• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# sha1_block procedure for ARMv4.
18#
19# January 2007.
20
21# Size/performance trade-off
22# ====================================================================
23# impl		size in bytes	comp cycles[*]	measured performance
24# ====================================================================
25# thumb		304		3212		4420
26# armv4-small	392/+29%	1958/+64%	2250/+96%
27# armv4-compact	740/+89%	1552/+26%	1840/+22%
28# armv4-large	1420/+92%	1307/+19%	1370/+34%[***]
29# full unroll	~5100/+260%	~1260/+4%	~1300/+5%
30# ====================================================================
31# thumb		= same as 'small' but in Thumb instructions[**] and
32#		  with recurring code in two private functions;
33# small		= detached Xload/update, loops are folded;
34# compact	= detached Xload/update, 5x unroll;
35# large		= interleaved Xload/update, 5x unroll;
36# full unroll	= interleaved Xload/update, full unroll, estimated[!];
37#
38# [*]	Manually counted instructions in "grand" loop body. Measured
39#	performance is affected by prologue and epilogue overhead,
40#	i-cache availability, branch penalties, etc.
41# [**]	While each Thumb instruction is twice smaller, they are not as
42#	diverse as ARM ones: e.g., there are only two arithmetic
43#	instructions with 3 arguments, no [fixed] rotate, addressing
44#	modes are limited. As result it takes more instructions to do
45#	the same job in Thumb, therefore the code is never twice as
46#	small and always slower.
47# [***]	which is also ~35% better than compiler generated code. Dual-
48#	issue Cortex A8 core was measured to process input block in
49#	~990 cycles.
50
51# August 2010.
52#
53# Rescheduling for dual-issue pipeline resulted in 13% improvement on
54# Cortex A8 core and in absolute terms ~870 cycles per input block
55# [or 13.6 cycles per byte].
56
57# February 2011.
58#
59# Profiler-assisted and platform-specific optimization resulted in 10%
60# improvement on Cortex A8 core and 12.2 cycles per byte.
61
62# September 2013.
63#
64# Add NEON implementation (see sha1-586.pl for background info). On
65# Cortex A8 it was measured to process one byte in 6.7 cycles or >80%
66# faster than integer-only code. Because [fully unrolled] NEON code
67# is ~2.5x larger and there are some redundant instructions executed
68# when processing last block, improvement is not as big for smallest
69# blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per
70# byte, which is also >80% faster than integer-only code. Cortex-A15
71# is even faster spending 5.6 cycles per byte outperforming integer-
72# only code by factor of 2.
73
74# May 2014.
75#
76# Add ARMv8 code path performing at 2.35 cpb on Apple A7.
77
78$flavour = shift;
79if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
80else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
81
82if ($flavour && $flavour ne "void") {
83    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
84    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
85    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
86    die "can't locate arm-xlate.pl";
87
88    open STDOUT,"| \"$^X\" $xlate $flavour $output";
89} else {
90    open STDOUT,">$output";
91}
92
93$ctx="r0";
94$inp="r1";
95$len="r2";
96$a="r3";
97$b="r4";
98$c="r5";
99$d="r6";
100$e="r7";
101$K="r8";
102$t0="r9";
103$t1="r10";
104$t2="r11";
105$t3="r12";
106$Xi="r14";
107@V=($a,$b,$c,$d,$e);
108
109sub Xupdate {
110my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_;
111$code.=<<___;
112	ldr	$t0,[$Xi,#15*4]
113	ldr	$t1,[$Xi,#13*4]
114	ldr	$t2,[$Xi,#7*4]
115	add	$e,$K,$e,ror#2			@ E+=K_xx_xx
116	ldr	$t3,[$Xi,#2*4]
117	eor	$t0,$t0,$t1
118	eor	$t2,$t2,$t3			@ 1 cycle stall
119	eor	$t1,$c,$d			@ F_xx_xx
120	mov	$t0,$t0,ror#31
121	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
122	eor	$t0,$t0,$t2,ror#31
123	str	$t0,[$Xi,#-4]!
