• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Binomial Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="beta_dist.html" title="Beta Distribution">
10<link rel="next" href="cauchy_dist.html" title="Cauchy-Lorentz Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="beta_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cauchy_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.binomial_dist"></a><a class="link" href="binomial_dist.html" title="Binomial Distribution">Binomial
28        Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">binomial</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
32
33<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
34          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
35<span class="keyword">class</span> <span class="identifier">binomial_distribution</span><span class="special">;</span>
36
37<span class="keyword">typedef</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">binomial</span><span class="special">;</span>
38
39<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
40<span class="keyword">class</span> <span class="identifier">binomial_distribution</span>
41<span class="special">{</span>
42<span class="keyword">public</span><span class="special">:</span>
43   <span class="keyword">typedef</span> <span class="identifier">RealType</span>  <span class="identifier">value_type</span><span class="special">;</span>
44   <span class="keyword">typedef</span> <span class="identifier">Policy</span>    <span class="identifier">policy_type</span><span class="special">;</span>
45
46   <span class="keyword">static</span> <span class="keyword">const</span> <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">;</span>
47   <span class="keyword">static</span> <span class="keyword">const</span> <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">jeffreys_prior_interval</span><span class="special">;</span>
48
49   <span class="comment">// construct:</span>
50   <span class="identifier">binomial_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">);</span>
51
52   <span class="comment">// parameter access::</span>
53   <span class="identifier">RealType</span> <span class="identifier">success_fraction</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
54   <span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
55
56   <span class="comment">// Bounds on success fraction:</span>
57   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
58      <span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
59      <span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
60      <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">,</span>
61      <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
62   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
63      <span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
64      <span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
65      <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">,</span>
66      <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
67
68   <span class="comment">// estimate min/max number of trials:</span>
69   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_minimum_number_of_trials</span><span class="special">(</span>
70      <span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span>     <span class="comment">// number of events</span>
71      <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span>     <span class="comment">// success fraction</span>
72      <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// risk level</span>
73
74   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span>
75      <span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span>     <span class="comment">// number of events</span>
76      <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span>     <span class="comment">// success fraction</span>
77      <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// risk level</span>
78<span class="special">};</span>
79
80<span class="special">}}</span> <span class="comment">// namespaces</span>
81</pre>
82<p>
83          The class type <code class="computeroutput"><span class="identifier">binomial_distribution</span></code>
84          represents a <a href="http://mathworld.wolfram.com/BinomialDistribution.html" target="_top">binomial
85          distribution</a>: it is used when there are exactly two mutually exclusive
86          outcomes of a trial. These outcomes are labelled "success" and
87          "failure". The <a class="link" href="binomial_dist.html" title="Binomial Distribution">Binomial
88          Distribution</a> is used to obtain the probability of observing k successes
89          in N trials, with the probability of success on a single trial denoted
90          by p. The binomial distribution assumes that p is fixed for all trials.
91        </p>
92<div class="note"><table border="0" summary="Note">
93<tr>
94<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
95<th align="left">Note</th>
96</tr>
97<tr><td align="left" valign="top"><p>
98            The random variable for the binomial distribution is the number of successes,
99            (the number of trials is a fixed property of the distribution) whereas
100            for the negative binomial, the random variable is the number of trials,
101            for a fixed number of successes.
