,pgprot_t newprot)719 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
720 {
721 /* FIXME!! check whether this need to be a conditional */
722 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
723 cpu_to_be64(pgprot_val(newprot)));
724 }
725
726 /* Encode and de-code a swap entry */
727 #define MAX_SWAPFILES_CHECK() do { \
728 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
729 /* \
730 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
731 * We filter HPTEFLAGS on set_pte. \
732 */ \
733 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
734 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
735 } while (0)
736
737 #define SWP_TYPE_BITS 5
738 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
739 & ((1UL << SWP_TYPE_BITS) - 1))
740 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
741 #define __swp_entry(type, offset) ((swp_entry_t) { \
742 ((type) << _PAGE_BIT_SWAP_TYPE) \
743 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
744 /*
745 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
746 * swap type and offset we get from swap and convert that to pte to find a
747 * matching pte in linux page table.
748 * Clear bits not found in swap entries here.
749 */
750 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
751 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
752 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
753 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
754
755 #ifdef CONFIG_MEM_SOFT_DIRTY
756 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
757 #else
758 #define _PAGE_SWP_SOFT_DIRTY 0UL
759 #endif /* CONFIG_MEM_SOFT_DIRTY */
760
761 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)762 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
763 {
764 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
765 }
766
pte_swp_soft_dirty(pte_t pte)767 static inline bool pte_swp_soft_dirty(pte_t pte)
768 {
769 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
770 }
771
pte_swp_clear_soft_dirty(pte_t pte)772 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
773 {
774 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
775 }
776 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
777
check_pte_access(unsigned long access,unsigned long ptev)778 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
779 {
780 /*
781 * This check for _PAGE_RWX and _PAGE_PRESENT bits
782 */
783 if (access & ~ptev)
784 return false;
785 /*
786 * This check for access to privilege space
787 */
788 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
789 return false;
790
791 return true;
792 }
793 /*
794 * Generic functions with hash/radix callbacks
795 */
796
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)797 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
798 pte_t *ptep, pte_t entry,
799 unsigned long address,
800 int psize)
801 {
802 if (radix_enabled())
803 return radix__ptep_set_access_flags(vma, ptep, entry,
804 address, psize);
805 return hash__ptep_set_access_flags(ptep, entry);
806 }
807
808 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)809 static inline int pte_same(pte_t pte_a, pte_t pte_b)
810 {
811 if (radix_enabled())
812 return radix__pte_same(pte_a, pte_b);
813 return hash__pte_same(pte_a, pte_b);
814 }
815
pte_none(pte_t pte)816 static inline int pte_none(pte_t pte)
817 {
818 if (radix_enabled())
819 return radix__pte_none(pte);
820 return hash__pte_none(pte);
821 }
822
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)823 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
824 pte_t *ptep, pte_t pte, int percpu)
825 {
826
827 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
828 /*
829 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
830 * in all the callers.
831 */
832 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
833
834 if (radix_enabled())
835 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
836 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
837 }
838
839 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
840
841 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)842 static inline pgprot_t pgprot_noncached(pgprot_t prot)
843 {
844 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
845 _PAGE_NON_IDEMPOTENT);
846 }
847
848 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)849 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
850 {
851 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
852 _PAGE_TOLERANT);
853 }
854
855 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)856 static inline pgprot_t pgprot_cached(pgprot_t prot)
857 {
858 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
859 }
860
861 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)862 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
863 {
864 return pgprot_noncached_wc(prot);
865 }
866 /*
867 * check a pte mapping have cache inhibited property
868 */
pte_ci(pte_t pte)869 static inline bool pte_ci(pte_t pte)
870 {
871 __be64 pte_v = pte_raw(pte);
872
873 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
874 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
875 return true;
876 return false;
877 }
878
pmd_clear(pmd_t * pmdp)879 static inline void pmd_clear(pmd_t *pmdp)
880 {
881 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
882 /*
883 * Don't use this if we can possibly have a hash page table
884 * entry mapping this.
885 */
886 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
887 }
888 *pmdp = __pmd(0);
889 }
890
pmd_none(pmd_t pmd)891 static inline int pmd_none(pmd_t pmd)
892 {
893 return !pmd_raw(pmd);
894 }
895
pmd_present(pmd_t pmd)896 static inline int pmd_present(pmd_t pmd)
897 {
898 /*
899 * A pmd is considerent present if _PAGE_PRESENT is set.
900 * We also need to consider the pmd present which is marked
901 * invalid during a split. Hence we look for _PAGE_INVALID
902 * if we find _PAGE_PRESENT cleared.
