• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)e_pow.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
15 #endif
16 
17 /* __ieee754_pow(x,y) return x**y
18  *
19  *		      n
20  * Method:  Let x =  2   * (1+f)
21  *	1. Compute and return log2(x) in two pieces:
22  *		log2(x) = w1 + w2,
23  *	   where w1 has 53-24 = 29 bit trailing zeros.
24  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
25  *	   arithmetic, where |y'|<=0.5.
26  *	3. Return x**y = 2**n*exp(y'*log2)
27  *
28  * Special cases:
29  *	1.  (anything) ** 0  is 1
30  *	2.  (anything) ** 1  is itself
31  *	3.  (anything) ** NAN is NAN
32  *	4.  NAN ** (anything except 0) is NAN
33  *	5.  +-(|x| > 1) **  +INF is +INF
34  *	6.  +-(|x| > 1) **  -INF is +0
35  *	7.  +-(|x| < 1) **  +INF is +0
36  *	8.  +-(|x| < 1) **  -INF is +INF
37  *	9.  +-1         ** +-INF is NAN
38  *	10. +0 ** (+anything except 0, NAN)               is +0
39  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
40  *	12. +0 ** (-anything except 0, NAN)               is +INF
41  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
42  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
43  *	15. +INF ** (+anything except 0,NAN) is +INF
44  *	16. +INF ** (-anything except 0,NAN) is +0
45  *	17. -INF ** (anything)  = -0 ** (-anything)
46  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
47  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
48  *
49  * Accuracy:
50  *	pow(x,y) returns x**y nearly rounded. In particular
51  *			pow(integer,integer)
52  *	always returns the correct integer provided it is
53  *	representable.
54  *
55  * Constants :
56  * The hexadecimal values are the intended ones for the following
57  * constants. The decimal values may be used, provided that the
58  * compiler will convert from decimal to binary accurately enough
59  * to produce the hexadecimal values shown.
60  */
61 
62 #include "math_libm.h"
63 #include "math_private.h"
64 
65 libm_hidden_proto(scalbn)
66     libm_hidden_proto(fabs)
67 #ifdef __STDC__
68      static const double
69 #else
70      static double
71 #endif
72        bp[] = { 1.0, 1.5, }, dp_h[] = {
73      0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
74 
75          dp_l[] = {
76      0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
77 
78          zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0,  /* 0x43400000, 0x00000000 */
79          huge_val = 1.0e300, tiny = 1.0e-300,
80          /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
81          L1 = 5.99999999999994648725e-01,       /* 0x3FE33333, 0x33333303 */
82          L2 = 4.28571428578550184252e-01,       /* 0x3FDB6DB6, 0xDB6FABFF */
83          L3 = 3.33333329818377432918e-01,       /* 0x3FD55555, 0x518F264D */
84          L4 = 2.72728123808534006489e-01,       /* 0x3FD17460, 0xA91D4101 */
85          L5 = 2.30660745775561754067e-01,       /* 0x3FCD864A, 0x93C9DB65 */
86          L6 = 2.06975017800338417784e-01,       /* 0x3FCA7E28, 0x4A454EEF */
87          P1 = 1.66666666666666019037e-01,       /* 0x3FC55555, 0x5555553E */
88          P2 = -2.77777777770155933842e-03,      /* 0xBF66C16C, 0x16BEBD93 */
89          P3 = 6.61375632143793436117e-05,       /* 0x3F11566A, 0xAF25DE2C */
90          P4 = -1.65339022054652515390e-06,      /* 0xBEBBBD41, 0xC5D26BF1 */
91          P5 = 4.13813679705723846039e-08,       /* 0x3E663769, 0x72BEA4D0 */
92          lg2 = 6.93147180559945286227e-01,      /* 0x3FE62E42, 0xFEFA39EF */
93          lg2_h = 6.93147182464599609375e-01,    /* 0x3FE62E43, 0x00000000 */
94          lg2_l = -1.90465429995776804525e-09,   /* 0xBE205C61, 0x0CA86C39 */
95          ovt = 8.0085662595372944372e-0017,     /* -(1024-log2(ovfl+.5ulp)) */
96          cp = 9.61796693925975554329e-01,       /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
97          cp_h = 9.61796700954437255859e-01,     /* 0x3FEEC709, 0xE0000000 =(float)cp */
98          cp_l = -7.02846165095275826516e-09,    /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
99          ivln2 = 1.44269504088896338700e+00,    /* 0x3FF71547, 0x652B82FE =1/ln2 */
100          ivln2_h = 1.44269502162933349609e+00,  /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
101          ivln2_l = 1.92596299112661746887e-08;  /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */
102 
103 #ifdef __STDC__
__ieee754_pow(double x,double y)104      double attribute_hidden __ieee754_pow(double x, double y)
105 #else
106      double attribute_hidden __ieee754_pow(x, y)
107      double x, y;
108 #endif
109      {
110          double z, ax, z_h, z_l, p_h, p_l;
111          double y1, t1, t2, r, s, t, u, v, w;
112          int32_t i, j, k, yisint, n;
113          int32_t hx, hy, ix, iy;
114          u_int32_t lx, ly;
115 