102          </p></td></tr>
103</table></div>
104<p>
105          The PDF for the binomial distribution is given by:
106        </p>
107<div class="blockquote"><blockquote class="blockquote"><p>
108            <span class="inlinemediaobject"><img src="../../../../equations/binomial_ref2.svg"></span>
109
110          </p></blockquote></div>
111<p>
112          The following two graphs illustrate how the PDF changes depending upon
113          the distributions parameters, first we'll keep the success fraction <span class="emphasis"><em>p</em></span>
114          fixed at 0.5, and vary the sample size:
115        </p>
116<div class="blockquote"><blockquote class="blockquote"><p>
117            <span class="inlinemediaobject"><img src="../../../../graphs/binomial_pdf_1.svg" align="middle"></span>
118
119          </p></blockquote></div>
120<p>
121          Alternatively, we can keep the sample size fixed at N=20 and vary the success
122          fraction <span class="emphasis"><em>p</em></span>:
123        </p>
124<div class="blockquote"><blockquote class="blockquote"><p>
125            <span class="inlinemediaobject"><img src="../../../../graphs/binomial_pdf_2.svg" align="middle"></span>
126
127          </p></blockquote></div>
128<div class="caution"><table border="0" summary="Caution">
129<tr>
130<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
131<th align="left">Caution</th>
132</tr>
133<tr><td align="left" valign="top">
134<p>
135            The Binomial distribution is a discrete distribution: internally, functions
136            like the <code class="computeroutput"><span class="identifier">cdf</span></code> and <code class="computeroutput"><span class="identifier">pdf</span></code> are treated "as if" they
137            are continuous functions, but in reality the results returned from these
138            functions only have meaning if an integer value is provided for the random
139            variate argument.
140          </p>
141<p>
142            The quantile function will by default return an integer result that has
143            been <span class="emphasis"><em>rounded outwards</em></span>. That is to say lower quantiles
144            (where the probability is less than 0.5) are rounded downward, and upper
145            quantiles (where the probability is greater than 0.5) are rounded upwards.
146            This behaviour ensures that if an X% quantile is requested, then <span class="emphasis"><em>at
147            least</em></span> the requested coverage will be present in the central
148            region, and <span class="emphasis"><em>no more than</em></span> the requested coverage
149            will be present in the tails.
150          </p>
151<p>
152            This behaviour can be changed so that the quantile functions are rounded
153            differently, or even return a real-valued result using <a class="link" href="../../pol_overview.html" title="Policy Overview">Policies</a>.
154            It is strongly recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
155            Quantiles of Discrete Distributions</a> before using the quantile
156            function on the Binomial distribution. The <a class="link" href="../../pol_ref/discrete_quant_ref.html" title="Discrete Quantile Policies">reference
157            docs</a> describe how to change the rounding policy for these distributions.
158          </p>
159</td></tr>
160</table></div>
161<h5>
162<a name="math_toolkit.dist_ref.dists.binomial_dist.h0"></a>
163          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.member_functions"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.member_functions">Member
164          Functions</a>
165        </h5>
166<h6>
167<a name="math_toolkit.dist_ref.dists.binomial_dist.h1"></a>
168          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.construct"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.construct">Construct</a>
169        </h6>
170<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">);</span>
171</pre>
172<p>
173          Constructor: <span class="emphasis"><em>n</em></span> is the total number of trials, <span class="emphasis"><em>p</em></span>
174          is the probability of success of a single trial.
175        </p>
176<p>
177          Requires <code class="computeroutput"><span class="number">0</span> <span class="special">&lt;=</span>
178          <span class="identifier">p</span> <span class="special">&lt;=</span>
179          <span class="number">1</span></code>, and <code class="computeroutput"><span class="identifier">n</span>
180          <span class="special">&gt;=</span> <span class="number">0</span></code>,
181          otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
182        </p>
183<h6>
184<a name="math_toolkit.dist_ref.dists.binomial_dist.h2"></a>
185          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.accessors"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.accessors">Accessors</a>
186        </h6>
187<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">success_fraction</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
188</pre>
189<p>
190          Returns the parameter <span class="emphasis"><em>p</em></span> from which this distribution
191          was constructed.
192        </p>
193<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
194</pre>
195<p>
196          Returns the parameter <span class="emphasis"><em>n</em></span> from which this distribution
197          was constructed.
198        </p>
199<h6>
200<a name="math_toolkit.dist_ref.dists.binomial_dist.h3"></a>
201          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.lower_bound_on_the_success_fract"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.lower_bound_on_the_success_fract">Lower
202          Bound on the Success Fraction</a>
203        </h6>
204<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
205   <span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
206   <span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
207   <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span>
208   <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
209</pre>
210<p>
211          Returns a lower bound on the success fraction:
212        </p>
213<div class="variablelist">
214<p class="title"><b></b></p>
215<dl class="variablelist">
216<dt><span class="term">trials</span></dt>
217<dd><p>
218                The total number of trials conducted.
219              </p></dd>
220<dt><span class="term">successes</span></dt>
221<dd><p>
222                The number of successes that occurred.
223              </p></dd>
224<dt><span class="term">alpha</span></dt>
225<dd><p>
226                The largest acceptable probability that the true value of the success
227                fraction is <span class="bold"><strong>less than</strong></span> the value
228                returned.