124	$opt1					@ F_xx_xx
125	$opt2					@ F_xx_xx
126	add	$e,$e,$t0			@ E+=X[i]
127___
128}
129
130sub BODY_00_15 {
131my ($a,$b,$c,$d,$e)=@_;
132$code.=<<___;
133#if __ARM_ARCH__<7
134	ldrb	$t1,[$inp,#2]
135	ldrb	$t0,[$inp,#3]
136	ldrb	$t2,[$inp,#1]
137	add	$e,$K,$e,ror#2			@ E+=K_00_19
138	ldrb	$t3,[$inp],#4
139	orr	$t0,$t0,$t1,lsl#8
140	eor	$t1,$c,$d			@ F_xx_xx
141	orr	$t0,$t0,$t2,lsl#16
142	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
143	orr	$t0,$t0,$t3,lsl#24
144#else
145	ldr	$t0,[$inp],#4			@ handles unaligned
146	add	$e,$K,$e,ror#2			@ E+=K_00_19
147	eor	$t1,$c,$d			@ F_xx_xx
148	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
149#ifdef __ARMEL__
150	rev	$t0,$t0				@ byte swap
151#endif
152#endif
153	and	$t1,$b,$t1,ror#2
154	add	$e,$e,$t0			@ E+=X[i]
155	eor	$t1,$t1,$d,ror#2		@ F_00_19(B,C,D)
156	str	$t0,[$Xi,#-4]!
157	add	$e,$e,$t1			@ E+=F_00_19(B,C,D)
158___
159}
160
161sub BODY_16_19 {
162my ($a,$b,$c,$d,$e)=@_;
163	&Xupdate(@_,"and $t1,$b,$t1,ror#2");
164$code.=<<___;
165	eor	$t1,$t1,$d,ror#2		@ F_00_19(B,C,D)
166	add	$e,$e,$t1			@ E+=F_00_19(B,C,D)
167___
168}
169
170sub BODY_20_39 {
171my ($a,$b,$c,$d,$e)=@_;
172	&Xupdate(@_,"eor $t1,$b,$t1,ror#2");
173$code.=<<___;
174	add	$e,$e,$t1			@ E+=F_20_39(B,C,D)
175___
176}
177
178sub BODY_40_59 {
179my ($a,$b,$c,$d,$e)=@_;
180	&Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d");
181$code.=<<___;
182	add	$e,$e,$t1			@ E+=F_40_59(B,C,D)
183	add	$e,$e,$t2,ror#2
184___
185}
186
187$code=<<___;
188#include "arm_arch.h"
189
190.text
191#if defined(__thumb2__)
192.syntax	unified
193.thumb
194#else
195.code	32
196#endif
197
198.global	sha1_block_data_order
199.type	sha1_block_data_order,%function
200
201.align	5
202sha1_block_data_order:
203#if __ARM_MAX_ARCH__>=7
204.Lsha1_block:
205	adr	r3,.Lsha1_block
206	ldr	r12,.LOPENSSL_armcap
207	ldr	r12,[r3,r12]		@ OPENSSL_armcap_P
208#ifdef	__APPLE__
209	ldr	r12,[r12]
210#endif
211	tst	r12,#ARMV8_SHA1
212	bne	.LARMv8
213	tst	r12,#ARMV7_NEON
214	bne	.LNEON
215#endif
216	stmdb	sp!,{r4-r12,lr}
217	add	$len,$inp,$len,lsl#6	@ $len to point at the end of $inp
218	ldmia	$ctx,{$a,$b,$c,$d,$e}
219.Lloop:
220	ldr	$K,.LK_00_19
221	mov	$Xi,sp
222	sub	sp,sp,#15*4
223	mov	$c,$c,ror#30
224	mov	$d,$d,ror#30
225	mov	$e,$e,ror#30		@ [6]
226.L_00_15:
227___
228for($i=0;$i<5;$i++) {
229	&BODY_00_15(@V);	unshift(@V,pop(@V));
230}
231$code.=<<___;
232#if defined(__thumb2__)
233	mov	$t3,sp
234	teq	$Xi,$t3
235#else
236	teq	$Xi,sp
237#endif
238	bne	.L_00_15		@ [((11+4)*5+2)*3]
239	sub	sp,sp,#25*4
240___
241	&BODY_00_15(@V);	unshift(@V,pop(@V));
242	&BODY_16_19(@V);	unshift(@V,pop(@V));
243	&BODY_16_19(@V);	unshift(@V,pop(@V));
244	&BODY_16_19(@V);	unshift(@V,pop(@V));
245	&BODY_16_19(@V);	unshift(@V,pop(@V));
246$code.=<<___;
247
248	ldr	$K,.LK_20_39		@ [+15+16*4]
249	cmn	sp,#0			@ [+3], clear carry to denote 20_39
250.L_20_39_or_60_79:
251___