116          EXTRACT_WORDS(hx, lx, x);
117          EXTRACT_WORDS(hy, ly, y);
118          ix = hx & 0x7fffffff;
119          iy = hy & 0x7fffffff;
120 
121          /* y==zero: x**0 = 1 */
122          if ((iy | ly) == 0)
123              return one;
124 
125          /* +-NaN return x+y */
126          if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
127              iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
128              return x + y;
129 
130          /* determine if y is an odd int when x < 0
131           * yisint = 0       ... y is not an integer
132           * yisint = 1       ... y is an odd int
133           * yisint = 2       ... y is an even int
134           */
135          yisint = 0;
136          if (hx < 0) {
137              if (iy >= 0x43400000)
138                  yisint = 2;    /* even integer y */
139              else if (iy >= 0x3ff00000) {
140                  k = (iy >> 20) - 0x3ff;        /* exponent */
141                  if (k > 20) {
142                      j = ly >> (52 - k);
143                      if ((j << (52 - k)) == ly)
144                          yisint = 2 - (j & 1);
145                  } else if (ly == 0) {
146                      j = iy >> (20 - k);
147                      if ((j << (20 - k)) == iy)
148                          yisint = 2 - (j & 1);
149                  }
150              }
151          }
152 
153          /* special value of y */
154          if (ly == 0) {
155              if (iy == 0x7ff00000) {    /* y is +-inf */
156                  if (((ix - 0x3ff00000) | lx) == 0)
157                      return y - y;      /* inf**+-1 is NaN */
158                  else if (ix >= 0x3ff00000)     /* (|x|>1)**+-inf = inf,0 */
159                      return (hy >= 0) ? y : zero;
160                  else           /* (|x|<1)**-,+inf = inf,0 */
161                      return (hy < 0) ? -y : zero;
162              }
163              if (iy == 0x3ff00000) {    /* y is  +-1 */
164                  if (hy < 0)
165                      return one / x;
166                  else
167                      return x;
168              }
169              if (hy == 0x40000000)
170                  return x * x;  /* y is  2 */
171              if (hy == 0x3fe00000) {    /* y is  0.5 */
172                  if (hx >= 0)   /* x >= +0 */
173                      return __ieee754_sqrt(x);
174              }
175          }
176 
177          ax = fabs(x);
178          /* special value of x */
179          if (lx == 0) {
180              if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
181                  z = ax;        /* x is +-0,+-inf,+-1 */
182                  if (hy < 0)
183                      z = one / z;       /* z = (1/|x|) */
184                  if (hx < 0) {
185                      if (((ix - 0x3ff00000) | yisint) == 0) {
186                          z = (z - z) / (z - z); /* (-1)**non-int is NaN */
187                      } else if (yisint == 1)
188                          z = -z;        /* (x<0)**odd = -(|x|**odd) */
189                  }
190                  return z;
191              }
192          }
193 
194          /* (x<0)**(non-int) is NaN */
195          if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
196              return (x - x) / (x - x);
197 
198          /* |y| is huge */
199          if (iy > 0x41e00000) { /* if |y| > 2**31 */
200              if (iy > 0x43f00000) {     /* if |y| > 2**64, must o/uflow */
201                  if (ix <= 0x3fefffff)
202                      return (hy < 0) ? huge_val * huge_val : tiny * tiny;
203                  if (ix >= 0x3ff00000)
204                      return (hy > 0) ? huge_val * huge_val : tiny * tiny;
205              }
206              /* over/underflow if x is not close to one */
207              if (ix < 0x3fefffff)
208                  return (hy < 0) ? huge_val * huge_val : tiny * tiny;
209              if (ix > 0x3ff00000)
210                  return (hy > 0) ? huge_val * huge_val : tiny * tiny;
211              /* now |1-x| is tiny <= 2**-20, suffice to compute
212                 log(x) by x-x^2/2+x^3/3-x^4/4 */
213              t = x - 1;         /* t has 20 trailing zeros */
214              w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
215              u = ivln2_h * t;   /* ivln2_h has 21 sig. bits */
216              v = t * ivln2_l - w * ivln2;
217              t1 = u + v;
218              SET_LOW_WORD(t1, 0);
219              t2 = v - (t1 - u);
220          } else {
221              double s2, s_h, s_l, t_h, t_l;
222              n = 0;
223              /* take care subnormal number */
224              if (ix < 0x00100000) {
225                  ax *= two53;
226                  n -= 53;
227                  GET_HIGH_WORD(ix, ax);