903 */
904 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
905 return true;
906
907 return false;
908 }
909
pmd_is_serializing(pmd_t pmd)910 static inline int pmd_is_serializing(pmd_t pmd)
911 {
912 /*
913 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
914 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
915 *
916 * This condition may also occur when flushing a pmd while flushing
917 * it (see ptep_modify_prot_start), so callers must ensure this
918 * case is fine as well.
919 */
920 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
921 cpu_to_be64(_PAGE_INVALID))
922 return true;
923
924 return false;
925 }
926
pmd_bad(pmd_t pmd)927 static inline int pmd_bad(pmd_t pmd)
928 {
929 if (radix_enabled())
930 return radix__pmd_bad(pmd);
931 return hash__pmd_bad(pmd);
932 }
933
pud_clear(pud_t * pudp)934 static inline void pud_clear(pud_t *pudp)
935 {
936 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
937 /*
938 * Don't use this if we can possibly have a hash page table
939 * entry mapping this.
940 */
941 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
942 }
943 *pudp = __pud(0);
944 }
945
pud_none(pud_t pud)946 static inline int pud_none(pud_t pud)
947 {
948 return !pud_raw(pud);
949 }
950
pud_present(pud_t pud)951 static inline int pud_present(pud_t pud)
952 {
953 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
954 }
955
956 extern struct page *pud_page(pud_t pud);
957 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)958 static inline pte_t pud_pte(pud_t pud)
959 {
960 return __pte_raw(pud_raw(pud));
961 }
962
pte_pud(pte_t pte)963 static inline pud_t pte_pud(pte_t pte)
964 {
965 return __pud_raw(pte_raw(pte));
966 }
967 #define pud_write(pud) pte_write(pud_pte(pud))
968
pud_bad(pud_t pud)969 static inline int pud_bad(pud_t pud)
970 {
971 if (radix_enabled())
972 return radix__pud_bad(pud);
973 return hash__pud_bad(pud);
974 }
975
976 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)977 static inline bool pud_access_permitted(pud_t pud, bool write)
978 {
979 return pte_access_permitted(pud_pte(pud), write);
980 }
981
982 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)983 static inline __be64 p4d_raw(p4d_t x)
984 {
985 return pgd_raw(x.pgd);
986 }
987
988 #define p4d_write(p4d) pte_write(p4d_pte(p4d))
989
p4d_clear(p4d_t * p4dp)990 static inline void p4d_clear(p4d_t *p4dp)
991 {
992 *p4dp = __p4d(0);
993 }
994
p4d_none(p4d_t p4d)995 static inline int p4d_none(p4d_t p4d)
996 {
997 return !p4d_raw(p4d);
998 }
999
p4d_present(p4d_t p4d)1000 static inline int p4d_present(p4d_t p4d)
1001 {
1002 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1003 }
1004
p4d_pte(p4d_t p4d)1005 static inline pte_t p4d_pte(p4d_t p4d)
1006 {
1007 return __pte_raw(p4d_raw(p4d));
1008 }
1009
pte_p4d(pte_t pte)1010 static inline p4d_t pte_p4d(pte_t pte)
1011 {
1012 return __p4d_raw(pte_raw(pte));
1013 }
1014
p4d_bad(p4d_t p4d)1015 static inline int p4d_bad(p4d_t p4d)
1016 {
1017 if (radix_enabled())
1018 return radix__p4d_bad(p4d);
1019 return hash__p4d_bad(p4d);
1020 }
1021
1022 #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)1023 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1024 {
1025 return pte_access_permitted(p4d_pte(p4d), write);
1026 }
1027
1028 extern struct page *p4d_page(p4d_t p4d);
1029
1030 /* Pointers in the page table tree are physical addresses */
1031 #define __pgtable_ptr_val(ptr) __pa(ptr)
1032
1033 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
1034 #define p4d_page_vaddr(p4d) __va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1035
1036 #define pte_ERROR(e) \
1037 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1038 #define pmd_ERROR(e) \
1039 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1040 #define pud_ERROR(e) \
1041 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1042 #define pgd_ERROR(e) \
1043 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1044
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)1045 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1046 {
1047 if (radix_enabled()) {
1048 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1049 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1050 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1051 #endif
1052 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1053 }
1054 return hash__map_kernel_page(ea, pa, prot);
1055 }
1056
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1057 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1058 unsigned long page_size,
1059 unsigned long phys)
1060 {
1061 if (radix_enabled())
1062 return radix__vmemmap_create_mapping(start, page_size, phys);
1063 return hash__vmemmap_create_mapping(start, page_size, phys);
1064 }
1065
1066 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1067 static inline void vmemmap_remove_mapping(unsigned long start,
1068 unsigned long page_size)
1069 {
1070 if (radix_enabled())
1071 return radix__vmemmap_remove_mapping(start, page_size);
1072 return hash__vmemmap_remove_mapping(start, page_size);
1073 }
1074 #endif
1075
pmd_pte(pmd_t pmd)1076 static inline pte_t pmd_pte(pmd_t pmd)
1077 {
