• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2002 The Trustees of Indiana University.
2 
3 // Use, modification and distribution is subject to the Boost Software
4 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6 
7 //  Boost.MultiArray Library
8 //  Authors: Ronald Garcia
9 //           Jeremy Siek
10 //           Andrew Lumsdaine
11 //  See http://www.boost.org/libs/multi_array for documentation.
12 
13 #ifndef BOOST_MULTI_ARRAY_BASE_HPP
14 #define BOOST_MULTI_ARRAY_BASE_HPP
15 
16 //
17 // base.hpp - some implementation base classes for from which
18 // functionality is acquired
19 //
20 
21 #include "boost/multi_array/extent_range.hpp"
22 #include "boost/multi_array/extent_gen.hpp"
23 #include "boost/multi_array/index_range.hpp"
24 #include "boost/multi_array/index_gen.hpp"
25 #include "boost/multi_array/storage_order.hpp"
26 #include "boost/multi_array/types.hpp"
27 #include "boost/config.hpp"
28 #include "boost/multi_array/concept_checks.hpp" //for ignore_unused_...
29 #include "boost/mpl/eval_if.hpp"
30 #include "boost/mpl/if.hpp"
31 #include "boost/mpl/size_t.hpp"
32 #include "boost/iterator/reverse_iterator.hpp"
33 #include "boost/static_assert.hpp"
34 #include "boost/type.hpp"
35 #include "boost/assert.hpp"
36 #include <cstddef>
37 #include <memory>
38 
39 namespace boost {
40 
41 /////////////////////////////////////////////////////////////////////////
42 // class declarations
43 /////////////////////////////////////////////////////////////////////////
44 
45 template<typename T, std::size_t NumDims,
46   typename Allocator = std::allocator<T> >
47 class multi_array;
48 
49 // This is a public interface for use by end users!
50 namespace multi_array_types {
51   typedef boost::detail::multi_array::size_type size_type;
52   typedef std::ptrdiff_t difference_type;
53   typedef boost::detail::multi_array::index index;
54   typedef detail::multi_array::index_range<index,size_type> index_range;
55   typedef detail::multi_array::extent_range<index,size_type> extent_range;
56   typedef detail::multi_array::index_gen<0,0> index_gen;
57   typedef detail::multi_array::extent_gen<0> extent_gen;
58 }
59 
60 
61 // boost::extents and boost::indices are now a part of the public
62 // interface.  That way users don't necessarily have to create their
63 // own objects.  On the other hand, one may not want the overhead of
64 // object creation in small-memory environments.  Thus, the objects
65 // can be left undefined by defining BOOST_MULTI_ARRAY_NO_GENERATORS
66 // before loading multi_array.hpp.
67 #ifndef BOOST_MULTI_ARRAY_NO_GENERATORS
68 namespace {
69   multi_array_types::extent_gen extents;
70   multi_array_types::index_gen indices;
71 }
72 #endif // BOOST_MULTI_ARRAY_NO_GENERATORS
73 
74 namespace detail {
75 namespace multi_array {
76 
77 template <typename T, std::size_t NumDims>
78 class sub_array;
79 
80 template <typename T, std::size_t NumDims, typename TPtr = const T*>
81 class const_sub_array;
82 
83   template <typename T, typename TPtr, typename NumDims, typename Reference,
84             typename IteratorCategory>
85 class array_iterator;
86 
87 template <typename T, std::size_t NumDims, typename TPtr = const T*>
88 class const_multi_array_view;
89 
90 template <typename T, std::size_t NumDims>
91 class multi_array_view;
92 
93 /////////////////////////////////////////////////////////////////////////
94 // class interfaces
95 /////////////////////////////////////////////////////////////////////////
96 
97 class multi_array_base {
98 public:
99   typedef multi_array_types::size_type size_type;
100   typedef multi_array_types::difference_type difference_type;
101   typedef multi_array_types::index index;
102   typedef multi_array_types::index_range index_range;
103   typedef multi_array_types::extent_range extent_range;
104   typedef multi_array_types::index_gen index_gen;
105   typedef multi_array_types::extent_gen extent_gen;
106 };
107 
108 //
109 // value_accessor_n
110 //  contains the routines for accessing elements from
111 //  N-dimensional views.
