• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Bracket and Solve Root</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../roots_noderiv.html" title="Root Finding Without Derivatives">
9<link rel="prev" href="bisect.html" title="Bisection">
10<link rel="next" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="bisect.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="TOMS748.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.roots_noderiv.bracket_solve"></a><a class="link" href="bracket_solve.html" title="Bracket and Solve Root">Bracket and
28      Solve Root</a>
29</h3></div></div></div>
30<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Tol</span><span class="special">&gt;</span>
31<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
32   <span class="identifier">bracket_and_solve_root</span><span class="special">(</span>
33      <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span>
34      <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">guess</span><span class="special">,</span>
35      <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">factor</span><span class="special">,</span>
36      <span class="keyword">bool</span> <span class="identifier">rising</span><span class="special">,</span>
37      <span class="identifier">Tol</span> <span class="identifier">tol</span><span class="special">,</span>
38      <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_iter</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Tol</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
42   <span class="identifier">bracket_and_solve_root</span><span class="special">(</span>
43      <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span>
44      <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">guess</span><span class="special">,</span>
45      <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">factor</span><span class="special">,</span>
46      <span class="keyword">bool</span> <span class="identifier">rising</span><span class="special">,</span>
47      <span class="identifier">Tol</span> <span class="identifier">tol</span><span class="special">,</span>
48      <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_iter</span><span class="special">,</span>
49      <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
50</pre>
51<p>
52        <code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code> is
53        a convenience function that calls <a class="link" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
54        748 algorithm</a> internally to find the root of <span class="emphasis"><em>f(x)</em></span>.
55        It is generally much easier to use this function rather than <a class="link" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
56        748 algorithm</a>, since it does the hard work of bracketing the root
57        for you. It's bracketing routines are quite robust and will usually be more
58        foolproof than home-grown routines, unless the function can be analysed to
59        yield tight brackets.
60      </p>
61<p>
62        Note that this routine can only be used when:
63      </p>
64<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
65<li class="listitem">
66            <span class="emphasis"><em>f(x)</em></span> is monotonic in the half of the real axis containing
67            <span class="emphasis"><em>guess</em></span>.
68          </li>
69<li class="listitem">
70            The value of the initial guess must have the same sign as the root: the
71            function will <span class="emphasis"><em>never cross the origin</em></span> when searching
72            for the root.
73          </li>
74<li class="listitem">
75            The location of the root should be known at least approximately, if the
76            location of the root differs by many orders of magnitude from <span class="emphasis"><em>guess</em></span>
77            then many iterations will be needed to bracket the root in spite of the
78            special heuristics used to guard against this very situation. A typical
79            example would be setting the initial guess to 0.1, when the root is at
80            1e-300.
81          </li>
82</ul></div>
83<p>
84        The <code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code>
85        parameters are:
86      </p>
87<div class="variablelist">
88<p class="title"><b></b></p>
89<dl class="variablelist">
90<dt><span class="term">f</span></dt>
91<dd><p>
92              A unary functor (or C++ lambda) that is the function whose root is
93              to be solved. <span class="emphasis"><em>f(x)</em></span> must be uniformly increasing
94              or decreasing on <span class="emphasis"><em>x</em></span>.
95            </p></dd>
96<dt><span class="term">guess</span></dt>
97<dd><p>
98              An initial approximation to the root.
99            </p></dd>
100<dt><span class="term">factor</span></dt>
101<dd><p>
102              A scaling factor that is used to bracket the root: the value <span class="emphasis"><em>guess</em></span>
103              is multiplied (or divided as appropriate) by <span class="emphasis"><em>factor</em></span>
104              until two values are found that bracket the root. A value such as 2
105              is a typical choice for <span class="emphasis"><em>factor</em></span>. In addition <span class="emphasis"><em>factor</em></span>
106              will be multiplied by 2 every 32 iterations: this is to guard against
107              a really very bad initial guess, typically these occur when it's known
108              the result is very large or small, but not the exact order of magnitude.
109            </p></dd>
110<dt><span class="term">rising</span></dt>
111<dd><p>
112              Set to <span class="emphasis"><em>true</em></span> if <span class="emphasis"><em>f(x)</em></span> is rising
113              on <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>false</em></span> if <span class="emphasis"><em>f(x)</em></span>
114              is falling on <span class="emphasis"><em>x</em></span>. This value is used along with
115              the result of <span class="emphasis"><em>f(guess)</em></span> to determine if <span class="emphasis"><em>guess</em></span>
116              is above or below the root.
117            </p></dd>
118<dt><span class="term">tol</span></dt>
119<dd><p>
120              A binary functor (or C++ lambda) that determines the termination condition
121              for the search for the root. <span class="emphasis"><em>tol</em></span> is passed the
122              current brackets at each step, when it returns true then the current
123              brackets are returned as the pair result. See also <a class="link" href="root_termination.html" title="Termination Condition Functors">predefined
124              termination functors</a>.
125            </p></dd>
126<dt><span class="term">max_iter</span></dt>
127<dd><p>
128              The maximum number of function invocations to perform in the search
129              for the root. On exit is set to the actual number of invocations performed.
130            </p></dd>
131</dl>
132</div>
133<p>
134        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
135        be used to control the behaviour of the function: how it handles errors,
136        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
137        documentation for more details</a>.
138      </p>
139<p>
140        <span class="bold"><strong>Returns</strong></span>: a pair of values <span class="emphasis"><em>r</em></span>
141        that bracket the root so that:
142      </p>
143<div class="blockquote"><blockquote class="blockquote"><p>
144          f(r.first) * f(r.second) &lt;= 0
145        </p></blockquote></div>
146<p>
147        and either
148      </p>
149<div class="blockquote"><blockquote class="blockquote"><p>
150          tol(r.first, r.second) == true
151        </p></blockquote></div>
152<p>
153        or
154      </p>
155<div class="blockquote"><blockquote class="blockquote"><p>
156          max_iter &gt;= m
157        </p></blockquote></div>
158<p>
159        where <span class="emphasis"><em>m</em></span> is the initial value of <span class="emphasis"><em>max_iter</em></span>
160        passed to the function.
161      </p>
162<p>
163        In other words, it's up to the caller to verify whether termination occurred
164        as a result of exceeding <span class="emphasis"><em>max_iter</em></span> function invocations
165        (easily done by checking the value of <span class="emphasis"><em>max_iter</em></span> when
166        the function returns), rather than because the termination condition <span class="emphasis"><em>tol</em></span>
167        was satisfied.
168      </p>
169</div>
170<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
171<td align="left"></td>
172<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
173      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
174      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
175      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
176      Daryle Walker and Xiaogang Zhang<p>
177        Distributed under the Boost Software License, Version 1.0. (See accompanying
178        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
179      </p>
180</div></td>
181</tr></table>
182<hr>
183<div class="spirit-nav">
184<a accesskey="p" href="bisect.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="TOMS748.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
185</div>
186</body>
187</html>
188