1078 return __pte_raw(pmd_raw(pmd));
1079 }
1080
pte_pmd(pte_t pte)1081 static inline pmd_t pte_pmd(pte_t pte)
1082 {
1083 return __pmd_raw(pte_raw(pte));
1084 }
1085
pmdp_ptep(pmd_t * pmd)1086 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1087 {
1088 return (pte_t *)pmd;
1089 }
1090 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1091 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1092 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1093 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1094 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1095 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1096 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1097 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1098 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1099 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1100 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1101
1102 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1103 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1104 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1105 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1106
1107 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1108 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1109 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1110 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1111 #endif
1112 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1113
1114 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1115 static inline int pmd_protnone(pmd_t pmd)
1116 {
1117 return pte_protnone(pmd_pte(pmd));
1118 }
1119 #endif /* CONFIG_NUMA_BALANCING */
1120
1121 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1122 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
1123 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1124
1125 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1126 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1127 {
1128 /*
1129 * pmdp_invalidate sets this combination (which is not caught by
1130 * !pte_present() check in pte_access_permitted), to prevent
1131 * lock-free lookups, as part of the serialize_against_pte_lookup()
1132 * synchronisation.
1133 *
1134 * This also catches the case where the PTE's hardware PRESENT bit is
1135 * cleared while TLB is flushed, which is suboptimal but should not
1136 * be frequent.
1137 */
1138 if (pmd_is_serializing(pmd))
1139 return false;
1140
1141 return pte_access_permitted(pmd_pte(pmd), write);
1142 }
1143
1144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1145 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1146 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1147 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1148 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1149 pmd_t *pmdp, pmd_t pmd);
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1150 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1151 unsigned long addr, pmd_t *pmd)
1152 {
1153 }
1154
1155 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1156 static inline int has_transparent_hugepage(void)
1157 {
1158 if (radix_enabled())
1159 return radix__has_transparent_hugepage();
1160 return hash__has_transparent_hugepage();
1161 }
1162 #define has_transparent_hugepage has_transparent_hugepage
1163
1164 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1165 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1166 unsigned long clr, unsigned long set)
1167 {
1168 if (radix_enabled())
1169 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1170 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1171 }
1172
1173 /*
1174 * returns true for pmd migration entries, THP, devmap, hugetlb
1175 * But compile time dependent on THP config
1176 */
pmd_large(pmd_t pmd)1177 static inline int pmd_large(pmd_t pmd)
1178 {
1179 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1180 }
1181
1182 /*
1183 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1184 * the below will work for radix too
1185 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1186 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1187 unsigned long addr, pmd_t *pmdp)
1188 {
1189 unsigned long old;
1190
1191 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1192 return 0;
1193 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1194 return ((old & _PAGE_ACCESSED) != 0);
1195 }
1196
1197 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1198 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1199 pmd_t *pmdp)
1200 {
1201 if (__pmd_write((*pmdp)))
1202 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1203 else if (unlikely(pmd_savedwrite(*pmdp)))
1204 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1205 }
1206
1207 /*
1208 * Only returns true for a THP. False for pmd migration entry.
1209 * We also need to return true when we come across a pte that
1210 * in between a thp split. While splitting THP, we mark the pmd
1211 * invalid (pmdp_invalidate()) before we set it with pte page
1212 * address. A pmd_trans_huge() check against a pmd entry during that time
1213 * should return true.