252for($i=0;$i<5;$i++) {
253	&BODY_20_39(@V);	unshift(@V,pop(@V));
254}
255$code.=<<___;
256#if defined(__thumb2__)
257	mov	$t3,sp
258	teq	$Xi,$t3
259#else
260	teq	$Xi,sp			@ preserve carry
261#endif
262	bne	.L_20_39_or_60_79	@ [+((12+3)*5+2)*4]
263	bcs	.L_done			@ [+((12+3)*5+2)*4], spare 300 bytes
264
265	ldr	$K,.LK_40_59
266	sub	sp,sp,#20*4		@ [+2]
267.L_40_59:
268___
269for($i=0;$i<5;$i++) {
270	&BODY_40_59(@V);	unshift(@V,pop(@V));
271}
272$code.=<<___;
273#if defined(__thumb2__)
274	mov	$t3,sp
275	teq	$Xi,$t3
276#else
277	teq	$Xi,sp
278#endif
279	bne	.L_40_59		@ [+((12+5)*5+2)*4]
280
281	ldr	$K,.LK_60_79
282	sub	sp,sp,#20*4
283	cmp	sp,#0			@ set carry to denote 60_79
284	b	.L_20_39_or_60_79	@ [+4], spare 300 bytes
285.L_done:
286	add	sp,sp,#80*4		@ "deallocate" stack frame
287	ldmia	$ctx,{$K,$t0,$t1,$t2,$t3}
288	add	$a,$K,$a
289	add	$b,$t0,$b
290	add	$c,$t1,$c,ror#2
291	add	$d,$t2,$d,ror#2
292	add	$e,$t3,$e,ror#2
293	stmia	$ctx,{$a,$b,$c,$d,$e}
294	teq	$inp,$len
295	bne	.Lloop			@ [+18], total 1307
296
297#if __ARM_ARCH__>=5
298	ldmia	sp!,{r4-r12,pc}
299#else
300	ldmia	sp!,{r4-r12,lr}
301	tst	lr,#1
302	moveq	pc,lr			@ be binary compatible with V4, yet
303	bx	lr			@ interoperable with Thumb ISA:-)
304#endif
305.size	sha1_block_data_order,.-sha1_block_data_order
306
307.align	5
308.LK_00_19:	.word	0x5a827999
309.LK_20_39:	.word	0x6ed9eba1
310.LK_40_59:	.word	0x8f1bbcdc
311.LK_60_79:	.word	0xca62c1d6
312#if __ARM_MAX_ARCH__>=7
313.LOPENSSL_armcap:
314.word	OPENSSL_armcap_P-.Lsha1_block
315#endif
316.asciz	"SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
317.align	5
318___
319#####################################################################
320# NEON stuff
321#
322{{{
323my @V=($a,$b,$c,$d,$e);
324my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14));
325my $Xi=4;
326my @X=map("q$_",(8..11,0..3));
327my @Tx=("q12","q13");
328my ($K,$zero)=("q14","q15");
329my $j=0;
330
331sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
332{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
333  my $arg = pop;
334    $arg = "#$arg" if ($arg*1 eq $arg);
335    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
336}
337
338sub body_00_19 () {
339	(
340	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
341	'&bic	($t0,$d,$b)',
342	'&add	($e,$e,$Ki)',		# e+=X[i]+K
343	'&and	($t1,$c,$b)',
344	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
345	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
346	'&eor	($t1,$t1,$t0)',		# F_00_19
347	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
348	'&add	($e,$e,$t1);'.		# e+=F_00_19
349	'$j++;	unshift(@V,pop(@V));'
350	)
351}
352sub body_20_39 () {
353	(
354	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
355	'&eor	($t0,$b,$d)',
356	'&add	($e,$e,$Ki)',		# e+=X[i]+K
357	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)',
358	'&eor	($t1,$t0,$c)',		# F_20_39