112 //
113 template<typename T, std::size_t NumDims>
114 class value_accessor_n : public multi_array_base {
115   typedef multi_array_base super_type;
116 public:
117   typedef typename super_type::index index;
118 
119   //
120   // public typedefs used by classes that inherit from this base
121   //
122   typedef T element;
123   typedef boost::multi_array<T,NumDims-1> value_type;
124   typedef sub_array<T,NumDims-1> reference;
125   typedef const_sub_array<T,NumDims-1> const_reference;
126 
127 protected:
128   // used by array operator[] and iterators to get reference types.
129   template <typename Reference, typename TPtr>
access(boost::type<Reference>,index idx,TPtr base,const size_type * extents,const index * strides,const index * index_bases) const130   Reference access(boost::type<Reference>,index idx,TPtr base,
131                    const size_type* extents,
132                    const index* strides,
133                    const index* index_bases) const {
134 
135     BOOST_ASSERT(idx - index_bases[0] >= 0);
136     BOOST_ASSERT(size_type(idx - index_bases[0]) < extents[0]);
137     // return a sub_array<T,NDims-1> proxy object
138     TPtr newbase = base + idx * strides[0];
139     return Reference(newbase,extents+1,strides+1,index_bases+1);
140 
141   }
142 
value_accessor_n()143   value_accessor_n() { }
~value_accessor_n()144   ~value_accessor_n() { }
145 };
146 
147 
148 
149 //
150 // value_accessor_one
151 //  contains the routines for accessing reference elements from
152 //  1-dimensional views.
153 //
154 template<typename T>
155 class value_accessor_one : public multi_array_base {
156   typedef multi_array_base super_type;
157 public:
158   typedef typename super_type::index index;
159   //
160   // public typedefs for use by classes that inherit it.
161   //
162   typedef T element;
163   typedef T value_type;
164   typedef T& reference;
165   typedef T const& const_reference;
166 
167 protected:
168   // used by array operator[] and iterators to get reference types.
169   template <typename Reference, typename TPtr>
access(boost::type<Reference>,index idx,TPtr base,const size_type * extents,const index * strides,const index * index_bases) const170   Reference access(boost::type<Reference>,index idx,TPtr base,
171                    const size_type* extents,
172                    const index* strides,
173                    const index* index_bases) const {
174 
175     ignore_unused_variable_warning(index_bases);
176     ignore_unused_variable_warning(extents);
177     BOOST_ASSERT(idx - index_bases[0] >= 0);
178     BOOST_ASSERT(size_type(idx - index_bases[0]) < extents[0]);
179     return *(base + idx * strides[0]);
180   }
181 
value_accessor_one()182   value_accessor_one() { }
~value_accessor_one()183   ~value_accessor_one() { }
184 };
185 
186 
187 /////////////////////////////////////////////////////////////////////////
188 // choose value accessor begins
189 //
190 
191 template <typename T, std::size_t NumDims>
192 struct choose_value_accessor_n {
193   typedef value_accessor_n<T,NumDims> type;
194 };
195 
196 template <typename T>
197 struct choose_value_accessor_one {
198   typedef value_accessor_one<T> type;
199 };
200 
201 template <typename T, typename NumDims>
202 struct value_accessor_generator {
203     BOOST_STATIC_CONSTANT(std::size_t, dimensionality = NumDims::value);
204 
205   typedef typename
206   mpl::eval_if_c<(dimensionality == 1),
207                   choose_value_accessor_one<T>,
208                   choose_value_accessor_n<T,dimensionality>
209   >::type type;
210 };
211 
212 template <class T, class NumDims>
213 struct associated_types
214   : value_accessor_generator<T,NumDims>::type
215 {};
216 
217 //
218 // choose value accessor ends
219 /////////////////////////////////////////////////////////////////////////
220 
221 // Due to some imprecision in the C++ Standard,
222 // MSVC 2010 is broken in debug mode: it requires
223 // that an Output Iterator have output_iterator_tag in its iterator_category if
224 // that iterator is not bidirectional_iterator or random_access_iterator.