229              </p></dd>
230<dt><span class="term">method</span></dt>
231<dd><p>
232                An optional parameter that specifies the method to be used to compute
233                the interval (See below).
234              </p></dd>
235</dl>
236</div>
237<p>
238          For example, if you observe <span class="emphasis"><em>k</em></span> successes from <span class="emphasis"><em>n</em></span>
239          trials the best estimate for the success fraction is simply <span class="emphasis"><em>k/n</em></span>,
240          but if you want to be 95% sure that the true value is <span class="bold"><strong>greater
241          than</strong></span> some value, <span class="emphasis"><em>p<sub>min</sub></em></span>, then:
242        </p>
243<pre class="programlisting"><span class="identifier">p</span><sub>min</sub> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
244</pre>
245<p>
246          <a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
247          example.</a>
248        </p>
249<p>
250          There are currently two possible values available for the <span class="emphasis"><em>method</em></span>
251          optional parameter: <span class="emphasis"><em>clopper_pearson_exact_interval</em></span>
252          or <span class="emphasis"><em>jeffreys_prior_interval</em></span>. These constants are both
253          members of class template <code class="computeroutput"><span class="identifier">binomial_distribution</span></code>,
254          so usage is for example:
255        </p>
256<pre class="programlisting"><span class="identifier">p</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
257    <span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">,</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">jeffreys_prior_interval</span><span class="special">);</span>
258</pre>
259<p>
260          The default method if this parameter is not specified is the Clopper Pearson
261          "exact" interval. This produces an interval that guarantees at
262          least <code class="computeroutput"><span class="number">100</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">alpha</span><span class="special">)%</span></code> coverage, but which is known to be overly
263          conservative, sometimes producing intervals with much greater than the
264          requested coverage.
265        </p>
266<p>
267          The alternative calculation method produces a non-informative Jeffreys
268          Prior interval. It produces <code class="computeroutput"><span class="number">100</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">alpha</span><span class="special">)%</span></code>
269          coverage only <span class="emphasis"><em>in the average case</em></span>, though is typically
270          very close to the requested coverage level. It is one of the main methods
271          of calculation recommended in the review by Brown, Cai and DasGupta.
272        </p>
273<p>
274          Please note that the "textbook" calculation method using a normal
275          approximation (the Wald interval) is deliberately not provided: it is known
276          to produce consistently poor results, even when the sample size is surprisingly
277          large. Refer to Brown, Cai and DasGupta for a full explanation. Many other
278          methods of calculation are available, and may be more appropriate for specific
279          situations. Unfortunately there appears to be no consensus amongst statisticians
280          as to which is "best": refer to the discussion at the end of
281          Brown, Cai and DasGupta for examples.
282        </p>
283<p>
284          The two methods provided here were chosen principally because they can
285          be used for both one and two sided intervals. See also:
286        </p>
287<p>
288          Lawrence D. Brown, T. Tony Cai and Anirban DasGupta (2001), Interval Estimation
289          for a Binomial Proportion, Statistical Science, Vol. 16, No. 2, 101-133.
290        </p>
291<p>
292          T. Tony Cai (2005), One-sided confidence intervals in discrete distributions,
293          Journal of Statistical Planning and Inference 131, 63-88.
294        </p>
295<p>
296          Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact"
297          for interval estimation of binomial proportions. Amer. Statist. 52 119-126.
298        </p>
299<p>
300          Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial
301          limits illustrated in the case of the binomial. Biometrika 26 404-413.