359	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
360	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
361	'&add	($e,$e,$t1);'.		# e+=F_20_39
362	'$j++;	unshift(@V,pop(@V));'
363	)
364}
365sub body_40_59 () {
366	(
367	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
368	'&add	($e,$e,$Ki)',		# e+=X[i]+K
369	'&and	($t0,$c,$d)',
370	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
371	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
372	'&eor	($t1,$c,$d)',
373	'&add	($e,$e,$t0)',
374	'&and	($t1,$t1,$b)',
375	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
376	'&add	($e,$e,$t1);'.		# e+=F_40_59
377	'$j++;	unshift(@V,pop(@V));'
378	)
379}
380
381sub Xupdate_16_31 ()
382{ use integer;
383  my $body = shift;
384  my @insns = (&$body,&$body,&$body,&$body);
385  my ($a,$b,$c,$d,$e);
386
387	&vext_8		(@X[0],@X[-4&7],@X[-3&7],8);	# compose "X[-14]" in "X[0]"
388	 eval(shift(@insns));
389	 eval(shift(@insns));
390	 eval(shift(@insns));
391	  &vadd_i32	(@Tx[1],@X[-1&7],$K);
392	 eval(shift(@insns));
393	  &vld1_32	("{$K\[]}","[$K_XX_XX,:32]!")	if ($Xi%5==0);
394	 eval(shift(@insns));
395	&vext_8		(@Tx[0],@X[-1&7],$zero,4);	# "X[-3]", 3 words
396	 eval(shift(@insns));
397	 eval(shift(@insns));
398	 eval(shift(@insns));
399	&veor		(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
400	 eval(shift(@insns));
401	 eval(shift(@insns));
402	&veor		(@Tx[0],@Tx[0],@X[-2&7]);	# "X[-3]"^"X[-8]"
403	 eval(shift(@insns));
404	 eval(shift(@insns));
405	&veor		(@Tx[0],@Tx[0],@X[0]);		# "X[0]"^="X[-3]"^"X[-8]
406	 eval(shift(@insns));
407	 eval(shift(@insns));
408	  &vst1_32	("{@Tx[1]}","[$Xfer,:128]!");	# X[]+K xfer
409	  &sub		($Xfer,$Xfer,64)		if ($Xi%4==0);
410	 eval(shift(@insns));
411	 eval(shift(@insns));
412	&vext_8		(@Tx[1],$zero,@Tx[0],4);	# "X[0]"<<96, extract one dword
413	 eval(shift(@insns));
414	 eval(shift(@insns));
415	&vadd_i32	(@X[0],@Tx[0],@Tx[0]);
416	 eval(shift(@insns));
417	 eval(shift(@insns));
418	&vsri_32	(@X[0],@Tx[0],31);		# "X[0]"<<<=1
419	 eval(shift(@insns));
420	 eval(shift(@insns));
421	 eval(shift(@insns));
422	&vshr_u32	(@Tx[0],@Tx[1],30);
423	 eval(shift(@insns));
424	 eval(shift(@insns));
425	&vshl_u32	(@Tx[1],@Tx[1],2);
426	 eval(shift(@insns));
427	 eval(shift(@insns));
428	&veor		(@X[0],@X[0],@Tx[0]);
429	 eval(shift(@insns));
430	 eval(shift(@insns));
431	&veor		(@X[0],@X[0],@Tx[1]);		# "X[0]"^=("X[0]">>96)<<<2
432
433	foreach (@insns) { eval; }	# remaining instructions [if any]
434
435  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
436}
437
438sub Xupdate_32_79 ()
439{ use integer;
440  my $body = shift;
441  my @insns = (&$body,&$body,&$body,&$body);
442  my ($a,$b,$c,$d,$e);
443
444	&vext_8		(@Tx[0],@X[-2&7],@X[-1&7],8);	# compose "X[-6]"
445	 eval(shift(@insns));
446	 eval(shift(@insns));
447	 eval(shift(@insns));
448	&veor		(@X[0],@X[0],@X[-4&7]);		# "X[0]"="X[-32]"^"X[-16]"