225 #if BOOST_WORKAROUND(BOOST_MSVC, >= 1600)
226 struct mutable_iterator_tag
227  : boost::random_access_traversal_tag, std::input_iterator_tag
228 {
operator std::output_iterator_tagboost::detail::multi_array::mutable_iterator_tag229   operator std::output_iterator_tag() const {
230     return std::output_iterator_tag();
231   }
232 };
233 #endif
234 
235 ////////////////////////////////////////////////////////////////////////
236 // multi_array_base
237 ////////////////////////////////////////////////////////////////////////
238 template <typename T, std::size_t NumDims>
239 class multi_array_impl_base
240   :
241       public value_accessor_generator<T,mpl::size_t<NumDims> >::type
242 {
243   typedef associated_types<T,mpl::size_t<NumDims> > types;
244 public:
245   typedef typename types::index index;
246   typedef typename types::size_type size_type;
247   typedef typename types::element element;
248   typedef typename types::index_range index_range;
249   typedef typename types::value_type value_type;
250   typedef typename types::reference reference;
251   typedef typename types::const_reference const_reference;
252 
253   template <std::size_t NDims>
254   struct subarray {
255     typedef boost::detail::multi_array::sub_array<T,NDims> type;
256   };
257 
258   template <std::size_t NDims>
259   struct const_subarray {
260     typedef boost::detail::multi_array::const_sub_array<T,NDims> type;
261   };
262 
263   template <std::size_t NDims>
264   struct array_view {
265     typedef boost::detail::multi_array::multi_array_view<T,NDims> type;
266   };
267 
268   template <std::size_t NDims>
269   struct const_array_view {
270   public:
271     typedef boost::detail::multi_array::const_multi_array_view<T,NDims> type;
272   };
273 
274   //
275   // iterator support
276   //
277 #if BOOST_WORKAROUND(BOOST_MSVC, >= 1600)
278   // Deal with VC 2010 output_iterator_tag requirement
279   typedef array_iterator<T,T*,mpl::size_t<NumDims>,reference,
280                          mutable_iterator_tag> iterator;
281 #else
282   typedef array_iterator<T,T*,mpl::size_t<NumDims>,reference,
283                          boost::random_access_traversal_tag> iterator;
284 #endif
285   typedef array_iterator<T,T const*,mpl::size_t<NumDims>,const_reference,
286                          boost::random_access_traversal_tag> const_iterator;
287 
288   typedef ::boost::reverse_iterator<iterator> reverse_iterator;
289   typedef ::boost::reverse_iterator<const_iterator> const_reverse_iterator;
290 
291   BOOST_STATIC_CONSTANT(std::size_t, dimensionality = NumDims);
292 protected:
293 
multi_array_impl_base()294   multi_array_impl_base() { }
~multi_array_impl_base()295   ~multi_array_impl_base() { }
296 
297   // Used by operator() in our array classes
298   template <typename Reference, typename IndexList, typename TPtr>
access_element(boost::type<Reference>,const IndexList & indices,TPtr base,const size_type * extents,const index * strides,const index * index_bases) const299   Reference access_element(boost::type<Reference>,
300                            const IndexList& indices,
301                            TPtr base,
302                            const size_type* extents,
303                            const index* strides,
304                            const index* index_bases) const {
305     boost::function_requires<
306       CollectionConcept<IndexList> >();
307     ignore_unused_variable_warning(index_bases);
308     ignore_unused_variable_warning(extents);
309 #if !defined(NDEBUG) && !defined(BOOST_DISABLE_ASSERTS)
310     for (size_type i = 0; i != NumDims; ++i) {
311       BOOST_ASSERT(indices[i] - index_bases[i] >= 0);
