• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_SF_CBRT_HPP
7 #define BOOST_MATH_SF_CBRT_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/tools/rational.hpp>
14 #include <boost/math/policies/error_handling.hpp>
15 #include <boost/math/special_functions/math_fwd.hpp>
16 #include <boost/math/special_functions/fpclassify.hpp>
17 #include <boost/mpl/divides.hpp>
18 #include <boost/mpl/plus.hpp>
19 #include <boost/mpl/if.hpp>
20 #include <boost/type_traits/is_convertible.hpp>
21 
22 namespace boost{ namespace math{
23 
24 namespace detail
25 {
26 
27 struct big_int_type
28 {
29    operator boost::uintmax_t()const;
30 };
31 
32 template <class T>
33 struct largest_cbrt_int_type
34 {
35    typedef typename mpl::if_c<
36       boost::is_convertible<big_int_type, T>::value,
37       boost::uintmax_t,
38       unsigned int
39    >::type type;
40 };
41 
42 template <class T, class Policy>
cbrt_imp(T z,const Policy & pol)43 T cbrt_imp(T z, const Policy& pol)
44 {
45    BOOST_MATH_STD_USING
46    //
47    // cbrt approximation for z in the range [0.5,1]
48    // It's hard to say what number of terms gives the optimum
49    // trade off between precision and performance, this seems
50    // to be about the best for double precision.
51    //
52    // Maximum Deviation Found:                     1.231e-006
53    // Expected Error Term:                         -1.231e-006
54    // Maximum Relative Change in Control Points:   5.982e-004
55    //
56    static const T P[] = {
57       static_cast<T>(0.37568269008611818),
58       static_cast<T>(1.3304968705558024),
59       static_cast<T>(-1.4897101632445036),
60       static_cast<T>(1.2875573098219835),
61       static_cast<T>(-0.6398703759826468),
62       static_cast<T>(0.13584489959258635),
63    };
64    static const T correction[] = {
65       static_cast<T>(0.62996052494743658238360530363911),  // 2^-2/3
66       static_cast<T>(0.79370052598409973737585281963615),  // 2^-1/3
67       static_cast<T>(1),
68       static_cast<T>(1.2599210498948731647672106072782),   // 2^1/3
69       static_cast<T>(1.5874010519681994747517056392723),   // 2^2/3
70    };
71    if((boost::math::isinf)(z) || (z == 0))
72       return z;
73    if(!(boost::math::isfinite)(z))
74    {
75       return policies::raise_domain_error("boost::math::cbrt<%1%>(%1%)", "Argument to function must be finite but got %1%.", z, pol);
76    }
77 
78    int i_exp, sign(1);
79    if(z < 0)
80    {
81       z = -z;
82       sign = -sign;
83    }
84 
85    T guess = frexp(z, &i_exp);
86    int original_i_exp = i_exp; // save for later
87    guess = tools::evaluate_polynomial(P, guess);
88    int i_exp3 = i_exp / 3;
89 
90    typedef typename largest_cbrt_int_type<T>::type shift_type;
91 
92    BOOST_STATIC_ASSERT( ::std::numeric_limits<shift_type>::radix == 2);
93 
94    if(abs(i_exp3) < std::numeric_limits<shift_type>::digits)
95    {
96       if(i_exp3 > 0)
97          guess *= shift_type(1u) << i_exp3;
98       else
99          guess /= shift_type(1u) << -i_exp3;
100    }
101    else
102    {
103       guess = ldexp(guess, i_exp3);
104    }
105    i_exp %= 3;
106    guess *= correction[i_exp + 2];
107    //
108    // Now inline Halley iteration.
109    // We do this here rather than calling tools::halley_iterate since we can
110    // simplify the expressions algebraically, and don't need most of the error
111    // checking of the boilerplate version as we know in advance that the function
112    // is well behaved...
113    //
114    typedef typename policies::precision<T, Policy>::type prec;
115    typedef typename mpl::divides<prec, boost::integral_constant<int, 3> >::type prec3;
116    typedef typename mpl::plus<prec3, boost::integral_constant<int, 3> >::type new_prec;
117    typedef typename policies::normalise<Policy, policies::digits2<new_prec::value> >::type new_policy;
118    //
119    // Epsilon calculation uses compile time arithmetic when it's available for type T,
120    // otherwise uses ldexp to calculate at runtime:
121    //
122    T eps = (new_prec::value > 3) ? policies::get_epsilon<T, new_policy>() : ldexp(T(1), -2 - tools::digits<T>() / 3);
123    T diff;
124 
125    if(original_i_exp < std::numeric_limits<T>::max_exponent - 3)
126    {
127       //
128       // Safe from overflow, use the fast method:
129       //
130       do
131       {
132          T g3 = guess * guess * guess;
133          diff = (g3 + z + z) / (g3 + g3 + z);
134          guess *= diff;
135       }
136       while(fabs(1 - diff) > eps);
137    }
138    else
139    {
140       //
141       // Either we're ready to overflow, or we can't tell because numeric_limits isn't
142       // available for type T:
143       //
144       do
145       {
146          T g2 = guess * guess;
147          diff = (g2 - z / guess) / (2 * guess + z / g2);
148          guess -= diff;
149       }
150       while((guess * eps) < fabs(diff));
151    }
152 
153    return sign * guess;
154 }
155 
156 } // namespace detail
157 
158 template <class T, class Policy>
cbrt(T z,const Policy & pol)159 inline typename tools::promote_args<T>::type cbrt(T z, const Policy& pol)
160 {
161    typedef typename tools::promote_args<T>::type result_type;
162    typedef typename policies::evaluation<result_type, Policy>::type value_type;
163    return static_cast<result_type>(detail::cbrt_imp(value_type(z), pol));
164 }
165 
166 template <class T>
cbrt(T z)167 inline typename tools::promote_args<T>::type cbrt(T z)
168 {
169    return cbrt(z, policies::policy<>());
170 }
171 
172 } // namespace math
173 } // namespace boost
174 
175 #endif // BOOST_MATH_SF_CBRT_HPP
176 
177 
178 
179 
180