449	 eval(shift(@insns));
450	 eval(shift(@insns));
451	&veor		(@X[0],@X[0],@X[-7&7]);		# "X[0]"^="X[-28]"
452	 eval(shift(@insns));
453	 eval(shift(@insns));
454	  &vadd_i32	(@Tx[1],@X[-1&7],$K);
455	 eval(shift(@insns));
456	  &vld1_32	("{$K\[]}","[$K_XX_XX,:32]!")	if ($Xi%5==0);
457	 eval(shift(@insns));
458	&veor		(@Tx[0],@Tx[0],@X[0]);		# "X[-6]"^="X[0]"
459	 eval(shift(@insns));
460	 eval(shift(@insns));
461	&vshr_u32	(@X[0],@Tx[0],30);
462	 eval(shift(@insns));
463	 eval(shift(@insns));
464	  &vst1_32	("{@Tx[1]}","[$Xfer,:128]!");	# X[]+K xfer
465	  &sub		($Xfer,$Xfer,64)		if ($Xi%4==0);
466	 eval(shift(@insns));
467	 eval(shift(@insns));
468	&vsli_32	(@X[0],@Tx[0],2);		# "X[0]"="X[-6]"<<<2
469
470	foreach (@insns) { eval; }	# remaining instructions [if any]
471
472  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
473}
474
475sub Xuplast_80 ()
476{ use integer;
477  my $body = shift;
478  my @insns = (&$body,&$body,&$body,&$body);
479  my ($a,$b,$c,$d,$e);
480
481	&vadd_i32	(@Tx[1],@X[-1&7],$K);
482	 eval(shift(@insns));
483	 eval(shift(@insns));
484	&vst1_32	("{@Tx[1]}","[$Xfer,:128]!");
485	&sub		($Xfer,$Xfer,64);
486
487	&teq		($inp,$len);
488	&sub		($K_XX_XX,$K_XX_XX,16);	# rewind $K_XX_XX
489	&it		("eq");
490	&subeq		($inp,$inp,64);		# reload last block to avoid SEGV
491	&vld1_8		("{@X[-4&7]-@X[-3&7]}","[$inp]!");
492	 eval(shift(@insns));
493	 eval(shift(@insns));
494	&vld1_8		("{@X[-2&7]-@X[-1&7]}","[$inp]!");
495	 eval(shift(@insns));
496	 eval(shift(@insns));
497	&vld1_32	("{$K\[]}","[$K_XX_XX,:32]!");	# load K_00_19
498	 eval(shift(@insns));
499	 eval(shift(@insns));
500	&vrev32_8	(@X[-4&7],@X[-4&7]);
501
502	foreach (@insns) { eval; }		# remaining instructions
503
504   $Xi=0;
505}
506
507sub Xloop()
508{ use integer;
509  my $body = shift;
510  my @insns = (&$body,&$body,&$body,&$body);
511  my ($a,$b,$c,$d,$e);
512
513	&vrev32_8	(@X[($Xi-3)&7],@X[($Xi-3)&7]);
514	 eval(shift(@insns));
515	 eval(shift(@insns));
516	&vadd_i32	(@X[$Xi&7],@X[($Xi-4)&7],$K);
517	 eval(shift(@insns));
518	 eval(shift(@insns));
519	&vst1_32	("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU
520
521	foreach (@insns) { eval; }
522
523  $Xi++;
524}
525
526$code.=<<___;
527#if __ARM_MAX_ARCH__>=7
528.arch	armv7-a
529.fpu	neon
530
531.type	sha1_block_data_order_neon,%function
532.align	4
533sha1_block_data_order_neon:
534.LNEON:
535	stmdb	sp!,{r4-r12,lr}
536	add	$len,$inp,$len,lsl#6	@ $len to point at the end of $inp
537	@ dmb				@ errata #451034 on early Cortex A8
538	@ vstmdb	sp!,{d8-d15}	@ ABI specification says so
539	mov	$saved_sp,sp
540	sub	$Xfer,sp,#64
541	adr	$K_XX_XX,.LK_00_19
542	bic	$Xfer,$Xfer,#15		@ align for 128-bit stores
543
544	ldmia	$ctx,{$a,$b,$c,$d,$e}	@ load context
545	mov	sp,$Xfer		@ alloca
546
547	vld1.8		{@X[-4&7]-@X[-3&7]},[$inp]!	@ handles unaligned
548	veor		$zero,$zero,$zero
549	vld1.8		{@X[-2&7]-@X[-1&7]},[$inp]!