302        </p>
303<h6>
304<a name="math_toolkit.dist_ref.dists.binomial_dist.h4"></a>
305          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.upper_bound_on_the_success_fract"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.upper_bound_on_the_success_fract">Upper
306          Bound on the Success Fraction</a>
307        </h6>
308<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
309   <span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
310   <span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
311   <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span>
312   <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
313</pre>
314<p>
315          Returns an upper bound on the success fraction:
316        </p>
317<div class="variablelist">
318<p class="title"><b></b></p>
319<dl class="variablelist">
320<dt><span class="term">trials</span></dt>
321<dd><p>
322                The total number of trials conducted.
323              </p></dd>
324<dt><span class="term">successes</span></dt>
325<dd><p>
326                The number of successes that occurred.
327              </p></dd>
328<dt><span class="term">alpha</span></dt>
329<dd><p>
330                The largest acceptable probability that the true value of the success
331                fraction is <span class="bold"><strong>greater than</strong></span> the value
332                returned.
333              </p></dd>
334<dt><span class="term">method</span></dt>
335<dd><p>
336                An optional parameter that specifies the method to be used to compute
337                the interval. Refer to the documentation for <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
338                above for the meaning of the method options.
339              </p></dd>
340</dl>
341</div>
342<p>
343          For example, if you observe <span class="emphasis"><em>k</em></span> successes from <span class="emphasis"><em>n</em></span>
344          trials the best estimate for the success fraction is simply <span class="emphasis"><em>k/n</em></span>,
345          but if you want to be 95% sure that the true value is <span class="bold"><strong>less
346          than</strong></span> some value, <span class="emphasis"><em>p<sub>max</sub></em></span>, then:
347        </p>
348<pre class="programlisting"><span class="identifier">p</span><sub>max</sub> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">find_upper_bound_on_p</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
349</pre>
350<p>
351          <a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
352          example.</a>
353        </p>
354<div class="note"><table border="0" summary="Note">
355<tr>
356<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
357<th align="left">Note</th>
358</tr>
359<tr><td align="left" valign="top">
360<p>
361            In order to obtain a two sided bound on the success fraction, you call
362            both <code class="computeroutput"><span class="identifier">find_lower_bound_on_p</span></code>
363            <span class="bold"><strong>and</strong></span> <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
364            each with the same arguments.
365          </p>
366<p>
367            If the desired risk level that the true success fraction lies outside
368            the bounds is α, then you pass α/2 to these functions.
369          </p>
370<p>
371            So for example a two sided 95% confidence interval would be obtained
372            by passing α = 0.025 to each of the functions.
373          </p>
374<p>
375            <a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
376            example.</a>
377          </p>
378</td></tr>
379</table></div>
380<h6>
381<a name="math_toolkit.dist_ref.dists.binomial_dist.h5"></a>
382          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.estimating_the_number_of_trials_"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.estimating_the_number_of_trials_">Estimating
383          the Number of Trials Required for a Certain Number of Successes</a>
384        </h6>
385<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_minimum_number_of_trials</span><span class="special">(</span>
386   <span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span>     <span class="comment">// number of events</span>
387   <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span>     <span class="comment">// success fraction</span>
388   <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// probability threshold</span>
389</pre>
390<p>
391          This function estimates the minimum number of trials required to ensure
392          that more than k events is observed with a level of risk <span class="emphasis"><em>alpha</em></span>
393          that k or fewer events occur.
394        </p>
395<div class="variablelist">
396<p class="title"><b></b></p>
397<dl class="variablelist">
398<dt><span class="term">k</span></dt>
399<dd><p>
400                The number of success observed.
401              </p></dd>
402<dt><span class="term">p</span></dt>
403<dd><p>
404                The probability of success for each trial.
405              </p></dd>
406<dt><span class="term">alpha</span></dt>
407<dd><p>
408                The maximum acceptable probability that k events or fewer will be
409                observed.
410              </p></dd>
411</dl>
412</div>
413<p>
414          For example:
415        </p>
416<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">find_number_of_trials</span><span class="special">(</span><span class="number">10</span><span class="special">,</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
417</pre>
418<p>
419          Returns the smallest number of trials we must conduct to be 95% sure of
420          seeing 10 events that occur with frequency one half.