312       BOOST_ASSERT(size_type(indices[i] - index_bases[i]) < extents[i]);
313     }
314 #endif
315 
316     index offset = 0;
317     {
318       typename IndexList::const_iterator i = indices.begin();
319       size_type n = 0;
320       while (n != NumDims) {
321         offset += (*i) * strides[n];
322         ++n;
323         ++i;
324       }
325     }
326     return base[offset];
327   }
328 
329   template <typename StrideList, typename ExtentList>
compute_strides(StrideList & stride_list,ExtentList & extent_list,const general_storage_order<NumDims> & storage)330   void compute_strides(StrideList& stride_list, ExtentList& extent_list,
331                        const general_storage_order<NumDims>& storage)
332   {
333     // invariant: stride = the stride for dimension n
334     index stride = 1;
335     for (size_type n = 0; n != NumDims; ++n) {
336       index stride_sign = +1;
337 
338       if (!storage.ascending(storage.ordering(n)))
339         stride_sign = -1;
340 
341       // The stride for this dimension is the product of the
342       // lengths of the ranks minor to it.
343       stride_list[storage.ordering(n)] = stride * stride_sign;
344 
345       stride *= extent_list[storage.ordering(n)];
346     }
347   }
348 
349   // This calculates the offset to the array base pointer due to:
350   // 1. dimensions stored in descending order
351   // 2. non-zero dimension index bases
352   template <typename StrideList, typename ExtentList, typename BaseList>
353   index
calculate_origin_offset(const StrideList & stride_list,const ExtentList & extent_list,const general_storage_order<NumDims> & storage,const BaseList & index_base_list)354   calculate_origin_offset(const StrideList& stride_list,
355                           const ExtentList& extent_list,
356                           const general_storage_order<NumDims>& storage,
357                           const BaseList& index_base_list)
358   {
359     return
360       calculate_descending_dimension_offset(stride_list,extent_list,
361                                             storage) +
362       calculate_indexing_offset(stride_list,index_base_list);
363   }
364 
365   // This calculates the offset added to the base pointer that are
366   // caused by descending dimensions
367   template <typename StrideList, typename ExtentList>
368   index
calculate_descending_dimension_offset(const StrideList & stride_list,const ExtentList & extent_list,const general_storage_order<NumDims> & storage)369   calculate_descending_dimension_offset(const StrideList& stride_list,
370                                 const ExtentList& extent_list,
371                                 const general_storage_order<NumDims>& storage)
372   {
373     index offset = 0;
374     if (!storage.all_dims_ascending())
375       for (size_type n = 0; n != NumDims; ++n)
376         if (!storage.ascending(n))
377           offset -= (extent_list[n] - 1) * stride_list[n];
378 
379     return offset;
380   }
381 
382   // This is used to reindex array_views, which are no longer
383   // concerned about storage order (specifically, whether dimensions
384   // are ascending or descending) since the viewed array handled it.
385 
386   template <typename StrideList, typename BaseList>
387   index
calculate_indexing_offset(const StrideList & stride_list,const BaseList & index_base_list)388   calculate_indexing_offset(const StrideList& stride_list,
389                           const BaseList& index_base_list)
390   {
391     index offset = 0;
392     for (size_type n = 0; n != NumDims; ++n)
393         offset -= stride_list[n] * index_base_list[n];
394     return offset;
395   }
396 
397   // Slicing using an index_gen.