550	vld1.32		{${K}\[]},[$K_XX_XX,:32]!	@ load K_00_19
551	vrev32.8	@X[-4&7],@X[-4&7]		@ yes, even on
552	vrev32.8	@X[-3&7],@X[-3&7]		@ big-endian...
553	vrev32.8	@X[-2&7],@X[-2&7]
554	vadd.i32	@X[0],@X[-4&7],$K
555	vrev32.8	@X[-1&7],@X[-1&7]
556	vadd.i32	@X[1],@X[-3&7],$K
557	vst1.32		{@X[0]},[$Xfer,:128]!
558	vadd.i32	@X[2],@X[-2&7],$K
559	vst1.32		{@X[1]},[$Xfer,:128]!
560	vst1.32		{@X[2]},[$Xfer,:128]!
561	ldr		$Ki,[sp]			@ big RAW stall
562
563.Loop_neon:
564___
565	&Xupdate_16_31(\&body_00_19);
566	&Xupdate_16_31(\&body_00_19);
567	&Xupdate_16_31(\&body_00_19);
568	&Xupdate_16_31(\&body_00_19);
569	&Xupdate_32_79(\&body_00_19);
570	&Xupdate_32_79(\&body_20_39);
571	&Xupdate_32_79(\&body_20_39);
572	&Xupdate_32_79(\&body_20_39);
573	&Xupdate_32_79(\&body_20_39);
574	&Xupdate_32_79(\&body_20_39);
575	&Xupdate_32_79(\&body_40_59);
576	&Xupdate_32_79(\&body_40_59);
577	&Xupdate_32_79(\&body_40_59);
578	&Xupdate_32_79(\&body_40_59);
579	&Xupdate_32_79(\&body_40_59);
580	&Xupdate_32_79(\&body_20_39);
581	&Xuplast_80(\&body_20_39);
582	&Xloop(\&body_20_39);
583	&Xloop(\&body_20_39);
584	&Xloop(\&body_20_39);
585$code.=<<___;
586	ldmia	$ctx,{$Ki,$t0,$t1,$Xfer}	@ accumulate context
587	add	$a,$a,$Ki
588	ldr	$Ki,[$ctx,#16]
589	add	$b,$b,$t0
590	add	$c,$c,$t1
591	add	$d,$d,$Xfer
592	it	eq
593	moveq	sp,$saved_sp
594	add	$e,$e,$Ki
595	it	ne
596	ldrne	$Ki,[sp]
597	stmia	$ctx,{$a,$b,$c,$d,$e}
598	itt	ne
599	addne	$Xfer,sp,#3*16
600	bne	.Loop_neon
601
602	@ vldmia	sp!,{d8-d15}
603	ldmia	sp!,{r4-r12,pc}
604.size	sha1_block_data_order_neon,.-sha1_block_data_order_neon
605#endif
606___
607}}}
608#####################################################################
609# ARMv8 stuff
610#
611{{{
612my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3));
613my @MSG=map("q$_",(4..7));
614my @Kxx=map("q$_",(8..11));
615my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14));
616
617$code.=<<___;
618#if __ARM_MAX_ARCH__>=7
619
620# if defined(__thumb2__)
621#  define INST(a,b,c,d)	.byte	c,d|0xf,a,b
622# else
623#  define INST(a,b,c,d)	.byte	a,b,c,d|0x10
624# endif
625
626.type	sha1_block_data_order_armv8,%function
627.align	5
628sha1_block_data_order_armv8:
629.LARMv8:
630	vstmdb	sp!,{d8-d15}		@ ABI specification says so
631
632	veor	$E,$E,$E
633	adr	r3,.LK_00_19
634	vld1.32	{$ABCD},[$ctx]!
635	vld1.32	{$E\[0]},[$ctx]
636	sub	$ctx,$ctx,#16
637	vld1.32	{@Kxx[0]\[]},[r3,:32]!
638	vld1.32	{@Kxx[1]\[]},[r3,:32]!
639	vld1.32	{@Kxx[2]\[]},[r3,:32]!
640	vld1.32	{@Kxx[3]\[]},[r3,:32]
641
642.Loop_v8:
643	vld1.8		{@MSG[0]-@MSG[1]},[$inp]!