421        </p>
422<h6>
423<a name="math_toolkit.dist_ref.dists.binomial_dist.h6"></a>
424          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.estimating_the_maximum_number_of"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.estimating_the_maximum_number_of">Estimating
425          the Maximum Number of Trials to Ensure no more than a Certain Number of
426          Successes</a>
427        </h6>
428<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span>
429   <span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span>     <span class="comment">// number of events</span>
430   <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span>     <span class="comment">// success fraction</span>
431   <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// probability threshold</span>
432</pre>
433<p>
434          This function estimates the maximum number of trials we can conduct to
435          ensure that k successes or fewer are observed, with a risk <span class="emphasis"><em>alpha</em></span>
436          that more than k occur.
437        </p>
438<div class="variablelist">
439<p class="title"><b></b></p>
440<dl class="variablelist">
441<dt><span class="term">k</span></dt>
442<dd><p>
443                The number of success observed.
444              </p></dd>
445<dt><span class="term">p</span></dt>
446<dd><p>
447                The probability of success for each trial.
448              </p></dd>
449<dt><span class="term">alpha</span></dt>
450<dd><p>
451                The maximum acceptable probability that more than k events will be
452                observed.
453              </p></dd>
454</dl>
455</div>
456<p>
457          For example:
458        </p>
459<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;::</span><span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="number">1e-6</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
460</pre>
461<p>
462          Returns the largest number of trials we can conduct and still be 95% certain
463          of not observing any events that occur with one in a million frequency.
464          This is typically used in failure analysis.
465        </p>
466<p>
467          <a class="link" href="../../stat_tut/weg/binom_eg/binom_size_eg.html" title="Estimating Sample Sizes for a Binomial Distribution.">See Worked
468          Example.</a>
469        </p>
470<h5>
471<a name="math_toolkit.dist_ref.dists.binomial_dist.h7"></a>
472          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.non_member_accessors"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.non_member_accessors">Non-member
473          Accessors</a>
474        </h5>
475<p>
476          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
477          functions</a> that are generic to all distributions are supported:
478          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
479          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
480          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
481          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
482          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
483          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
484          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
485          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
486        </p>
487<p>
488          The domain for the random variable <span class="emphasis"><em>k</em></span> is <code class="computeroutput"><span class="number">0</span> <span class="special">&lt;=</span> <span class="identifier">k</span> <span class="special">&lt;=</span> <span class="identifier">N</span></code>, otherwise a <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
489          is returned.
490        </p>
491<p>
492          It's worth taking a moment to define what these accessors actually mean
493          in the context of this distribution:
494        </p>
495<div class="table">
496<a name="math_toolkit.dist_ref.dists.binomial_dist.meaning_of_the_non_member_access"></a><p class="title"><b>Table 5.1. Meaning of the non-member accessors</b></p>
497<div class="table-contents"><table class="table" summary="Meaning of the non-member accessors">
498<colgroup>
499<col>
500<col>
501</colgroup>
502<thead><tr>
503<th>
504                  <p>
505                    Function
506                  </p>
507                </th>
508<th>
509                  <p>
510                    Meaning
511                  </p>
512                </th>
513</tr></thead>
514<tbody>
515<tr>
516<td>
517                  <p>
518                    <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density
519                    Function</a>
520                  </p>
521                </td>
522<td>
523                  <p>
524                    The probability of obtaining <span class="bold"><strong>exactly k
525                    successes</strong></span> from n trials with success fraction p. For
526                    example:
527                  </p>
528                  <p>
529                    <code class="computeroutput"><span class="identifier">pdf</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
530                    <span class="identifier">p</span><span class="special">),</span>
531                    <span class="identifier">k</span><span class="special">)</span></code>
532                  </p>
533                </td>
534</tr>
535<tr>
536<td>
537                  <p>
538                    <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution
539                    Function</a>
540                  </p>
541                </td>
542<td>
543                  <p>
544                    The probability of obtaining <span class="bold"><strong>k successes
545                    or fewer</strong></span> from n trials with success fraction p. For
546                    example:
547                  </p>
548                  <p>
549                    <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
550                    <span class="identifier">p</span><span class="special">),</span>
551                    <span class="identifier">k</span><span class="special">)</span></code>
552                  </p>
553                </td>
554</tr>
555<tr>
556<td>
557                  <p>
558                    <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement of
559                    the Cumulative Distribution Function</a>
560                  </p>
561                </td>
562<td>
563                  <p>
564                    The probability of obtaining <span class="bold"><strong>more than
565                    k successes</strong></span> from n trials with success fraction p.