398   // Note that populating an index_gen creates a type that encodes
399   // both the number of dimensions in the current Array (NumDims), and
400   // the Number of dimensions for the resulting view.  This allows the
401   // compiler to fail if the dimensions aren't completely accounted
402   // for.  For reasons unbeknownst to me, a BOOST_STATIC_ASSERT
403   // within the member function template does not work. I should add a
404   // note to the documentation specifying that you get a damn ugly
405   // error message if you screw up in your slicing code.
406   template <typename ArrayRef, int NDims, typename TPtr>
407   ArrayRef
generate_array_view(boost::type<ArrayRef>,const boost::detail::multi_array::index_gen<NumDims,NDims> & indices,const size_type * extents,const index * strides,const index * index_bases,TPtr base) const408   generate_array_view(boost::type<ArrayRef>,
409                       const boost::detail::multi_array::
410                       index_gen<NumDims,NDims>& indices,
411                       const size_type* extents,
412                       const index* strides,
413                       const index* index_bases,
414                       TPtr base) const {
415 
416     boost::array<index,NDims> new_strides;
417     boost::array<index,NDims> new_extents;
418 
419     index offset = 0;
420     size_type dim = 0;
421     for (size_type n = 0; n != NumDims; ++n) {
422 
423       // Use array specs and input specs to produce real specs.
424       const index default_start = index_bases[n];
425       const index default_finish = default_start+extents[n];
426       const index_range& current_range = indices.ranges_[n];
427       index start = current_range.get_start(default_start);
428       index finish = current_range.get_finish(default_finish);
429       index stride = current_range.stride();
430       BOOST_ASSERT(stride != 0);
431 
432       // An index range indicates a half-open strided interval
433       // [start,finish) (with stride) which faces upward when stride
434       // is positive and downward when stride is negative,
435 
436       // RG: The following code for calculating length suffers from
437       // some representation issues: if finish-start cannot be represented as
438       // by type index, then overflow may result.
439 
440       index len;
441       if ((finish - start) / stride < 0) {
442         // [start,finish) is empty according to the direction imposed by
443         // the stride.
444         len = 0;
445       } else {
446         // integral trick for ceiling((finish-start) / stride)
447         // taking into account signs.
448         index shrinkage = stride > 0 ? 1 : -1;
449         len = (finish - start + (stride - shrinkage)) / stride;
450       }
451 
452       // start marks the closed side of the range, so it must lie
453       // exactly in the set of legal indices
454       // with a special case for empty arrays
455       BOOST_ASSERT(index_bases[n] <= start &&
456                    ((start <= index_bases[n]+index(extents[n])) ||
457                      (start == index_bases[n] && extents[n] == 0)));
458 
459 #ifndef BOOST_DISABLE_ASSERTS
460       // finish marks the open side of the range, so it can go one past
461       // the "far side" of the range (the top if stride is positive, the bottom
462       // if stride is negative).
463       index bound_adjustment = stride < 0 ? 1 : 0;
464       BOOST_ASSERT(((index_bases[n] - bound_adjustment) <= finish) &&
465         (finish <= (index_bases[n] + index(extents[n]) - bound_adjustment)));
466       ignore_unused_variable_warning(bound_adjustment);
467 #endif // BOOST_DISABLE_ASSERTS
468 
469 
470       // the array data pointer is modified to account for non-zero
471       // bases during slicing (see [Garcia] for the math involved)
472       offset += start * strides[n];
473 
474       if (!current_range.is_degenerate()) {
475 
476         // The stride for each dimension is included into the
477         // strides for the array_view (see [Garcia] for the math involved).
478         new_strides[dim] = stride * strides[n];
479 
480         // calculate new extents
481         new_extents[dim] = len;
482         ++dim;
483       }
484     }
485     BOOST_ASSERT(dim == NDims);
486 
487     return
488       ArrayRef(base+offset,
489                new_extents,
490                new_strides);
491   }
492 
493 
494 };
495 
496 } // namespace multi_array
497 } // namespace detail
498 
499 } // namespace boost
500 
501 #endif
502