644	vld1.8		{@MSG[2]-@MSG[3]},[$inp]!
645	vrev32.8	@MSG[0],@MSG[0]
646	vrev32.8	@MSG[1],@MSG[1]
647
648	vadd.i32	$W0,@Kxx[0],@MSG[0]
649	vrev32.8	@MSG[2],@MSG[2]
650	vmov		$ABCD_SAVE,$ABCD	@ offload
651	subs		$len,$len,#1
652
653	vadd.i32	$W1,@Kxx[0],@MSG[1]
654	vrev32.8	@MSG[3],@MSG[3]
655	sha1h		$E1,$ABCD		@ 0
656	sha1c		$ABCD,$E,$W0
657	vadd.i32	$W0,@Kxx[$j],@MSG[2]
658	sha1su0		@MSG[0],@MSG[1],@MSG[2]
659___
660for ($j=0,$i=1;$i<20-3;$i++) {
661my $f=("c","p","m","p")[$i/5];
662$code.=<<___;
663	sha1h		$E0,$ABCD		@ $i
664	sha1$f		$ABCD,$E1,$W1
665	vadd.i32	$W1,@Kxx[$j],@MSG[3]
666	sha1su1		@MSG[0],@MSG[3]
667___
668$code.=<<___ if ($i<20-4);
669	sha1su0		@MSG[1],@MSG[2],@MSG[3]
670___
671	($E0,$E1)=($E1,$E0);	($W0,$W1)=($W1,$W0);
672	push(@MSG,shift(@MSG));	$j++ if ((($i+3)%5)==0);
673}
674$code.=<<___;
675	sha1h		$E0,$ABCD		@ $i
676	sha1p		$ABCD,$E1,$W1
677	vadd.i32	$W1,@Kxx[$j],@MSG[3]
678
679	sha1h		$E1,$ABCD		@ 18
680	sha1p		$ABCD,$E0,$W0
681
682	sha1h		$E0,$ABCD		@ 19
683	sha1p		$ABCD,$E1,$W1
684
685	vadd.i32	$E,$E,$E0
686	vadd.i32	$ABCD,$ABCD,$ABCD_SAVE
687	bne		.Loop_v8
688
689	vst1.32		{$ABCD},[$ctx]!
690	vst1.32		{$E\[0]},[$ctx]
691
692	vldmia	sp!,{d8-d15}
693	ret					@ bx lr
694.size	sha1_block_data_order_armv8,.-sha1_block_data_order_armv8
695#endif
696___
697}}}
698$code.=<<___;
699#if __ARM_MAX_ARCH__>=7
700.comm	OPENSSL_armcap_P,4,4
701#endif
702___
703
704{   my  %opcode = (
705	"sha1c"		=> 0xf2000c40,	"sha1p"		=> 0xf2100c40,
706	"sha1m"		=> 0xf2200c40,	"sha1su0"	=> 0xf2300c40,
707	"sha1h"		=> 0xf3b902c0,	"sha1su1"	=> 0xf3ba0380	);
708
709    sub unsha1 {
710	my ($mnemonic,$arg)=@_;
711
712	if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
713	    my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
714					 |(($2&7)<<17)|(($2&8)<<4)
715					 |(($3&7)<<1) |(($3&8)<<2);
716	    # since ARMv7 instructions are always encoded little-endian.
717	    # correct solution is to use .inst directive, but older
718	    # assemblers don't implement it:-(
719
720	    # this fix-up provides Thumb encoding in conjunction with INST
721	    $word &= ~0x10000000 if (($word & 0x0f000000) == 0x02000000);
722	    sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s",
723			$word&0xff,($word>>8)&0xff,
724			($word>>16)&0xff,($word>>24)&0xff,
725			$mnemonic,$arg;
726	}
727    }
728}
729
730foreach (split($/,$code)) {
731	s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo	or
732	s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo;
733
734	s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo;
735
736	s/\bret\b/bx	lr/o		or
737	s/\bbx\s+lr\b/.word\t0xe12fff1e/o;	# make it possible to compile with -march=armv4
738
739	print $_,$/;
740}
741
742close STDOUT or die "error closing STDOUT: $!"; # enforce flush
743