566                    For example:
567                  </p>
568                  <p>
569                    <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
570                    <span class="identifier">p</span><span class="special">),</span>
571                    <span class="identifier">k</span><span class="special">))</span></code>
572                  </p>
573                </td>
574</tr>
575<tr>
576<td>
577                  <p>
578                    <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>
579                  </p>
580                </td>
581<td>
582                  <p>
583                    Given a binomial distribution with <span class="emphasis"><em>n</em></span> trials,
584                    success fraction <span class="emphasis"><em>p</em></span> and probability <span class="emphasis"><em>P</em></span>,
585                    finds the largest number of successes <span class="emphasis"><em>k</em></span>
586                    whose CDF is less than <span class="emphasis"><em>P</em></span>. It is strongly
587                    recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
588                    Quantiles of Discrete Distributions</a> before using the quantile
589                    function.
590                  </p>
591                </td>
592</tr>
593<tr>
594<td>
595                  <p>
596                    <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile_c">Quantile
597                    from the complement of the probability</a>
598                  </p>
599                </td>
600<td>
601                  <p>
602                    Given a binomial distribution with <span class="emphasis"><em>n</em></span> trials,
603                    success fraction <span class="emphasis"><em>p</em></span> and probability <span class="emphasis"><em>Q</em></span>,
604                    finds the smallest number of successes <span class="emphasis"><em>k</em></span>
605                    whose CDF is greater than <span class="emphasis"><em>1-Q</em></span>. It is strongly
606                    recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
607                    Quantiles of Discrete Distributions</a> before using the quantile
608                    function.
609                  </p>
610                </td>
611</tr>
612</tbody>
613</table></div>
614</div>
615<br class="table-break"><h5>
616<a name="math_toolkit.dist_ref.dists.binomial_dist.h8"></a>
617          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.examples"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.examples">Examples</a>
618        </h5>
619<p>
620          Various <a class="link" href="../../stat_tut/weg/binom_eg.html" title="Binomial Distribution Examples">worked examples</a>
621          are available illustrating the use of the binomial distribution.
622        </p>
623<h5>
624<a name="math_toolkit.dist_ref.dists.binomial_dist.h9"></a>
625          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.accuracy"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.accuracy">Accuracy</a>
626        </h5>
627<p>
628          This distribution is implemented using the incomplete beta functions <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a> and <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a>,
629          please refer to these functions for information on accuracy.
630        </p>
631<h5>
632<a name="math_toolkit.dist_ref.dists.binomial_dist.h10"></a>
633          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.implementation"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.implementation">Implementation</a>
634        </h5>
635<p>
636          In the following table <span class="emphasis"><em>p</em></span> is the probability that one
637          trial will be successful (the success fraction), <span class="emphasis"><em>n</em></span>
638          is the number of trials, <span class="emphasis"><em>k</em></span> is the number of successes,
639          <span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q = 1-p</em></span>.
