• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Elliptic Integral D - Legendre Form</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../ellint.html" title="Elliptic Integrals">
9<link rel="prev" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">
10<link rel="next" href="jacobi_zeta.html" title="Jacobi Zeta Function">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.ellint.ellint_d"></a><a class="link" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">Elliptic Integral D - Legendre
28      Form</a>
29</h3></div></div></div>
30<h5>
31<a name="math_toolkit.ellint.ellint_d.h0"></a>
32        <span class="phrase"><a name="math_toolkit.ellint.ellint_d.synopsis"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.synopsis">Synopsis</a>
33      </h5>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_d</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35</pre>
36<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
37
38<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
39<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
40
41<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
42<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
43
44<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
45<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
46
47<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
48<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
49
50<span class="special">}}</span> <span class="comment">// namespaces</span>
51</pre>
52<h5>
53<a name="math_toolkit.ellint.ellint_d.h1"></a>
54        <span class="phrase"><a name="math_toolkit.ellint.ellint_d.description"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.description">Description</a>
55      </h5>
56<p>
57        These two functions evaluate the incomplete elliptic integral <span class="emphasis"><em>D(φ,
58        k)</em></span> and its complete counterpart <span class="emphasis"><em>D(k) = D(π/2, k)</em></span>.
59      </p>
60<p>
61        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
62        type calculation rules</em></span></a> when the arguments are of different
63        types: when they are the same type then the result is the same type as the
64        arguments.
65      </p>
66<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
67<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
68
69<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
70<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
71</pre>
72<p>
73        Returns the incomplete elliptic integral:
74      </p>
75<div class="blockquote"><blockquote class="blockquote"><p>
76          <span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
77
78        </p></blockquote></div>
79<p>
80        Requires <span class="emphasis"><em>k<sup>2</sup>sin<sup>2</sup>(phi) &lt; 1</em></span>, otherwise returns the result
81        of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
82        (outside this range the result would be complex).
83      </p>
84<p>
85        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
86        be used to control the behaviour of the function: how it handles errors,
87        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
88        documentation for more details</a>.
89      </p>
90<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
91<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
92
93<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
94<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
95</pre>
96<p>
97        Returns the complete elliptic integral <span class="emphasis"><em>D(k) = D(π/2, k)</em></span>
98      </p>
99<p>
100        Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> otherwise returns the result
101        of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
102        (outside this range the result would be complex).
103      </p>
104<p>
105        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
106        be used to control the behaviour of the function: how it handles errors,
107        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
108        documentation for more details</a>.
109      </p>
110<h5>
111<a name="math_toolkit.ellint.ellint_d.h2"></a>
112        <span class="phrase"><a name="math_toolkit.ellint.ellint_d.accuracy"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.accuracy">Accuracy</a>
113      </h5>
114<p>
115        These functions are trivially computed in terms of other elliptic integrals
116        and generally have very low error rates (a few epsilon) unless parameter
117        φ
118is very large, in which case the usual trigonometric function argument-reduction
119        issues apply.
120      </p>
121<div class="table">
122<a name="math_toolkit.ellint.ellint_d.table_ellint_d_complete_"></a><p class="title"><b>Table 8.66. Error rates for ellint_d (complete)</b></p>
123<div class="table-contents"><table class="table" summary="Error rates for ellint_d (complete)">
124<colgroup>
125<col>
126<col>
127<col>
128<col>
129<col>
130</colgroup>
131<thead><tr>
132<th>
133              </th>
134<th>
135                <p>
136                  GNU C++ version 7.1.0<br> linux<br> double
137                </p>
138              </th>
139<th>
140                <p>
141                  GNU C++ version 7.1.0<br> linux<br> long double
142                </p>
143              </th>
144<th>
145                <p>
146                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
147                </p>
148              </th>
149<th>
150                <p>
151                  Microsoft Visual C++ version 14.1<br> Win32<br> double
152                </p>
153              </th>
154</tr></thead>
155<tbody>
156<tr>
157<td>
158                <p>
159                  Elliptic Integral E: Mathworld Data
160                </p>
161              </td>
162<td>
163                <p>
164                  <span class="blue">Max = 0.637ε (Mean = 0.368ε)</span>
165                </p>
166              </td>
167<td>
168                <p>
169                  <span class="blue">Max = 1.27ε (Mean = 0.735ε)</span>
170                </p>
171              </td>
172<td>
173                <p>
174                  <span class="blue">Max = 1.27ε (Mean = 0.735ε)</span>
175                </p>
176              </td>
177<td>
178                <p>
179                  <span class="blue">Max = 0.637ε (Mean = 0.368ε)</span>
180                </p>
181              </td>
182</tr>
183<tr>
184<td>
185                <p>
186                  Elliptic Integral D: Random Data
187                </p>
188              </td>
189<td>
190                <p>
191                  <span class="blue">Max = 0ε (Mean = 0ε)</span>