228              }
229              n += ((ix) >> 20) - 0x3ff;
230              j = ix & 0x000fffff;
231              /* determine interval */
232              ix = j | 0x3ff00000;       /* normalize ix */
233              if (j <= 0x3988E)
234                  k = 0;         /* |x|<sqrt(3/2) */
235              else if (j < 0xBB67A)
236                  k = 1;         /* |x|<sqrt(3)   */
237              else {
238                  k = 0;
239                  n += 1;
240                  ix -= 0x00100000;
241              }
242              SET_HIGH_WORD(ax, ix);
243 
244              /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
245              u = ax - bp[k];    /* bp[0]=1.0, bp[1]=1.5 */
246              v = one / (ax + bp[k]);
247              s = u * v;
248              s_h = s;
249              SET_LOW_WORD(s_h, 0);
250              /* t_h=ax+bp[k] High */
251              t_h = zero;
252              SET_HIGH_WORD(t_h,
253                            ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
254              t_l = ax - (t_h - bp[k]);
255              s_l = v * ((u - s_h * t_h) - s_h * t_l);
256              /* compute log(ax) */
257              s2 = s * s;
258              r = s2 * s2 * (L1 +
259                             s2 * (L2 +
260                                   s2 * (L3 +
261                                         s2 * (L4 + s2 * (L5 + s2 * L6)))));
262              r += s_l * (s_h + s);
263              s2 = s_h * s_h;
264              t_h = 3.0 + s2 + r;
265              SET_LOW_WORD(t_h, 0);
266              t_l = r - ((t_h - 3.0) - s2);
267              /* u+v = s*(1+...) */
268              u = s_h * t_h;
269              v = s_l * t_h + t_l * s;
270              /* 2/(3log2)*(s+...) */
271              p_h = u + v;
272              SET_LOW_WORD(p_h, 0);
273              p_l = v - (p_h - u);
274              z_h = cp_h * p_h;  /* cp_h+cp_l = 2/(3*log2) */
275              z_l = cp_l * p_h + p_l * cp + dp_l[k];
276              /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
277              t = (double) n;
278              t1 = (((z_h + z_l) + dp_h[k]) + t);
279              SET_LOW_WORD(t1, 0);
280              t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
281          }
282 
283          s = one;               /* s (sign of result -ve**odd) = -1 else = 1 */
284          if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
285              s = -one;          /* (-ve)**(odd int) */
286 
287          /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
288          y1 = y;
289          SET_LOW_WORD(y1, 0);
290          p_l = (y - y1) * t1 + y * t2;
291          p_h = y1 * t1;
292          z = p_l + p_h;
293          EXTRACT_WORDS(j, i, z);
294          if (j >= 0x40900000) { /* z >= 1024 */
295              if (((j - 0x40900000) | i) != 0)   /* if z > 1024 */
296                  return s * huge_val * huge_val;        /* overflow */
297              else {
298                  if (p_l + ovt > z - p_h)
299                      return s * huge_val * huge_val;    /* overflow */
300              }
301          } else if ((j & 0x7fffffff) >= 0x4090cc00) {   /* z <= -1075 */
302              if (((j - 0xc090cc00) | i) != 0)   /* z < -1075 */
303                  return s * tiny * tiny;        /* underflow */
304              else {
305                  if (p_l <= z - p_h)
306                      return s * tiny * tiny;    /* underflow */
307              }
308          }
309          /*
310           * compute 2**(p_h+p_l)
311           */
312          i = j & 0x7fffffff;
313          k = (i >> 20) - 0x3ff;
314          n = 0;
315          if (i > 0x3fe00000) {  /* if |z| > 0.5, set n = [z+0.5] */
316              n = j + (0x00100000 >> (k + 1));
317              k = ((n & 0x7fffffff) >> 20) - 0x3ff;      /* new k for n */
318              t = zero;
319              SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
320              n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
321              if (j < 0)
322                  n = -n;
323              p_h -= t;
324          }
325          t = p_l + p_h;
326          SET_LOW_WORD(t, 0);
327          u = t * lg2_h;
328          v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
329          z = u + v;
330          w = v - (z - u);
331          t = z * z;
332          t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
333          r = (z * t1) / (t1 - two) - (w + z * w);
334          z = one - (r - z);
335          GET_HIGH_WORD(j, z);
336          j += (n << 20);
337          if ((j >> 20) <= 0)
338              z = scalbn(z, n);  /* subnormal output */
339          else
340              SET_HIGH_WORD(z, j);
341          return s * z;
342      }
343