640        </p>
641<div class="informaltable"><table class="table">
642<colgroup>
643<col>
644<col>
645</colgroup>
646<thead><tr>
647<th>
648                  <p>
649                    Function
650                  </p>
651                </th>
652<th>
653                  <p>
654                    Implementation Notes
655                  </p>
656                </th>
657</tr></thead>
658<tbody>
659<tr>
660<td>
661                  <p>
662                    pdf
663                  </p>
664                </td>
665<td>
666                  <p>
667                    Implementation is in terms of <a class="link" href="../../sf_beta/beta_derivative.html" title="Derivative of the Incomplete Beta Function">ibeta_derivative</a>:
668                    if <sub>n</sub>C<sub>k </sub> is the binomial coefficient of a and b, then we have:
669                  </p>
670                  <div class="blockquote"><blockquote class="blockquote"><p>
671                      <span class="inlinemediaobject"><img src="../../../../equations/binomial_ref1.svg"></span>
672
673                    </p></blockquote></div>
674                  <p>
675                    Which can be evaluated as <code class="computeroutput"><span class="identifier">ibeta_derivative</span><span class="special">(</span><span class="identifier">k</span><span class="special">+</span><span class="number">1</span><span class="special">,</span> <span class="identifier">n</span><span class="special">-</span><span class="identifier">k</span><span class="special">+</span><span class="number">1</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span>
676                    <span class="special">(</span><span class="identifier">n</span><span class="special">+</span><span class="number">1</span><span class="special">)</span></code>
677                  </p>
678                  <p>
679                    The function <a class="link" href="../../sf_beta/beta_derivative.html" title="Derivative of the Incomplete Beta Function">ibeta_derivative</a>
680                    is used here, since it has already been optimised for the lowest
681                    possible error - indeed this is really just a thin wrapper around
682                    part of the internals of the incomplete beta function.
683                  </p>
684                  <p>
685                    There are also various special cases: refer to the code for details.
686                  </p>
687                </td>
688</tr>
689<tr>
690<td>
691                  <p>
692                    cdf
693                  </p>
694                </td>
695<td>
696                  <p>
697                    Using the relation:
698                  </p>
699<pre xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" class="table-programlisting"><span class="identifier">p</span> <span class="special">=</span> <span class="identifier">I</span><span class="special">[</span><span class="identifier">sub</span> <span class="number">1</span><span class="special">-</span><span class="identifier">p</span><span class="special">](</span><span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span>
700  <span class="special">=</span> <span class="number">1</span> <span class="special">-</span> <span class="identifier">I</span><span class="special">[</span><span class="identifier">sub</span> <span class="identifier">p</span><span class="special">](</span><span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">)</span>
701  <span class="special">=</span> <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a><span class="special">(</span><span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span></pre>
702                  <p>
703                    There are also various special cases: refer to the code for details.
704                  </p>
705                </td>
706</tr>
707<tr>
708<td>
709                  <p>
710                    cdf complement
711                  </p>
712                </td>
713<td>
714                  <p>
715                    Using the relation: q = <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a>(k
716                    + 1, n - k, p)
717                  </p>
718                  <p>
719                    There are also various special cases: refer to the code for details.
720                  </p>
721                </td>
722</tr>
723<tr>
724<td>
725                  <p>
726                    quantile
727                  </p>
728                </td>
729<td>
730                  <p>
731                    Since the cdf is non-linear in variate <span class="emphasis"><em>k</em></span>
732                    none of the inverse incomplete beta functions can be used here.
733                    Instead the quantile is found numerically using a derivative
734                    free method (<a class="link" href="../../roots_noderiv/TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
735                    748 algorithm</a>).
