• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2005.
2 //  Distributed under the Boost Software License, Version 1.0. (See accompanying
3 //  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
4 
5 #ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED
6 #define BOOST_MATH_COMPLEX_ACOS_INCLUDED
7 
8 #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
9 #  include <boost/math/complex/details.hpp>
10 #endif
11 #ifndef BOOST_MATH_LOG1P_INCLUDED
12 #  include <boost/math/special_functions/log1p.hpp>
13 #endif
14 #include <boost/assert.hpp>
15 
16 #ifdef BOOST_NO_STDC_NAMESPACE
17 namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
18 #endif
19 
20 namespace boost{ namespace math{
21 
22 template<class T>
acos(const std::complex<T> & z)23 std::complex<T> acos(const std::complex<T>& z)
24 {
25    //
26    // This implementation is a transcription of the pseudo-code in:
27    //
28    // "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling."
29    // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
30    // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
31    //
32 
33    //
34    // These static constants should really be in a maths constants library,
35    // note that we have tweaked a_crossover as per: https://svn.boost.org/trac/boost/ticket/7290
36    //
37    static const T one = static_cast<T>(1);
38    //static const T two = static_cast<T>(2);
39    static const T half = static_cast<T>(0.5L);
40    static const T a_crossover = static_cast<T>(10);
41    static const T b_crossover = static_cast<T>(0.6417L);
42    static const T s_pi = boost::math::constants::pi<T>();
43    static const T half_pi = s_pi / 2;
44    static const T log_two = boost::math::constants::ln_two<T>();
45    static const T quarter_pi = s_pi / 4;
46 
47 #ifdef BOOST_MSVC
48 #pragma warning(push)
49 #pragma warning(disable:4127)
50 #endif
51    //
52    // Get real and imaginary parts, discard the signs as we can
53    // figure out the sign of the result later:
54    //
55    T x = std::fabs(z.real());
56    T y = std::fabs(z.imag());
57 
58    T real, imag; // these hold our result
59 
60    //
61    // Handle special cases specified by the C99 standard,
62    // many of these special cases aren't really needed here,
63    // but doing it this way prevents overflow/underflow arithmetic
64    // in the main body of the logic, which may trip up some machines:
65    //
66    if((boost::math::isinf)(x))
67    {
68       if((boost::math::isinf)(y))
69       {
70          real = quarter_pi;
71          imag = std::numeric_limits<T>::infinity();
72       }
73       else if((boost::math::isnan)(y))
74       {
75          return std::complex<T>(y, -std::numeric_limits<T>::infinity());
76       }
77       else
78       {
79          // y is not infinity or nan:
80          real = 0;
81          imag = std::numeric_limits<T>::infinity();
82       }
83    }
84    else if((boost::math::isnan)(x))
85    {
86       if((boost::math::isinf)(y))
87          return std::complex<T>(x, ((boost::math::signbit)(z.imag())) ? std::numeric_limits<T>::infinity() :  -std::numeric_limits<T>::infinity());
88       return std::complex<T>(x, x);
89    }
90    else if((boost::math::isinf)(y))
91    {
92       real = half_pi;
93       imag = std::numeric_limits<T>::infinity();
94    }
95    else if((boost::math::isnan)(y))
96    {
97       return std::complex<T>((x == 0) ? half_pi : y, y);
98    }
99    else
100    {
101       //
102       // What follows is the regular Hull et al code,
103       // begin with the special case for real numbers:
104       //
105       if((y == 0) && (x <= one))
106          return std::complex<T>((x == 0) ? half_pi : std::acos(z.real()), (boost::math::changesign)(z.imag()));
107       //
108       // Figure out if our input is within the "safe area" identified by Hull et al.
109       // This would be more efficient with portable floating point exception handling;
110       // fortunately the quantities M and u identified by Hull et al (figure 3),
111       // match with the max and min methods of numeric_limits<T>.
112       //
113       T safe_max = detail::safe_max(static_cast<T>(8));
114       T safe_min = detail::safe_min(static_cast<T>(4));
115 
116       T xp1 = one + x;
117       T xm1 = x - one;
118 
119       if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
120       {
121          T yy = y * y;
122          T r = std::sqrt(xp1*xp1 + yy);
123          T s = std::sqrt(xm1*xm1 + yy);
124          T a = half * (r + s);
125          T b = x / a;
126 
127          if(b <= b_crossover)
128          {
129             real = std::acos(b);
130          }
131          else
132          {
133             T apx = a + x;
134             if(x <= one)
135             {
136                real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x);
137             }
138             else
139             {
140                real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x);
141             }
142          }
143 
144          if(a <= a_crossover)
145          {
146             T am1;
147             if(x < one)
148             {
149                am1 = half * (yy/(r + xp1) + yy/(s - xm1));
150             }
151             else
152             {
153                am1 = half * (yy/(r + xp1) + (s + xm1));
154             }
155             imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
156          }
157          else
158          {
159             imag = std::log(a + std::sqrt(a*a - one));
160          }
161       }
162       else
163       {
164          //
165          // This is the Hull et al exception handling code from Fig 6 of their paper:
166          //
167          if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
168          {
169             if(x < one)
170             {
171                real = std::acos(x);
172                imag = y / std::sqrt(xp1*(one-x));
173             }
174             else
175             {
176                // This deviates from Hull et al's paper as per https://svn.boost.org/trac/boost/ticket/7290
177                if(((std::numeric_limits<T>::max)() / xp1) > xm1)
178                {
179                   // xp1 * xm1 won't overflow:
180                   real = y / std::sqrt(xm1*xp1);
181                   imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
182                }
183                else
184                {
185                   real = y / x;
186                   imag = log_two + std::log(x);
187                }
188             }
189          }
190          else if(y <= safe_min)
191          {
192             // There is an assumption in Hull et al's analysis that
193             // if we get here then x == 1.  This is true for all "good"
194             // machines where :
195             //
196             // E^2 > 8*sqrt(u); with:
197             //
198             // E =  std::numeric_limits<T>::epsilon()
199             // u = (std::numeric_limits<T>::min)()
200             //
201             // Hull et al provide alternative code for "bad" machines
202             // but we have no way to test that here, so for now just assert
203             // on the assumption:
204             //
205             BOOST_ASSERT(x == 1);
206             real = std::sqrt(y);
207             imag = std::sqrt(y);
208          }
209          else if(std::numeric_limits<T>::epsilon() * y - one >= x)
210          {
211             real = half_pi;
212             imag = log_two + std::log(y);
213          }
214          else if(x > one)
215          {
216             real = std::atan(y/x);
217             T xoy = x/y;
218             imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
219          }
220          else
221          {
222             real = half_pi;
223             T a = std::sqrt(one + y*y);
224             imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
225          }
226       }
227    }
228 
229    //
230    // Finish off by working out the sign of the result:
231    //
232    if((boost::math::signbit)(z.real()))
233       real = s_pi - real;
234    if(!(boost::math::signbit)(z.imag()))
235       imag = (boost::math::changesign)(imag);
236 
237    return std::complex<T>(real, imag);
238 #ifdef BOOST_MSVC
239 #pragma warning(pop)
240 #endif
241 }
242 
243 } } // namespaces
244 
245 #endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
246