192                </p>
193              </td>
194<td>
195                <p>
196                  <span class="blue">Max = 1.27ε (Mean = 0.334ε)</span>
197                </p>
198              </td>
199<td>
200                <p>
201                  <span class="blue">Max = 1.27ε (Mean = 0.334ε)</span>
202                </p>
203              </td>
204<td>
205                <p>
206                  <span class="blue">Max = 1.27ε (Mean = 0.355ε)</span>
207                </p>
208              </td>
209</tr>
210</tbody>
211</table></div>
212</div>
213<br class="table-break"><div class="table">
214<a name="math_toolkit.ellint.ellint_d.table_ellint_d"></a><p class="title"><b>Table 8.67. Error rates for ellint_d</b></p>
215<div class="table-contents"><table class="table" summary="Error rates for ellint_d">
216<colgroup>
217<col>
218<col>
219<col>
220<col>
221<col>
222</colgroup>
223<thead><tr>
224<th>
225              </th>
226<th>
227                <p>
228                  GNU C++ version 7.1.0<br> linux<br> double
229                </p>
230              </th>
231<th>
232                <p>
233                  GNU C++ version 7.1.0<br> linux<br> long double
234                </p>
235              </th>
236<th>
237                <p>
238                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
239                </p>
240              </th>
241<th>
242                <p>
243                  Microsoft Visual C++ version 14.1<br> Win32<br> double
244                </p>
245              </th>
246</tr></thead>
247<tbody>
248<tr>
249<td>
250                <p>
251                  Elliptic Integral E: Mathworld Data
252                </p>
253              </td>
254<td>
255                <p>
256                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
257                  2.1:</em></span> Max = 0.862ε (Mean = 0.568ε))
258                </p>
259              </td>
260<td>
261                <p>
262                  <span class="blue">Max = 1.3ε (Mean = 0.813ε)</span>
263                </p>
264              </td>
265<td>
266                <p>
267                  <span class="blue">Max = 1.3ε (Mean = 0.813ε)</span>
268                </p>
269              </td>
270<td>
271                <p>
272                  <span class="blue">Max = 0.862ε (Mean = 0.457ε)</span>
273                </p>
274              </td>
275</tr>
276<tr>
277<td>
278                <p>
279                  Elliptic Integral D: Random Data
280                </p>
281              </td>
282<td>
283                <p>
284                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
285                  2.1:</em></span> Max = 3.01ε (Mean = 0.928ε))
286                </p>
287              </td>
288<td>
289                <p>
290                  <span class="blue">Max = 2.51ε (Mean = 0.883ε)</span>
291                </p>
292              </td>
293<td>
294                <p>
295                  <span class="blue">Max = 2.51ε (Mean = 0.883ε)</span>
296                </p>
297              </td>
298<td>
299                <p>
300                  <span class="blue">Max = 2.87ε (Mean = 0.805ε)</span>
301                </p>
302              </td>
303</tr>
304</tbody>
305</table></div>
306</div>
307<br class="table-break"><p>
308        The following error plot are based on an exhaustive search of the functions
309        domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
310        precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
311        <span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
312      </p>
313<div class="blockquote"><blockquote class="blockquote"><p>
314          <span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__double.svg" align="middle"></span>
315
316        </p></blockquote></div>
317<div class="blockquote"><blockquote class="blockquote"><p>
318          <span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__80_bit_long_double.svg" align="middle"></span>
319
320        </p></blockquote></div>
321<div class="blockquote"><blockquote class="blockquote"><p>
322          <span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d____float128.svg" align="middle"></span>
323
324        </p></blockquote></div>
325<h5>
326<a name="math_toolkit.ellint.ellint_d.h3"></a>
327        <span class="phrase"><a name="math_toolkit.ellint.ellint_d.testing"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.testing">Testing</a>
328      </h5>
329<p>
330        The tests use a mixture of spot test values calculated using values calculated
331        at <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, and random
332        test data generated using MPFR at 1000-bit precision and a deliberately naive
333        implementation in terms of the Legendre integrals.
334      </p>
335<h5>
336<a name="math_toolkit.ellint.ellint_d.h4"></a>
337        <span class="phrase"><a name="math_toolkit.ellint.ellint_d.implementation"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.implementation">Implementation</a>
338      </h5>
339<p>
340        The implementation for D(φ, k) first performs argument reduction using the
341        relations:
342      </p>
343<div class="blockquote"><blockquote class="blockquote"><p>
344          <span class="serif_italic"><span class="emphasis"><em>D(-φ, k) = -D(φ, k)</em></span></span>
345        </p></blockquote></div>
346<p>
347        and
348      </p>
349<div class="blockquote"><blockquote class="blockquote"><p>
350          <span class="serif_italic"><span class="emphasis"><em>D(nπ+φ, k) = 2nD(k) + D(φ, k)</em></span></span>
351        </p></blockquote></div>
352<p>
353        to move φ to the range [0, π/2].
354      </p>
355<p>
356        The functions are then implemented in terms of Carlson's integral R<sub>D</sub>
357using
358        the relation:
359      </p>
360<div class="blockquote"><blockquote class="blockquote"><p>
361          <span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
362
363        </p></blockquote></div>
364</div>
365<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
366<td align="left"></td>
367<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
368      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
369      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
370      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
371      Daryle Walker and Xiaogang Zhang<p>
372        Distributed under the Boost Software License, Version 1.0. (See accompanying
373        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
374      </p>
375</div></td>
376</tr></table>
377<hr>
378<div class="spirit-nav">
379<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
380</div>
381</body>
382</html>
383