• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_J1_HPP
7 #define BOOST_MATH_BESSEL_J1_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/constants/constants.hpp>
14 #include <boost/math/tools/rational.hpp>
15 #include <boost/math/tools/big_constant.hpp>
16 #include <boost/assert.hpp>
17 
18 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
19 //
20 // This is the only way we can avoid
21 // warning: non-standard suffix on floating constant [-Wpedantic]
22 // when building with -Wall -pedantic.  Neither __extension__
23 // nor #pragma diagnostic ignored work :(
24 //
25 #pragma GCC system_header
26 #endif
27 
28 // Bessel function of the first kind of order one
29 // x <= 8, minimax rational approximations on root-bracketing intervals
30 // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
31 
32 namespace boost { namespace math{  namespace detail{
33 
34 template <typename T>
35 T bessel_j1(T x);
36 
37 template <class T>
38 struct bessel_j1_initializer
39 {
40    struct init
41    {
initboost::math::detail::bessel_j1_initializer::init42       init()
43       {
44          do_init();
45       }
do_initboost::math::detail::bessel_j1_initializer::init46       static void do_init()
47       {
48          bessel_j1(T(1));
49       }
force_instantiateboost::math::detail::bessel_j1_initializer::init50       void force_instantiate()const{}
51    };
52    static const init initializer;
force_instantiateboost::math::detail::bessel_j1_initializer53    static void force_instantiate()
54    {
55       initializer.force_instantiate();
56    }
57 };
58 
59 template <class T>
60 const typename bessel_j1_initializer<T>::init bessel_j1_initializer<T>::initializer;
61 
62 template <typename T>
bessel_j1(T x)63 T bessel_j1(T x)
64 {
65     bessel_j1_initializer<T>::force_instantiate();
66 
67     static const T P1[] = {
68          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)),
69          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)),
70          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)),
71          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)),
72          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)),
73          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)),
74          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02))
75     };
76     static const T Q1[] = {
77          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)),
78          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)),
79          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)),
80          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)),
81          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)),
82          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
83          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
84     };
85     static const T P2[] = {
86          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)),
87          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)),
88          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)),
89          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)),
90          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)),
91          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)),
92          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)),
93          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00))
94     };
95     static const T Q2[] = {
96          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)),
97          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)),
98          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)),
99          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)),
100          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)),
101          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)),
102          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)),
103          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
104     };
105     static const T PC[] = {
106         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
107         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
108         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
109         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
110         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
111         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
112         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
113     };
114     static const T QC[] = {
115         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
116         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
117         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
118         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
119         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
120         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
121         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
122     };
123     static const T PS[] = {
124          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
125          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
126          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
127          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
128          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
129          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
130          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
131     };
132     static const T QS[] = {
133          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
134          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
135          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
136          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
137          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
138          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
139          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
140     };
141     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)),
142                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)),
143                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)),
144                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)),
145                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)),
146                    x22 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05));
147 
148     T value, factor, r, rc, rs, w;
149 
150     BOOST_MATH_STD_USING
151     using namespace boost::math::tools;
152     using namespace boost::math::constants;
153 
154     w = abs(x);
155     if (x == 0)
156     {
157         return static_cast<T>(0);
158     }
159     if (w <= 4)                       // w in (0, 4]
160     {
161         T y = x * x;
162         BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
163         r = evaluate_rational(P1, Q1, y);
164         factor = w * (w + x1) * ((w - x11/256) - x12);
165         value = factor * r;
166     }
167     else if (w <= 8)                  // w in (4, 8]
168     {
169         T y = x * x;
170         BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
171         r = evaluate_rational(P2, Q2, y);
172         factor = w * (w + x2) * ((w - x21/256) - x22);
173         value = factor * r;
174     }
175     else                                // w in (8, \infty)
176     {
177         T y = 8 / w;
178         T y2 = y * y;
179         BOOST_ASSERT(sizeof(PC) == sizeof(QC));
180         BOOST_ASSERT(sizeof(PS) == sizeof(QS));
181         rc = evaluate_rational(PC, QC, y2);
182         rs = evaluate_rational(PS, QS, y2);
183         factor = 1 / (sqrt(w) * constants::root_pi<T>());
184         //
185         // What follows is really just:
186         //
187         // T z = w - 0.75f * pi<T>();
188         // value = factor * (rc * cos(z) - y * rs * sin(z));
189         //
190         // but using the sin/cos addition rules plus constants
191         // for the values of sin/cos of 3PI/4 which then cancel
192         // out with corresponding terms in "factor".
193         //
194         T sx = sin(x);
195         T cx = cos(x);
196         value = factor * (rc * (sx - cx) + y * rs * (sx + cx));
197     }
198 
199     if (x < 0)
200     {
201         value *= -1;                 // odd function
202     }
203     return value;
204 }
205 
206 }}} // namespaces
207 
208 #endif // BOOST_MATH_BESSEL_J1_HPP
209 
210