1214 * We should not call this on a hugetlb entry. We should check for HugeTLB
1215 * entry using vma->vm_flags
1216 * The page table walk rule is explained in Documentation/vm/transhuge.rst
1217 */
pmd_trans_huge(pmd_t pmd)1218 static inline int pmd_trans_huge(pmd_t pmd)
1219 {
1220 if (!pmd_present(pmd))
1221 return false;
1222
1223 if (radix_enabled())
1224 return radix__pmd_trans_huge(pmd);
1225 return hash__pmd_trans_huge(pmd);
1226 }
1227
1228 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1229 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1230 {
1231 if (radix_enabled())
1232 return radix__pmd_same(pmd_a, pmd_b);
1233 return hash__pmd_same(pmd_a, pmd_b);
1234 }
1235
pmd_mkhuge(pmd_t pmd)1236 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1237 {
1238 if (radix_enabled())
1239 return radix__pmd_mkhuge(pmd);
1240 return hash__pmd_mkhuge(pmd);
1241 }
1242
1243 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1244 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1245 unsigned long address, pmd_t *pmdp,
1246 pmd_t entry, int dirty);
1247
1248 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1249 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1250 unsigned long address, pmd_t *pmdp);
1251
1252 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1253 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1254 unsigned long addr, pmd_t *pmdp)
1255 {
1256 if (radix_enabled())
1257 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1258 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1259 }
1260
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1261 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1262 unsigned long address, pmd_t *pmdp)
1263 {
1264 if (radix_enabled())
1265 return radix__pmdp_collapse_flush(vma, address, pmdp);
1266 return hash__pmdp_collapse_flush(vma, address, pmdp);
1267 }
1268 #define pmdp_collapse_flush pmdp_collapse_flush
1269
1270 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1271 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1272 unsigned long addr,
1273 pmd_t *pmdp, int full);
1274
1275 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1276 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1277 pmd_t *pmdp, pgtable_t pgtable)
1278 {
1279 if (radix_enabled())
1280 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1281 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1282 }
1283
1284 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1285 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1286 pmd_t *pmdp)
1287 {
1288 if (radix_enabled())
1289 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1290 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1291 }
1292
1293 #define __HAVE_ARCH_PMDP_INVALIDATE
1294 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1295 pmd_t *pmdp);
1296
1297 #define pmd_move_must_withdraw pmd_move_must_withdraw
1298 struct spinlock;
1299 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1300 struct spinlock *old_pmd_ptl,
1301 struct vm_area_struct *vma);
1302 /*
1303 * Hash translation mode use the deposited table to store hash pte
1304 * slot information.
1305 */
1306 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1307 static inline bool arch_needs_pgtable_deposit(void)
1308 {
1309 if (radix_enabled())
1310 return false;
1311 return true;
1312 }
1313 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1314
1315
pmd_mkdevmap(pmd_t pmd)1316 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1317 {
1318 if (radix_enabled())
1319 return radix__pmd_mkdevmap(pmd);
1320 return hash__pmd_mkdevmap(pmd);
1321 }
1322
pmd_devmap(pmd_t pmd)1323 static inline int pmd_devmap(pmd_t pmd)
1324 {
1325 return pte_devmap(pmd_pte(pmd));
1326 }
1327
pud_devmap(pud_t pud)1328 static inline int pud_devmap(pud_t pud)
1329 {
1330 return 0;
1331 }
1332
pgd_devmap(pgd_t pgd)1333 static inline int pgd_devmap(pgd_t pgd)
1334 {
1335 return 0;
1336 }
1337 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1338
pud_pfn(pud_t pud)1339 static inline int pud_pfn(pud_t pud)
1340 {
1341 /*
1342 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1343 * check so this should never be used. If it grows another user we
1344 * want to know about it.
1345 */
1346 BUILD_BUG();
1347 return 0;
1348 }
1349 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1350 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1351 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1352 pte_t *, pte_t, pte_t);
1353
1354 /*
1355 * Returns true for a R -> RW upgrade of pte
1356 */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1357 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1358 {
1359 if (!(old_val & _PAGE_READ))
1360 return false;
1361
1362 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1363 return true;
1364
1365 return false;
1366 }
1367
1368 /*
1369 * Like pmd_huge() and pmd_large(), but works regardless of config options
1370 */
1371 #define pmd_is_leaf pmd_is_leaf
1372 #define pmd_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1373 static inline bool pmd_is_leaf(pmd_t pmd)
1374 {
1375 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1376 }
1377
1378 #define pud_is_leaf pud_is_leaf
1379 #define pud_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1380 static inline bool pud_is_leaf(pud_t pud)
1381 {
1382 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1383 }
1384
1385 #define p4d_is_leaf p4d_is_leaf
1386 #define p4d_leaf p4d_is_leaf
p4d_is_leaf(p4d_t p4d)1387 static inline bool p4d_is_leaf(p4d_t p4d)
1388 {
1389 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1390 }
1391
1392 #endif /* __ASSEMBLY__ */
1393 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1394