736                  </p>
737                </td>
738</tr>
739<tr>
740<td>
741                  <p>
742                    quantile from the complement
743                  </p>
744                </td>
745<td>
746                  <p>
747                    Found numerically as above.
748                  </p>
749                </td>
750</tr>
751<tr>
752<td>
753                  <p>
754                    mean
755                  </p>
756                </td>
757<td>
758                  <p>
759                    <code class="computeroutput"><span class="identifier">p</span> <span class="special">*</span>
760                    <span class="identifier">n</span></code>
761                  </p>
762                </td>
763</tr>
764<tr>
765<td>
766                  <p>
767                    variance
768                  </p>
769                </td>
770<td>
771                  <p>
772                    <code class="computeroutput"><span class="identifier">p</span> <span class="special">*</span>
773                    <span class="identifier">n</span> <span class="special">*</span>
774                    <span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">p</span><span class="special">)</span></code>
775                  </p>
776                </td>
777</tr>
778<tr>
779<td>
780                  <p>
781                    mode
782                  </p>
783                </td>
784<td>
785                  <p>
786                    <code class="computeroutput"><span class="identifier">floor</span><span class="special">(</span><span class="identifier">p</span> <span class="special">*</span>
787                    <span class="special">(</span><span class="identifier">n</span>
788                    <span class="special">+</span> <span class="number">1</span><span class="special">))</span></code>
789                  </p>
790                </td>
791</tr>
792<tr>
793<td>
794                  <p>
795                    skewness
796                  </p>
797                </td>
798<td>
799                  <p>
800                    <code class="computeroutput"><span class="special">(</span><span class="number">1</span>
801                    <span class="special">-</span> <span class="number">2</span>
802                    <span class="special">*</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span>
803                    <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">n</span> <span class="special">*</span>
804                    <span class="identifier">p</span> <span class="special">*</span>
805                    <span class="special">(</span><span class="number">1</span>
806                    <span class="special">-</span> <span class="identifier">p</span><span class="special">))</span></code>
807                  </p>
808                </td>
809</tr>
810<tr>
811<td>
812                  <p>
813                    kurtosis
814                  </p>
815                </td>
816<td>
817                  <p>
818                    <code class="computeroutput"><span class="number">3</span> <span class="special">-</span>
819                    <span class="special">(</span><span class="number">6</span>
820                    <span class="special">/</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">+</span>
821                    <span class="special">(</span><span class="number">1</span>
822                    <span class="special">/</span> <span class="special">(</span><span class="identifier">n</span> <span class="special">*</span>
823                    <span class="identifier">p</span> <span class="special">*</span>
824                    <span class="special">(</span><span class="number">1</span>
825                    <span class="special">-</span> <span class="identifier">p</span><span class="special">)))</span></code>
826                  </p>
827                </td>
828</tr>
829<tr>
830<td>
831                  <p>
832                    kurtosis excess
833                  </p>
834                </td>
835<td>
836                  <p>
837                    <code class="computeroutput"><span class="special">(</span><span class="number">1</span>
838                    <span class="special">-</span> <span class="number">6</span>
839                    <span class="special">*</span> <span class="identifier">p</span>
840                    <span class="special">*</span> <span class="identifier">q</span><span class="special">)</span> <span class="special">/</span>
841                    <span class="special">(</span><span class="identifier">n</span>
842                    <span class="special">*</span> <span class="identifier">p</span>
843                    <span class="special">*</span> <span class="identifier">q</span><span class="special">)</span></code>
844                  </p>
845                </td>
846</tr>
847<tr>
848<td>
849                  <p>
850                    parameter estimation
851                  </p>
852                </td>
853<td>
854                  <p>
855                    The member functions <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
856                    <code class="computeroutput"><span class="identifier">find_lower_bound_on_p</span></code>
857                    and <code class="computeroutput"><span class="identifier">find_number_of_trials</span></code>
858                    are implemented in terms of the inverse incomplete beta functions
859                    <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibetac_inv</a>,
860                    <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibeta_inv</a>,
861                    and <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibetac_invb</a>
862                    respectively
863                  </p>
864                </td>
865</tr>
866</tbody>
867</table></div>
868<h5>
869<a name="math_toolkit.dist_ref.dists.binomial_dist.h11"></a>
870          <span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.references"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.references">References</a>
871        </h5>
872<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
873<li class="listitem">
874              <a href="http://mathworld.wolfram.com/BinomialDistribution.html" target="_top">Weisstein,
875              Eric W. "Binomial Distribution." From MathWorld--A Wolfram
876              Web Resource</a>.
877            </li>
878<li class="listitem">
879              <a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">Wikipedia
880              binomial distribution</a>.
881            </li>
882<li class="listitem">
883              <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm" target="_top">NIST
884              Exploratory Data Analysis</a>.
885            </li>
886</ul></div>
887</div>
888<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
889<td align="left"></td>
890<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
891      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
892      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
893      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
894      Daryle Walker and Xiaogang Zhang<p>
895        Distributed under the Boost Software License, Version 1.0. (See accompanying
896        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
897      </p>
898</div></td>
899</tr></table>
900<hr>
901<div class="spirit-nav">
902<a accesskey="p" href="beta_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cauchy_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
903</div>
904</body>
905</html>
906